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1 Introduction

Following Vinberg [18], we will define a convex domain in R” as an open convex
subset of R™ which does not contain a full straight line. A self-concordant
barrier function for a convex domain () is defined as a strongly convex smooth
function f on @), which tends to co at the boundary and satisfies the estimates
(iii) and (iv) of Definition 2.1 below, for the derivatives of f up to the third
order. The strong convexity of f means that the Hessian g¢;;(z) = 0,0, f(x)
is positive definite and therefore defines a Riemannian structure on Q. (Such
Riemannian structures on convex domains have been studied already by Koszul
[13] and Vinberg [18], who refer further back to the theory of bounded domains
in C™, with its Bergmann metric.) In this paper we investigate the asymptotic
behaviour of this Riemannian structure, and of its geodesics and its curvature,
near points of the boundary where the boundary is smooth and strongly convex,
which means that its curvature, described by its second fundamental form, is
positive definite.

In order to obtain good asymptotic expansions near such points, we intro-
duce Assumption 2.1 below about the behaviour of the function f near the
boundary, and argue that these assumptions are quite natural, cf. Remark 2.3.

Under these assumptions we will show in Section 5 that, after suitable
reparametrization, the geodesics, near points of the boundary where the bound-
ary is smooth and strongly convex, extend to a smooth family of smooth curves
which cross the boundary in arbitrary directions, where the tangent ones curve
out of Q). We will also compare the geodesics with the gradient curves of linear
functions with respect to the Hessian Riemannian structure. These have a sim-
ilar behaviour near the boundary, with the difference that the gradient curves
which are tangent to the boundary remain in the boundary. See Proposition
5.1 for more details.

In Section 6 we draw some conclusions about the global behaviour of the
geodesics and the aforementined gradient curves, in the case that () is bounded
and 0Q is a smooth and strongly convex hypersurface in R™ (which automat-
ically is compact and diffeomorphic to the (n — 1)dimensional sphere). In this



case all geodesics v(t) in () converge for ¢ — Foo to a point v (f£oo) € 0Q).
Furthermore, for every z € @ and y4 € 0Q) there exists a geodesic v such that
v(0) = z and y(400) = y4. Also, for every yy € dQ such that y_ # yy there
exists a geodesic v in @) such that y+ = v (+o0). In contrast, the gradient curves
3(t) for linear functions which for £ — —oo converge to a given point y_ € 0Q)
all are defined by the same linear function & which attains its minimum on
0Q at y_, and therefore all converge for ¢ — oo to the same, “opposite” point
Y+ € 0@ where £ attains it maximum on 0¢). See Theorem 6.1 for more details.

In Section 7 we prove that, still under the Assumption 2.1, all the sec-
tional curvatures of the Hessian Riemannian structure converge to —1/4 if one
approaches the boundary where the boundary is smooth and strongly convex.

In Section 8 we discuss the simple examples of the parabolic domain, the
ball, the corner, and the triangle. The example of the corner in Section 8 shows
that near points where the boundary is not smooth or not strongly convex,
the behaviour can be (and probably always is) very different. The impression
is that the boundary catches geodesics roughly in proportion to the Gaussian
curvature at the boundary points. The sectional curvature is constant equal to
—i for the parabolic domain, negative for the ball except at the origin, equal
to zero for the corner, and positive for the triangle.

2 The Assumption

Throughout this paper we will abbreviate the partial derivative df(z)/dz' of
a function f at the point by means of 9;f(z), such that the corresponding
function of z is denoted by 0;f. The total derivative of f is denoted by df or
f" and second and third order total derivatives by f” and f", respectively.

Definition 2.1 A self-concordant barrier function for a convex domain )
in R™ is a smooth, real-valued function f on @, which satisfies the following
conditions, cf. Nesterov and Nemirovski [14].

(i) f is strongly convex on ), which means that for every 2 € @) the Hessian
0;0;f(z), 1 <14, j <mn,of fatthe point z is a positive definite symmetric
matrix.

(ii) f(z) — oo when z € @) converges to a point y € 9Q of the boundary 0Q)
of () in R".

(iii)
Ci(f):=_ sup  fi(@)(v)*/f"(2)(v, v) < co.

r€Q,veER™, v#£0

Cy(f) == sup {%f”’(m)(?), v, v)r /" (x) (v, v)? < oo.

r€Q,vER™ v£0



It is clear that if f is a self-concordant barrier function for ¢ and c is a
strictly positive constant, then ¢ f is a self-concordant barrier function for @

and Cy(c f) = cC1(f), whereas Cy(c f) = ¢~ Cy(f). The number
D(f) = Ci(f) Calf)

is called the parameter of the barrier function f. cf. [14, Def. 2.3.1, Def. 2.1.1
and formula (2.2.1)]. One always has that 9(f) > 1, and 9(f) > k if @ has
boundary points in the neighborhood of which 0@ is described by &k independent
linear equations, cf. [14, Remark 2.3.1 and Proposition 2.3.6]. @

If fis a self-concordant barrier for (), the we will write ¢ := e~/, or equiv-
alently f = —In¢. Then ¢(z) > 0 for every z € @) and, because f(z) tends to
0o as ¢ € () tends to a boundary point of @, ¢ extends to a continuous function
on @ which is equal to zero on 9Q. Here Q = Q U 0Q and 9Q denote the
closure and the boundary of ¢ in R”, respectively. We denote the continuous
extension of ¢ to Q also by ¢.

The term smooth in this article means arbitrarily often differentiable. Smooth-
ness up to the boundary means that all derivatives have limits if one approaches
the boundary. For all applications smoothness can be replaced by the the con-
dition that sufficiently many derivatives exist and are continuous up to the
boundary. However, this would require a constant bookkeeping of the number
of continuous derivatives, which would complicate the already quite technical
presentation even further.

Let 0@ be smooth in a neighborhood of the point z € ). By means of a
suitable affine substitution of variables, one can arrange that z =0, T,(90Q) =
R"! x {0} and then there exists a smooth real-valued function % of n — 1
variables in an open neighborhood of the origin in R*™!, such that for z near
z we have that z € @ if and only if

m”>h(x1,...,m”).

We say that @ is strongly convez at z € 9Q) if the Hessian h”(0) of h at 0, which
always is positive definite when () is convex, actually is positive definite. This
condition is independent of the choice of the affine substitution of variables.

Assumption 2.1 U is an open subset of R", such that U N 0@ is a smooth
and strongly convex hypersurface in U. We take f = —In ¢, where ¢ is a real-
valued strictly positive function on U N @, which is smooth up to U NdQ. The
smooth extension of ¢ to U N is also denoted by ¢. For every y € U NIQ we
have that ¢(y) = 0 and the total derivative ¢'(y) = d¢(y) of ¢ at y is not equal
to zero. Q

Remark 2.1 For the concrete examples in the book [14] of self-concordant
barrier functions, Assumption 2.1 holds near every boundary point where the
boundary is a smooth and strongly convex hypersurface.

For the “universal barrier function” of [14, Section 2.5.1] they hold with
an additional term in the function e=/, cf. Proposition 3.1 below. When n



is sufficiently large, then the additional term is of such low order that it does
not invalidate the results in the later sections of this paper, if smoothness is
replaced by differentiability of order roughly equal to § — 1. It appears however
that even in the worst case n = 2 the conclusions of Theorem 6.1 and Theorem
7.1 remain valid, c¢f. Remark 5.5, Remark 6.5 and Remark 7.3.

Moreover, if () is bounded and 9@} is a smooth and strongly convex hyper-
surface in R”, then the asymptotic description in Proposition 3.1 yields that by
means of an asymptotically small modification near the boundary the universal
barrier function can be changed into a self-concordant barrier function which
satisfies Assumption 2.1. See Corollary 4.3 for the precise statement. @

Remark 2.2  Assumption 2.1 holds with ¢ replaced by % if and only if
1 = A¢, where )\ is smooth and strictly positive on U N Q. In particular
—InY = —In¢ — In A, where In )\ is smooth on U N @, which implies that all
derivatives of In A are bounded on every compact subset of / N @Q. This can be
viewed as an illustration of how strong Assumption 2.1 really is. %)

Remark 2.3 [t is not true that for every self-concordant barrier function
f the derivatives have expansions in negative powers of the distance to the
boundary. For instance, suppose that f satisfies Assumption 2.1. Then f(ac) =
f(z)+ A sin f(z) defines a self-concordant barrier function if |A]\/1 + C1(f)? <
1. However, the m-th order derivatives of f, multiplied with the m-th power
of the distance to the boundary, are bounded but exhibit infinite oscillatory
behaviour, without having a limit, when z tends to a boundary point. Such
oscillatory behaviour would complicate the asymptotic analysis of the Rieman-

nian structure near the boundary considerably. @

3 The Universal Barrier Function

Let @ be a convex domain in R”. For each 2 € (), the bounded convex subset

Q(x) ={{eR"|yeQ@=(y-=2,8 <1} (3-1)

of the dual space is called the polar set of () with respect to the point x. Let
I(z) denote the n-dimensional volume of @*(z). (It follows from (8.27) that,
up to a constant factor, the function I(z) is equal to the characteristic function
of @ as defined by Vinberg [18, Def. 10, p. 356].) According to [14, Thm.
2.5.1], the function 2 — In I(2) is a self-concordant barrier function for ), with
parameter < C'n, where ' is a universal constant.

Proposition 3.1 Let I(z) = I, (z) denote the n-dimensional volume of Q* ()
and define f(z) = f,(z) = nQﬁ In I(z). For z € QQ near points of the boundary
0Q) where Q) is smooth and strongly convex, we have the following conclusions.

a) Ifn =1 then f satisfies Assumption 2.1.



b) If n is even then

2
n+1 ntl

6(z) = e = a(@) [1+a(2)T ()| ™,

where the functions o and 3 are smooth up to the boundary. Moreover,
a=0o0n0dQ, a>0inQ and da(y) # 0 for every y € Q) where IQ is

smooth and strongly convex.

¢) Ifn is odd and n > 3 then

__2

6(x) = e~ = a(z) [1+a(2)F Ba) (In ¢(2) +(2))] ™,

where the functions o, B and v are smooth up to the boundary. Moreover,
a=0o0ndQ, a>0inQ and da(y) # 0 for every y € Q) where IQ is

smooth and strongly convex.

Proof |If n = 1, then it is easily verified that f satisfies Assumption 2.1.
Therefore we assume from now on that n > 2.
Define the supporting function p = pg : R" - R U {0} of @ by

p(n) = Sgp<y, m, n€ERT (3.2)
Yy

where p(n) = oo if the linear form y — (y, n) is not bounded from above on
Q. Let S"~! denote the unit sphere in R”. Then we have for any r > 0 and
n € S™! that rn € Q*(z), if and only if (p(n) — (z, n)) r < 1. It follows that

1/(p(n)=(z,m))
I(z) = vol, / / r"tdrd,_in

qn]

=k/ L (p(n) = (@, m))™" dnca, (3:3)

Sn—l

where the integrand is taken to be equal to zero when p(n) = oco.

Now assume that z is close to yy € 0@ and that 9Q is smooth and strongly
convex near yy. Write v(y) for the exterior normal at points y € 0Q near yo.
Then the positive number p(n) — (z, ) can only be small when 7 is close to
no = v (yo). Let 7 be a smooth function on S™~' which is equal to 1 in a
neighborhood of 7y and equal to zero outside a somewhat larger neighborhood
V of ng, and write

L@ =1 [ om =@ )™ v do. (34)

Sn—l

Because p(n) —(z, 1) is bounded away from zero when € S"~'\V, the function
I — I, is smooth up to the boundary.

The mapping v : y — v(y), which is sometimes called the Gauss map of the
smooth hypersurface 9@ near yyq, is a smooth diffeomorphism from UNoE onto



an open subset of "7, Its Jacobi determinant £(y) at the point y € UNOQ is
called the Gauss curvature of 0@ at y. The function « is strictly positive and
smooth on an open neighborhood of yg in 0Q.

In the sequel we will arrange that V' is contained in the open subset (U N
Q) of S*~'. If n = v(y), for y € U N IQ, we have that p(n) = (y, n). If
we apply the substitution of variables n = v(y) to the integral (3.4), then we
obtain that

R@ =5 [ e o) ) ) deye (35)

It is an application of the implicit function theorem that the points z € )
close to yo can be written as 2 = z — dv(z), for a unique z = z(z) € 90Q close
to yo and a unique § = §(z) > 0, where the functions z +— z(z) and z — §(z)
are smooth up to the boundary 9Q. With the substitution z = z — dv(z), we
have that

(y— 2, v(y)) = (6+6(y, 2)) (v(2), v(y)),
where
0y, 2) == (y — 2, v(y))/{v(2), ¥(y))- (3.6)

Note that (v(z), v(y)) =1 when y = z. Furthermore, §(z) = 0 and df(z) = 0.

In order to compute the Hessian of y — 6(y, z) at the point y = z, we
parametrize 0@ near z by means of the substitution y = z 4+ u — h(u) v(z),
where u varies in a small open neighborhood of the origin in the tangent space
T.(0Q) of 0Q at the point z. Here h is a smooth real-valued function, A(0) = 0,
h'(0) = 0 and the Hessian H (z) := h”(0) of h at the origin is a positive definite
symmetric bilinear form on T,(0Q). Classically, H(z) is called the second
fundamental form at z of the hypersurface 0, and we note that

k(z) = det H(z). (3.7)

For the computation of #(y, z) it is convenient to arrange by means of a
rigid motion, that z = 0 and T,(0Q) = R*™' x {0} ~ R™~'. Then h can be
viewed as a function on an open neighborhood of the origin in R*~! and y € 9Q
is parametrized by v € R"~! by means of y = (u, h(u)). In this situtation, we
have that

vy) = (14 IR @IE) ™" (@hw), -1y,
and it follows that
O(u, h(u), 2) = (u, h'(u)) — h(u).
Because
W(w) = h"(0)(u)+ O (|lulf?),
hw) = Sh"(u,u)+ 0 (|lul?),
we arrive at the conclusion that

9%0(y, 2)



which is positive definite.

The Morse lemma with parameters of Hormander [11, Lemma 3.2.3] implies
that there exists a smooth substitution of variables y = y(v, z), depending
smoothly on the parameters z, such that 8(y(v, z), z) = ||v|]|>. We have

dy(v, 2)
v
where the last identity follows from (3.7).
The substitution of variables y = y(v, z) in the integral (3.5) leads to

-1/2

|._, = det [% H(z)} = 21" g (2) "1/, (3.9)

Iy(2) :/Rn_l (5+111) ™" a(, 2) dacr, (3.10)

where @ is a smooth function of all variables, equal to zero when ||v|| > C for a
suitable positive constant C'; and satisfies

a(0, 2) = 1217 k()12 (3.11)

With the substitution v = r w, where r > 0 and w on the (n—2)-dimensional
unit sphere 7% in R™™!| the integral (3.10) transforms into

Iy(z) = /OOO (5 + rQ)_n r"=? A(r, 2) dr, (3.12)

in which
Alr, 2) ::/ a(rw, z) dy_gw. (3.13)
Sn—2
The right hand side is an even smooth function of r, because if we replace r by
—r then the substitution of w € S"~% by the antipodal point —w shows that
the integral remains the same. It follows that we have an asymptotic expansion
for r — 0 in even powers of r. More precisely,

A(ry z) ~ Z er AFa(0, 2)r?*, =0, (3.14)
k=0

where A denotes the Laplace operator with respect to the variable v and the
¢ are universal constants, with ¢y equal to the (n — 2)-dimensional volume of
S

We have reduced the asymptotic expansion for /(z) as z tends to a smooth
and strongly convex piece of 9@ to the investigation of integrals of the form

/0 (5-}— r2) - PP () dr = L /0 64+ s)™" s Tt p(s) ds  (3.15)

as 6 | 0, where p is a cut-off function at the origin, a compactly supported
smooth function which is equal to 1 on an open neighborhood of the origin.
Because we have to investigate the derivatives with respect to & of (3.15) as
well, we will study of the asymptotic behaviour for § | 0 of integrals of the form

I, p(8) := /OOO (84 s)™™ sP u(o) ds, (3.16)

7



where m > n is an integer, p = ”2;3 +k, and g is a cut-off function at the origin.
When —m + p < —1, then the substitution of variables s = § ¢ yields that

Io(8) = / (64 5)~™ s ds +/ (64 5)™™ 5P [u(s) — 1] ds
0 0
— 5“m+p+1/ (I1+0) "0 do +/ (0 +s)"™sP [u(s) — 1] ds,
0 0
where the last integral is an analytic function of § in a neighborhood of § = 0.

When —m+p > 1, then we take a positive integer [ such that —(m+{)+p <
—1, write

1D (8) = (~1)! T (),

m,p (m—1)!

apply the previous result to /,,4;, and then integrate / times. If p is not
an integer, which occurs when n is even, it follows that I, ,(§) is equal to a
constant times §~"+P*+! plus an analytic function of § near § = 0. However,
if p is an integer, which occurs when n is odd, then [T(n_,p +p+2)(5) is equal to a
constant times d~! plus an analytic function of é. Integrating this —m + p + 2
times, we obtain that I, ,(8) is equal to a constant times 6="*+! |n § plus an
analytic function of § near § = 0.

Because —m+p+ 1 = —% ”2;3,
there exist functions J and K which are smooth up to the boundary, such that

when m = n and p = we obtain that

I(z) = J(z) 5 4 K(z), when n is even, and (3.17)
I(z) = J(z) P e K(z)Iné, when n is odd. (3.18)
Furthermore,
lim J(z) = c(n) k(2)'?, =€ 0Q, (3.19)
in which the constant
c(n) == £= vol,_» (S"_Q) / 1+ U)_”U%;S do (3.20)
0

only depends on the dimension n. Note that the limit in (3.19) is strictly
positive.
2
It follows that e=/(*) = [(2)™#+T is equal to

2

5 [J(2) + 6" K(2)] T

when n is even and which is equal to

2

5 [J(z) + 8% K(z) Ing| ™

when n is odd. Therefore, the conclusions of the proposition follow with a(z) :=
5J(m)_ni+1, B(z) = K(z) and vy(z) = % InJ(z). The function « is equal
to zero at the boundary, is strictly positive in the interior, and has nonzero
derivative at every boundary point where the boundary is smooth and strongly
convex. q.e.d.



Remark 3.1 In the proof of Proposition 3.1 we have found that for every
z € 0Q the linear form A, (z) := ¢'(2) = a/(z) is determined by the conditions
that it is equal to zero on T, () and attains the value c(n)_n%l /{(z)_# on the
interior normal —v(z). Here ¢(n) is defined in (3.20).

If T :2 — Axz+ais an affine transformation, where A is an invertible linear
transformation and a € R", then it follows from the definition (3.1) that

1(Q*(x) = (171(@) (17(x))

Because the volume of the left hand side is equal to det A* = det A times the
volume of Q*(z), it follows that

Jrm1(g) (T‘l(r)) = fo () + 737 In det A,

which in turn implies that for every z € 0Q) where 0@ is smooth and strongly
convex:

i (T71(2)) = (det A)T7T X (2). (3.21)

Therefore, although the Gaussian curvature x(z) and the interior normal
—v(z) are quantities which are only invariant under Euclidean isometries, the
form A, on 0Q has the invariance property (3.21) for arbitrary affine transfor-
mations 7.

The linear form

1

Va(2) tv = k(2) 77T (v, v(2)), =z € 0Q, (3.22)

which is equal to c(n)"%l Aog(2), is the affinely invariant conormal form of the
strongly convex hypersurface 0@, discovered by Berwald and Blaschke, cf. [2,
11, §65] and Calabi [3]. Here “affinely invariant” means invariant under affine
transformations which preserve the n-dimensional volume form w of R™. If

Waff i= KT dpo1y = w/vag (3.23)

denotes the corresponding affinely invariant (n — 1)-dimensional volume form
on JQ, then the formula (3.5) can be written in the affinely invariant form

@) =5 [ 2 () ) an (). (3.24)

where y is a smooth function with compact support in the open subset of 0@
where 0¢) is smooth and strongly convex, and equal to 1 in a neighborhood of
the points of 0@ close to x. Q

4 Preparations

The partial derivatives of f of order one, two, and three are given by

R

of= 3 (4.1)



3¢5j¢_|_ 00 - 0;0 and

9 =001 = - ¢ 2z (4.2)
00,00 f = _&afm | 00O+ 81@22- D;+ 0,000 - 03
—28"‘1"‘9;;*8’“"5, (4.3)

respectively. Assumption 2.1 implies that the function ¢ can be used, near 9},
as an indicator of the distance to the boundary. The formulas (4.1), (4.2),(4.3)
yield expansions in negative powers of ¢ of the derivatives of f up to the order
three.

By shrinking U if necessary, we may assume that the unique point in @
where f attains its minimum does not belong to U. It follows that in U the
level sets of f, which are equal to the level sets of ¢, are smooth hypersurfaces,
with tangent space at 2 € U N Q equal to the null space N, of df(z), which
according to (4.1) is equal to the null space of d¢(z). Because of the latter
characterization, the N, z € U N Q, extend smoothly to u N @, where for
y € UNoQ we have N, = T, (0Q).

If 2 € UNQ and u € N, then (4.2) implies that we have for every v € R"
that

9(@)(u, v) = =" (2) (u, v)/ B ().
Therefore, the g(z)-orthogonal complement N> of N, in R", which is one-

-dimensional, is equal to the ¢"(z)-orthogonal complement of N,. In N} we
have the unique vector vy4(2), defined by the conditions that

vs(z) € Ny and (4.4)
({2, do(a)) = 1. (1.5

Lemma 4.1 For every y € U N 0Q, the restriction of ¢"(y) to Ny = T, (0Q)
is negative definite. The mapping vy : UNQ — R™, defined by (4.4) and (4.5),
is smooth up to the boundary.

Proof By means of an affine substitution of variables we may arrange that
y =0, T,(0Q) =R"! x {0}, and near the origin Q is equal to the domain

{xEU|m”>h(m1,...,m”_1)} (4.6)

above the graph of a smooth real-valued function A of n — 1 variables. The fact
that y € 0Q, T, (0Q) = R"™! x {0}, and JQ is strongly convex at y imply that
h(0) =0, dh(0) = 0 and A"(0) is positive definite, respectively. Because near y
the boundary 0@ is equal to the graph of h, and ¢ = 0 on 0Q), we have

¢(z, h(2)) =0 (4.7)

for all z € R™™! in a neighborhood of the origin in R”~!. If we differentiate
the relation (4.7) twice with respect to z and then substitute z = 0, we obtain
that

0;0;0(0) + 0,6(0) - 0;0;h(0) =0, 1<, j<n-—1. (4.8)

10



Because d¢(0) # 0 and 9;¢(0) = 0 when 1 < 7 < n—1, we have that 9,¢(0) # 0,
and because ¢ > 0 in U N Q it follows that 9,¢(0) > 0. Therefore (4.8), in
combination with A”(0) > 0 and 9,¢(0) > 0, implies that ¢"(y) = ¢"(0) is
negative definite on T,(0Q) = R"~! x {0}.

We now turn to the proof of the second statement of the lemma. The first
statement implies that, for every y € 9Q, the ¢"(y)-orthogonal complement of
N, in R", which we again denote by NyJ‘, is one-dimensional. Moreover, N}
depends smoothly on z € U N @, which implies the second statement of the
lemma. q.e.d.

When ¢ is replaced by the function « in Proposition 3.1, then NyJ' is the di-
rection of the affine normal of 0Q at the point y € 9Q, as defined in [2, II,
§65]. The geometric interpretation of the affine normal in [2, 11, §43] is quite
instructive.

For y € 0Q), the vector vy(y) plays the role of an interior normal to 0Q),
because

(e(y), dd(y)) =1>0 and ¢>0inUNQ
imply that vy (y) points in the direction of Q.

Corollary 4.2 Assume that ¢ satisfies Assumption 2.1 and that f = e™?.
Write, for every z € ) sufficiently close to U N 0Q),

Ci(f, ) = i (@) () f"(x) (v, v) < o0,
Colf, z) = UEISLB%EO [%fm(m)(v, v, U)r/f,,(m)(v, v)? < oo.

Then both Cy(f, z) and Cy(f, z) converge to 1 as x converges to UNOQ, locally
uniformly on any compact subset of U N Q. In this sense, the parameter of a
self-concordant barrier function which satisfies Assumption 2.1 is asymptotically
equal to 1 near the smooth and strongly convex part of the boundary.

1f Q) is bounded and has a smooth and strongly convex boundary, Assumption
2.1 holds globally (for U = R™), and f is strongly conver on @, then f is a
self-concordant barrier function for Q).

Proof If vis a vector of unit Euclidean length |[v|| in R™ then we have, writing
v=u+ T with u € N;, v = vg(z) and 7 € R, that f'(z)(v) = 7/¢(z) and

1" _ _qb"(:c)(u, u) T
PO =="=0w " * ser

Because —¢"(u, u) > 0, it follows that
Ci(fy ) = [1 = ¢(2) ¢" (vy(w), vy ()],

which converges to 1 as 2 converges to U N 0Q, locally uniformly on any com-
pact subset of U N Q. Note also that there is a positive constant C' such that
f"(v, v) > C/p(x) for z sufficiently close to any compact subset of U N 0Q).

[1 = ¢(x) ¢"(v, v)] -

11



On the other hand,

@@ vv) | @) v) H@) () ()()
¢(2) ¢(z)? ¢(z)?

If we take v = tvy(2), then the leading term in f"(z)(v, v, v) as ¢(x) | 0 is

equal to F2/¢(z)>, whereas the leading term in f”(z)(v, v) is equal to 1/¢(2)?,

and we conclude that the limes inferior of Cy(f, z), as 2 converges to U N dQ),

is > 1, locally uniformly on any compact subset of U N Q.

(@) (v, v, v) = +

Furthermore

_qb”’(m (v, v, v)
o(z)

If b > 0, then the function ¢ — «a [Sb - a2] on the interval {—\/@, \/%} attains

its minimum and maximum at @ = —/b and a = /b, where it takes the value

() (v, v, v) = +1'(@)(0) [3() (v, v) - F(2)(0)?] .

—2b%/% and 2b°%/2, respectively. Because Cy(f, ) is close to one, and therefore
certainly

@) ©)] < B @) (v, 0),
we obtain that

F@)@) 3£ @) (v, v) = f1(@)(0)?)] < 2 (@) (v, v)*?

when z is close to a compact subset of UNAQ. Also using that ¢(z)~'/ f"(z) (v, v)?/? <
0_3/2¢(m)1/2, which converges to zero as z approaches the boundary, we obtain
that the limes superior of Cy(f, z), as @ converges to U N 9Q, is < 1, locally
uniformly on any compact subset of U N Q. q.e.d.

Corollary 4.3 Let () be a bounded open convexr subset of R", such that the
boundary 0Q) is a smooth and strongly convex hypersurface in R™. Let f be as
in Proposition 3.1.

Let x be a smooth function of one variable, equal to 1 on a neighborhood
of 0 and equal to zero outside some bounded interval. Write, for any ¢ > 0,

Xe(@) == x (¢/€), and
¢e(z) = [1 = xe(9(2))] ¢(2) + xe(¢(2)) a(z).

Then, if € > 0 is sufficiently small, f.(z) = —In¢.(z) is a self-concordant
barrier function for () which satisfies Assumption 2.1.

Proof The function x.(z) is only nonzero when the distance from z to Q) is
of order ¢. There we have that

Pe(z) — a(z) = [1 = x(o(2))] [¢(z) — a(z)].

Because 1+ ”Qi > 2 when n > 2, the description of ¢ in Proposition 3.1 implies
that for every § > 0 there exists an ¢y > 0 such that, for every 1 <1, 7 < n,

|818]q55(r) — 8¢8ja(x)| )
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when 0 < ¢ < ¢ and x.(z) # 0. Because the matrix d;0;a(z) is negative
definite when z € 9Q), it follows from (4.2) with ¢ replaced by ¢. that, when
¢ is sufficiently small the matrix 0;0;f.(z) is positive definite for every z €
). Because near 0@) the function ¢, is equal to «, the function f. satsifies
Assumption 2.1. Because of Corollary 4.2 it therefore also satifies the estimates
(iii) and (iv) for a self-concordant barrier function. q.e.d.

Using the implicit function theorem, we obtain that the mapping (y, ¢) —
y + evy(y) is a smooth diffeomorphism from V to [7, where V' is an open
neighborhood of (UNJQ) x {0} in (UNJQ) x R and U is an open neighborhood
of UNAQ in U. This implies that for every z € U N @, we have a unique
y=y(z) e UNOQ and ¢ = ¢(x) > 0, such that 2 = y+ e vy (y). Moreover, y(z)
and ¢(z) depend smoothly on z € UNnQ, and €(z) > 0 corresponds to z € Q.
Actually ¢ and ¢ are of the same order of magnitude near U N 9@, because
e=¢=0and de =d¢ on U N IQ.

In the sequel, we will fix y € U N 9dQ and obtain asymptotic expansions of
the various quantities at the point y+ € vy (y) in powers of ¢ (including negative
powers) as € | 0. In these expansions, the estimates for the remainders will
be locally uniform when y varies in a compact subset of U N JQ). Because of
the smooth dependence of y(z) on z, this will lead to expansions of the various
quantities at the point z in powers of ¢ (including negative powers), when
z € UNQ approaches U N 0@, where the estimates for the remainders will be
locally uniform when z stays in a compact subset of U N Q.

If 2 = A(y) is an affine substitution of variables, then the Hessian Rieman-
nian structure (f o A)” of the function fo A is equal to the pull-back under A
of the Hessian Riemannian structure f” of the function f; for this reason all
the quantities which we will study here are invariant under affine substitutions
of variables.

For the given point y € U N 0@, we can arrange by means of an affine
substitution of variables (which can locally be taken to depend smoothly on y)
that y = 0, T,(0Q) = R"~! x {0} and, in addition to the requirements in the
proof of Lemma 4.1, v4(y) = ey, the n-th standard basis vector in R”. In this
situation, (4.4) and (4.5) mean that

00,000 = 0, 1<i<n—-1 and (4.9)
0;0(0) = &y, 1<i<mnm, (4.10)

respectively.
By a subsequent linear substitution of variables in the first n— 1 coordinates
(which again can be taken locally to depend smoothly on the point y € 0Q),

we can also arrange that h”(0) is equal to the identity matrix, which in view of
(4.8) and (4.10) means that

0:0;6(0) = —b;;, 1<i,j<n-—1. (4.11)

The only freedom in the affine substitution of variables which is left is an or-
thogonal linear transformation in the first » — 1 variables.
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If we differentiate the relation (4.7) three times with respect to z and then
substitute z = 0, we obtain, using (4.9) and (4.10), that

Gijk = 0;0;01,0(0) = —0;0;0:h(0), 1<, 4, k<n-—1. (4.12)

In terms of the geometry of the boundary, we have no further control over the
partial derivatives

Gijn = 0;0;0,0(0), 1<i,j<n (4.14)

of ¢ at the origin.

Our next goal is to determine the asymptotic behaviour near the boundary of
the Hessian Riemannian structure and its inverse. These quantities appear in
almost every formula in Riemannian geometry.

The formulas (4.2), (4.9), (4.11), (4.12), (4.13) and (4.14) imply that the
Riemannian structure defined by the Hessian of f at z = (0, ¢) = y + cvy(y) is
given by

g = € '8 — 2w dij—dijn+O(), 1<i, j<n—1, (4.15)
Gnn = 6_2 + %¢nn2 - %(bnnn + 0(6) (417)

The fact that in the right hand side of (4.17) no term with 1/¢ appears can be
explained by the fact that ¢ = ¢ ¢ where ¥ is smooth up to the boundary and
equal to 1 on the boundary. Therefore

2 2 2

3n2f:w (_]n(edj)):_@h“_Wln¢=e_2-|—x’

where y is smooth up to the boundary.
Let g denote the leading term of g, viz.

«Z]\ij = 6_1 5ija 1 S ia .] S n— 1, (418)
Gnn = 2 (4.20)

Using that g7'g =1 — (1 — 7' g), we obtain the series expansion
-1 _ < ~1 \" ~1
a'=Y (1-37"9)" 3 (4.21)

m=0

for the inverse g% (z) of the matrix g;;(z).
With induction over m we obtain that

1—g7'g) ) = O(™), 1<i<n—1,1<j<m,
(( )")., (")
((1=37"9)"),. = o), 1
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which in turn implies that

((1—9 g) ) = 0(em+1), 1<i, j<n—1,
(1-79)" 3 1) = O(?), 1<i<n—1,
(=555, - o). 1<ican
(57105, = =), 1<sznon

This leads to the conclusion that
g9 = €&+ (% G 0ij + ¢ijn) ¢4+0 (63) y 1<, 7<n—1, (4.22)
0" = g =m0 (), 1<i<n-1, (4.23)
g o= o (% b — %%m) A4 (65) _ (4.24)

For the applications in the sections 5 and 7, we will also need the asymptotic

behaviour of the third order derivatives of f near the boundary. The formulas
(4.3), (4.9), (4.11), (4.12), (4.13) and (4.14) imply that

0;0;0kf = —€ o +0O(), 1<4, 4, k<n-1, (4.25)
0;0;0nf = —e 68— € 3hun by +0(1), 1<i,j<n—1, (4.26)
2:0,°f = 0O(1), 1<i<n—1, (4.27)

2.°f = =27+ 0(1). (4.28)

I obtained the expansions (4.25), (4.26) and (4.27) by means of a direct calcu-
lation. For (4.28) I used that ¢ = ¢t where % is smooth up to the boundary
and equal to 1 on the boundary. Therefore
3 3 3 ~
3f— 0 ( In(ev)) = —%lne %lnzﬁ:—%_?’—l—u’v,

where {E is smooth up to the boundary.

5 Geodesics near the Boundary

As a background reference for the differential geometry used in this paper, one
may use the book [12] of Kobayashi and Nomizu.
The Christoffel symbols of a Riemannian structure g;;(z) are defined by

Uiij(z) := 5 [Digi(z) — Digij(z) + 091 ()] (5.1)

and .
=Y g"(z) Tiij(x (5.2)

=1

where g*'(z) denotes the inverse of the matrix g;;(z). Note that I';;;(z) = I'j;(z)
andej(')_Fk( z), forall 1 <4, 7, k, | <n.
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Any collection of smooth functions Ffj(ac) with indices 1 <14, 7, k£ < n and
such that Ffj(ar) = Ffz(r) defines an infinitesimal connection in the tangent
bundle of the manifold which is linear and torsionfree, via the definition of the
covariant derivative of a vector field Y (z) in the direction of the vector field
X (z) by means of the formula

(VxY(z i z) ORY' (x) + Z I 2) Y (z), (5.3)

or, in shorthand,
VY (@) = V(@) (X (2)) + D(2) (X (2) Y (). (5.4)

It is usual to denote the connection by the symbol V of its covariant derivative.
The connection defined by (5.1) and (5.2) in terms of a Riemannian structure
g is called the Levi-Civita connection of g.

A twice differentiable curve t — v(t) is called a geodesic for the connection
V if it satisfies the second order system of differential equations

d? dvi(t) dy (t)
e +;1F LE S =0, 1<k<a,  (55)

in shorthand also written as V.4’ = 0. (This shorthand notation expresses the
fact that the velocity field of the curve is covariantly constant with respect to
the induced connection in the pullback of the tangent bundle by means of the
mapping v : I — R”, where [ is the interval of definition of +. The pullback
bundle is a vector bundle over I, where the fiber over ¢ € I is identified with
the tangent space at the point v(¢).) If V is the Levi-Civita connection of
the Riemannian structure ¢, then the equations (5.5) are equivalent to the
Euler-Lagrange equations for the kinetic energy function defined by ¢, and
the geodesics are locally the shortest paths for the corresponding Riemannian
distance function, parametrized by a constant factor times the arclength.

When g;;(z) = 0;0; f(z) is the Riemannian structure defined by the Hessian
of a smooth strongly convex function f, then its Christoffel symbols take the
form

gkl(m) 8k8¢8jf(m), (5.6)

NE

Uyj(z) = 5 010;0; f (x), Ffj(m) =3

!

where the ¢g*'(z) denote the inverse of the Hessian matrix 9;0; f(z) of f at the
point z.

It will be instructive to consider the one-parameter family #V, u € R, of
torsionfree linear infinitesimal connections defined by the Christoffel symbols

1

() =Y g (2) 0p0i0; f (), 1<, j, k <n. (5.7)
=1

For ;1 = 0 the geodesics are the straight lines, parametrized with constant veloc-
ity. For p = 1/2 we have the Levi-Civita connection of the Hessian Riemannian
structure, with its corresponding geodesics.
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For g = 1 the geodesics are the gradient curves, with respect to the Hessian
Riemannian structure, of arbitrary linear functions on R”. Indeed, if £ € R" is
a covector, then the gradient curves ¢t — v(t) of the linear function z — (z, &)
are determined by the first order system

=1

Differentiating (5.8) with respect to ¢ and using that
0 (971) = =g brg g™,

one arrives at the equations (5.5) with I' =! I". In this sense, the Levi-Civita

connection of the Hessian Riemannian structure is in the middle between the

standard affine connection, of which the geodesics are straight lines, and the

connection for which the geodesics are the gradient curves of linear functions,

where the gradient is taken with respect to the Hessian Riemannian structure.
For any connection the Riemannian curvature tensor is given by

R () = 0 5) — 0 @)+ Y (M (o) @) = 1, () 17(2)) . (5.9

m=1

The curvature of the connection with Christoffel symbols “Ffj(m) will be de-
noted by “Rfm(m) A direct calculation,in which it is used that 9; (¢97!) =
—g~10;9 97", yields that

k - rm k m i pk
“RE () = (1) DD (T (2) ' () =1 UE () T (2)) = Ap (1) 2 R ().
m=1
(5.10)
Therefore the curvature does not interpolate — instead it takes its extreme
values for p = % That the curvature is equal to zero for p = 0 is obvious,

because then I' = 0 and we have the straight line system of geodesics. That is
the connection is also flat for 4 = 1 is made clear by the observation that the
mapping z — df(z) to the dual space maps the gradient curves of the linear
function £ to the curves t = a4+t &, where « is an arbitrary constant covector.
In Section 7 we will discuss the curvature near the boundary of ), when f
is a self-concordant barrier function for the convex domain ) which satisfies
Assumption 2.1.

Remark 5.1 The fact that  — df(z) maps the gradient curves for linear
functions to the curves £’ = 0 implies that the gradient vector fields of the linear
functions commute with each other. Ruuska [15] observed that a Riemannian
structure is of Hessian type if and only if it admits an abelian Lie algebra
of gradient vector fields, the local action of which being simply transitive. |
learned this reference from Hitchin [10]. %)

In order to study the asymptotic behaviour of the geodesics near the bound-
ary, we will reparametrize the geodesics ¢ — v(t), preserving their orientation,
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in such a way that their velocity vectors have length equal to one with respect
to a suitable smooth Riemannian structure b, defined on an open neighborhood
of UNJQ in R™. That is, we will write

v(t) =4(s(t), S'(t) >0, b(y(t) (&'(s(t), d'(s(t)) = 1. (5.11)
It follows that
0=7"+T(7,7) = ()" 8" +s" 8 +1 (s, s'8),
which upon division by (s')* yields that
0=238"4+ad +1(8) (8,4, (5.12)

in which o = 5" (s') 7.
On the other hand, differentiation of

1=15(5(s)) (5'(s), 8'(s))

with respect to s yields that

0=2b(z)(v, @)+ Y. Ohij(z) v v/ ¥, (5.13)
i k=1
if we write z = §(s), v = §'(s) and a = ¢”(s). If we take the b(z)-inner product
of (5.12) with v, then we obtain that

0=>0b(z)(v,a)+a+h(z) (['(z)(v, v), v),

which in combination with (5.13) yields that

a = —b(z) (T(z)(v, v), v) + % Z Opbij () vivi vk, 2 =4(s), v=4(s)
i k=1
(5.14)
Because the sum over 4, j, k in (5.14) is smooth, the second order system
of differential equations for the reparametrized geodesics s +— §(s), defined by
(5.12), (5.14), is smooth in an open neighborhood of U N dQ if and only if the
vector-valued function

F(e, 0) 1= 1(2) (v, v) — b(e) (@) (0, v), 0) v (5.15)
of  and v extends smoothly over the boundary. Note that the second order
system (5.12), (5.14) is not the system of second order differential equations for
geodesics of a torsionfree linear connection, because of the appearance of the
fourth order terms with respect to the velocity vector v, coming from the third
order factor v in (5.14).

Proposition 5.1 For z =y + evy(y), y € UNIQ, and |¢| sufficiently small,
define

—¢"(y)(u, v) when u, v € T,(0Q),
b(z)(u, v) == 0 when u € T, (0Q), v=ry(y), (5.16)
1 when u=1v="Vs(y).
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Then these equations define a smooth Riemannian structure b on an open neigh-
borhood of U N 0Q) in R".

Moreover, with this b and for every u € R, the system of second order
differential equations (5.12), (5.14), with I' = T', has a smooth extension to an
open neighborhood of U N 0Q) in R™.

When 1 < 1, its solution curves which are tangential to U N 0Q) curve out
of @), whereas for > 1 they curve into (). For u = 1 the solution curves which
are tangential to U N 0Q) remain in U N OQ. The orbits of the solution curves
in U NOQ coincide with the orbits of the gradient curves, with respect to the
restriction of b to U N 0Q), of the restrictions to U N 0Q of the linear functions
(except for the critical points of the latter functions on U N JQ)).

If u > %, then no geodesics reach U N 0Q in a finite time. If p < %, then
the geodesics which after reparametrization intersect U N JQ transversally (=
not tangentially) reach U N 0Q after finite time.

Proof As in Section 4, we write z = y + ¢ vy(y), with y € U N 0Q and € > 0
small. With a suitable affine substitution of variables, we can arrange that
y =0, v4(y) = e, and (4.11). This implies the expansions (4.22), (4.23), (4.24),
(4.25), (4.26), (4.27), (4.28), and we also have that h;;(z) = 6;;.

With I' =# I', we obtain that the p-th component of (5.15) is equal to
p (AP — BP), in which

AP = Z g" 0;0;0f v/ v*,  and
i,k
BP = Z ’Uh ghi 8¢8jakfvj ’Uk oP.
hyi, g,k
If p < m, then
A =3 (e +0(¢)) (_2 Y Ha et + 0 (6_1)) +0(&) o),
<n i<n

from which we conclude that
AP = 27 P 4 O(1), 1<p<n-—1. (5.17)

Similarly, we have that
A" = Z O (63) O (6_3) + (62 + 0 (64)) (—26_3 v+ O (6_2))
i<n

and therefore

A" = =271 (™) 4 0(1). (5.18)

Using (5.17), (5.18) and the fact that the sum of the squares of the coordi-
nates of v is equal to one, we obtain that

DY oh AP P = —2¢7! > oh o e P O(1) = =27 0" 0P HO(1) = APHO(1).
h h
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It follows that AP — B? is of order one and we conclude that the system (5.12),
(5.14), with ' =* T", has a smooth extension to an open neighborhood of UNoQ
in R”.

In order to determine the curvature of the reparametrized geodesics which
are tangent to the boundary, we observe that if v = §, v = 0, then the n-th
component of (5.12) yields that

0=(""+p Z Z g™ 0;0;01 v V.

i 7 k<n

For i < n we have ¢ = O (€*) and 9;0;0rf = O ('), which leads to a zero
contribution for ¢ — 0. For ¢ = n the term after the sum signs is equal to

(+0(2)) (~2aur0 () v,

which leads to the conclusion that for ¢ = 0 we have that (6”)" = . Because
the boundary is equal to the graph of a function h such that h(0) = 0, A'(0) =0
and A(0) is equal to the identity matrix, where @ lies above this graph, we
conclude that the tangent reparametrized geodesics curve out of () when p < 1
and into ¢} when pu > 1.

In order to discuss the situation for u = 1, we consider the first order system
of differential equations dz/ds = v, dv/ds = a(z, v), which corresponds to the
second order system (5.12), (5.14) with I' =! I'. Let A be the vector field in the
right hand side of the first order system, viewed as a vector field on the unit
tangent bundle of an open neighborhood U of U N 9@ in R™. Then the fact
that (6™)" = 1 just means that A is everywhere tangent to the unit tangent
bundle of U N 0}, which is a smooth submanifold of codimension two in the
unit tangent bundle of U. It follows that the solutions of the first order system
which start in the unit tangent bundle of U N 0@, remain in the unit tangent
bundle of U N 0. But this just means that the solutions of (5.12), (5.14) with
I' =1 I, which are tangent to U N dQ remain in U N 0Q.

The solution curves in U N Q of (5.12), (5.14) with I' =' I' are equal to
reparametrized gradient curves of linear functions £. For a given nonzero cov-
ector &, the gradient vector field G has its i-th component equal to

Gi = Z gij Sj-
7=1

When 7 < n we have that

G =X (04 0(2) 6+ (@40 () € =64 0(),

i<n

whereas G™ = O (¢%). Therefore e~! G converges, when € | 0, to the orthogonal
projection of £ onto Ty (0Q), with respect to the inner product b(y). Note that
the multiplication with ¢~! corresponds to a reparametrization of the gradient
curves which is different from the one of the system (5.12), (5.14)). In particular
the gradient vector field of the restriction to U N 0@ of &, with respect to the
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restriction to UNJQ of the Riemannian structure b, is equal to zero at a critical
point of the restriction of £ to U N dQ, whereas the solution § of (5.12), (5.14))

satisfy
b(d(s)) (&(s), 0'(s)) =1,

and therefore their velocity never is equal to zero.

For the last statements in the proposition, we observe that the computation
(5.18) of the n-th component of the Christoffel symbol implies that along a
geodesic we have asymptotically, without reparametrization of the time,

" =2uc! (e’)2 .

This equation is equivalent to
!
(e_Q’” 6') =0,

e = cet

or

?

where ¢ is a constant. The positive solutions of this equation can reach zero in
a finite time if and only if 2u < 1. q.e.d.

Remark 5.2 For the reparametrized geodesics which intersect U N 0Q
transversally, we have the following conclusions about the distance d(t) to the
boundary as a function of the original time. When u > %, then d(t) is of order
/021 as t — co. When © o= %, which is the case of the geodesics of the
Hessian Riemannian structure, then d(f) is of order e~ for geodesics with unit
velocity with respect to the Hessian Riemannian structure. This exponential
decrease of d(t) is faster than the power law which we have for g > 1. When
1< %, then the geodesic reaches the boundary at a finite time 7" and d(t) is of
order (T —)"/(1=21) a5 t 1 T, %)

Remark 5.3 When f is as in Proposititon 3.1, then the restriction of b to
U NoQ is, up to a constant factor, equal to the affinely invariant Riemannian
structure on U N JQ which has been introduced by Berwald and Blaschke, cf.
[2, 11, §65]. @

Remark 5.4 A Riemannian structure g is called conformalto the Riemannian
structure g if there exists a positive real-valued function A such that g(z) =
A(z) g(z) for every z. If we parametrize the points in @ near U NJQ by (y, )
viaz =y + %7}2 vg(y), then g;;(z) is asymptotically equal to 7;%52-]-. In other
words, in the coordinates (y, ) the Riemannian structure g is asymptotically
conformal to the standard Euclidean structure. In these coordinates, all the
geodesic curves near the boundary 7 = 0 come in orthogonally to the boundary,
and those with the same limit point are distinguished by their curvature, rather
than by their direction. This is the familiar picture for the behaviour of the
geodesics near the boundary of the Poincaré upper half space, or the Poincaré

sphere. Cf. Wolf [19, Cor. 2.4.13]. @
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Remark 5.5 When f is as in Proposition 3.1 then the conclusions of Propo-
sition 5.1 remain valid but with the word “smooth” replaced by a finite degree
of differentiability, somewhat less than 5. More precisely, my calculations in-
dicated that the additional term r(z) in f(z) = —Ina(z) + r(z) leads to an
additional term in the acceleration function a(z, v) in 6”(s) = a(z, v), z = 4(s),
v = 0'(s), which is of order ¢"Z" when n is even and of order ¢“7- (= In¢€) when
n is odd. This would imply that for n > 4 the acceleration function a(z, v)
for the reparametrized geodesics is continuously differentiable up to any or-
der £k < %, but that for n = 2 and n = 3 the acceleration function is not

differentiable. Q)

6 Global Results

In the case that ) is bounded and the whole boundary 0@ (which is a compact
subset of R™) is smooth and strongly convex, then we can use topological
arguments to draw some rather strong conclusions about the behaviour of the
geodesics with respect to the boundary.

Theorem 6.1 Let () be a bounded convex open subset of R™ with a smooth and
strongly convex boundary 00Q). Assume that f is a smooth and strongly convex
function on Q) which satisfies Assumption 2.1 along the whole boundary 0Q).
We will consider the geodesics defined by the Christoffel symbols (5.7), with the
factor p in front.

Let p < 1. Then every geodesic, after suitable reparametrization near the
boundary as in Proposition 5.1, eventually intersects the boundary, and the
intersection is transversal. Let S denote the Fuclidean unit sphere of direction
vectors. For everyv € S, let 0,(v) € Q) denote the point of the boundary where
the geodesic, which starts at x in the direction v, hits the boundary. Then o,
is a smooth mapping from S to 0Q), and the mapping degree of o, is equal to
one. In particular, for every x € @) and y € 0Q there exists a v € S such that
o:(v)=y. If u =0 or u=1, then o, is a diffeomorphism from S onto Q).

For every y € 0Q), let IS, denote the half sphere of the direction vectors
v € Sy such that v points inwards (). For every v € 1S,, the reparametrized
geodesic geodesic which starts at y in the direction v eventually hits the boundary
again, and transversally, in a point oy(v). oy is a smooth mapping from 1S, to
0Q\{y}.

Let S1,, denote the one point compactification of 1S,, which is obtained from
the closure of 1S, in S, by contracting the boundary equator to a point p,. Now
assume that p < 1. Then the definition o, (py) = y leads to an extension of o,
to a continuous mapping from fgy to 0Q, which we again denote by o,. This
mapping has degree equal to one. In particular, for every y, z € 0Q such that
z # y there exists a (reparametrized) geodesic in @Q which starts at y and ends
at z.

Proof If 4 = 1, then the conclusions about the mapping o, from S to 9Q)
follow from the fact that the geodesics in this case are the gradient curves (with
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respect to the Hessian Riemannian structure) of the linear functions {. The
strong convexity of 0 implies that the Gauss mapping v, which assigns to
y € 0Q) the exterior normal v(y) of 9Q at y, is a diffeomorphism from 9Q onto
S. For every &€ € S, v™'(£) is equal to the point of dQ where the restriction
to 0@ of & attains is maximum. Let 1, denote the mapping which assigns to
¢ €S the direction of the gradient vector g(z)~'(£) at the point . Then 7, is
a diffeomorphism from S onto S. For every £ € S, every gradient curve of € in
() converges to the boundary point v~'(¢). Therefore o, = v=" o5, !, which
is a diffeomorphism from S onto d@). This conclusion is trivial in the case that
i =0, and all conclusions are trivial if n = 1.

Therefore, from now on in the proof, we may assume that g < 1 and n > 2.
The fact that in this case the reparametrized geodesics which are tangential to
0Q) are curving out of ), cf. Proposition 5.1, implies that if a geodesic enters
Q at y € 0Q, at a small b(y)-angle a with T, (9Q), then it will curve back to
0Q), at a b-distance of order ﬁ The maximal b-distance to 0@ of the part in

@ of this geodesic is of order . This implies that if K is a compact subset

2
M=)
of @ (which has a positive distance to d@Q)), then there exists an ag > 0, such
that if 4 is a geodesic which starts in K and reaches y € 0@, then its direction
vector at y has a b(y)-angle > ag with T, (00Q).

Let U denote the set of (z, v) € @ X S such that the geodesic which starts
at 2 in the direction v eventually (after suitable reparametrization) intersects
JQ) transversally, with first intersection point equal to o, (v). It follows from
the implicit function theorem that U is an open subset of ¢ X S and that
(z, v) = 0x(v) defines a smooth mapping from U to 0Q).

Suppose that (z;, v;) is an infinite sequence in U which converges to (z, v) €
Q xS asj— oo Let y; = 0, (v;) € 0Q and denote by w; the direction at
which the (reparametrized) geodesic arrives at y;. Because dQ) x S is compact,
we can arrange, by passing to a subsequence if necessary, that the (y;, w;)
converge to some (y, w) € 0@ X S. Because the (z;, v;) remain in a compact
subset of ) x S, the angle of w; with T, (0Q) stays bounded away from zero,
and the conclusion is that w ¢ T, (9Q), which in turn implies that (z, v) € U.
We therefore have proved that U is also closed in ) X S. Because ) x S is
connected, the conclusion is that U = x S.

The mapping o, : S — 0Q also depends continuously on p € |—o0, 1], and
therefore its degree does not depend on p, see for instance Schwartz [16, Thm.
1’A on p.27]. Because its degree is equal to one for g = 0, it is equal to one
for every p < 1. The conclusions about the mapping o, from @y to 0Q are
obtained in a similar manner. q.e.d.

Remark 6.1 The assumptions imply that f is a self-concordant barrier func-
tion for @, cf. Corollary 4.2. For p > % we have that the (not reparametrized!)
geodesics y(t) in @ are complete in the sense that they exist (remain in Q)
forall t € R, cf. 5.1. For pp = % these are the geodesics for the Riemannian
structure and the theorem of Hopf-Rinow states that this notion of complete-
ness is equivalent to the completeness of () as a (Riemannian) metric space.

This confirms the theorem of Nemirovskii, cf. [5], that for any self-concordant
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barrier function the Hessian Riemannian metric space () is complete. %)

Remark 6.2 The geodesics for the Hessian Riemannian structure g share
with the gradient curves of linear functions the property that for every z € @)
and y € 0Q there exists a unit velocity geodesic v such that v(0) = 2 and

Jim y(t) = y. (6.1)

Moreover, the convergence in (6.1) is exponentially fast, whereas for the gradient
curves of linear functions it is only of order 1/¢, cf. Proposition 5.1 and Remark
5.2.

The problem with the geodesics however is, that in general the geodesic v
from x to y is not uniquely determined. This corresponds to the phenomenon
that the mapping o, : S — 90X, which is surjective and has topological degree
equal to one, need not be injective. Moreover, even if the geodesic ~ is unique,
then in general there is no simple formula for determining 4/(0) in terms of z

and y. @

Remark 6.3 Let us look at the geodesics for the Hessian Riemannian struc-
ture defined by the barrier function f, which means that we take y = % Let
vi(t), 7 = 1, 2 be geodesics with unit velocity vector with respect to the Hessian
Riemannian structure. If the Riemannian distance between v, (t) and ~;(t) re-
mains bounded as t — oo, then the fact that near the boundary the Riemannian
structure is large compared to the Euclidean one, implies that v, (#) and ()
converge to the same point y € 0Q (with respect to the Euclidean metric) as
t — oo.

Conversely, if v1(t) and ~2(t) converge to the same point y € 9Q as t — oo,
then the fact that the b-distances from 71 (¢) and v2(t) to 9Q are of the same
order, cf. Remark 5.2, implies that for large ¢ the difference vector va(t) — v1 ()
is asymptotically parallel to the boundary. Moreover, the orbits of v and 7, are
smooth curves which intersect 0@ transversally at y. Because the Riemannian
distance parallel to the boundary is asymptotically inversely proportional to the
Euclidean distance to the boundary, it follows that the Riemannian distance of
v1(t) and () remains bounded as t — oo.

In any complete Riemannian manifold ¢) where all geodesics leave every
compact subset of (), two unit velocity geodesics v; and =4 are called equivalent
at infinity if the Riemannian distance of +,(¢) and 73(¢) remains bounded as
t — 0o. The set of the equivalence classes of unit velocity geodesics is called the
sphere at infinity of the Riemannian manifold, cf. [1]. The above observations
lead, in the situation of Theoerm 6.1, to an identification of the sphere at infinity
of @ with 9Q).

The manifold @ is called a visibility manifold, cf. Eberlein and O’Neill, [7], if
for every pair of distinct elements «, 3 of the sphere at infinity there is a unique
unit geodesic v such that v € a and —y € 8, where —v(t) := v(—t). Here the
uniqueness is modulo a translation in the parametrization of the geodesics.
In the situation of Theorem 6.1, we have the existence of such a geodesic 7,
whereas the uniqueness corresponds to the statement that, for every y € 90Q),
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the mapping oy is injective from IS, to 0Q \ {y}. Because the mapping o, has
degree equal to one, one could argue that in a topological sense @, provided
with the Hessian Riemannian structure, is a visibility manifold.

In general the uniqueness of the geodesic connecting two points of the sphere
at inifinity holds if the sectional curvatures of the Riemannian structure all are
negative. Therefore, if in addition to the assumptions of Theorem 6.1, all the
sectional curvatures of the Hessian Riemannian structure are negative, then @
is a visibility manifold in the strict sense of the word. %)

Remark 6.4 1If 4 = 1, when the geodesics are the gradient curves (with respect
to the Hessian Riemannian structure) of the linear functions £, the behaviour
of the mapping o, from IS, to 0(Q) is very different from what happens in the
case it < 1. Indeed, if v : 0QQ — S denotes the Gauss mapping, then we have
for 4 = 1 that

oy (v) = 1(y) = v (~v(y)) , (6.2)

which is independent of v € IS,. That is, all geodesics for 4 = 1 which leave
the the boundary at y converge to the boundary at the “opposite” point ¢(y).

The limit geodesics in 0@}, cf. Proposition 5.1, have the property that
those starting at y all meet again at ¢(y). Riemannian manifolds for which the
geodesics have this property are called wiedersehen manifolds after Green [8].
For surfaces this property has been studied by Blaschke [2, I, §86]. It should
be emphasized however that the geodesics for y = 1 are not defined as the
geodesics of a Riemannian structure on 0@, but rather as the gradient curves,
with respect to the Riemannian structure b, of the restrictions to 0Q of the
linear functions on R™. Yang [20] completed the proof of the theorem that
every wiedersehen manifold is isometric to the round sphere. Therefore, if the
limit geodesics on 9@ for p = 1 would be geodesics for a Riemannian structure
B3, then § must be isometric to the Riemannian structure of the round sphere.

@

Remark 6.5 When f is as in Proposition 3.1 then it follows from Remark 5.5
that the conclusions of Theorem 6.1 remain valid, but with the word “smooth”
replaced by continuously differentiable up to an order somewhat smaller than
5. In the case that n = 2 or n = 3, when the acceleration function may be
not differentiable, we may use ¢ as the time variable for the reparametrized
geodesics which intersect the boundary transversally. It is known that, for a
first order system which depends in a continuously differentiable fashion on
the phase space variables and in a continuous way on the time parameter, the
solutions depend in a continuously differentiable fashion on the initial values.
This appears to lead to a proof that for any dimension n the mappings o, : S —
0@ and o, : IS, — 0Q are continuously differentiable, or maybe even smooth.

@

25



7 Curvature near the Boundary

Let V be a connection (= covariant derivative) on Q. If X, Y, V are smooth
vector fields on @), then, for any z € @), the expression in the right hand side of

R(x)(X (2), Y (2))(V(2) = (VxVyV = Vy VxV = Vig V) (5) - (T.1)

only depends on X (z), Y (z), V(z), and not on the derivtives of order one or
two of X, Y and V at z, as one would a priori expect. Therefore (7.1) defines
a T, Q-valued trilinear form

R(z) : (X, Y, V) = R(z)(X, Y)(V)

on T, @, which is called the Riemannian curvature tensor of the connection V.

k

Its coordinates Rj;;(z) are given by

R(z)(X, V) (V)" = > RV XY/, (7.2)
1,4, j=1
and expressed in terms of the Christoffel symbols of V by means of the formula
(5.9).

One has the corresponding quadrilinear real-valued form
(X, Y, U, V) = g(z) (R(2) (X, Y)(V), U),

with its coordinates
Rysij = g(x) (R(z) (ei, €5) (1) , ex) = D grm(2) R (2). (7.3)
m=1

Here €1, ..., e, denotes the standard basis in R".
A straightforward computation yields that for a Hessian Riemannian struc-
ture the Riemannian curvature tensor is given by

Rpij(z) = —% Z g7 (z)
Py 9=1

(04050, f (x) - 0000,/ (2) — D0, [ (x) - D10, [ ()], (T4)

in which gP?(z) is the inverse of the matrix g;;(z) = 0;0; f(z). It is a bit surpris-
ing that this formula involves only the derivatives of f of order two and three,
and no derivatives of order four as one would expect a priori. An interpretation
of (7.4) in terms of the general linear group, viewed as an orthonormal frame
bundle over the space of positive definite symmetric matrices, has been given

in [6].

A more natural system of coordinates for the curvature tensor is obtained
by choosing an orthonormal basis F' = (fi, ..., f,) with respect to the inner
product g(z), and then writing

Riyi; = g() (R(x) (fi, £;) (fi), fe) - (7.5)
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One may write f; = >°% sz e; for a unique n X n-matrix ¥, and the orthonor-
mality of F' with respect to g(z) then is expressed by the equation

‘Fg(z)F=1, or g(z)=*FloF L

The matrix F represents another orthonormal basis with respect to g(z), if
and only if F = FoC for an orthogonal n x n-matrix C' with respect to the
standard Euclidean inner product. If the orthonormal basis I’ = F(z) depends
(smoothly) on the point X, then it is called a (smoothly) moving frame. Moving
frames have been introduced as a very useful tool in differential geometry by
Elie Cartan.

If P is a two-dimensional linear subspace of T, (), a tangent plane at the
point z, and U, V is a g(z)-orthonormal basis in P, then the real number

K(z, P) = g(z)(k(z)(U,V)(V), U) (7.6)

only depends on = and P and not on the choice of U and V, and is called the
sectional curvature of the plane P. If the Riemannian manifold is complete and
simply connected (which means that every closed curve is contractible in the
manifold), and all the sectional curvatures are nonpositive, then every pair of
points in the manifold is joined by a wunique geodesic. In the case of a two-
-dimensional Riemannian manifold, this theorem is due to Hadamard [9]. The
generalization to manifolds of an arbitrary dimension, indicated by Hadamard,
has been proved by Elie Cartan in [4, Note 111, pp. 254-267].

For a given z, all tangent planes P at z have the same sectional curvature
K(z, P) = K(z), if and only if for some (and hence every) g(z)-orthonormal
basis I’ we have that

Rl@ij =K [5137 5lj — 5@' 51{] , (77)

where R,I:Hj = R,I:Hj(m) and K = K(z). The right hand side of (7.7) will be
referred to as a curvature tensor with constant curvature equal to K. See Wolf
[19, Cor. 2.2.5]. Tt follows that, when y € 9Q, the following conditions (i), (ii)
are equivalent.

(i) All sectional curvatures K(z, P), where P is a tangent plane at z, con-
verge to K as z — .

(i) For some (and hence every) moving frame F(z) we have that Rzgj)(r)
converges to the right hand side of (7.7) as z — y.

We will say that the curvature tensor at x converges to the curvature tensor
with constant curvature equal to K as © — y, when (ii), or equivalently (i),

holds.

Theorem 7.1 Let () be a conver domain in R™ and f a self-concordant barrier
function for ) which satisfies Assumption 2.1 at the open part U N 0Q of the
boundary 0Q of ) in R". Then the curvature tensor at x of the Hessian
Riemannian structure 0;0; f(x) converges to the curvature tensor with constant
curvature equal to —%, as x tends to U N 0Q.

27



Proof As in Section 4, we write z = y + e¢vy(y), with y € U N Q) and
¢ > 0 small. With a suitable affine substitution of variables, we can arrange
that y = 0, v4(y) = e, and (4.11). This implies the expansions (4.22), (4.23),
(4.24), (4.25), (4.26), (4.27) and (4.28). Using these we obtain the following
expansions for (7.3).

If k, [, 4, < n, then we split the sum over all p, ¢ in (7.3) in the sum over
all p, ¢ < n, over all p < n, ¢ = n, over all ¢ < n, p = n and the term with
p =g = n. This leads to

Rklij = Z O (() O (6_1> O (6_1>

(zz) o) o) o)

—% (62 + O (64)) [5]“ 51_7' — 51:]' 512- + @) (e)] 6_4
= —1 [0widy — 0] €+ 0 (e‘l) . (7.8)

If £, 1,7 < n and j = n, then a similar computation yields that

Riyin = —% Z (€5pq-|—(’)(62))

P,q<n

(- o+ OM) (a0 (7))
- (=40 () (- o +00) |

g1 g) o) o) o)

p<n  g<n
+0 (&) 0 (2) o)
= o), (7.9)

because the coefficient of €2 in the sum over p, ¢ < n is equal to zero.
Finally, if k£, 2 < n and [ = j = n, then we obtain

Rinin = -1 3 (e +0())

P, q<n

(") o) = (= am+ 0 (7)) (~Fay +0 ()]
; (Z+ z) 0(¢) 0 (1) 0 ()

p<n  q<n
(@0 () [(~tm o () (<277 + 0() - 0(1) 0(1)]
- —% o+ O (6_2) ) (7.10)
The other coefficients can be expressed in the above, because Ry;; = —Rpy;

(which implies that Ry = 0) and Rpiij = Rijhi.
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Let fu, fa-1, ..., f1 be the g(z)-orthonormal basis (depending smoothly on
z), which is obtained from the standard basis e,, e,_1, ..., €1 by means of the
Gram-Schmidt orthogonalization procedure. Then

fn = gnn(x)_l/2 €Ep = € (1 + 0 (62)) €. (7.11)

For ¢ < n we have that
fi=> cjej,
j2i
where the coefficients ¢; are chosen in such a way that

g(x) (fiaek)zoa k>ia

and g(z) (fi, fi) = 1. The equation for £ = n yields that

cn=c¢ Y ¢ O(1),.

i<j<n
With downward induction one obtains that, for every i < j < n,

ca=c » ¢ O(),

i<j<k
which in turn implies that
cp=c; 0 <€2) , and ¢ =¢0(¢), i<k<n.
Substituting this in the equation g(z) (f;, f;) = 1, we obtain that
¢ = ¢ (1+0(),
¢ = o0&y, i<i<n,
0 = O (65/2) ’

which in turn implies that

fi=dl et 3 0() ¢ +0 () en . (7.12)

1<j<n

when 7 < n.
Replacing e;, €;, ek, € in (7.3) by fi, fi, fu, fi, respectively, and applying
the above expansions, we arrive at

Rfuj = — 1 [0k 615 — b1j 015] + O(e), (7.13)
which completes the proof of the theorem. q.e.d.

Remark 7.1 Combining Theorem 7.1 with the theorem of Hadamard and
E. Cartan mentioned after (7.6), one obtains that near U N 9Q the geodesics
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cannot intersect more than once. Of course, this property also follows from the
descriprion of the geodesic orbits near U N 0@ in Proposition 5.1.

Related to the question of uniqueness of geodesics are the questions of injec-
tivity of the mappings 0, : S — 0@, €  and of the mappings o, : fgy — 00,
y € 0Q), introduced in Theorem 6.1. | have the impression that curvture esti-
mates which imply the injectivity of o, : Tgy — 0Q) for each y € @) are stronger
than those which would lead to the injectivity of o, : S — 0@ for each z € @,
which in turn would be stronger than estimates which imply unique joining of
geodesics.

I have no example of a self-concordant barrier function for which joining of
geodesics is not unique, but I admit that 1 have not searched for it very system-
atically. It would be interesting to have some insight into the somewhat more
specific question whether geodesic joining is unique for the Hessian Rieman-
nian structure of the universal barrier functions of an arbitrary convex domain.
The example of the triangle in Section 8 shows that such a Riemannian struc-
ture can have positive curvature, which shows that in general unique joining of
geodesics for the universal barrier function of arbitrary convex domains cannot
be concluded on the basis of only applying the theorem of Hadamard and E.
Cartan. @

Remark 7.2 With more work, it is probably also feasible to compute the
linear term in the distance to U N 0@ of the curvature tensor. In the case of
the universal barrier function, there may be a relationship between this linear
term and properties of the affinely invariant metric on U N 9Q), introduced by

Berwald and Blaschke, cf. [2, I, §65]. %)

Remark 7.3 When f is as in Proposition 3.1 then the calculations behind
Remark 5.5 indicate that the conclusion of Theorem 7.1 remains valid. The
only difference in the proof appears to be that in (7.13) we have to replace O(¢)

by O (61/2> when 7 =2 and by O (—¢ In¢) when n = 3. %

8 Some Simple Examples
8.1 The Parabolic Domain
Consider the parabolic domain P in R™ defined by
P={(u,v) € R"" |v > L(u, u)}. (8.1)
The supporting function of P, cf. (3.2), is given by

%) when 3 >0,

p(a,ﬂ)Z{ —#@4, a) when (<0.

(a, B) € R"' x R.
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The polar set P*(u, v) with respect to the point (u, v) € P, cf. (3.1), is equal
to the set of (o, 3) € R*™! x R such that

0 > (a, a)+2(u, a) f+205° + 2

= o+ B atu)+ (20— () (6- 52— 1

2v — (u, u>>2_ 20 — (u, u)’

By means of the substitution of variables
a=d - pu, B=2v-u, u>)_1/2 i

the ellipsoid P*(u, v) corresponds to the sphere in the (o', #')-space with center
at the origin and radius equal to r, where

r=(2v— (u, u))_l/Z.
It follows that
I(u, v) :=vol, (P*(u, v)) = (2v — (u, u))_n2i vol,, (B"),

if B™ denotes the ball in R™ with radius equal to one. Therefore the function
f = f» in Proposition 3.1 is equal to

flu,v) =—1In (v — 2 (u, u)) + ¢, (8.2)

where ¢ is a constant. In particular f satisfies Assumption 2.1.
The Hessian Riemannian structure is given by

gij = 00;f=0¢"" 0+ ¢ Putud, 1<i, j<n—1,
Gin = gni=0i0.f=—-¢""u', 1<i<n-—1
gnn = 3n2f = ¢_27

where

¢:¢(ua U):U_%<ua u>
For every « € R™~" the affine substitution of variables u = a4/, v = }{a, a)+
v" + (a, v') transforms P onto itself. Because at the origin the n-th standard
basis vector e, obviously is equal to the interior affine normal of 0P, it follows
that at any point of 9P the affine normal of dP is equal to e,. Inspired by
Remark 5.4, we apply the substitution of variables

u=u, v=1(u, u)+ 7w (8.3)

In the variables (u, w) € R"~! x R5¢, the Riemannian structure then turns out
to be equal to % times the standard Euclidean Riemannian structure. This
diffeomorphism with the Poincaré upper half space with all sectional curvatures
constant equal to —1/4 has been found before by Shima [17, §2, Case B].

The geodesic orbits in P are the images, under the mapping (u, w) — (u, v)
defined by (8.3), of the half circles in the upper half space which are orthogonal
to the boundary, cf. Wolf [19, Cor. 2.4.13]. The geodesic orbits through the
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origin are contained in the plane spanned by e, and the direction vector of the
geodesic orbit at the origin. For the description of these geodesic orbits we
may assume that n = 2. In this case a circle in the (u, w)-upper half plane,
which is orthogonal to the boundary, is determined by an equation of the form
(u+ a)? + w? = a?, which is equivalent to

2

(u—a)* —1a°

=

v =

This equation describes a parabola in the (u, v)-plane with vertical asymptotes,
1

lowest point at u = a, v = —% a?, and factor 7 in front of the quadratic term
instead of the factor % for the boundary. Therefore the parabola intersects the
boundary not only at the origin, but also at a second point « = —2a, v = 2a?.

The only geodesic orbit which is missing in this description, is the vertical
ray emanating from the origin. This is also the only one which does not intersect
the boundary for a second time. The geodesic orbits emanating from other
boundary points are obtained from the ones through the origin by applying the
affine transformations which map P onto itself. These orbits therefore too are
either vertical rays or pieces in P of parabolas which intersect the boundary
twice. 1 learned this description of the geodesics in P from a lecture of professor
Nesterov at the conference HPOPT’99 at the Erasmus University in Rotterdam,
June 17, 1999.

The parabolic domain can be viewed as the prototype for the properties
described in Proposition 5.1 and Theorem 7.1 — and also for Theorem 6.1 if

we add one point at infinity to the boundary of P.

8.2 The Ball

Consider the unit ball
B={reR"||z] <1)

in R®, where |[z]| = (z, z)'/2. Its polar set B*(z) with respect to the point

z € B, cf. (3.1), is equal to the set of £ € R" such that

€Nl = (2, &) < 1= (€, &) <1+ 2z, &+ (z, &%

If 2 =re, and £ = (9, () € R"™! x R, then the latter inequality is equivalent

to
I+ (VI=72¢ -

and it follows that

r? 1

2
r

< 1= —

\/1—7“2) _1—7°2+ 1—r2’

n+1

volo (B*(2)) = (1= l2]®)” 7 volu(B).

Therefore the function fg in Proposition 3.1 is equal to

Fo(@)=—In (1= ]?) (84)

plus a constant. In particular, it satisfies Assumption 2.1.
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A large part of the analysis can be given in the somewhat more general
situation of a rotationally symmetric barrier function f, which means that

fl@y=F(), r=|=|, (8.5)

where F'is an even smooth function of one variable. Using that ;1 = 2°/r, we
obtain that
zt

0if(z) = F'(r)7,

00,00 f(z) = [;_r <F”(r) _ @> ~ % <F,,(r) B F'y))] v iixk
+ <F"(r) _ FI(’")) T 85+ ad ;51.: + 2F &,

to
0uf@) = (1), (5.6)
0,0, f(z) = FI:’Q) 5, when i, j<nmn, (8.7)
D0 f(z) = F'(r), (8.8)
0:0,00f(a) = (F”(r)—F 'Tfr))%(s?;j when i, j<n,  (8.9)
0.0 f(z) = F"(r), (8.10)

whereas all the other partial derivatives up to the order three are equal to zero.

The strong convexity of f, needed in order that the Hessian of f defines a
Riemannian structure g;;(z) in B, is equivalent to the conditions that F’(r) > 0
for every r > 0 and I"’(r) > 0 for every r. Note that the limit of F'(r)/r as
r | 0 is equal to F”(0), and therefore is strictly positive too.

It is easy to verify that if v is a geodesic and z := 7(0) and v := v(0) are
linearly independent, then ~(#) stays in the plane spanned by z and v. If 2 and
v are linearly dependent, then ~(f) stays on a straight line through the origin.
These facts can be proved as a consequence of the invariance under rotations
of the kinetic energy function, which in view of Noether’s principle implies the
constancy of the corresponding angular momentum. It can also be proved by
verifying that the acceleration v”(t) is equal to a linear combination of v(¢) and
7'(t), by substituting (5.6) and (8.7) — (8.10) into the equation (5.5) for the
geodesics. For the analysis of the geodesics we may therefore restrict ourselves
to the case that n = 2.

In polar coordinates the kinetic energy with respect to the Hessian Rieman-
nian structure (8.7) — (8.8) is given by

r=1 [z 20 (rqB)Q]. (8.11)

r
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The geodesics are the solutions of the Euler-Lagrange equations for the kinetic
energy function; as consequence T is a constant of motion. Because T does not
depend on ¢, the Euler-Lagrange equation

aor_or
at 9 09
implies that the angular momentum
or ;
[:=—=F(r)r 8.12
o= P (5.12

is a second constant of motion. This can be substituted in (8.11), from which
we subsequently solve 72

2

22 _ I " (
#% = [QT F,(r)r] JF" ().

It follows from the other Kuler-Lagrange equation

d daT_aT_l

TP = Do = S = B [F ) P (P () e F(r) 6]

that # > 0 when # = 0 and r > 0. We conclude that there is a time g such
that #(¢) has the same sign as ¢t — t,; actually r(¢) is symmetric with respect to
the reflection of ¢t around ¢;. We have

2T 1

. - - 1
]2 F! (T'()) 1"07 (8 3)

T =
if rg := r (t9) denotes the minimal value of the distance r(t) to the origin of the
geodesic.

For ¢t > ty we have

2 12 »
F= |21 - F'(r)= 2, 8.14

r [ F’(T‘) 7"‘| (T') ( )
The quantity between the square brackets is an increasing function of r and
therefore is strictly positive between ro and 1. It follows that r() increases to
1 for t > ty. Combining (8.14) with ¢ = I/I"'(r) r, we obtain that the increase
of the angle along the geodesic, as a function of r, is given by

d¢_ q'b_ I I e 1" /
i T [QT— W] F"(r)!/2. (8.15)

We will assume in the subsequent calculations that I > 0.

Because F(r) — oo as r 1 1, F/(r) cannot remain bounded. Because F’(r)

is increasing, it follows that F'(r) 1 oo as r 1 1, and the expression between the

square brackets converges to 27. It follows that, for r close to 1, d¢/dr is of
the order

i EN)E Ly F(r) F(r)

_ —1/2 4 1/2
Py T e e ST O

F”(T)
F'(T‘ 27

~—
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if we assume the estimate (iii) for a self-concordant barrier function, cf. Defi-
nition 2.1. Because
" (r) 1 1

W P T T ) T F ()

converges to 1/F" (rg) as r1 T 1, it follows that ¢(r) converges when r 1 1.

We have therefore proved that every geodesic v(t) in B converges for t —
too to a point on the boundary dB. The conditions for F which we needed
in the proof are much weaker than Assumption 2.1; we did not even need the
estimate (iv) in Definition 2.1 for a self-concordant barrier function.

For the universal barrier function of the ball we have F'(r) = —In (1 — r?),
in which case

2 1472
/ _ 1" _
F'(r)= T F"(r) 27(1 - r2)27 (8.16)
and therefore (8.15) takes the form
w _1f e )7 ©17)
ar  r |(2r+1)r2 -1 ’ '

with 7 as in (8.13). Note that the right hand side converges to 7='/2 = I//2T
when r 1 1.

The integral of the right hand side of (8.17) can be computed by making
the substitution of variables r = s!/2, followed by the substitution

1+ y?
2r+1)y2-1"

1+ s

_— = 2 S =
2r+s—1 ¥ °

The integrand then is a rational function of y, with the factors 1 + y? and
(2r+1) y? — 1 in the denominator. This leads to the formula

9 71/2
T 1+r
B(r) ~ 6 (o) = 5—mam(m[2 4 )

r“—=1rTo

Loy, () (2 =)

2 " 1+ r2)1/2 —(r? - r02)1/2'
for the increase of the angle along the geodesic.

The arc a on the boundary between the intersection points of the geodesic
with the boundary has length equal to 2 (¢(1) — ¢ (rg)), for which (8.18) yields
an explicit formula in terms of the minimal distance r¢ of the geodesic to the
origin. On the other hand, the angle 3 of the geodesic at the boundary with the
normal is equal to 7=/2, where 7 = (1 —rg?) /2ro®. This leads to an explicit

(8.18)

formula for « in terms of 3, or equivalently, for the mapping o, : IS, — 0B
which is discussed in Theorem 6.1.

Using (8.7) — (8.8) we obtain that at a point (0, ) an orthonormal basis is
formed by the vectors
F/ —1/2
Ji= ( (r)) €n

r
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for1<i¢<m-1, and
fn — F/l(r)—l/Q .

Using also (8.9), (8.10), we obtain for the curvature R* with respect to this
orthonormal basis, as defined in (7.5), that

F'(r)

Riyj(x) = =5 F'(r) 72 K (r)™! <F"(?“) - ) (Oki 17 — Oy i)

when 1, j, k, [ < n. This implies that all sectional curvatures in planes orthog-
onal to the vector z (which occur when n > 3) are nonpositive. Furthermore,

Rfpin(2) = =5 F/(r) 7 P ()7 (F”W B ny)) (i;((; B I;((; * 1) i

Finally, Rflij(m) = 0 when one, three, or four of the i, j, k, [ are equal to n.

In the case of the universal barrier function, when F(r) = —1In (1 —r?), we
have in view of (8.16) that the sectional curvatures in the planes orthogonal to
7,.2

x are equal to PR The sectional curvature of each plane which contains
7‘2

the vector « (which is the only one if n = 2) is equal to N In both cases

the sectional curvature is equal to zero at the origin and decreases to —% when
r 1 1. The sectional curvatures of the other planes are in between. In particular,
because all sectional curvatures are nonpositive, an application of the theorem
of Hadamard and E. Cartan yields that geodesic joining is unique for the unit
ball, provided with the Hessian Riemannian structure of its universal barrier
Sfunction.

For any even function f the curvature has to vanish at the origin, because
the third order derivatives of an even function vanish at the origin. Still, one
could try to find a function F for which the sectional curvatures are constant in
some part of the ball. At the radius r the sectional curvatures of the different
planes are equal to each other, if and only if

PR g F'r)y _F"(r)  F'(r) 1
() (F (r) - =, )‘ OO

The solutions of this differential equation are given by
F(ry=a(-r—=bIn(b—r)) +c,

where a, b and ¢ are arbitrary constants. If we want that F(r) — oo as r 1 1,
then we have to take b =1 and @ > 0. In that case we also have that F'(r) > 0
and F”(r) > 0 for r > 0. When a = 1, the function f(z) = F (]|z||) satisfies

Assumption 2.1 near the boundary. However, f is not differentiable at the
origin.

8.3 The Corner

A simple example of a completely different nature is the corner

C:{mER”|V1§i§n:mi>0}. (8.19)
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Here the boundary is flat at each smooth point, and therefore there are no
points where Assumption 2.1 holds.

The polar set C*(z) of C' with respect to the point z € C, cf. (3.1), is
equal to the set of £ € R” such that & < 0 for each ¢ and (z, &) > —1. The
substitution of variables & = n;/2' yields that the n-dimensional volume I, (z)
of C*(z) is equal to a positive constant times the product of the z°, and therefore
the universal barrier function In I (z) of C' is equal to

flz) =- Z Inz' plus a constant. (8.20)
=1

In the notation of Corollary 4.2 we have for every 2 € C that Cy(f, z) =n
and Cy(f, ) = 1, and therefore the parameter 6(f) of f is equal to n, the
minimal value for any self-concordant barrier function of a convex domain with
corners.

The Hessian Riemannian structure of (8.20) is given by

-2

828]f(£c) = (aﬁ) (Sij. (8.21)
The corresponding kinetic energy function is equal to

r=1y ()7 (#)". (3.22)

=1

The Euler-Lagrange equations for the geodesics therefore decouple into the
second order equations

% <(xi>_2 ”") == (wi)_s (1‘)2 (8.23)

for each of the coordinates z*. In turn this implies that the kinetic energy

ONC)

of each of the coordinates is constant, hence #°/2" is constant, which means

T, =

B

that the geoedsics are given by
2(t) =2 (0) ™!, ¢ =&'(0)/2%(0), 1<i<n. (8.24)

The behaviour of the geodesics is very different from what happens in the
presence of a smooth and strongly convex boundary. For ¢ — oo the geodesic
(8.24) runs away to infinity unless we have for each i that i'(0) < 0. In the
latter case the geodesic converges to the boundary point y, where y* = 0 when
i'(0) < 0 and y* = 2%(0) when 2'(0) = 0. In particular, if y lies in a k-
dimensional face F’ of the boundary, then the geodesics which converge to y are
lying in the intersection with C' of the (n—k)-dimensional affine subspace of R"
through y which is orthogonal to F. In other words, the larger the dimension
of the face, the smaller is the dimension of the manifolds of geodesics which
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converge to a given point of the face. The origin “catches” an open set of
geodesics.

In view of (8.24) it will not be surprising that with the substitution of
variables 2! = e’ the Hessian Riemannian structure (8.21) corresponds to the
standard Euclidean Riemannian structure in the #-space R”. In particular it
follows that the curvature of the Hessian Riemannian structure (8.21) is equal
to zero.

Similar conclusions hold for the Cartesian product of n intervals, bounded
or semi-bounded, and for their images under affine transformations, the (semi-

Jbounded parallepipeda.

8.4 The Triangle

If @ is a simplex in R”, defined by the inequalities X;(z) > 0,1 <i<n=1,
where the A; are suitable affine functions (= polynomials of degree one) on R,
then the universal barrier function of () is equal to

n+1
flz)=— Z In X;(z) plus a constant. (8.25)
=1

In other words, for the corner and the simplex the universal barrier function
is equal to the standard logarithmic barrier for a convex polytope as defined in
[14, Example 2 on p. 34]. (This is not true for arbitrary convex polytopes.)

The easiest way to prove (8.25) is probably to use the relation with the
characteristic function of the cone over @, cf. Vinberg [18, Def. 10, p. 356]. In
order to explain this, we begin with the identity

w@=h [ ae

ol

which can be proved by performing the substitution of variables ¢ = 77, with
7>0,n7€S" ! and using the formula (3.3).
The cone K over () and its polar cone K* are defined by

K = {(tm,t)ER”'HM:EQ, t>0} and

K* = {(eR™ |z K= (2,() <0},

respectively. Noting that (£, 7) € K* if and only if 7 < pg(§), that e™PK
is equal to the characteristic function of K*, and that e=?2(¢) is equal to the
integral of e from —oo to —pg (), we obtain from (8.26) that

1
vol, Q*(z) = — /R el 0t 4, (€, 1) = (n+ 1) voluyr K*(z, 1),

~n!
(8.27)
where in the last identity we used (8.26) with @ replaced by K.
If ) is a simplex then the cone over () is a corner, which by a linear transfor-

mation can be brought into the form (8.19), with n replaced by n+1. Therefore
(8.25) follows from (8.20).
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Let T'=T(a, b, c¢) be an open triangle in the plane R? with vertices a, b, c.
Let A, be the affine function on R? which is equal to one at @ and equal to zero
on b and c. Define Ay and A, by means of a cyclic permutation of a, b, c. Then
it follows from (8.25) that the universal barrier function f(z) =InI,(z) of T'is
equal to

f(z) = =1In(Ag(z) Ap(z) Ae(z)) plus a constant. (8.28)

We conjecture that an asymptotic analysis near the boundary will show that
the geodesics have a similar behaviour as in the case of the corner: to each point
on a side only one geodesic converges, whereas all the other geodesics converge
to one of the vertices. However, instead of pursuing this matter here, we turn
to the computation of the curvature.

In general the sectional (= Gaussian) curvature of a Hessian Riemannian
structure in the plane is given by the formula

—c(ay=pH+b(ad—py)—a (85 —~?)

K(=) = 4 (ac—b2)?

: (8.29)

in which

a:=0:f(z), b:=0:0:f(z), c:= 3 f(a),
o= 00f(2), f=020:f(2), v := 0102 f(x), 6 := ° f(x).

The formula (8.29) follows from (7.4). In the computation, a g(z)-orthonormal
basis in R? can be obtained by means of Gram-Schmidt’s orthogonalization
procedure.

Consider the special case when a = (1, 0), b = (0, 1), ¢ = (0, 0), so that
Aoy v) = u, Ap(u, v) = v, A(u, v) = 1 —u—v. A straightforward computation
then leads to

wv (1—u—wv)

, u>0,v>0 vu+t+v <l
(w2 +v2 + (1 —u—wv)?2)°

K(u, v) =

It follows that for the general triangle T'(a, b, ¢) with vertices a, b, ¢, we have

that
K(z) = Aa(z) Ap(z) Ae() N
(Aa(®)? 4+ Ay ()% + Ac(2)?)

Here the affine functions A,, As, A. have been defined in front of (8.28). Con-
clusions: The curvature K is strictly positive in T(a, b, ¢), with its mazimum
equal to %, attained al the center %(a +b+4¢) of T(a, b, ). Furthermore, K
converges to zero at the boundary.

The triangle T can be approximated by a domain T with a smooth and

strongly convex boundary, for instance by taking the set of z € I' such that

z €T (a,b,c). (8.30)

InI,(z) < C, where C'is a large positive constant. Then, on compact subsets
which stay away from the boundary, the derivatives up to any order the function
In I;(w) will be close to the corresponding derivatives of In I (z). It follows that

the curvature of the barrier function In ]¥(m) will be close to the curvature of

In,.(z), and therefore strictly positive, in a large part of T.
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The barrier function for T of Proposition 3.1 is equal to 2 1n I%,(ac). Ac-

cording to Remark 7.3, the curvature of the latter converges to —1/4 at the
boundary of T; one may also apply Theorem 7.1 to the modification of the
barrier function which is described in Corollary 4.3. Because the curvature of
cg(z) is equal to 1 times the curvature of g(z), it follows that the curvature
of the barrier function In I%(w) turns sharply from the positive values, which it

attains at some distance from the boundary, to its limit —é at oT.
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