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CHAPTER 4

Hermitian Eigenproblem

4.7 Jacobi-Davidson methods
G. Sleygpen and H. van der Vorst

The Lanczos method (see [2, Section 4.4]) is quite effective to compute eigenvalues in the ends of
the spectrum of A if these eigenvalue are well separated from the remaining spectrum, or when it
can be applied to (A — ¢I)~!, for some reasonable guess o for an eigenvalue.

If none of these conditions is fulfilled, for instance if the computation of a vector (4 — o T)~1y
for given y is not feasible with a direct solver, then variants of the Jacobi-Davidson method [32]
offer an attractive alternative.

4.7.1 Basic Theory

The Jacobi-Davidson method is based on a combination of two basic principles. The first one
is to apply a Ritz-Galerkin approach for the eigenproblem Az = Az, with respect to some given
subspace spanned by an orthonormal basis vy, ..., v,,. The usage of other than Krylov subspaces
was suggested by Davidson [7] who also suggested specific choices, different from the ones that we
will take, for the construction of orthonormal basis vectors v;. The Ritz-Galerkin condition is

AVps — 0Vis L{vy, ..., vum },

which leads to the reduced system

V*AVys —0s =0, (4.1)
where V},, denotes the matrix with columns v; to vy,. This equation has m solutions (HJ(.m) , ng)).
The m pairs (HJ(.m) , ugm) =Vn ng)) are called the Ritz values and Ritz vectors of A with respect to
the subspace spanned by the columns of V,,,. These Ritz pairs are approximations for eigenpairs
of A, and our goal is to get better approximations by a well chosen expansion of the subspace.

At this point the other principle behind the Jacobi-Davidson approach comes into the play.
The idea goes back to Jacobi [17]. Suppose that we have an eigenvector approximation u'™ for
an eigenvector  corresponding to a given eigenvalue A. Then Jacobi suggested (in the original
paper for strongly diagonally dominant matrices) to compute the orthogonal correction ¢ for ug.m)
so that

A 1) = 2™ 1),
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(m)

Since t L ug-m), we can restrict ourselves to the subspace orthogonal to u; The operator A
restricted to that subspace is given by

(I — ug-m)u;m)*) A ([ — u(-m)u(-m)*) ,

.
.

and we find that ¢ satisfies the equation

([ — ugm)u;m) ) (A= XI) ([ — u;m)ugm) ) t=—(A- Hj(-m)[)u;m).

In practical situations we do not know A and the obvious solution to this is to replace it by
its approximation gim)

7, which leads to the Jacobi-Davidson correction equation for an update
(m) (m).
t; J_uj :

(4.2)

This correction equation is solved only approximately and its approximate solution (™) is taken
for the expansion of the subspace. This 1s a fundamental difference with the Krylov subspace
methods; instead of selecting a subspace as powers of an operator acting on a given starting
vector, we select some subspace without Krylov structure and we project the given matrix onto
this subspace.

From (4.1) we conclude that rj(-m) 1 {v1,...,um}, and in particular that rj(-m) L ug-m), so that
the Jacobi-Davidson correction equation represents a consistent linear system.

It can be shown that the exact solution of (4.2) leads to cubic convergence of the largest OJ(-m)
towards Apax(A), for increasing m (similar statements can be made for the convergence towards
other eigenvalues of A, provided that the Ritz values are selected appropriately in each step).

In [32] it is suggested to solve equation (4.2) only approximately, for instance by some steps

of MINRES [25], with an appropriate preconditioner K for A — Hj(.m)l, if available, but in fact any

;m) is formally allowed, provided that the projectors ([ — u(-m)u(-m)*)

approximation technique for ¢ ST

are taken into account.
In our templates we will present ways to approximate t;m) with Krylov subspace methods.
We will now discuss how to use preconditioning for an iterative solver like GMRES or CGS,

applied with equation (4.2). Suppose that we have a left preconditioner K available for the

operator A — Gj(m)l, for which in some sense K~!(A — HJ(.m)I) ~ I. Since Gj(m) varies with the
iteration count m, so may the preconditioner, although it is often practical to work with the same
K for different values of 6. Of course, the preconditioner K has to be restricted to the subspace

(m)

orthogonal to u; / as well, which means that we have to work effectively with

J
K = ([ — ugm)ugm)*> K (I— ug-m)u;m)*> .

This may seem unnecessarily complicated, and at first sight it seems also to involve a lot of
overhead because of the projections ([ — ugm)ugm)*) that encircle the matrix vector operations.
But it all amounts to a handful of rather simple operations, as we will show now.

We will from now on assume that we use a Krylov solver with initial guess ¢, = 0 and with left
preconditioning for the approximate solution of the correction equation (4.2). Since the starting

(m)

vector is in the subspace orthogonal to u;", all iteration vectors for the Krylov solver will be in

that space. In that subspace we have to compute the vector z = f(‘lgv, for a vector v supplied
by the Krylov solver, and

A= (1=l ) (4= ol 1y (1= ufm ™).

7 )
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We will do this in two steps and first we have to compute

Av = ([ - ;m)ugm)*) (A- H(M)[) (I - u(m)u(m)*) v
= (I — ug-m)ugm) ) Y
with y = (A- Hj(-m)l)v since ug-m)*v =0.

(m)

Then, with left-preconditioning we have to solve z L u; "’ from

Kz = ([ - ug-m)u;-m)*) Y.

Since z L 1L§-m), it follows that z satisfies Kz = y — ozujm) orz= K ly— oz[\"_]u;m)_ The
condition z L u,;-

—

™) , leads to

(m)

The vector § = K~y is solved from K% = y and, likewise, % = K‘lu;m) is solved from K1 = u}
Note that the last equation has to be solved only once in an iteration process for equation (4.2), so
that effectively i5+ 1 operations with the preconditioner are required for i iterations of the linear
solver. Note also that one matrix vector multiplication with the left-preconditioned operator, in
an iteration of the Krylov solver, requires only one inner product and one vector update instead

*
of the four actions of the projector operator ([ - u;m)u;m) ) This has been worked out in the

solution template, given in Alg. 4.2. Along similar lines one can obtain an efficient template,
although slightly more expensive than the left-preconditioned case, for the right-preconditioned
operator. This template is described in Alg. 4.3.

For more details on preconditioning of the correction equation, see [33].

If we form an approximation for t;m) in (4.2) as tm) = K=1p — ozK_lu;-m), with a such that
1) u(-m), and without acceleration by an iterative solver, then we obtain a process which was

suggested by Olsen et al [23].

4.7.2 The Basic Algorithm

The basic form of the Jacobi-Davidson algorithm is given in Alg. 4.1. Later on we will describe
more sophisticated variants with restart and other strategies.

In each iteration of this algorithm an approximated eigenpair (6, u) for the eigenpair of the
Hermitian matrix A, corresponding to the largest eigenvalue of A, is computed. The iteration
process 1s terminated as soon as the norm of the residual Au — fu is below a given threshold e.
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ALGORITHM 4.1: Jacobi-Davidson Method for A, (A)

(1) Start with t = vq, starting guess
form=1,..
(2) fori=1,..,m-1

t=1— (t*vi)vi
U = t/||t]]2, va = Avp,

(3) fori=1,...m
M; = vivi
(4) Compute the largest eigenpair Ms = fs
of the m by m Hermitian matrix M, (||s|]|2 = 1)
u="Vs
ud = VAs
r=ut—0u
(5) if (||r|l2 < ¢), A\ =6, ¥ = u, then STOP.
(8) Solve (approximately) at L u from

(I —uuw*)(A—00)(I — uu*)t = —r

To apply this algorithm we need to specify a starting vector vg, and a tolerance e.

On completion an approximation for the largest eigenvalue A = Amax(A4) and its corresponding

eigenvector ¥ = T, is delivered. The computed eigenpair (X,ff) satisfies ||AZ — XEH <e.

We will now describe some implementation details, referring to the respective phases in Alg. 4.1.

(1)

This is the initialization phase of the process. The search subspace is each time expanded
by a vector ¢, and we start this process by a given vector. Ideally, this vector should have a
significant component in the direction of the wanted eigenvector. Unless one has some idea
of the wanted eigenvector, it may be a good idea to start with a random vector as a starting
vector. This gives some confidence that the wanted eigenvector has a non-zero component
in the starting vector, which is necessary for detection of the eigenvector.

The first two lines represent the modified Gram-Schmidt process for the orthogonalization
of the new vector ¢t with respect to the set vy,...,vm—1. If m = 1 then this is an empty
loop. Let t;, represent the vector before the start of modified Gram-Schmidt, and #,,: the
vector that results at completion of phase (2). It is advisable (see [6]) to repeat the Gram-
Schmidt process one time if [[tout||2/]|tin]|2 < &, where £ is a modest constant, say kK = .25.
This guarantees that the loss of orthogonality is restricted to 1/ times machine precision,
in a relative sense. The template for this modified Gram-Schmidt orthogonalization with
iterative refinement is given in Alg. 4.4.

Computation of the mth column of the upper triangular part of the matrix M = V*AV.
The matrix V' denotes the n by m matrix with columns v;, VA likewise.

The largest eigenpair of the m x m Hermitian matrix M, with elements M; ; in its upper
triangular part, can be done with the appropriate routines from LAPACK (see [2, Section
4.2]).

The vector u?

may be alternatively computed as u4 = Au, depending on which way is
cheapest. The choice is between an m-fold update and another multiplication with A; if
A has less than m nonzero elements on average per row, then the computation via Au is
preferable. If u# is computed as Au then it is not necessary to store the vectors v}-“.

The algorithm is terminated if || Au — fu||> < €. In that case A has an eigenvalue A for which
A — 8] < e. For the corresponding normalized eigenvector there is a similar bound on the
angle, provided that A is simple and well separated from the other eigenvalues of A, see [2,

Eqn. (4.4)]. That case leads also to a sharper bound for A (see [2, Eqn. (4.5)]).
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Convergence to a A # Apax(A) may take place, but is in general unlikely. It happens, for
instance, if vy L Zyax, or if the selected 6 is very close to an eigenvalue A # Apax(A). This
may happen for any iterative solver, in particular if € is taken not small enough (say larger

than /u).

(8) The approximate solution for the expansion vector ¢ can be computed with a Krylov solver,
for instance, MINRES, SYMMLQ), or CGS. With left- or right-preconditioning one has to
select a Krylov solver for unsymmetric systems (like GMRES, CGS, or Bi-CGSTAB), since
the preconditioned operator is in general not symmetric. A template for the approximate
solution, with a left-preconditioned Krylov subspace method of choice, is given in Alg. 4.2.
The right-preconditioned case, which is slightly more expensive, is covered by the template
in Alg. 4.3. For iterative Krylov subspace solvers see [4]. The approximate solution has
to be orthogonal to u, but that is automatically the case with Krylov solvers if one starts
with an initial guess orthogonal to u, for instance £ = 0. In most cases it is not necessary
to solve the correction equation to high precision; a relative precision of 27™ in the mth
iteration seems to suffice. It is advisable to put a limit to the number of iteration steps for
the iterative solver.

Davidson [7] suggested to take ¢ = (diag(A) — #I)~'r, but in this case ¢ is not orthogonal
with respect to u. Moreover, for diagonal matrices this choice leads to stagnation which is
an illustration of the problems in this approach.

In order to restrict storage, the algorithm can be terminated at some appropriate value m =
Mmax, and restarted with for vg the latest value of u. We will describe a variant of the Jacobi-
Davidson algorithm with a more sophisticated restart strategy in Section 4.7.3.

Note that most of the computationally intensive operations, i.e., those operations of which the
cost is proportional to n, can be done easily in parallel computation mode. Also, the multiple
vector updates can be done by the appropriate BLAS2 routines (see [2, Section 10.4]).

ALGORITHM 4.2: Approximate solution of the Jacobi-Davidson correction equa-
tion with left-preconditioning

“Solve” with left preconditioner K = (I — wu*)K (I — uu*),

for A = (I —uuw*)(A—0I)(] — uu*):

(8a) Solve u from K4 = u, p = u*u
Compute 7 = K~1r as:
(b') solve ¥ from Kt =r
(') F=F-"Tg
Apply Krylov subspace method with start tg = 0,
with operator f(‘lg, and right-hand side —T7,
2= K~1Av for given v is computed as:
(a) y=(A—-0D)v
(b) solvey from Ky=1y

() z=7-"2a
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ALGoriTHM 4.3: Approximate solution of the Jacobi-Davidson correction equa-
tion with right-preconditioning

“Solve” with right preconditioner K = (I — wu*)K (I — uu*),
for A= (I —uu*)(A—01)(I — uu*):

(8a) Solve u from Ku = u, p = u*u
Apply Krylov subspace method with start to = 0,
with operator gls;’_l, and right-hand side —r,
:=AK~ ' for given v is computed as:
(a) solve v from Kv = v
(b) y=v-— % u
(¢) z=({—-uu*)(A—-0Dy
The approximate solution t should be back-transformed as:
(a”) solve t from Kt =t

(b") t=t1—*1d

ALGORITHM 4.4: Modified Gram-Schmidt orthogonalization with refinement

(2a) Select a value for & less than 1, say k = .25
Tin = [[1]]2
fori=1,..,m-1
t=1— (t*vi)vi
i 1]/ 7in <
fori=1..m-1
t=1t— (t*vi)vi

In the coming subsections we will describe more sophisticated variants of the Jacobi-Davidson
algorithm. In Section 4.7.3 we will introduce a variant that allows for restarts, which is very
convenient if one wants to keep the dimensions of the involved subspaces limited. The variant is
also suitable for a restart after an eigenpair has been discovered, in order to locate a next eigenpair.
The technique is based on deflation. The resulting algorithm is designed for the computation of a
few of the largest or smallest eigenvalues of a given matrix.

In Section 4.7.4 we will describe a variant of Jacobi-Davidson that is suitable for the compu-
tation of interior eigenvalues of A.

Storage and computational costs We have collected the dominant costs of the simple Jacobi-
Davidson approach, in terms of storage and floating point operations, in two Tables. The costs
are given for iteration m of the algorithm.

| item | storage
search space 2m n-vectors
residual 2 n-vector
approx. eigenvector. 1 n-vector
projected system .5 matrix of order m
eigenvectors of proj. system 1 matrix of order m
correction equation depends on selected solver
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| action | work |
search basis m + 1 dots, m updates in iteration m
projected system m dots
eigensystem projected system O(m3)
residual 1 Matrix vector product, 1 update
or m-fold update
approx. eigenvector m-fold update
correction equation depends on choice solver

4.7.3 Jacobi-Davidson with restart and deflation
4.7.3.1 Restart strategy

The increasing storage or the computational overhead, for increasing dimension m of the sub-
space, may make it necessary to restart. An obvious way to restart is to take the most recent
approximation for the desired eigenvector. However, this may not be the most efficient strategy
for restarting. With any restart by a single vector we discard possibly valuable information that
is contained in the remaining part of the subspace. Unless we have an invariant subspace, all
vectors in the subspace contain information for the wanted eigenvector. After restart with one
single vector we see the effect of the lost information by a slowdown in the speed of convergence.
Therefore it is often better to restart with a set of vectors representing a subspace that contains
more information for the wanted eigenpair and a good strategy is to restart with the subspace
spanned by the Ritz vectors of a small number of the Ritz values closest to a specified target value.

4.7.3.2 Deflation

When a Ritz value is close enough to an eigenvalue, the remaining part of the current subspace
will already have rich components in nearby eigenpairs, since we have selected in all steps the Ritz
vectors for Ritz values close to the desired eigenvalue. We can use this information as the basis for
a subspace for the computation of a next eigenvector. In order to avoid that the old eigenvector
will re-enter the computational process, we make the new search vectors in the Jacobi-Davidson
algorithm explicitly orthogonal to the computed eigenvectors. This technique is called explicit
deflation. We will discuss this in slightly more detail.

Let Z1,...,Zk_1 denote the accepted eigenvector approximations and let us assume that these
vectors are orthonormal. The matrix X;_; has the vectors Z; as its columns. In order to find the
next eigenvector Zj, we apply the Jacobi-Davidson algorithm to the deflated matrix!

(I = Xpo1 X _0) A (I = X1 X))
and this leads to a correction equation of the form

Pon(T = Xic1 Xi_y) (A = 0™ 1) (T = Kooy X ) Pt = (™), (4.3)

with P, = ([ — u(.m)u;m)*), that has to be solved for the correction ™ to each new eigenvector

J J
(m , with corresponding Ritz value Hj(m)

J
that the explicit deflation against the vectors represented by Xy is highly recommended for the
correction equation, but is is not necessary to include this deflation in the computation of the
projected matrix (the projection of A onto the subspace spanned by the successive approximations
v; in the search for the kth eigenvector). The projected matrix can be computed as VAV,
without significant loss of accuracy.

approximation u . In [12] it is shown, by numerical evidence,

Deflation with approximate eigenvectors may introduce an error of order ¢2 on the eigenvalues, provided that
the computed eigenvalues are well separated from the remaining ones [26, Section 5.1].
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4.7.3.3 Preconditioning

Preconditioning for an iterative solver like GMRES or CGS, applied with equation (4.3) is only
slightly more complicated than in the single vector case (cf. Sec. 4.7.1). Suppose that we have

a left preconditioner K available for the operator A — HJ(-m)[. Let é denote the matrix Xj_1
expanded with ug.m) as 1ts kth column. In this case, the preconditioner K has to be restricted to

the subspace orthogonal to @ as well, which means that we have to work effectively with

K=(-QQ)K(I—QQ).

Similar to the single vector case this can be realized in a surprisingly efficient way.

Assume that we use a Krylov solver with initial guess ¢ = 0 and with left preconditioning
for the approximate solution of the correction equation (4.3). Since the starting vector is in the
subspace orthogonal to é, all iteration vectors for the Krylov solver will be in that space. In that
subspace we have to compute the vector z = K1 Av, for a vector v supplied by the Krylov solver,
and

= (1= Q@) (A~ 6D - QQ").
This is done in two steps and first we compute

Av = (1-Q@)A-6" D - Q@)
= (I-QQ")y
with y = (4- J(m)f)v since Q*v=0.

Then, with left-preconditioning we have to solve z L @ from

Kz= (I -QQ%)y.

_ Since @*z =0, it follows that z satisfies Kz = y — @o’f orz =K ly— K‘léo?. The condition
Q*z = 0 leads to

= (Q*K'Q)"'Q*K1y.

The vector §j = K~y is solved from &= y and, likewise, @ = K‘lé is solved from K@ = é
Note that the last set of equations has to be solved only once in an iteration process for equation
(4.3), so that effectively ig 4+ k operations with the preconditioner are required for ig iterations
of the linear solver. Note also that one matrix vector multiplication with the left-preconditioned
operator, in an iteration of the Krylov solver, requires only one operation with @Q* and K-'Q,
instead of the four actions of the projector operator (I — QQ*). This has been worked out in the
solution template, given in Alg. 4.6. Note that obvious savings can be realized if the operator K
is kept the same for a number of successive eigenvalue computations (for details, see [33]).

4.7.3.4 Jacobi-Davidson template with restart and deflation for exterior eigenvalues

The complete algorithm for the Jacobi-Davidson method, that includes restart with a number of
Ritz vectors, and deflation for the computation of a number of eigenpairs is called JDQR. [12],
since it can be interpreted as an iterative approach for the QR algorithm. The template for this
algorithm is given in Alg. 4.5.



10 Jacobi-Davidson algorithms. . .

ALGoORITHM 4.5: Jacobi-Davidson for k..., exterior eigenvalues

Start with vy starting vector and T target value.
(1) t=vo, k=0, m=0; X =[],
while k < kmax

(2) fori=1,..,.m
t=1— (e
m=m+1; Um =t/||t||2, vA = Avy,
(3) fori=1,.
M; ., = U*UA
(4) Make e1gendecompos1't1'on MS =50

of the m by m Hermitian matrix M.
Sort the pairs: |0; — 1| > |6;_1 — 7|
u=Vsi, ut = VAsl, r=ut—fu
(5) while ||7||2 < ¢
Xk-+1 :61, )’Z: [)’ZJU], k’:k+1
if k = kpax then STOP
(6) m=m-1,M=0
fori=1,..,m
v; = Vsit1, vf = VASZ'+1,
M;; =0;p1, si = e, 0; = 6; 1
u:vl,T:vf—Hlu
(7) if m > mmax then
M=0
for i=2,.., mmin
v; = Vsi, vf =V4s;, M; ;= 0;
v = u, vf =u, My =61, m = mmnin
0=01,Q=[X,ul
(8) Solve t (J_ Q (approx]mate]y) from:
(1= QQ*)(A—61)(I - QQ*)t = -

To apply this algorithm we need to specify a starting vector vg, a tolerance ¢, a target value
7, and a number k. that specifies how many eigenpairs near 7 should be computed. The value
of myax denotes the maximum dimension of the search subspace. If it is exceeded then a restart
takes place with a subspace of specified dimension my;;,.

On completion typically the kpa.x largest eigenvalues are delivered when 7 is chosen larger
than Apax(A); the kpax smallest eigenvalues are delivered if 7 is chosen smaller than Ay, (A).
The computed eigenpairs (Xj,ij_), [|Z]]2 = 1, satisfy ||AZ; — XjEjHQ < je, where Z; denotes the
jth column of X.

In principle, this algorithm computes the kpnax eigenvalues closest to a specified target value 7.
This is only reliable if the k.. largest or knax smallest eigenvalues are wanted. For interior sets
of eigenvalues we will describe safer techniques in Section 4.7.4. We will now comment on some
parts of the algorithm in view of our discussions in previous subsections.

(1) Initialization phase. Search subspace is initialized with %.

(2) The new expansion vector for the search subspace is made orthogonal with respect to the
current search subspace by means of modified Gram-Schmidt. This can be replaced, for
improved numerical stability, by the template given in Alg. 4.4.

If m = 0 then this is an empty loop.

(3) We compute only the upper triangular part of the Hermitian matrix M = V*AV (of order
m).



GERARD L.G. SLELJPEN, ET AL. 11

(4)

The eigenproblem for the m by m matrix M can be solved by a standard eigensolver for
dense Hermitian eigenproblems from LAPACK. We have chosen to compute the standard
Ritz values, which makes the algorithm suitable for computing the largest or smallest kpax
eigenvalues of A. If one wishes to compute k.« eigenvalues somewhere in the interior of the
spectrum then the usage of harmonic Ritz values is advocated, see Section 4.7.4.

The matrix V' denotes the n by m matrix with columns v;, VA = AV likewise; S is the m
by m matrix with columns s; and © = diag (01, ...,0).

The stopping criterion i1s to accept an eigenvector approximation as soon as the norm of
the residual (for the normalized eigenvector approximation) is below e. This means that
we accept inaccuracies in the order of € in the computed eigenvalues, and inaccuracies (in
angle) in the eigenvectors in the order of €, provided that the associated eigenvalue is simple

and well separated from the other eigenvalues, see [2, Eqn. (4.4)].

Occasionally one of the wanted eigenvectors of A may be undetected, for instance if vy has
no component in the corresponding eigenvector direction. For a random start vector this is

rather unlikely. (See also note (5) for Alg. 4.1).

After acceptance of a Ritz pair, we continue the search for a next eigenpair, with the re-
maining Ritz nvectors as a basis for the initial search space.

We restart as soon as the dimension of the search space for the current eigenvector ex-
ceeds Mmpyax. The process is restarted with the subspace spanned by the muyi, Ritz vectors
corresponding to the Ritz values closest to the target value 7.

We have collected the locked (computed) eigenvectors in )?, and the matrix @ is X expanded
with the current eigenvector approximation u. This is done in order to obtain a more compact
formulation; the correction equation is equivalent to the one in (4.3). The new correction ¢
has to be orthogonal to the columns of X as well as to u.

Of course, the correction equation can be solved by any suitable process, for instance a
preconditioned Krylov subspace method. Because of the occurrence of @) one has to be careful
with the usage of preconditioners for the matrix A — 1. The inclusion of preconditioners
can be done following the same principles as for the single vector Jacobi-Davidson algorithm,
see Alg. 4.6 for a Template. Make sure that the starting vector o for an iterative solver
satisfies the orthogonality constraints @Q*ty = 0. Note that significant savings per step can
be made in Alg. 4.6 if K is kept the same for a (few) Jacobi-Davidson iterations. In that
case columns of @ can be saved from previous steps. Also the matrix M in Alg. 4.6 can be
updated from previous steps, as well as its LU/ decomposition.
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ALGORITHM 4.6: Approximate solution of the deflated Jacobi-Davidson correc-
tion equation

“Solve” with left preconditioner K = (r— QC}*)K(I — @Q*),
for A = (I — QQ*)(A — 1) (I — QQ*):
(8a)  Solve Q from KQ = Q
Compute M = Q*Q
Decompose M = LU
Compute ¥ = K=1r as:
(b') solve ¥ from K7 =r
(c') ¥=Q'F
solve [;" from ﬁﬁ =7
solve @ from Yd = [;"
(d') F=7—-Qa
Apply Krylov subspace method with start tg = 0,
with operator K”‘lg, and right-hand side —7,
= K~1Av for given v is computed as:
(a) y=(A—0I)
(b) solve y from Ky =y
© 7=075
solve # from L3 =7
solve @ from Y& = [;

(d) ==7§-Qd

4.7.4 Jacobi-Davidson for interior Eigenvalues
4.7.4.1 The usage of harmonic Ritz values for interior eigenvalues

If one 1s heading for the eigenpair with the smallest or largest eigenvalue only, then the obvious
restart approach works quite well, but often it does not do very well if one is interested in an
interior eigenvalue. The problem is that the Ritz values converge monotonically towards exterior
eigenvalues, and a Ritz value that is close to a target value in the interior of the spectrum may be
well on its way to some other exterior eigenvalue. It may be even the case that the corresponding
Ritz vector has only a small component in the direction of the desired eigenvector. It will be clear
that such a Ritz vector represents a poor candidate for restart and the question is: what is the
optimal vector for restart? The answer is given by the so-called harmonic Ritz vectors [21, 24, 32].
As we have seen, the Jacobi-Davidson methods generate basis vectors vy, ..., v, for a subspace
V. For the projection of A onto this subspace we have to compute the vectors w; = Av;. The
inverses of the Ritz values of A™!, with respect to the subspace spanned by the w;, are called the
harmonic Ritz values. The harmonic Ritz values can be computed without inverting A, since a
harmonic Ritz pair (gj(.m) , ﬂ;m)) satisfies
A — g™ LW, = span(w, .., w), (4.4)
for a\™ € Vin and alm) # 0. This implies that the harmonic Ritz values are the eigenvalues of

the pencil (W AV,,, W2 V,,), or since W,,, = AV,,,:
* (m) _ plm) 7= (m) _
Wmesj — Bj Wmesj =0.
For stability reasons we orthonormalize the columns of W,,, and transform the columns of Vi,

accordingly. This also further simplifies the equation: we see that the harmonic Ritz values are
the inverses of the eigenvalues of the symmetric matrix W V,,.
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In [24] it is shown that for Hermitian A the harmonic Ritz values converge monotonically
towards the smallest non-zero eigenvalues in absolute value. Note that the harmonic Ritz values
are unable to identify a zero eigenvalue of A, since that would correspond to an infinite eigenvalue
of A=1. Likewise, the harmonic Ritz values for the shifted matrix A — 7T converge monotonically
towards eigenvalues A # 7 closest to the target value 7. Fortunately, the search subspace V,, for the
shifted matrix and the unshifted matrix coincide, which facilitates the computation of harmonic
Ritz pairs. The harmonic Ritz vector, for the shifted matrix, corresponding to the harmonic
Ritz value closest to 7 can be interpreted as to maximize a Rayleigh quotient for (A — 77)=". Tt
represents asymptotically the best information that is available for the wanted eigenvalue, and
hence it represents asymptotically the best candidate as a starting vector after restart, provided

that 7 # A.

4.7.4.2 A template for Jacobi-Davidson for interior eigenvalues

An algorithm for Jacobi-Davidson based on harmonic Ritz values and vectors, combined with
restart and deflation, is given in Alg. 4.7. The algorithm can be used for the computation of a
number of successive eigenvalues immediately to the right of the target value 7.

ATL.GORITHM 4.7: Jacobi-Davidson for k,,,, interior eigenvalues at the right side
nearest to 7

(1) t=wv, k=0;m=0; X =[];
while k < koax
(2) w=(A—r7I)t
fori=1,..m
y=wiw, w =w—yw;, t=1—
m=m+1, wy, = w/||w||2, vm = t/||w||2
(3) fori=1,..,m
Mim = wivy,
(4) Compute eigendecomposition M S = 56
of the m by m Hermitian matrix M.
Sort the pairs so that: 2 > 05 > ...
W=V, p=|[ill2, u=/p, 0 =0 /p’
w=Wsi,r=w/p—Jdu
(5) while ||r||2 < ¢
k=k+1, )A(J:[)?,u],;:k =d4+r
if k = kmax then STOP
(6) m=m-—1, M =0
fori=1,..,m
v, = V5i+1: w; = WSZ'+1
M;; = 51'4-1, s = €, §i+1 =0;
= lorlle, 9 = Ba/i®, u = va/p, v = wi /s — D
(7) if m > mpyax then
M=0
fori=2, .., muy
vi = Vs, wy =Ws;, My; = 9;
wp = {D, v = ﬁ, M171 = 51, m — Mmin
(8) f=0+7,Q=[X,u
Solve t (L é) (approximately) from:
(I-QQ")(A-0N(I -QQ™)t = —r

To apply this algorithm we need to specify a starting vector vg, a tolerance ¢, a target value
7, and a number ki .x that specifies how many eigenpairs near 7 should be computed. The value
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of M, ax denotes the maximum dimension of the search subspace. If it is exceeded then a restart
takes place with a subspace of specified dimension my;;,.

On completion the kpax cigenvalues at the right side nearest to 7 are delivered. The computed
eigenpairs (A;, %;), ||Z;|]s = 1, satisfy ||AZ; — X\;Z;||» < je, where Z; denotes the jth column of X.

For exterior eigenvalues a simpler algorithm has been described in Section 4.7.3. We will now
comment on some parts of the algorithm in view of our discussions in previous subsections.

(1) Initialization phase.

(2) The vector (A — 71I)t is made orthogonal with respect to the current test subspace W,, by
means of modified Gram-Schmidt. This can be replaced, for improved numerical stability,
by the template given in Alg. 4.4.

(3) The values M; ; represent elements of the square m by m matrix M = W*V, where V
denotes the n by m matrix with columns v;, and likewise W. Because M is Hermitian, only
the upper triangular part of this matrix is computed.

(4) At this point the eigenpairs for the problem Ms = fs should be computed. This can be
done with a suitable routine for Hermitian dense matrices from LAPACK. Note that the
harmonic Ritz values are just the inverses of the eigenvalues of M.

Then we have to compute the Rayleigh quotient ¥ for Vs, and we have to normalize V sy,
in order to compute a proper residual r» L V.

We have used that siV*(A — 7I)Vs; = sTM*s; = 0.
The vectors s; are the columns of m by m matrix S and 0= diag (51, ce gm)

(5) The stopping criterion is to accept an eigenvector approximation as soon as the norm of
the residual (for the normalized eigenvector approximation) is below ¢. This means that
we accept inaccuracies in the order of €2 in the computed eigenvalues, and inaccuracies (in
angle) in the eigenvectors of O(¢), provided that the associated eigenvalue is simple and well
separated from the others, see [2, Eqn. (4.4)].

Detection of all wanted eigenvalues cannot be guaranteed, see note (5) for Alg. 4.1 and for

Alg. 4.5.

(6) This is a restart after acceptance of an approximate eigenpair. The restart is slightly more
complicated since two subspaces are involved.

(7) At this point we have a restart when the dimension of the subspace exceeds Mmmax. After a
restart the Jacobi-Davidson iterations are resumed with a subspace of dimension mmin. The
selection of this subspace is based on the harmonic Ritz values nearest to the target 7.

(8) The deflation with computed eigenvectors is represented by the factors with X. The matrix
X has the computed eigenvectors as its columns. If a left preconditioner K is available
for the operator A — I, then with a Krylov solver similar reductions are realizable as in
the situation for exterior eigenvalues. A template for the efficient handling of the left-
preconditioned operator is given in Alg. 4.6.

4.7.4.3 Numerical example

We include a numerical example for testing purposes, so that potential users of the Jacobi-Davidson
algorithms can verify and compare their results.

The symmetric matrix A is of dimension n = 1000. The diagonal entries are a;; = 1, the
codiagonal entries are a; ;1 = a;;41 = 0.5, and furthermore, a1000,1 = @1,1000 = 0.5. All other
entries are zero. This example has been taken from [5], and is discussed, in the context of the
Jacobi-Davidson algorithm in [32; page 410].

We use Alg. 4.5, for the computation of the kmax = 10 largest eigenvalues. The input param-
eters have been chosen as follows. The starting vector vg = (0.01,...,0.01,1)T. The tolerance is
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Figure 4.1: Jacobi-Davidson for exterior eigenvalues with several strategies for solving the correc-
tion equation.

¢ = 1078, The subspace dimension parameters are mmin = 10, Mmayx = 15, and the target value
T =1001.

We show graphically, the norm of the residual vector as a function of the iteration number
in Fig. 4.1. Every time when the norm is less than ¢, then we have determined an eigenvalue
within this precision, and the iteration is continued with deflation for the next eigenvalue. The
four pictures represent, lexicographically, the following different situations:

1. Top left: this shows what happens when ¢, in line (8) of Alg. 4.5, is simply taken ast = —r. In
exact arithmetic, this should deliver the same Ritz values as Arnoldi’s algorithm (assuming
for Arnoldi a similar restart strategy as in Alg. 4.5).

2. Top right: here we have applied a simple preconditioner K = diag(A), as in Alg. 4.6, without
further subspace acceleration, that is we stopped after step (d’). This is equivalent to the

method published in [23].

3. Bottom left: this gives the iteration results, for the case where the correction equation has
been solved with 5 steps of MINRES, without preconditioning (Alg. 4.5 with K = I).

4. Bottom right: here we have used preconditioning as in Alg. 4.5, with K = diag(A) and
5 steps of GMRES (note that it would have been more efficient to use MINRES, but this
requires two-sided preconditioning, for which we did not supply the algorithm).



16 Jacobi-Davidson algorithms. . .
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Figure 4.2: Jacobi-Davidson for exterior eigenvalues (top figures) and interior eigenvalues (bottom
figures). The correction equations have been solved with 5 steps of plain GMRES (left figures)
and with 5 steps of preconditioned GMRES (right figures).
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In Fig. 4.2, we give the convergence history for interior eigenvalues, as obtained with Alg. 4.5
(top figures) and with Alg. 4.7 (bottom figures), with the following input specifications:
vg = (0.01,...,0.01, )T, 7 =900.5, ¢ = 1078, kpax = 10, Muin = 5, and mpax = 10. Again, every
time when the curve gets below ¢, then this indicates convergence of an approximated eigenvalue
within that tolerance. For all figures, we used 5 steps of GMRES to solve the correction equation
in (8). For the left figures, we did not use preconditioning. For the right figures, we preconditioned
GMRES with K = diag(A) — 71, as in Alg. 4.6

4.7.5 Software Availability

Matlab versions of the algorithms are available from either
http://www.math.uu.nl/people/sleijpen

or

http://www.math.uu.nl/people/vorst

Fortran implementations of the Jacobi-Davidson method are available via
http://www.math.uu.nl/people/bomhof

The Fortran software is of experimental type and does not reflect all insights and possibilities
described in this Section.



CHAPTER D

Generalized Hermitian Eigenproblem

5.6 Jacobi-Davidson methods
G. Sleypen and H. van der Vorst

Basic Theory

We consider the application of the Jacobi-Davidson approach to the generalized eigenproblem
Az = Bz, (5.1)

with A and B Hermitian and B positive definite. We can, similarly as for the Lanczos method
[38], apply the Jacobi-Davidson method to (5.1), using a B-orthogonal basis v1, v, ..., vm for the
search subspace, that is

Vo BV = I,

if we let V;,, denote the matrix with columns v;.
The Ritz-Galerkin condition for vectors u = Vi, s in this subspace leads to

V2 AVys — 0V, BV, s = 0, (5.2)
or, because of the B-orthogonality of Vj,:
Vi AVips — 0s = 0.

This leads to Ritz vectors uj(-m) = Vius; and Ritz values Hj(-m). We will assume that these Ritz
vectors are normalized with respect to the B-inner product. » ‘
The correction equation for the eigenvector component t;m) L Bugmj, for the generalized
eigenproblem, can be written as
m m)* m m)
(I—Bug. )ug ) ) (A—HJ(. )B) ([—ug Ju

(5.3)

If linear systems with the matrix A — Hj(.m)B are efficiently solvable, then we can compute the
(m)
J

approximate solutions to ¢

exact solution ¢}/ in other cases we can, as is usual for the Jacobi-Davidson methods, compute

(m)

5 with a Krylov solver applied to (5.3). Note that the operator

(7= Bu{™ ™) (A= B (1- uf™ul™" B)

18
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| L
maps the space (Bug.m))J‘ onto the space ug.m) , so that preconditioning is required anyhow if we

use a Krylov solver in order to get a mapping between (Bug-m)_)J‘ and (Bug-m))J‘ (see Remark (8)
for Alg. 5.1).

As for the standard Hermitian case, the resulting scheme can be combined with restart and
deflation. If we want to work with orthogonal operators in the deflation, then we have to work
with B-orthogonal matrices that reduce the given generalized system to Schur form:

AQr = 7 Dy,

in which 7, = BQj, and @) is B-orthogonal. The matrix Dy i1s a diagonal matrix with the &
computed eigenvalues values on its diagonal, the columns of @), are eigenvectors of A. This leads
to skew projections for the deflation with the first & eigenvectors:

(I = ZxQx) (A= AB) (I — QxZy) .

It is easy to verify that the deflated operator B is still symmetric positive definite with respect
(m))J_

J . We can simply use the B-inner product in that space, since B and the
deflated B coincide over that space.

to the space (Bu

If B is not well-conditioned, that means if z* By leads to a highly distorted inner product, then we
suggest to use the QQZ-approach with Jacobi-Davidson (see Section 8.8), which does not exploit
symmetry of the involved matrices.

A template for a left-preconditioned Krylov solver is given in Alg. 5.2.



20 Jacobi-Davidson algorithms. . .

Jacobi-Davidson template with restart and deflation for exterior eigenvalues

A1.GORITHM 5.1: Jacobi-Davidson for k., exterior eigenvalues

(1) t=wvy, k=0 m=0; Q=][], Z2=][]
while k£ < kmax
(2) fori=1,..,.m
t=1t— (v )y
m:m-l—l;%v:Bt, norm:\/t*_?,
vy, = t/norm, vA = Awv,,, vB =1/norm

(3) fori=1,..,m
M; m = 1);-‘1);:\1
(4) Compute all eigenpairs (6;, s;)

of the Hermitian matrix M, (||s;||2 = 1)
Sort the pairs: |6; — 7| > [6;—1 — 7|
u=Vsi,p=VEsi, ut = VAs;, r=ut —b1p
) while|rla/lul<e
Q=[Q,u],Z :N[Z,p], Ay1 =01, k=k+1
if (k = kpax), X = Q, then STOP
m=m-1,M=0
(6) fori=1,..,m
vi = Vsip1, v = VAsipr, vP = VBsipy
M;i =041, si =€, 0; =011
u=v,p=v r=vit —01p
(7) if m > mmax then
M=0
fori=2,.., mpy,
v; = Vs, vZ.A = VASZ-, viB = VBSZ', Mi,i =0,
v = U, UlB =D Ml,l = 91; m = Mmin
0= 61; Q i[Qau]a Z = [Zap]
(8) Solve t (L Z) (approximately) from:

(I—ZQ*)(A—-0B)(I —QZ*)t =—r

To apply this algorithm we need to specify a tolerance ¢, a target value 7, and a number k.
that specifies how many eigenpairs near 7 should be computed. The value of m,,x denotes the
maximum dimension of the search subspace. If it is exceeded then a restart takes place with a
subspace of specified dimension mpin. We also need to give a starting vector vg.

On completion the kmax largest eigenvalues are delivered when 7 is chosen larger than Apax(A);
the kmax smallest eigenvalues are delivered if 7 is chosen smaller than Anyin. The computed
eigenpairs (A;,Z;), ||Z;]|p = 1, satisfy ||[AZ; — A\; BZ;||2 < je, where Z; denotes the jth column of
X. The eigenvectors are B-orthogonal: z;Br; =0 fori#£ j.

Let us now discuss the different steps of Algorithm 5.1.

(1) Initialization phase.

(2) The new vector ¢ is made B-orthogonal with respect to the current search subspace by
means of modified Gram-Schmidt. This can be replaced, for improved numerical stability,
by a template as in Alg. 4.4, in which all inner products and norms should be interpreted as
B-inner products, B-norms, respectively.

If m = 0 then this is an empty loop.

We expand the n by m matrices V, VA = AV, and VB = BV, V denotes the matrix with
the current basis vectors v; for the search subspace as its columns, likewise V4 and V2.
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(3) The mth column of the symmetric matrix M = V*AV = V*V4 (of order m) is computed.

(4) The eigenproblem for the m by m matrix M can be solved with a suitable routine for
Hermitian dense matrices from LAPACK. We have chosen to compute the standard Ritz
values, which makes the algorithm suitable for computing k.« exterior eigenvalues of A—AB
close to a specified 7. If eigenvalues in the interior part of the spectrum have to be computed,
then the computation of harmonic Petrov values is advocated, see Section 8.8.

(5) The stopping criterion is to accept an eigenvector approximation as soon as the norm of the
residual (for the normalized vector approximation) is below e. This means that we accept
inaccuracies in the order of €2 in the computed eigenvalues, and inaccuracies (in angle) in the
eigenvectors of O(¢) (provided that the concerned eigenvalue is simple and well separated
from the others and B is not ill-conditioned; use [2, Eqn. (4.4)]).

Detection of all wanted eigenvalues cannot be guaranteed, see note (5) for Alg. 4.5.

(6) After acceptance of a Ritz pair, we continue the search for a next pair, with the remaining
Ritz vectors as a basis for the initial search space.

(7) We restart as soon as the dimension of the search space for the current eigenvector ex-
ceeds My .. The process is restarted with the subspace spanned by the my;, Ritz vectors
corresponding to the Ritz values closest to the target value 7.

(8) We have collected the locked (computed) eigenvectors in @), and the matrix @ is () expanded
with the current eigenvector approximation u. This is done in order to obtain a more
compact formulation; the correction equation in step (8) of Alg. 5.1 is equivalent to the one
in equation (5.3). The new correction ¢ has to be orthogonal to the columns of Z = BQ@ as
well as to p = Bu.

Of course, the correction equation can be solved by any suitable process, for instance a
preconditioned Krylov subspace method that is designed to solve unsymmetric systems.
However, because of the skew projections, we always need a preconditioner (which may be
the identity operator if nothing else is available) that is deflated by the same skew projections
so that we obtain a mapping between Z+ and itself. Because of the occurrence of Q and Z,
one has to be careful with the usage of preconditioners for the matrix A —é§B. The inclusion
of preconditioners can be done as in Alg. 5.2. Make sure that the starting vector o for an
iterative solver satisfies the orthogonality constraints Z7*¢q = 0. Note that significant savings
per step can be made in Alg. 5.2 if K is kept the same for a (few) Jacobi-Davidson iterations.
In that case, columns of 7 can be saved from previous steps. Also the matrix M can be
updated from previous steps, as well as its LU/ decomposition.

It is not necessary to solve the correction equation very accurately. A strategy, often used
for inexact Newton methods [9], here also works well: increase the accuracy with the Jacobi-
Davidson iteration step, for instance, solve the correction equation with a residual reduction
of 27 in the fth Jacobi-Davidson iteration (£ is reset to 0 when an eigenvector is detected).

For a full theoretical background of this method see [12]. For details on the deflation technique
with eigenvectors see also Section 4.7.3.2.
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ALGORITHM 5.2: Approximate solution of the deflated Jacobi-Davidson correc-
tion equation, for the generalized Hermitian eigenproblem

“Solve” with left preconditioner K = (r— Z@*)K([ — @Z*),
for A= (I —ZQ*)(A—0B)({ — QZ*):

(8a)  Solve 7 from K7 =7
Compute M = AN
Decompose M = LU
Compute ¥ = I'N(j_lr as:
(b') solve 7 from KT =r
(c') ¥=2'F
solve [; from ﬁﬁ: o
solve @ from Ud = [;
(d')¥=7-7ad
Apply Krylov subspace method with start to = 0,
with gperftor f(j_lg, and right-hand side —7,
z = Kj_lAv for arbitrary v is computed as:
() y=(A—0B)
(b) solvey from Ky =y
(c) =727y }
solve § from L3 = 7
solve @ from Ud = [;
(d) z=9-7a
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Non-Hermitian Eigenproblem

7.11 Jacobi-Davidson methods
G. Sleypen and H. van der Vorst

7.11.1 Generalization of Hermitian Case

Similar to the Lanczos methods and the Arnoldi method, the Jacobi-Davidson method constructs
a subspace onto which the given eigenproblem is projected. The subspace is constructed with
approximate shift and invert steps, instead of forming a Krylov subspace. In §4.7 we have explained
the method in detail, and the generalization to the non-Hermitian case for the basic algorithm,
described in Alg. 4.1, is quite straight forward. In fact, the changes are:

1. The construction of the matrix M has to take into account that M is non-Hermitian, hence
the corresponding action in part (3) has to be replaced by:

fori=1,...m-1
I D § R Y |
M; = vZ-Avm, My, ; = v}, v;
*
My m = v, 05

2. In (4) a routine has to be selected for the non-Hermitian dense matrix M

If the correction equation (in step (7) of the algorithm) is solved exactly, then the approximate
eigenvalues have quadratic convergence towards the eigenvalues of A.

7.11.2 Schur Form and Restart

If we want to include restarts and deflation then matters become more complicated since non-
Hermitian matrices do not have orthonormal eigensystems in general. Since we prefer to work
with an orthonormal basis for at least the test-subspace, we compute Schur forms of the reduced
matrices. Instead of eigenvectors of the matrix A, we compute a partial Schur form AQ; = Qx Ry,
where Qg is an n by k orthonormal matrix and Ry is k& by k upper tridiagonal. A scheme that
accommodates for Schur forms is given in Alg. 7.1. This scheme includes the possibility for restart
when the dimension of the current subspace exceeds mmax.

The scheme computes kmax eigenvalues close to a target 7 in the complex plane. Here we have to
be necessarily unprecise, since the eigenvalues of a general non-Hermitian matrix are not ordered
in the complex plane. Which Ritz values are delivered as close eigenvalues depends amongst
others on the angles of the corresponding eigenvectors. Usually, the selection from Ritz values is

23
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appropriate if 7 is chosen somewhere at the exterior of the distribution of eigenvalues. If we want
eigenvalues of M close to some interior point then the scheme may be much less satisfactory, and
we propose to work in such cases with harmonic Ritz values. A scheme for interior eigenvalues
will be presented in §7.11.3.

AvLGoRITHM T7.1: Jacobi-Davidson for k...x exterior eigenvalues

(1) tsz;k:();m:O;Q:[LR:[]
while & < kpax
(2) fori=1,..,m
t=1— (v?t)vi
m = m+ L o = ¢/t v = Avn
(3) fori=1,..,m—-1
Mi,m — U?U;‘rlw Mm,i = U;knva
Mmm = v;‘nv;‘,‘L
(4) Make a Schur decomposition M = ST'S*,
S unitary and [' upper triangular,
such that: |T; ; — 7| < |Tiy1,i41 — 7|

u=Vs,ut =VA, 0=T1,r=u? —0u,a=Q*r,T=r—Qa

(5) while ||7]|2 < €
R:(fg ;),Q:[Q,u],k:k+1

if k = kmax then STOP
m=m—1
(6) fori=1,..,m
v; = Vsiq, vf = VASH_l, S; = €5
M = lower m by m block of T’
u=v, 0 =M, r=vf ~0u,a=Q*r,7=r—Qa

(7) if m > mp.x then
fori=2,.., mpy,
v; = Vs, viA =VAs;

M = leading my,;, by mpy;, block of T
vy =u, v = u?, m=my,

(8) Q = [Q,u], Solve t (L Q) (approximately) from:
(1=Q@") (A 01T -QQ")t = —F

To apply this algorithm we need to specify a starting vector vg, a tolerance ¢, a target value
7, and a number kmax that specifies how many eigenpairs near 7 should be computed. The value
of mmax denotes the maximum dimension of the search subspace. If it is exceeded then a restart
takes place with a subspace of specified dimension mmin.

On completion the k.. eigenvalues close to 7 are delivered, and the corresponding reduced
Schur form AQ = QR, where ) is n by kmax orthogonal and R is knax by kmax upper triangular.
The eigenvalues are on the diagonal of R. The computed Schur form satisfies ||[Ag; — QRe;||2 < je,
where ¢; is the jth column of (.

We will now discuss the components of the algorithm.

(1) Initialization phase.

(2) The new vector ¢ is made orthogonal with respect to the current search subspace by means
of modified Gram-Schmidt. This can be replaced, for improved numerical stability, by the
template, for iterated modified Gram-Schmidt, given in Alg. 4.4.

If m = 0 then this is an empty loop.
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If the angle between the new vector ¢ and the search subspace is very small, then the resulting
vector v; has little significance and the method practically stagnates. A random vector ¢
helps to overcome this stagnation. A more sophisticated strategy can be found in [14].

We compute the last column and row of the dense matrix M = V*AV = V*V4 (of order
m); VA = AV. The matrix V denotes the n by m matrix with columns vj, VA4 likewise.

The Schur reduction for the m by m matrix M can be solved by a standard solver for
dense eigenproblems. We have chosen to compute the standard Ritz values, which makes
the algorithm suitable for computing kmax exterior eigenvalues of A close to a specified 7.
If eigenvalues in the interior part of the spectrum have to be computed, then the usage of
harmonic Ritz values is advocated, see §7.11.3.

In each step, the Schur form has to be sorted such that 77 i is closest to 7. Only if m > mmax
the sorting of the Schur form has to be be such that all of the mmax leading diagonal elements
of T are closest to 7. For ease of presentation we sorted all diagonal elements here.

For a template of an algorithm for the sorting of a Schur form, see [39, 40, 3] and [11,
Chap. 6B].

S is the m by m matrix with columns s;.

The stopping criterion is to accept a Schur vector approximation as soon as the norm of
the residual (for the normalized Schur vector approximation) is below e¢. This means that
we accept inaccuracies in the order of € in the computed eigenvalues, and inaccuracies (in
angle) in the Schur vectors of O(€) (provided that the concerned eigenvalue is simple and
well separated from the others).

Detection of all wanted eigenvalues cannot be guaranteed, see note (5) for Alg. 4.5.

If the matrix is real, then all eigenpairs are either real or appear in complex conjugate pairs.
If a complex eigenpair has been detected, then its conjugate is known and can be deflated
as well. This makes the algorithm more efficient.

After acceptance of a Ritz pair, we continue the search for a next pair, with the remaining
Ritz vectors as a basis for the initial search space.

We restart as soon as the dimension of the search space for the current Schur vector ex-
ceeds My .. The process is restarted with the subspace spanned by the my;, Ritz vectors
corresponding to the Ritz values closest to the target value 7.

We have collected the locked (computed) Schur vectors in @), and the matrix @ is () expanded
with the current Schur vector approximation u. This is done in order to obtain a more
compact formulation; the correction equation is equivalent to the one in (4.3). The new
correction ¢ has to be orthogonal to the columns of @) as well as to u.

Of course, the correction equation can be solved by any suitable process, for instance a
preconditioned Krylov subspace method that is designed to solve unsymmetric systems.
Because of the occurrence of () one has to be careful with the usage of preconditioners for the
matrix A—67. The inclusion of preconditioners can be done following the same principles as
for the single vector Jacobi-Davidson algorithm, see Alg. 4.6 for a Template. Make sure that
the starting vector ¢y for an iterative solver satisfies the orthogonality constraints @*to = 0.
Note that significant savings per step can be made in Alg. 4.6 if K is kept the same for a (few)
Jacobi-Davidson iterations. In that case columns of @ can be saved from previous steps.
Also the matrix M can be updated from previous steps, as well as its LI decomposition.

It is not necessary to solve the correction equation very accurately. A strategy, often used
for inexact Newton methods [9], here also works well: increase the accuracy with the Jacobi-
Davidson iteration step, and, for instance, solve the correction equation with a residual
reduction of 27¢ in the f-th Jacobi-Davidson iteration (£ is reset to 0 when a Schur vector is
detected).
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In particular, in the first few initial steps, the approximate eigenvalue § may be very in-
accurate and then i1t does not make sense to solve the correction equation accurately. In
this stage it can be more effective to temporarily replace 8 by 7 or to take ¢ = —r for the
expansion of the search subspace [22, 12].

For deflation see 8.8.2.1, with Z; replaced by (); and B by I. For a full theoretical background of
this method, as well as details on the deflation technique with Schur vectors, see [12].

7.11.3 Interior Eigenvalues
7.11.3.1 The usage of harmonic Ritz values for interior eigenvalues

For restart purposes, specially if one is heading for interior eigenvalues, the harmonic Ritz vectors
have been advocated for symmetric matrices [21], see also §4.7.4.

The concept of harmonic Ritz values [24] is easily generalized for unsymmetric matrices [32].
As we have seen, the Jacobi-Davidson methods generate basis vectors vy, ..., v, for a subspace
Vi . For the projection of A onto this subspace we have to compute the vectors w; = Av;. The
inverses of the Ritz values of A=!, with respect to the subspace spanned by the w;, are called the
harmonic Ritz values. The harmonic Ritz values can be computed without inverting A, since a

harmonic Ritz pair (@“;m) , ﬁ;m)) satisfies
A — g™ LW, = span(wi, ..., w), (7.1)

for i™ € V, and u{™ # 0. This implies that the harmonic Ritz values are the eigenvalues of
the pencil (W} AV, W) Vi ):

* (m) _ glm) g (m) _
W AVims; ™ — 0,7 WE Vs =0

The exterior standard Ritz values usually converge to exterior eigenvalues of A. Likewise, the
interior harmonic Ritz values for the shifted matrix A — 7/ usually converge towards eigenvalues
A # 7 closest to the shift 7. Fortunately, the search subspaces V,, for the shifted matrix and the
unshifted matrix coincide, which facilitates the computation of harmonic Ritz pairs. For reasons
of stability we construct both V},, and W, to orthonormal: W, is such that (A—71)V,, = Wp, MA
where M2 is m by m upper triangular.

In the resulting scheme we compute a (partial) Schur decomposition rather than a partial eigen-
decomposition. That is, we wish to compute vectors ¢1,...,qx, such that AQr = Qr Rk, with
QiQr = Iy and Ry is a k by k upper triangular matrix. The diagonal elements of Ry represent
eigenvalues of A, and the corresponding eigenvectors of A can be computed from @y and Ry.

7.11.3.2 A template for Jacobi-Davidson for interior eigenvalues

An algorithm for Jacobi-Davidson, with partial reduction to Schur form, and based on harmonic
Ritz values and vectors, is given in Alg. 7.2. The algorithm includes restart and deflation tech-
niques. It can be used for the computation of a number of eigenvalues close to 7.
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ArLGoriTHM T7.2: Jacobi-Davidson for ky,.x interior eigenvalues close to

(1) t=vo, k=0,m=0; @=[], R=[]
while k < kax
(2) fori=1,..,m
t=t— (vit)y
m=m+1, v, =t/||t||s, vA = Avy — TV, w =v
fori=1,. %k
w=w— (gfw)gi
fori=1..,m-1

A
m

AMil?m = w;w: w=w- yz%mwi
Mm,m = ||w||2’ Wm = w/Mm,m
(3) fori=1,..,m-1

M;m = wvm, M, = w;,v;
Mpmm = w),vm
(4) Make a QZ decomposition MAST = SETA MSE = SET,
Sf S unitary and T4, T' upper triangular,
such that: [T /Tl < [T i1/ Tigr i+
u=Vslt ut = VAsE o = H-Tf}l,
r=ut —du, a=Qr,F=r—Qa
(5 while [} <
R= ( vt >,Q:[Q,u],k=k+1
if k = kpax then STOP
(6) m=m — 1
fori=1,..,m
v; = Vsﬁ_l, vf = VAsﬁ_l, w; = WsiL+1; SZR = SZL =€
MA, M is the lower m by m block of T4, T, resp.
u=uvy, ut =, ﬂ:m~Mﬁ1
r=ut —du,a=Q*r,T=r—Qa
(7) if m > my,.x then
fori=2,.., muy,
v; = VSZR, vf = VASZR, w; = WsiL
MA, M is the leading mmin by mmin block ofTA, T, resp.
v1 = u, v‘f :uA, wy = st, M = Mmin
(8) 9:19-|—T,9:[Q,u]
Solve t (L @) (approximately) from:

(1= QQ ) (A= DI - QQ*)t = =7

To apply this algorithm we need to specify a starting vector vg, a tolerance ¢, a target value
7, and a number kmax that specifies how many eigenpairs near 7 should be computed. The value
of mpyax denotes the maximum dimension of the search subspace. If it is exceeded then a restart
takes place with a subspace of specified dimension mpy;p .

On completion the kmax eigenvalues close to 7 are delivered, and the corresponding reduced
Schur form AQ = QR, where @ is n by kmax orthogonal and R is kmax by kmax upper triangular.
The eigenvalues are on the diagonal of R. The computed Schur form satisfies ||Ag; — QRe;||2 < je,
where ¢; is the jth column of @.

We will comment on some parts of the algorithm in view of our discussions in previous sub-
sections.

(1) Tnitialization phase.
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(2)

Jacobi-Davidson algorithms. . .

The newly computed correction is made orthogonal with respect to the current search
subspace by means of modified Gram-Schmidt. We have chosen to store also the matrix
VA = AV — 7V; v is the expansion vector for this matrix. The expansion vector for W
is obtained by making v/t orthogonal with respect to the space of detected Schur vectors
and with respect to the current test subspace by means of modified Gram-Schmidt. The
Gram-Schmidt steps can be replaced, for improved numerical stability, by the template given

in Alg. 4.4.

V denotes the n by m matrix with columns v;, likewise W and VA

The values M; ; represent elements of the square m by m matrix M = W*V. The values
Mi‘f‘j represent elements of the m by m upper triangular M4 = W*V 4,

(Note that VA = WMA 4+ QF, if F = Q*V4. Therefore, V4 can be reconstructed from W,
MA@ and F. In particular, » can be computed from these quantities. Instead of storing
the n-dimensional matrix V4, it suffices to store the k by m matrix F (of elements ¢ w,
computed in (2)). This approach saves memory space. However, for avoiding instabilities,
the deflation procedure needs special attention.)

At this point the QZ decomposition (generalized Schur form) of the matrix pencil (M4, M)
has to be be computed: MASE = SETA and MS® = SFT, where S® and S” are unitary
and T4 and T are upper triangular. This can be done with a suitable routine for dense
matrix pencils dense matrices from LAPACK.

In each step, the Schur form has to be sorted such that |T1“7‘1/T1,1| is smallest. Only if
m > Mmax the sorting of the Schur form has to be be such that all of the mmpax leading
diagonal elements of T4 and T represent the mmax harmonic Ritz values closest to 0. For
ease of presentation we sorted all diagonal elements here.

For an algorithm of the sorting of a generalized Schur form, see [39, 40, 3] and [11, Chap. 6B].

The value of 6 needs some attention. We have chosen to compute the Rayleigh quotient
(instead of the harmonic Ritz value) corresponding to the harmonic Ritz vector u (see [33]).
The Rayleigh quotient follows from the requirement that (A — 77)u — du L u instead of
1L W: then r L u.

111 denotes the complex conjugate of 71 1. The matrix ST is m by m with columns s%

J bl
likewise SL.

The stopping criterion is to accept a Schur vector approximation as soon as the norm of
the residual (for the normalized Schur vector approximation) is below €. This means that
we accept inaccuracies in the order of € in the computed eigenvalues, and inaccuracies (in
angle) in the eigenvectors of O(¢) (provided that the concerned eigenvalue is simple and well
separated from the others and the left and right eigenvector have a small angle).

Detection of all wanted eigenvalues cannot be guaranteed, see note (5) for Alg. 4.5.
This is a restart after acceptance of an approximate eigenpair.

At this point we have a restart when the dimension of the subspace exceeds mmax. After a
restart the Jacobi-Davidson iterations are resumed with a subspace of dimension mmin .

The deflation with computed eigenvectors is represented by the factors with (). The matrix
@ has the converged eigenvectors as its columns. If a left preconditioner K is available
for the operator A — 61, then with a Krylov solver similar reductions are realizable as in
the situation for exterior eigenvalues. A template for the efficient handling of the left-
preconditioned operator is given in Alg. 4.6.
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Figure 7.1: Jacobi-Davidson for exterior eigenvalues (left figure) and interior eigenvalues (right

figure).

7.11.3.3 Numerical example

We discuss the results for a small example that can be easily repeated.
The unsymmetric matrix A is of dimension n = 100 and it is tridiagonal. The diagonal entries

are a; ; = —2, the codiagonal entries are a; ;1 = 1, a; ;41 = 1.2.
We use Alg. 7.1 and Alg. 7.2, for the computation of the kmax = 10 eigenvalues closest to the
target value 7 = —2 4 0.1:. Since these eigenvalues are located in the interior of the spectrum, we

expect some advantage of Alg. 7.2, which is designed for interior eigenvalues. Indeed, as we will
see, the usage of harmonic Ritz values leads to an advantage here.

We have carried out the experiments in Matlab. The input parameters have been chosen as
follows. The starting vector v has been chosen with random entries (with seed = 0 in Matlab).
The tolerance is ¢ = 1078, The subspace dimension parameters are mpy;, = 10, My, = 15. The
correction equations have been solved approximately with 5 steps of GMRES.

We show graphically in Fig. 7.1 the norm of the residual vector as a function of the iteration
number. Each time when the norm is less than ¢, then we have determined an eigenvalue in ac-
ceptable approximation, and the iteration is continued with deflation for the next eigenvalue. The
left picture represents the results obtained with Alg. 7.1, and we see that there is no convergence
detected within 500 Jacobi-Davidson steps. In the right picture we see the results for Alg. 7.2,
and now 10 eigenvalues have been discovered within 350 iterations.

7.11.4 Software Availability

Matlab versions of the algorithms are available from either
http://www.math.uu.nl/people/sleijpen

or

http://www.math.uu.nl/people/vorst

Fortran implementations of the Jacobi-Davidson method are available via
http://www.math.uu.nl/people/bomhof

The Fortran software is of experimental type and does not reflect all insights and possibilities
described in this section.



CHAPTER &

Generalized Non-Hermitian Eigenproblem

8.8 Jacobi-Davidson method
G. Sleypen and H. van der Vorst

8.8.1 Basic Theory

Similar as for the generalized Hermitian eigenproblem, we want to avoid transformation of Az =
ABz to a standard eigenproblem. This would require the solution of some linear system, involving
B and/or A, per iteration step. Furthermore, for stability reasons we want to work with or-
thonormal transformations and for this reason our goal is to compute Schur vectors for the pencil
A—AB, rather than eigenvectors. This leads to a generalization of the Jacobi-Davidson algorithm,
in which we compute a partial Schur form for the pencil. This algorithm can be interpreted as a
subspace iteration variant of the @@ Z-algorithm. A consequence of this approach is that we have
to work with search and test spaces that are different.
With A = «/f, the generalized eigenproblem Az = ABz is equivalent to the eigenproblem

(BA—aB)x =0, (8.1)

and we denote a generalized eigenvalue of the matrix pair (A, B) as a pair (a, 3). This approach
is preferred, because underflow or overflow for A = a/f8 in finite precision arithmetic may occur
when « and/or § are zero or close to zero, in which case the pair is still well-defined [20], [35,

Ch.V1], [28].

A partial generalized Schur form of dimension k for a matrix pair (A, B) is the decomposition
AQr = ZrRy, BQwr = ZRP, (8.2)

where @ and 7 are orthogonal n by k matrices, and R,’: and R,? are upper triangular k by k
matrices. A column ¢; of Qg is referred to as a generalized Schur vector, and we refer to a pair
(i, Bi), qi), with (i, 3;) = (R (i,4), RP(i,1)) as a generalized Schur pair.
It follows that if ((«, 3), y) is a generalized eigenpair of (R, R?) then ((«, 8), Qxy) is a generalized
eigenpair of (A, B).

We will now describe Jacobi-Davidson for the generalized eigenproblem (8.1).
From the relations (8.2) we conclude that

BiAg —a; Bg; L 2,

which suggests that we should follow a Petrov Galerkin condition for the construction of reduced
systems. In each step the approximate eigenvector u is selected from a search subspace span(V).

30
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We require that the residual nAu — (Bu is orthogonal to some other well-chosen test subspace
span(W):
n Au— ( Bu L span(W). (8.3)

Both subspaces are of the same dimension, say m. Equation (8.3) leads to the projected eigen-
problem

(nW*AV — (W*BV)s = 0. (8.4)
The pencil nW*AV — { W*BV can be reduced by the Q7 algorithm [20] to generalized Schur

form (note that this is a m-dimensional problem). This leads to orthogonal m by m matrices ST
and S”, and upper triangular m by m matrices T4 and T?, such that

(SEy*(W*AV)SE =74 and (SE)*(W*BV)SE =TP. (8.5)

The decomposition can be reordered such that the first column of ST and the (1, 1)-entries of 74
and T8 represent the wanted Petrov solution [12].

With s = st = S%¢ and ¢ = Tf}l, n = Tfl, the Petrov vector is defined as u = Vs, for the
associated generalized Petrov value (¢,n). In our algorithm we will construct orthogonal matrices
V and W, so that also ||ul|z = 1.

With the decomposition in (8.5), we construct an approximate partial generalized Schur form (cf.
(8.2)): VS approximates a Qx, and WSL approximates the associated Zj. Since span(Zy) =
span(AQy) = span(BQg) (cf. (8.2)), this suggests to choose W such that span(WW) coincides with

span(vg AV + poBV). With the weights vy and pg we can influence the convergenée of the Petrov
values. If we want eigenpair approximations for eigenvalues A close to a target 7, then the choice

vo = 1/\/1+]|7]? po=—1r0

is very effective [12], especially if we want to compute eigenvalues in the interior of the spectrum
of A—XB. We will call the Petrov approximations for this choice the harmonic Petrov eigenpairs.
The Jacobi-Davidson correction equation for the component # L u, for the pencil nA—({B becomes:

pp” = _p
<I— pr> (nA —¢B) (I —uu*)t = —r, (8.6)

with » = nAu — (Bu, and p = voAu + poBu. It can be shown that if (8.6) is solved exactly, the
convergence to the generalized eigenvalue will be quadratic, see [30, Th. 3.2].

Usually, this correction equation is solved only approximately, for instance, with a (preconditioned)
iterative solver. The obtained vector ¢ is used for the expansion v of V' and vgAv + poBv is used
for the expansion of W. For both spaces we work with orthonormal bases. Therefore, the new
columns are orthonormalized with respect to the current basis by modified Gram-Schmidt (see
Section 4.7.1).

It can be shown that, with the above choices for p and W,
p=Wsl = WShe;. (8.7)

The relation between the partial generalized Schur form for the given large problem and the
complete generalized Schur form for the reduced problem (8.4) via right vectors (u = Vsif) is
similar to the relation via left vectors (p = Wsk). This can also be exploited for restarts.

8.8.2 Deflation and Restart

Similar to the situation for the standard eigenproblem, see Chapters 4.7.3 and 7.11.2, the Jacobi-
Davidson process can be enhanced with restart possibilities in order to restrict the dimension of
the search subspace. The process can also be combined with deflation in order to find a number
of different generalized Schur pairs.
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8.8.2.1 Deflation

The partial generalized Schur form can be obtained in a number of successive steps. Suppose that
we have the partial generalized Schur form AQg_; = Zk_leA_l and BQg_1 = Zk_leB_l. We
want to expand this partial generalized Schur form with the new right Schur vector ¢ and the left
Schur vector z to

AlQk-1,9) = [Zk-1, 7] <R%_1 a)

“ 8.8
RE_l b ( : )
and  B[Qk-1,9] = [Zk-1, 7] :
0 g
The new generalized Schur pair ((«, 3), ¢) satisfies
Q5_1¢q=0 and (BA—aB)q— Zx_1(fa— ab)=0, (8.9)
or, since fa —ab= Z;_,(fA — aB)g,
Qi_19=0 and (I—Zx_1Z;_,) (BA—aB) (I —Qs_1Q%_1) ¢ = 0. (8.10)
The vectors a and b can be computed from
a=7;_4Aq and b= Z}_,Byq. (8.11)
Hence, the generalized Schur pair ((a, 4),¢) is an eigenpair of the deflated matrix pair
I'—Zp 175 ) AT — QraQf_y)
(1= 772 A1~ Qo i@ o

([ - Zk—1Z§—1) B ([ - Qk—lQ};—J)

This eigenproblem can be solved again with the Jacobi-Davidson process that we have outlined
in Section 8.8.1. In that process we construct vectors v; that are orthogonal to Qr—1 and vectors
w; that are orthogonal to Zx_1. This simplifies the computation of the interaction matrices M4
and M, associated with the deflated operators:

{ MA=ZW* (I = Z1 Z;_ ) A(I = Qro1Qf_y) V = WAV (6.1
MB=W*(I—Zx1Zi_) B(I — Qu—1Qf_1) V = W*BV
and M4 and M® can be simply computed as W* AV and W*BV, respectively.
8.8.2.2 Restart
Suppose that the generalized Schur form (8.5) is ordered with respect to 7 such that

ITi/TE = 7| < Tl /Tes = 7| < o < T/ Tl o — 71, (8.14)
where m is the dimension of span(V). Then, for i < m, the space span(Vsf, ..., Vs*) spanned

by the first i columns of V.S® contains the i most promising Petrov vectors. The corresponding
test subspace is given by span(Wsl, ... Wsk).

Therefore, in order to reduce the dimension of the subspaces (“implicit restart”) to mmin, Mmin <
m, the columns vy, 1 through vy, and w41 through wy, can simply be discarded and the
Jacobi-Davidson algorithm can be continued with

V=[Vsit,...,,Vs® | and W =[Wsl,..., Wsk ] (8.15)

Mmin Mmin
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8.8.3 A template for Jacobi-Davidson QZ for interior eigenvalues

The Jacobi-Davidson algorithm is given in Alg. 8.1. This algorithm attempts to compute the
generalized Schur pairs ((e, 8), ¢), for which the ratio §/a is closest to a specified target value 7
in the complex plane. The algorithm includes restart in order to limit the dimension of the search

space, and deflation with already converged left and right Schur vectors.

(1) t=wvy, k=0,v9=1/\/14+|7|? po = =7y, m = 0;
Q:[]; Z:[]ﬂ S:[]ﬂ T:[]
while k < kmax

(2) fori=1,..,m

P
m=m+1, vy _t/||t||2, vA = Avm, v8 = Bum, w = vovt + povZ
fori=1,.,k
w=w-—(zfw)z
fori=1.,m—-1
w=w-— (ww)w;
o = v/l
(3) fori=1,. —1
M{%, —wzvm;M“‘ = whvf', M5, = wivg, M7, = wivf
MA _wmvm,MB = w} vl
(4) MaAeaQZ decompos1t1on MASR SEtrA MBSE = SLTB

SR S unitary and T4, TP upper triangular,
such that: |T£/TZ — 7’| < |TA i1, z+1/Tz+1 i1 — 7
u=Vslt p=Wsl u4 VAsl, = VB (= T11a77—T11
r=nud —(uB, G =7"uA, b= Z*uB, F=r— (na—Cb)
(5) while ||7]|z <€

_ (Rt d _ (R}
= (5 E) ()
[Q,U],Z:[Z,p],k:k+1

O

if k = k., then STOP
(6) m=m-—1
fori=1,.,m
vi:VSiR-}.li i —VA Z+17 i VB Z+17

o
MA MB is the lower m by m block of T4 T? resp.
U ="v, p= 1w, UA:viA7 uf:v1B7C:T1<11777:T51
r:nuA—CuB,a:Z*uA,b:Z*uB,F:r—Z(n'SV—C?)
(7) if m > mmax then
for i =2, .., mmin
VSR vt = VAsE P = VBsE w; = Wsk

MA, MZE is the Ieadmg mmm by mmin block of T, T'B, resp.
A A ,B B

Ul—uvl—u701:u7w1:p7m:mmin
(8) Q=1[Q,u), Z =127
Solve t (L Q (approximately) from:

(I—Z7*)(nA—C(B)(T — QQ*)t = —7

AvLGoRrITHM 8.1: Jacobi-Davidson QZ for k.., interior eigenvalues close to 7

To apply this algorithm we need to specify a starting vector vg, a tolerance ¢, a target value

7, and a number kmax that specifies how many eigenpairs near 7 should be computed. The value

of mmayx specifies the maximum dimension of the search subspace. If it is exceeded then a restart

takes place with a subspace of dimension mpy;, .
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On completion the k. generalized eigenvalues close to 7 are delivered, and the corresponding
reduced Schur form AQ = ZR4, BQ = ZR®, where Q and 7 are n by kya., orthogonal and R4,
RP are kpax by kmax upper triangular. The generalized eigenvalues are the on diagonals of R4
and RP. The computed form satisfies ||Ag; — ZR%¢;||2 = O(e), ||Bgj — ZRPe;||z = O(c), where
q;1s the jth column of Q).

The accuracy of the computed reduced Schur form depends on the distance between the target
value 7 and the eigenvalue (o, 3;) = (Rfj, Rfj). If we neglect terms of order machine precision
and of order €2, then we have that ||[Ag; — ZR4¢;||2 < jvae, ||Bqj — ZRPe;||s < jype, where the

constants v4 and yg are given by

|vol
lvoa; + pio 55

_ |/lo|

=————— and B =
[voa; + oSyl

YA
If po/vo = —7, as in step (1) of the algorithm, then y4 = |7|/|a; — 76;|, vB = 1/]e; — 75;|. These
values can be large if 7 & a;/3;. In practise an accuracy of order ¢ is achieved also if 7 is close
to detected eigenvalues. The e-accuracy can be guaranteed when an additional refinement step is
performed with values for (uo,vo) as (po,vo) = (1, 7).

We will now explain the successive main phases of the algorithm.

(1) The initialization phase.

The choice for the scalars v and pg is in particular effective if 7 is in the interior of the
spectrum. The choice causes a break-down if 7 is an eigenvalue (which can easily be tested).

(2) The new vector ¢ is made orthogonal with respect to the current search subspace V' by means
of modified Gram-Schmidt. Likewise, the vector w = (voA + po B)t is made orthogonal with
respect to the current test subspace W. The two orthogonalization processes can be replaced,
for improved numerical stability, by a templates as in Alg. 4.4.

We expand the subspaces V, VA = AV, VB = BV, and W. V denotes the matrix with
the current basis vectors v; for the search subspace as its columns. The other matrices are
defined in a similar obvious way.

(3) The m-th row and column of the matrices M4 = W*AV and M® = W* BV are computed.

Note that the scalars Mfm can also be computed from the scalars Mfm and the orthogo-
nalisation constants of w}w in step (2).

(4) The QZ decomposition for the pair (M4, M®Z) of m by m matrices can be computed by a
suitable routine for dense matrix pencils dense matrices from LAPACK.

We have chosen to compute the generalized Petrov pairs, which makes the algorithm suitable
for computing ky,.x interior generalized eigenvalues of 3A — aB, for which a/f is close to a
specified 7.

For algorithms for reordering the generalized Schur form, see [39],[40],[11].

(5) The stopping criterion is to accept a generalized eigenpair approximation as soon as the norm
of the residual (for the normalized right Schur vector approximation) is below ¢. This means
that we accept inaccuracies in the order of ¢ in the computed generalized eigenvalues, and
inaccuracies (in angle) in the Schur vectors of O(¢) (provided that the concerned eigenvalue
is simple and well separated from the others).

Detection of all wanted eigenvalues cannot be guaranteed, see note (5) for Alg. 4.5.

(6) After acceptance of a Petrov pair, we continue the search for a next pair, with the remaining
Petrov vectors as a basis for the initial search space.

(7) We restart when the dimension of the search space for the current eigenvector exceeds mmax.
The process is restarted with the subspaces spanned by the mmin left and right Ritz vectors
corresponding to the generalized Ritz pairs closest to the target value .
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(8) We have collected the locked (computed) right Schur vectors in @, and the matrix Qis Q
expanded with the current right Schur eigenvector approximation u. Likewise, the converged
left Schur vectors have been collected in 7, and this matrix is expanded with p. This is done
in order to obtain a more compact formulation; the correction equation in step (8) of Alg. 8.1
is equivalent to the one in equation (8.6) for the deflated pair in (8.12). The new correction
t has to be orthogonal to the columns of @ as well as to u.

Of course, the correction equation can be solved by any suitable process, for instance a
preconditioned Krylov subspace method that is designed to solve unsymmetric systems.
However, because of the different projections, we always need a preconditioner (which may be
the identity operator if nothing else is available) that is deflated by the same skew projections
so that we obtain a mapping between @J‘ and itself. Because of the occurrence of é and
7 one has to be careful with the usage of preconditioners for the matrix nA — (B. The
inclusion of preconditioners can be done as in Alg. 8.2. Make sure that the starting vector g
for an iterative solver satisfies the orthogonality constraints *ty = 0. Note that significant
savings per step can be made in Alg. 8.2 if K is kept the same for a (few) Jacobi-Davidson
iterations. In that case columns of Z can be saved from previous steps. Also the matrix M
can be updated from previous steps, as well as its LU/ decomposition.

It is not necessary to solve the correction equation very accurately. A strategy, often used
for inexact Newton methods [9], here also works well: increase the accuracy with the Jacobi-
Davidson iteration step, for instance, solve the correction equation with a residual reduction
of 27% in the f-th Jacobi-Davidson iteration (¢ is reset to 0 when a Schur vector is detected).

In particular, in the first few initial steps, the approximate eigenvalue # may be very in-
accurate and then i1t does not make sense to solve the correction equation accurately. In
this stage it can be more effective to temporarily replace 8 by 7 or to take ¢ = —r for the
expansion of the search subspace [22, 12].

For a full theoretical background of this method, as well as for details on the deflation technique
with Schur vectors, see [12].
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ALGoRITHM §.2: Approximate solution of the deflated Jacobi-Davidson correc-
tion equation, for the generalized eigenproblem

“Solve” with left preconditioner K = (r— ZZ*)K(I — @C}*),
for A= (I — Z2*)(nA — (B)({ — QQ*):

(8a)  Solve 7 fromKZ = Z,
Compute M = QU*E
Decompose M = LU
Compute 7 = K~ 1r as:
(b') solve ¥ from K¥ =r
(c') 7=Q'F
solve [;" from L:/; =7
solve @ from Yd = [;”
(d') F=7-Zd
Apply Krylov subspace method with start tg = 0,
with operator K”‘lg, and right-hand side —7,
2= K~1Av for given v is computed as:
(a) y=(nA-(B)v
(b) solve y from Ky =y
© 7=07
solve (§ from L7 =
solve @ from Y& = [;
(d) z=9-7a

8.8.4 Numerical Example

We present the results for a small example that can be easily repeated. We took the example from
the collection of test matrices in [1].

We consider the bounded fineline dielectric waveguide generalized eigenproblem BFW782 [1]
of order 782. This problem stems from a finite element discretization of the Maxwell equation for
propagating modes and magnetic field profiles of a rectangular waveguide filled with dielectric and
PEC structures. The resulting matrix A is non-symmetric and the matrix B is positive definite.
Of special interest are the generalized eigenvalues («, 3) with positive real part (i.e., Re(a/3) > 0)
and their corresponding eigenvectors.

For this problem, the parameters were set to: 7 = 2750.0, kmax = 5 and ¢ = 10~°. In the
first few steps, until the size of the first residual was smaller than 1076, we replaced ({, ) in the
correction equation by (1,7) (as explained in Comment (8)).

The computed generalized eigenvalues, represented as a/f3, are given in Table 8.1. With
Alg. 8.1 we discovered all 4 positive generalized eigenvalues.

The convergence history is plotted in Fig. 8.1. We solved the correction equation by (1) simply
taken ¢ as —7, denoted by GMRES;, (2) with full GMRES [29] with a maximum of 10 steps,
denoted by GMRES;, and (3) with BiCGstab(2) [31] with a maximum of 100 matrix multiplica-
tions. We did not use preconditioning (K = I). As stopping criterion for the iterative methods
for the correction equation, we used a residual reduction of 2=¢ in the fth Jacobi-Davidson iter-
ation or on the maximum number of iterations permitted. A summary of the results is given in
Table 8.2. We see that the Jacobi-Davidson Q7 method converges quite nicely for GMRES( and
BiCGstab(2). Tt should be noted that although it seems that with BiCGstab(2) only 4 general-
ized eigenvalues are computed, in fact 5 generalized eigenvalues are computed: the 2 rightmost
generalized eigenvalues, that are relatively close, are found in same Jacobi-Davidson iteration.
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Table 8.1: 5 generalized eigenvalues of BFW782, computed by Jacobi-Davidson QZ.

log10 of residual norm

—1.1373e + 03
5.6467¢ + 02
1.2634e+ 03
2.4843e+ 03
2.5233e+ 03

Method for the O | JD iterations | MVs flops x 10°
rection equation

GMRES; 143 143 | 6.70e 4+ 01
GMRES; 37 233 | 3.17e+01
BiCGstab(2) 32 429 | 3.88¢+01

Table 8.2: Summary of results for BFW782.

GMRES 1

40 60

80 100
number of flops x 1e6

Figure 8.1: Convergence history for BEFWT782.

120
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Software Availability

Matlab versions of the algorithms are available from either
http://www.math.uu.nl/people/sleijpen

or

http://www.math.uu.nl/people/vorst

Fortran implementations of the Jacobi-Davidson method are available via
http://www.math.uu.nl/people/bomhof

The Fortran software is of experimental type and does not reflect all insights and possibilities
described in this Section.



CHAPTER 9

Quadratic and Nonlinear Eigenproblems

9.2 Quadratic Eigenvalue Problems
Z. Bai, G. Sleypen and H. van der Vorst

9.2.1 Introduction

In this section, we consider the quadratic eigenvalue problem (QEP) of the form
(NPM4+AXC+K)z=0 and y* (MM +AC+ K) =0, (9.1)

where M, K and C' are given matrices of size n x n. The nontrivial n-vectors z, y, and the
corresponding scalars A are the right, left eigenvectors, and eigenvalues, respectively.

The matrix-function L(A) = A’M + AC + K is a special case of a matrix polynomial, or a
A-matrix, see, for example, [13, 19]. In this case, it is a A-matrix of degree 2. The matrix-function
L(A) is said to be regular if det(L())) is not identical to zero for all A. Otherwise, it is called
singular.

An important special case of the quadratic eigenvalue problem is when

M*=M>0, C*=C and K*=K >0. (9.2)

These matrices are sometimes called mass, damping and stiffness matrices, respectively, referring
to their origin in mechanical engineering models, see, for instance, [10]. In some problems, the
stiffness matrix K is only semi-positive definite. In this case, we may consider a shifted QEP to
be discussed in §9.2.3.

One of factors makes the QEP different from standard eigenproblems Az = Az, or generalized
eigenproblems Az = ABuz, is that there are 2n eigenvalues for QEP, with at most 2n right (and
left) eigenvectors. Of course, in an n-dimensional space the right (and left) eigenvectors do no
longer form an independent set. This is illustrated by the following simple example, in which we
have taken some of the matrices as unsymmetric, in order to make some phenomena more clearly

visible. The triplet
b 2 0 1 . 12 0
M_[l 4]’0—[0 7]’1‘—[0 12]'

has 4 different (but pairwise conjugate) eigenvalues (rounded to 5 decimals):

A = —0.9396 + 1.5749i, Xy = —0.9396 — 1.5749i,
A3 = —0.0049 + 0.6296i, A4 = —0.0049 — 0.6296i.

39
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The associated eigenvectors (normalized so that the first coordinate is equal to one) are:

z1 = (1,-2.4756 — 0.9779))7, 25 = (1,-2.4756 4 0.97794)7,
z3 = (1, 0.0326 — 0.0132:)7, x4 = (1, 0.0326+ 0.01324)”.

The four eigenvectors are obviously dependent, but, in actual problems, each of them may represent
a relevant state of the system.

One has to be careful with Rayleigh quotients for quadratic eigenproblems. Indeed, given z as
a right eigenvector for the QEP (9.1), i.e.,

(MM +XC + K)x =0,
one can form a quadratic Rayleigh quotient:
M (z*Mz)+ Mz*Cz) + (z*Kz) = 0. (9.3)

However, this equation has two roots, and one of the roots is an eigenvalue, the other root may be
a spurious one. For instance, if we compute the quadratic Rayleigh quotient for our example, with
(A1, z1), then clearly, the pair (A1, z1) satisfies equation (9.3). If we solve equation (9.3), then we
find the two roots p1 = —0.9396 + 1.57494, ps = —0.8776 — 1.6057i. We see that A1 is recovered
(by p1), the other root has no meaning for the given QEP.

In an effort to decide which of the two is the desired one and which is the spurious one, one
could compute the residual vector

rp = (WM + pC + K)zy,

and this leads to ||ry, || &~ 8.4 x 1071 ||r,,||2 & 12.5, which, in this case, clearly points that us
is not an eigenvalue. We can not exclude that in contrived examples, one might make a wrong
choice, which may lead to a delay in a specific iterative solution method.

For more general matrices, we can have defectiveness, as for the standard eigenproblems, which
means that there is not necessarily a complete set of eigenvectors. In the next section, we will
relate the QEP to a generalized standard problem, which helps to shed more light on this matter.

9.2.2 Reduction to Linear Form

Tt is easy to see that the QEP in (9.1) is equivalent to the following generalized “linear” eigenvalue

problem 2:
Az=ABz and w'A=\uw'B (9.4)
where
a= % o] ] 9
and
[2] e

The generalized eigenvalue problem (9.4) is commonly called the linearization of the QEP (9.1).
It can be shown that for any matrices A and B of the above forms, the right and left eigenvectors
z and w have the structures described in (9.6).

Note that from the factorization

2 <
A_AB:[ 0 I HAM+AC+A 0” I 0]’

-1 =AM -C 0 I =Al T

2The term “linear” is in the quotation mark, because A appears in the eigenvectors as well.
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we can conclude that the pencil A — AB is equivalent’ to the matrix

MNM+AXNC+K 0

. ; (9.8)

and

det(A — AB) = det(\’M + AC + K),

This means that the eigenvalues of the original QEP (9.1) coincide with the eigenvalues of the
generalized eigenvalue problem (9.4). Furthermore, we have

e L(A) is regular if and only if A — AB is regular.
o If M (hence B) is nonsingular, then () is regular.
o If K (hence A) is nonsingular, then L(A) is regular.

For theory on regular pencils (A, B), see for instance [35, Chapter VI]. We will assume that at
least M is nonsingular throughout this section.

A disadvantage of the above reduction to generalized form is that if the matrices M, C' and K
are all Hermitian, then this is not reflected in the reduced form (9.5), where A is non-Hermitian.
This can be repaired as follows.

In fact, the matrix pair (A, B) in (9.4) can be chosen in a more general form

N w0
A_[—K —C]’ B_[o M]’

where W can be any arbitrary nonsingular matrix. Note that now the matrix pencil A — AB is
equivalent to the matrix polynomial (9.8) if and only if W is nonsingular, and because of (9.7)

det(A — AB) = det(W) - det(A*M + AC + K).

For example, if the matrices M, K and C are all symmetric, as in the special case (9.2), and K
is nonsingular, then we may choose W = — K, which leads to the following symmetric generalized
“linear” eigenvalue problem

Az =ABz and w*A =X uw*B (9.9)
where
0 -—-K —-K 0
R ] o
and

z:["“’m], w:[)‘yy]. (9.11)

Both A and B are symmetric, but may be indefinite.

9.2.3 Spectral Transformations for QEP
9.2.3.1 Invert QEP

For most iterative methods for solving a generalized eigenvalue problem, the formulation (9.4), with
either (9.5) or with (9.10), is suitable if one wants to determine a few of the exterior eigenvalues
and eigenvectors. If one wants to compute some of the smallest (in modulus) eigenvalues and
eigenvectors, then the obvious transformation is g = 1/A, and, after multiplying the QEP (9.1)
with p?, we obtain the invert QEP:

(M +puC+p°K)z=0. (9.12)

#Two matrix polynomials M; (\) and M () of size n X n are called equivalent if M;()\) = E(A)M2(X)F()) for
some n X n matrix polynomials £(\) and F(A) with constant nonzero determinants (unimodular).
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Here it is assumed that that 0 is not an eigenvalues of the original QEP (9.1), i.e., K is nonsingular.

The QEP for the triplet {K,C, M} can be linearized as discussed in §9.2.2, for instance as
(9.4) with (9.5), where M interchanged with K. We can reformulate this generalized linearized
eigenproblem in terms of A, instead of u, which leads to

1
Az = XBZ (9.13)

where
-C -M K 0 z
[ s 0] 2] o1

Note that from the factorization

[T AM ][ MM+AC+E 0 I 0
e i | R R | T

we know that the pencil B — AA is equivalent to

MM+AXC+K 0
0 I |-

Since det(B — AA) = det()\QM + AC + K), we conclude that the matrix pencil B — AA is regular
if and only if the quadratic matrix polynomial A>M + AC + K is regular and the eigenvalues of
the original QEP (9.1) coincide with the eigenvalues of the matrix pencil B — AA.

For the special case (9.2), we may formulate the generalized eigenvalue problem Az = %Bz,

with
cC M -K 0
A=| 0], B:[ 0 M]. (9.15)

In this case, both matrices are Hermitian, but indefinite. Linearization with (9.15) results after
left multiplication of (9.14) with a block diagonal matrix diag(—7, —M). Therefore, if det(M) # 0,
then the pencil B — AA is regular if and only if the quadratic matrix polynomial \2M + A\C + K
is regular.

9.2.3.2 Shifted QEP

With a shift A = p + o, the shifted QFP is
(/12]T4\+/16'+1':’)93:0, (9.16)

where M\ =M, 6’ = (C 4+ 20M and K=K + 0C + ¢2M. The shift transforms eigenvalues A of
(9.1) close to & become eigenvalues p close to 0.

The corresponding generalized “linear” eigenvalue problem is (again in terms of A, rather than
1)

e llola =00l wlle 2]

or

[(Af@x]:““’)lg _Ozv_ Lo |

if Hermitian of the matrix triplet {M, K, C'} wants to be preserved.

S

K
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9.2.3.3 Shift-and-Invert QEP

Combining the above invert and shift spectral transformations, the so-called shift-and-invert QEP
becomes

/12]/\/[\+u6+f{ r =0, (9.17)
( )

where

1

’
— O

r=3

and M = o?M + oC + K, C = C+2 M, and K = M. The exterior eigenvalues p of the
QEP (9.17) approximate the eigenvalues A of the original QEP (9.1) closest to the shift o. These
eigenvalues A are given by

1
o+ —.
s

Again, the corresponding generalized “linear” eigenvalue problem in terms of A, rather than pu, is

i _5?][<A%Ia>x]zxio[??H@—ma)r]’

[? ff“u—xm]:xio[_? fo?Hu—xo)x]'

if Hermitian of the matrix triplet {M, K, C'} wants to be preserved.

or

o

9.2.3.4 QEP with Cayley Transform

With the so-called Cayley transform,
ai—pj
py

where the parameters «, 3 and 7 are chosen such that ar—§ # 1, the original QEP (9.1) becomes

/1:

/JQJT/[\-l-ué-I-[A{ r =0, (9.18)
( )

where M = M + 7C + K,C = —2r8M — (ar + B)C — 2aK, and K = °M + aBC + oK.
Eigenvalues A of the original QEP (9.1) close to the anti-shift T are transformed into large (in
modulus) eigenvalues g of the QEP (9.18). Eigenvalues A close to the shift §/a correspond to
eigenvalues p of (9.17) close to 0.

Note that the triple {]/\J\, C, f{} is symmetric if that is the case for the real triple {M,C, K}
and if «, B, and 7 are real.

9.2.4 Higher Order Polynomial Eigenvalue Problems

Some applications lead to higher order polynomial problems

where

TN = NC + M0 4 ... 4+ AC + Co, .

in which the C} are square n by n matrices. In order to make this problem well defined, these
matrices have to satisfy certain properties, in particular C; should be nonsingular. Similar to the
quadratic problem, these problems can also be linearized to

Az = ABz,
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where
0 1 0 0 I
0 0 I 0 I
A= ) : : B= .
: : : - I 1
—Cop =Cy =Cy -+ =Cp Ce
The relation between z and z is given by z = (27, Az, ... X~ 12T)T. The generalized eigenprob-

lem Az = ABz can be solved with one of the methods discussed in Chapter 8. A disadvantage of
this approach is that one has to work with larger matrices of order n x £, and these matrices have,
of course, also n x £ eigenpairs. This implies that one has to check which of the computed eigen-
pairs satisfies the original polynomial equation. Ruhe [27] (see also Davis [8]) discusses methods
that handle directly the problem (9.19), for instance, with Newton’s method. For larger values of
n one may expect all sorts of problems with the convergence of these techniques (Ruhe’s examples
are pretty small). In section 9.2.6, we will discuss a method that can be used to attack problems
with large n. In that approach, one first projects the given problem (9.19) onto a low dimensional
subspace, and obtains a similar problem of low dimension. This low dimensional polynomial eigen-
problem can then be solved with one of the approaches mentioned above. In [16] a fourth-order
polynomial problem has been solved successfully, using this reduction technique.

9.2.5 Numerical Methods for Solving Linearized Problems

As discussed in §9.2.2) one can use either the generalized eigenvalue problem (9.4) with (9.5)
or the generalized eigenvalue problem (9.9) with (9.10), for solving the corresponding quadratic
eigenvalue problem (9.1).

If all matrices M, C' and K are Hermitian and M is positive definite, as in the special case (9.2),
then the decision comes down to choosing either intrinsically non-Hermitian generalized eigenvalue
problem (9.4) and (9.5), with a Hermitian positive definite B matrix, or a generalized eigenvalue
problem (9.9) and (9.10), where both A and B matrices are Hermitian but neither of them will
be positive definite.

Numerical methods discussed in [2, Ch. 8]can be used for solving these generalized “linear”
eigenvalue problems. The indefinite symmetric Lanczos method discussed in [2, Section 8.7]is
specifically targeted for Hermitian indefinite generalized eigenvalue problem (9.9). The symmetric
Lanczos method, see [2, Section 4.4], is formally extended to solve such symmetric indefinite
generalized eigenvalue problem. The trouble is that the basis vectors are orthogonal with respect
to an indefinite inner product. Therefore, these basis vectors may be linearly independent and
the algorithm may be breakdown and numerical instable. Nevertheless this is an attractive way
to solve the original QEP because of potential savings in memory requirements and floating point
operations. See [2, Section 8.7]for further details.

9.2.6 The Jacobi-Davidson method

The possible disadvantage of the linearized approach is the doubling of the dimension of the prob-
lems, that is a problem with n-dimensional matrices M, C, and K, is transformed to a generalized
problem with 2n-dimensional matrices A and B. This is avoided in the Jacobi-Davidson method
to be discussed in this section. In this method, the QEP is first projected onto a low-dimensional
subspace, which leads to a QEP of modest dimension. This low-dimensional projected QEP can be
solved with any method of choice. Expansion of the subspace is realized by a Jacobi-Davidson cor-
rection equation. For polynomial eigenproblems this technique was first suggested and discussed
in [30, sec.8].

As we will see below, this method can also be applied directly to polynomial eigenproblems

(MCy+ ...+ ACy + Co)z = 0, (9.20)
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and no transformation to a generalized “linear” eigenvalue problem will be required, where C} for

t=0,1,..., £, are given n X n matrices. For simplicity, we will only present the case for £ = 2.
In the first part of a Jacobi-Davidson iteration step, for solving the polynomial eigenproblem
TNz =0 (9.21)
where
T(A) = A?Cy + ACy + Co, (9.22)

the projected polynomial problem
(0?V*CV + 0V*C1V + V*CoV)s =0 (9.23)

is solved. The columns v; of the n x m matrix V form a basis for the search subspace. For stability
reasons, the columns are constructed to be orthonormal. The projected problem has the same
order as the original one, but is of much smaller dimension, typically m < n. We will assume that
the solution vectors s are normalized, ||s||; = 1. First, a Ritz value § with the desired properties,
such as the largest real part or closet to some target 7, 1s selected and for the associated eigenvector
s. Then the Ritz vector u = Vs and the residual » = ¥(f)u is computed. For expansion of the
search space the vector p,
p =V (0)u
with
\III(Q) = 20C5 + C1,

is also computed.

In the second part of the Jacobi-Davidson iteration step, the search subspace span(V) is ex-
panded by a vector ¢ L u that solves (approximately) the correction equation

pu’
I- wp () (I —uu*)t=—r. (9.24)
The next column of V is obtained by orthonormalizing the approximate solution against the
previously computed columns vy, ..., v,,.

This process is repeated until an eigenpair (A, z) has been detected, i.e., until the residual
vector r is sufficiently small. The basic form the algorithm is presented in Algorithm 9.1. We refer
to [34], for an example of a quadratic eigenvalue problem arising from an acoustic problem, that
has been solved with this reduction technique, for n up to 250, 000.

ALGorITHM 9.1: Jacobi-Davidson Method
(1) Choose an n x m orthonormal matrix V.
(2) Fori=20,1,2
compute W; = C;V and M; = V*W;.

(3) Iterate until convergence
(4) Compute the eigenpairs (6, s) of

(62M2 + 6M1 + MO) s =0.
(5) Select the desired eigenpair (6,s) with ||s||s = 1.
(6) Compute u = Vs, p= U (f)u, r = ¥()u.
(7) If (]|r|]2<¢€), A=46, 2= u, then STOP.
(8) Solve (approximately) at L u from

*
(1_ ’%) () (I —uu*)t = —r
w*p . v

(9) Orthogonalize t against V, v = t/|[t||2.

For:=10,1,2

compute w; = Cjv
Mi V*wi
M; = I:U*VVi v*wi]am:[vvi;wi]

(10) Expand V = [V, v].
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If the dimension of the search subspace becomes too large, if the number of columns of V is
equal to, say, m = my,x, then the process can be continued with a search subspace of smaller
dimension. Take for the new search subspace the space spanned by the best my,;, Ritz pairs from
the last step, that is, take V = [u1, ..., Um,,,], where uy, ..., up_, are the Ritz vectors associated
with the best available m,i, Ritz values 61,...,0,,_... Then apply modified Gram-Schmidt to
orthonormalize V and restart with this matrix. Note that the new search matrix V= V,,_.. can be
expressed in terms of the old search matrix V = Vi, .. as Vini = Voo, T for some mmax X Mmin
matrix T. The transformation matrix T' can explicitly be computed, and can be used to update
the auxiliary matrices W; (= W;T) and M; (= T M;T).

Eigenvectors that already have been detected can be kept in the search subspace (explicit
deflation), if more eigenvectors are wanted. Keeping the eigenvectors in the search subspace
prevents the process from reconstruction known eigenvectors.

In the §4.7.3.2 and 8.8.2.1, we suggested to use “implicit” deflation, since that approach is based
on Schur forms and this is more stable, with better conditioned correction equations. However,
in this general polynomial setting, it is not clear how to incorporate implicit deflation: the Schur
form and the generalized Schur form can not easily be generalized.

9.2.7 Notes and References

Numerical algorithm design and analysis for the solution of quadratic eigenvalue problem are still an
active researcher subject. Besides those methods discussed in this section, some alternative methods are
available in literature, see for example [19, 18, 27, 8, 15]. Most of these methods are variants of Newton’s
method. They generally have good local convergence properties, and find one eigenpair at time. In [15],
a proper deflation technique is presented for finding more than one eigenpair.

Recently, a backward error analysis of the quadratic eigenvalue problems and more generally, the
polynomial eigenvalue problems is presented in [37] is studied. In [36], a perturbation analysis of the

quadratic eigenvalue problem (9.2) is presented.
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