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S. Lichtenbaum has proved in [L1] that there is a nondegenerate pairing

Pic
�
C ��� Br

�
C ��� Br

�
K ��� Q � Z(1)

between the Picard group and the Brauer group of a nonsingular projective curve C over
a p-adic field K (a finite extension of the p-adic numbers Qp). His proof consists of a
reduction via explicit cocycle calculations in Galois cohomology to a combination of Tate
duality for group schemes over p-adic fields and the autoduality of the Jacobian of a smooth
curve. In this paper we will reconstruct the above duality as a purely formal combination
of a generalized form of Tate duality over p-adic fields and a form of Poincaré duality for
curves over arbitrary fields of characteristic zero. This gives a more conceptual proof of
Lichtenbaum’s result and an analogue in higher dimensions.

Let ϕ : X � SpecK be a variety over a p-adic field, and consider the cohomological
Brauer group

Br
�
X � : � H2 � X � Gm �	�

or more generally the étale cohomology group H i � X � Gm � for some i 
 0. The group
Ext2 � i � Rϕ � Gm � Gm � is a natural candidate for its dual via the Yoneda pairing into Br

�
K � .

We will see that this Ext-group should not be computed on the étale site over K, but on the
smooth site Ksm; see Section 1.2 for a definition and a motivation of this choice of topology.
These groups turn out to give interesting homology groups for varieties over an arbitrary
field k. For technical reasons we will require that the ground field k has characteristic zero
and that ϕ : X � Speck is proper and smooth (see Remark 2.1). The analogy to étale ho-
mology with coefficients in Z � n prompts for the notation

‘Hi
�
X � Z � : � Ext � i

ksm

�
Rϕ � Gm � Gm �	�

with the quotes added in order to avoid confusion with motivic homology. Indeed, these
groups can be regarded as intermediates between étale homology with coefficients in Ẑ
(see Section 2.2) and motivic homology with coefficients in Z. For example, when k is
algebraically closed, we have for i  2 that

‘Hi
�
X � Z ��� Hi

�
X � Ẑ �	�

whereas ‘H0
�
X � Z � is canonically isomorphic to (the k-points of) the total Albanese variety

of X (see Sections 1.1, 2.2, and 3.2). On the other hand, the motivic homology group
H0

�
X � Z � is the Chow group of zero-cycles. Therefore I will refer to the homology theory

defined above as pseudo-motivic homology. The following result shows that for duality over
a p-adic field these pseudo-motivic homology groups are just right.
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Theorem 1. Let X be a smooth proper variety over a finite extension K of Qp. For every
r � Z the Yoneda pairing

‘Hr
�
X � Z � � Hr � 2 � X � Gm � � Br

�
K ��� Q � Z(2)

is nondegenerate, inducing perfect pairings

‘Hr
�
X � Z � � Hr � 2 � X � Gm �

� � Q � Z for r ��� 2 ��� 1 �
‘Hr

�
X � Z � � � Hr � 2 � X � Gm � � Q � Z for r � 0 � 1 �

and

‘Hr
�
X � Z ��� Hr � 2 � X � Gm ��� Q � Z for r 
 2.

Here a pairing between topological groups A � B � Q � Z is called nondegenerate if the
induced homomorphisms from A to the Pontryagin dual of B and from B to the Pontryagin
dual of A are monomorphisms and perfect if these induced maps are isomorphisms. The
topology we choose implicitly on our groups is the discrete topology for torsion groups and
the profinite topology on all other groups. The notation A

�
denotes the completion of A with

respect to the profinite topology.

PROOF. For X geometrically irreducible, this is a special case of Theorem 4.3; removing
the irreducibility condition is a straightforward generalization.

Theorem 2 (Poincaré duality for curves). Let C be a smooth projective curve over a field of
characteristic zero. For any i � Z we have a natural isomorphism

H i � C � Gm �
�� ‘H1 � i

�
C � Z ���

PROOF. For C geometrically irreducible, this is a weak version of Theorem 3.7. Removing
the irreducibility condition is straightforward.

Note that when C has a k-rational point (or, more generally, a divisor defined over k of
degree 1), then Theorem 2 is hardly more than a reformulation of the autoduality of the
Jacobian of C. This more general result seems to be new. The proof follows a usual pattern:
in Section 3.3 we will construct a pairing

Rϕ � Gm
L	

Rϕ � Gm � Gm

 � 1 �

in the derived category of sheaves on ksm that induces the above isomorphism. This pairing
is constructed using the Suslin–Voevodsky cycle complexes, and it is shown to induce an
isomorphism using Friedlander–Voevodsky duality for curves.

Remark. In view of the calculations of the pseudo-motivic homology groups in high de-
gree (see Section 2.2), I do not expect that the above Poincaré duality generalizes to higher
dimensions. To be precise, I do not think that for d  1 there are (complexes of) sheaves
‘Z
�
d � on the smooth site over Q such that for each proper smooth purely d-dimensional

variety X over a field of characteristic zero we have H i � X � ‘Z � d � � � ‘H2d � i
�
X � Z � .

Corollary 1 (Lichtenbaum–Tate duality [L1]). Let C be a smooth projective curve over a
p-adic field K. For every i � Z we have a nondegenerate pairing

H i � X � Gm � � H3 � i � X � Gm ��� Q � Z �
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These pairings satisfy the usual symmetry rules for cup products, and they induce perfect
pairings

H0 � X � Gm �
� � H3 � X � Gm ��� Q � Z �

‘H1 � X � Gm �
� � H2 � X � Gm ��� Q � Z �

PROOF. The existence, nondegeneracy and perfectness of the pairings follows immediately
from the theorems above. The symmetry rules follow from the construction. The im-
plicit claim that the pairings given here coincide with Lichtenbaum’s pairings is justified
by Lemma 3.1 and the construction of the Poincaré duality pairing in Section 3.3.

In the course of proving Theorem 1 we will collect several other dualities. In particu-
lar, we get the following result. Recall that the period of a principal homogeneous space
X for an abelian variety A over a field K is defined to be the order of the class of X in
the Weil–Châtelet group H1 � K � A � . More generally, we define the period of an arbitrary
nonsingular, complete, geometrically irreducible variety X to be the period of the Albanese
torsor Alb1 � X � , which is associated to zero-cycles of degree 1 (see Section 1.1 for the formal
definition).

Theorem 3. Let X be a smooth proper geometrically irreducible variety over a p-adic field
K.

(i) The image of the mapping δ in the exact sequence

0 � Pic
�
X � � Pic

�
XK � Gal � K � K � δ� � � Br

�
k ��� Br

�
X �

induced by the Hochschild-Serre spectral sequence is a finite group dual to the cokernel of
the degree mapping ‘H0

�
X � Z ��� Z.

(ii) The image of the mapping δ0 in the exact sequence

0 � Pic0 � X ��� Pic0 � XK � Gal � K � K � δ0� � � Br
�
k �

induced by the above exact sequence is a finite group dual to the cokernel of the mapping
‘H0

�
XK � Z � Gal � K � K � � Z induced by the degree mapping. The order of this cokernel is the

period of X.

PROOF. See Section 4.3.

Note that for a curve X we have by Poincaré duality that ‘H0
�
X � Z � � Pic

�
X � , so in that

case the first part of the theorem is equivalent to Roquette’s theorem ([Ro, Th. 1], see also
[L1, p. 120]). The part of the theorem concerning the period of X was already mentioned in
[vH, Rem. 5.4], with a sketch of a proof via cocycle calculations.

Corollary 2. Let X be a principal homogeneous space for an abelian variety over a p-adic
field K. The restriction map

Br
�
K ��� Br

�
K
�
X � �

from the Brauer group of K to the Brauer group of the function field of X is injective if and
only if X is trivial.

PROOF. Immediate from the above theorem and the injectivity of the restriction map
Br
�
X � � Br

�
K
�
X � � (see [Gr, II, Cor. 1.8] or [M1, Exa. 2.22]).
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For a smooth proper geometrically irreducible variety X over a number field k, we can
now use class field theory in order to get a sufficient condition for the surjectivity of the map

Pic0 � X ��� Pic0 � Xk̄ � Gal � k̄ � k �(3)

(which is in any case injective, since X is proper over k). In analogy with the terminology
of [CM], where Coray and Manoil study the map

Pic
�
X ��� Pic

�
Xk̄ � Gal � k̄ � k � �

we will say that Pic0 � X � is big if the map (3) is surjective. In other words, Pic0 � X � is big
if every k-rational point on the Picard variety Pic0 � X � k � of X corresponds to a divisor class
containing a divisor defined over k. Recall, that the Tate–Shafarevich group of an abelian
variety A over the number field k is the subgroup of H1 � k � A � consisting of classes that
become trivial when restricted to H1 � kv � Akv � for any completion kv of k.

Corollary 3. Let X be a smooth proper geometrically irreducible variety over a number
field k. If the class of the Albanese torsor Alb1 � X � is contained in the Tate–Shafarevich
group of Alb

�
X � , then Pic0 � X � is big.

PROOF. Consider the following diagram with well-known exact rows (see Section 1.1).

0 Pic0 � X � Pic0 � Xk̄ � Gal � k̄ � k � Br
�
k �

0 ∏v Pic0 � Xkv � ∏v Pic0 � Xk̄v
� Gal � k̄v � kv � ∏v Br

�
kv �

Here v ranges over finite and infinite primes. The right hand vertical arrow is injective by
class field theory, so the statement follows immediately from Theorem 3.ii and its analogue
over the real numbers (see [vH, Cor. 5.3]).

1. Preliminaries

In this section we will fix some notation and terminology and we will briefly consider the
cohomology of sheaves on the smooth site over a scheme. The notation and terminology
in this paper concerning derived categories is all standard (see for example [GM]), except
maybe the choice not to make a distinction in terminology or notation between cohomology
and ‘hypercohomology’ (the classical term for the result of applying a higher derived functor
to a complex, rather than a single object). A sheaf will be a sheaf of abelian groups, unless
explicitly mentioned otherwise.

A variety over a field k will be a separated geometrically reduced (but not necessarily
irreducible) scheme over k, and it will be of finite type unless explicitly mentioned otherwise
(the group varieties we encounter will in general only be locally of finite type). When there
is no danger of confusion, we will denote the scheme Speck by k. The base change of a
variety X over k to an extension field k � will be denoted by Xk

� , and the base change to the
separable closure k̄ of k will be denoted by X . A curve over k will be a variety over k of pure
dimension 1.
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1.1. Picard and Albanese variety

We will start by recalling some well-known results; the main reason for repeating them
is to fix the notation and terminology, since there does not seem to be a well-established
standard.

For a proper variety ϕ : X � k over a field k, the higher direct image sheaf R1ϕ � Gm

on the fpqc-site over k is represented by a group scheme locally of finite type over k (see
[Mur, II.15]), hence by a group variety locally of finite type if k is of characteristic zero.
In that case we will denote the group variety representing R1ϕ � Gm by Pic

�
X � k � and call it

the total Picard variety of X . Note that in general the Picard group Pic
�
X � � H1 � X � Gm �

( � H1
fpqc

�
X � Gm � ) does not coincide with the group of k-points of Pic

�
X � k � : we have the

well-known long exact sequence

0 � Pic
�
X ��� Pic

�
X � k � � k ��� Br

�
k ��� Br

�
X �	�(4)

where Br
�
X � denotes the cohomological Brauer group of X .

From now on we will assume that X is smooth and proper over a field k of characteristic
zero. Then the connected component of Pic

�
X � k � containing zero is an abelian variety over

k which we denote by Pic0 � X � k � and which we call the Picard variety of X . We have an
exact sequence

0 � Pic0 � X � k ��� Pic
�
X � k ��� NS

�
X ��� 0 �

where NS
�
X � is the finitely generated group variety corresponding to the Néron–Severi

group of X , equipped with its natural Galois action. We denote by Pic0 � X � the inverse
image of Pic0 � X � k � under the canonical injection Pic

�
X ��� � Pic

�
X � k � � k � and we put

NS
�
X � : � Pic

�
X � � Pic0 � X ���

In order to define the (total) Albanese variety, we consider the fpqc-sheaf
�

X on k as-
sociated to the presheaf that sends a scheme U to the free abelian group generated by the
set X

�
U � of maps from U to X . Still assuming X to be smooth and proper over a field k of

characteristic zero, we have that the sheaf
�

X admits a homomorphism

α :
�

X � Alb
� �

X �
into a sheaf represented by a group variety locally of finite type over k of which the con-
nected component Alb

�
X � containing zero is an abelian variety. The map α is the universal

homomorphism of
�

X to sheaves represented by group varieties of which the connected
component containing zero is a semi-abelian variety (see for example [Ra, � 2]). We will
call Alb � � X � the total Albanese variety of X . The abelian variety Alb

�
X � is the (classical)

Albanese variety of X . When X is geometrically irreducible, we have a short exact sequence

0 � Alb
�
X ��� Alb � � X ��� Z � 0 �(5)

where the map to Z corresponds, via α, to the degree map
�

0
�
X � k � � Z. The con-

nected component of Alb � � X � mapping to n � Z will be denoted by Albn � X � . In particular,
Alb0 � X � � Alb

�
X � , and α induces a morphism from X to Alb1 � X � the Albanese torsor of

X , which is a principal homogeneous space over Alb
�
X � . Of course, any k-valued point

x � X
�
k � induces, by subtraction, an isomorphism Alb1 � X ��� Alb0 � X � of principal homo-

geneous spaces over Alb
�
X � , hence a morphism αx : X � Alb

�
X � . This is the classical

Albanese map for the pair
�
X � x � , which is universal for maps of X into abelian varieties that

send x to zero.
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Remark 1.1. The terms ‘Picard group’, ‘Picard variety’ and ‘Albanese variety’ are tradi-
tional, and so is the notation Pic

�
X � and Alb

�
X � . The notation Pic

�
X � k � and Alb1 � X � is a

variation on notation introduced by Grothendieck in [Gr]. What I call here the ‘total Picard
variety’ is often called the Picard scheme. By analogy, the term ‘Albanese scheme’ is used
in [Ra] for what I call the ‘total Albanese variety’. Indeed, when a variety is defined to be
irreducible, a distinguishing feature of the ‘Picard scheme’ and the ‘Albanese scheme’ is
that they are not varieties. However, in this paper a variety is not necessarily irreducible,
since irreducibility does not behave well under base change, so the adjective ‘total’ seems a
better way to make the distinction.

1.2. Smooth cohomology

For a scheme X the site Xsm has as underlying category the category of smooth schemes
locally of finite type over X . The coverings are the smooth surjective morphisms.

The cohomology of sufficiently nice sheaves on Xsm is the same as the cohomology on
other popular sites, like the (small) étale site Xét or the (big) flat site Xfl, for which the
underlying category consists of schemes that are étale and of finite type over X (resp. locally
of finite type over X ) and the coverings are the surjective étale (resp. flat) morphisms. We
will use that for each sheaf � represented by a smooth commutative group scheme over X
we have equalities

H i � Xfl ��� ��� H i � Xsm ��� ��� H i � Xét ��� �(6)

for any i. This follows from the vanishing of higher direct images of the sheaf � for the
mappings between the various topologies (see [Gr, III, Th. 11.7], or [M1, Th. III.3.9]). Note
that this implies in particular that, with ϕ : X � k as in the previous section, the total Picard
group Pic

�
X � k � also represents R1ϕ � Gm on the smooth site over k. The same holds when

� is a direct limit of sheaves represented by smooth group schemes, or an inverse limit of
sheaves represented by finite group schemes, or when � is a complex of sheaves for which
all cohomology sheaves � � � � � are of the above form.

In the above situation we will often omit the reference to the topology and write H i � X ��� �
for any of the above groups. We will not make any distinction in notation between commuta-
tive group schemes and the sheaves they represent. Also, we will freely use the equivalence
of categories between étale sheaves on k and Galois modules. With these conventions, we
have for example

H i � ksm � Gm ��� H i � két � Gm ��� H1 � k � Gm ��� H i � k � k̄ � ��� H i � Gal
�
k̄ � k �	� k̄ � ���

For our purposes here, the difference between the étale site and the smooth site lies
in the internal and external Hom- and Ext-groups between sheaves represented by group
schemes. The étale site turns out to be too small to give good results; consider for example
� omkét

�
Gm � Gm � � Hom

�
k̄ � � k̄ � � . We need a site with a bigger underlying category. In this

respect the (big) flat site is actually as good as the smooth site, as we will see in Lemma 1.2.
but the smooth site has the advantage that when X is a smooth variety over k, then all
schemes in the underlying category of Xsm are smooth varieties over k. This is convenient
for certain calculations (see Section 2.2) and also when we want to represent complexes of
sheaves by Suslin–Voevodsky cycle complexes (see Section 3.3).
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Lemma 1.2. Let G1, G2 be smooth group schemes locally of finite type over a scheme X. Let
α : Xfl � Xsm be the canonical morphism of sites. Then we have a canonical isomorphism

Rα � R � omXfl

�
� 1 ��� 2 ��� R � omXsm

�
� 1 ��� 2 ���

PROOF. We have that α � is exact(on the level of underlying categories α is a full embed-
ding), so its right adjoint α � sends injectives to injectives, and adjunction gives us an iso-
morphism

Rα � R � omXfl

�
α � � 1 ��� 2 ��� R � omXsm

�
� 1 � Rα � � 2 ���

Now α � � 1 is represented by � 1 on Xfl, since � 1 is a smooth group scheme. The complex
Rα � � 2 is quasi-isomorphic to the sheaf represented by � 2, since the higher direct images of
� 2 under α vanish, as we saw above.

Corollary 1.3. For M a finitely generated group scheme, T a torus, and A an abelian variety
over a field k of characteristic zero we have

R � omksm

�
M � Gm ��� � omG � k

�
M � Gm �	�

R � omksm

�
T � Gm ��� � omG � k

�
T � Gm �	�

R � omksm

�
A � Gm ��� �

xt1
G � k

�
A � Gm �


 � 1 � � At 
 � 1 � �
where � omG � k and

�
xt1

G � k are the internal Hom and Ext in the category G � k of commuta-
tive group schemes over k and At is the dual abelian variety of A.

Recall that the notation


i � is used to indicate a shift by i in the indexing of a complex. In

particular, we have here that At 
 � 1 � denotes the complex consisting of the single object At

in degree 1.

PROOF. By Lemma 1.2 this follows from [O, Th. 17.4, Th. 18.1], [Br2, � � 7, 8, 10], and the
vanishing of the higher direct images under α : kfl � ksm of sheaves represented by smooth
group schemes.

2. Pseudo-motivic homology

Throughout this section, ϕ : X � k will be a smooth proper scheme over a field k of
characteristic zero. We will establish the basic properties of the pseudo-motivic homology
groups

‘H � � X � Z ��� Ext � �ksm

�
Rϕ � Gm � Gm �

and do some calculations. The definition of these homology groups is completely analogous
to the definitions à la Verdier of homology of locally compact spaces and of étale homology
with finite coefficients:

H � � X � Z � n ��� Ext � �két

�
Rϕ � µn � Gm �(7)

(see for example [DV, Exp. VIII], and recall that X is proper over k).

Remark 2.1. Of course, the above definition makes sense for arbitrary X over an arbitrary
field k. Formally, this would give something that plays the role of homology with compact
supports, but since the groups themselves might not be nice enough I would prefer not to
use the notation ‘H � � X � Z � , when X is not smooth and proper, or when k is of characteristic
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p  0. I should say that I do not know exactly what I mean by ‘nice enough’, but I would
hope that at least we would have that the complex R � omksm

�
Rϕ � Gm � Gm � is concentrated

in nonpositive degree, and that it admits a filtration for which the graded pieces are either
complexes of group schemes, or profinite étale (compare Section 2.2). In view of the results
and constructions in [Ra], it seems reasonable to expect that in characteristic zero these
properties can be obtained for arbitrary X by taking a smooth hypercovering. In character-
istic p  0 the groups under consideration need not even be nice in the above sense when
X is smooth and proper, due to the ‘pathological’ behaviour of the

�
xtksm -functor (see for

example [Br1]).

2.1. Basic properties

The dual Kummer sequence

Applying the right derived functors of Homksm

�
Rϕ � � � Gm � to the Kummer sequence

0 � µn � Gm � Gm � 0

gives a long exact sequence

����� � ‘Hi
�
X � Z �

� n� � � ‘Hi
�
X � Z ��� Hi

�
X � Z � n ��� �����(8)

All basic constructions that follow below also exist for coefficients modulo n, and they are
compatible with the Kummer exact sequences.

Functoriality

For a map f : Y � X of proper smooth schemes over k the adjunction morphism Gm �
R f � Gm induces the push-forward homomorphism f � : ‘H � � Y � Z � � ‘H � � X � Z ��� If f : Y � X is
finite étale, then the trace map f � Gm � Gm (cf. [M1, Lemma V.1.12]) induces the étale pull-
back f � : ‘H � � X � Z � � ‘H � � Y � Z ��� If f is of constant degree d, then f ��� f � is multiplication
by d. If Y is Galois over X with Galois group G, then then f � � f � sends a class β to the class
∑g � G g � β.

Note that if k � � k is a finite extension and we have a base change diagram

Xk
� π

ϕ
�

Xk

ϕ

Speck �
π

Speck

then the trace map induces an adjunction formula

Ext
�
k

�
sm

�
Rϕ � � Gm � Gm ��� Ext

�
ksm

�
R
�
π � ϕ � � � Gm � Gm �

(see [M1, Lemma V.1.12]). Therefore, the group‘H � � Xk
� � Z � does not depend on the question

whether we consider Xk
� as variety over k or over k � . In particular, we have a push-forward

map π � and a pull-back map π � between the homology of X and Xk
� .

Product with cohomology

The pairing (2) is a special case of the Yoneda pairing

‘Hi
�
X � Z � � H j � X � Gm � � H j � i � k � Gm �

γ � ω �� γ � ω
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which is defined for arbitrary i � j via the canonical map

Ext � i
ksm

�
Rϕ � Gm � Gm ��� Ext0ksm

�
Rϕ � Gm � Gm


 � i � � � Hom
�
H j � k � Rϕ � Gm �	� H j � i � k � Gm � ���

From the definitions it is easy to check that for a morphism f : Y � X we have the projection
formula

f � γ � ω � γ � f
� ω �

Homology of a point

For any finite field extension k � of k, we have a canonical isomorphism

‘Hi
�
Speck � � Z ��� H � i � k � � Z ���(9)

Under this isomorphism the pushforward morphism

π � : ‘Hi
�
Speck � � Z ��� ‘Hi

�
Speck � Z �

corresponds to the trace map (i.e., the corestriction map in Galois cohomology). Moreover,
the Yoneda product defined above corresponds for X � Speck � to the cup product

H � i � k � � Z ��� H j � k � � Gm ��� H j � i � k � � Gm �
followed by the trace map

H j � i � k � � Gm ��� H j � i � k � Gm ���
Remark 2.2. The above connection to Galois cohomology shows that the pseudo-motivic
homology of Speck is in general not equal to the Galois homology group Hi

�
Gal

�
k̄ � k �	� Z � ,

so it seems better not to use the notation ‘Hi
�
k � Z � , which might lead to misunderstandings.

2.2. Calculations

In this section ϕ : X � k will be a proper smooth geometrically irreducible variety of
dimension d over a field of characteristic zero. The condition of geometric irreducibility is
merely for ease of exposition.

A filtration on the derived direct image of Gm

In order to compute the pseudo-motivic homology groups, we will first define a con-
venient filtration on Rϕ � Gm. Since we work in a derived category, where the notion of
‘subcomplex’ does not make sense, this filtration will simply be a sequence of morphisms

0 � �
� 1 �

�
0 � ����� � �

2d � 1 �
�

2d � 2 � ����� � �
∞ � Rϕ � Gm �

For every i 
 0 we define the ith graded piece � i to be the mapping cone of the map
�

i � 1 ��
i, giving a triangle

�
i � 1 �

�
i � � i �

�
i


1 � �(10)

Our filtration will have the property, that each graded piece consists of a sheaf concentrated
in a single degree. It will almost be the canonical filtration

� can� � τ � iRϕ � Gm, but not quite,
since the graded piece of degree one for that filtration is R1ϕ � Gm � Pic

�
X � k � , which is an

extension of the finitely generated group NS
�
X � by the abelian variety Pic0 � X � k � . It is better

to separate these two parts. Therefore we take
�

0 : � τ � 0Rϕ � G � ϕ � Gm � Gm �
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for
�

1 we take the mapping cone of the canonical map

τ � 1Rϕ � Gm � NS
�
X �	�

with the degree shifted by one, so that we have a triangle
�

1 � τ � 1Rϕ � Gm � NS
�
X ��� �

i


1 � �

and for i 
 2 we put
�

i : � τ � i � 1Rϕ � Gm �
Using the standard notation of �



n � for a complex that consists of a sheaf concentrated in

degree � n, we get

� i �

������ ����� Gm if i � 0 �
Pic0 � X � k � 
 � 1 � if i � 1 �
NS

�
X � 
 � 1 � if i � 2 �

Ri � 1ϕ � Gm


1 � i � if i 
 3 �

(11)

The sheaves Rqϕ � Gm are torsion for q 
 2, since Hq � X � U � Gm � is torsion for q 
 2 and U
smooth over over k by [Gr, II, Prop. 1,4]. In other words, we have for i 
 3 that

� i � lim-------�
n

�
n � i �

where n � i is the complex consisting of the n-torsion of the sheaf Ri � 1ϕ � Gm in degree i � 1.
Using the Kummer sequence we see from the smooth specialization theorem for torsion
coefficients (see [SGA4, Exp. XVI, Th. 2.1] or [M1, Cor. VI.4,2]) that the sheaf Rqϕ � Gm

is isomorphic to the locally constant sheaf associated to the Galois module Hq � X � Gm � for
q 
 2 and in fact to Hq � X � Q � Z � 1 � � for q  2, where Q � Z �

1 � � lim-------� n µn. In other words,

� i ��� Br
�
X � 
 � 2 � if i � 3 �

H i � 1 � X � Q � Z �
1 � � 
 i � 1 � if i 
 4 �

In particular, we have by [SGA4, Exp. X, Cor. 4.3] (see also [M1, Th. VI.1.1]) that � i � 0
for i  2d � 1, hence that

�
2d � 1 �

�
∞, as we claimed in the beginning. Below, we will also

use the fact that by [D, Th. finitude] (see also [M1, Th. VI.2.1]) we have that n � i is finite
for any i  2 and any n � N.

Remark 2.3. I do not know whether Rqϕ � Gm is torsion for q 
 2 when taken on sites for
which the underlying category contains singular schemes, like the big flat site.

The dual filtration

For any complex � of sheaves on ksm we define the Cartier dual of � to be the complex� D : � R � omksm

� � � Gm ���
In particular, ‘Hi

�
X � Z � � H � 1 � ksm �

�
Rϕ � Gm � D � . Dualizing the ascending filtration

�	�
on

Rϕ � Gm we get a descending filtration
�
Rϕ � Gm � D � � D

∞ � ����� � � D
2d � 2 �

� D
2d � 1 �

� D
2d � ����� � � D

0 � �
� 1 � ����� � 0 �

and for every i � Z we have a triangle

� D
i � � D

i � � D
i � 1 � � D

i


1 � �(12)
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In order give explicit descriptions of the � D
i we will first consider the case i 
 3 in greater

detail. Since the � i are torsion for i 
 3, we have that

� D
i � R � omksm

�
lim-------�

n

�
n � i �	� Gm ��� R lim� -------

n
R � omksm

�
n � i � Gm ���

For i 
 4 the surjections H i � 1 � X � µn � � n � i


i � 1 � and the isomorphisms Hi � 1

�
X � Z � n � �

R � om
�
H i � 1 � X � µn �	� Gm � induce an isomorphism

R lim� -------
n

R � omksm

�
n � i � Gm � � R lim� -------

n
Hi � 1

�
X � Z � n � 
 i � 1 � �

By [J, Th. 2.2] we have that

H p � k � R lim� -------
n

Hq
�
X � Z � n � ��� H p

cont
�
k � Hq

�
X � Ẑ � �	�

where H p
cont

�
k � � � denotes continuous Galois cohomology. Therefore we will write

� cont
q

�
X � k � Ẑ � : � R lim� -------

n
Hq

�
X � Z � n ���

Here we keep k in the notation, since it is important that the inverse limit is taken in the
derived category of sheaves on Speck. For example, taking inverse limits does not commute
with infinite field extensions (compare [K, � 2]). In particular, when k is not algebraically
closed, the complexes � cont

q
�
X � Ẑ � will in general not be concentrated in degree 0, whereas

� cont
q

�
X � k̄ � Ẑ ��� R lim� -------

n
Hq

�
X � Z � n ��� Hq

�
X � Ẑ ���

In the case i � 3 we have that � D
3 equals the complex R � omksm

�
Br
�
X �	� Q � Z �

1 � � 
 2 � . As
above, we have that

H p � ksm ��� D
3 � � H p

cont
�
k � Hom

�
Br
�
X �	� Q � Z �

1 � ���
Combined with the above calculations of the � i for i � 0 � 1 � 2 and the results of Section 1,

we get that

� D
i �

����������� ����������
0 if i � 0

Z if i � 0

Alb
�
X � if i � 1

� om
�
NS

�
X �	� Gm �



1 � if i � 2

R � omksm

�
Br
�
X �	� Q � Z �

1 � � 
 2 � if i � 3

� cont
i � 1

�
X � k � Ẑ � 
 i � 1 � if i 
 4 �

(13)

The modified Hochschild–Serre spectral sequence

Since the complexes � cont
i � 1

�
X � k � Ẑ � are in general not concentrated in degree 0, the

above calculations do not give a sensible description of the E p � q
2 -terms of the ‘standard’

Hochschild–Serre spectral sequence

E p � q
2 � H p � ksm � Rq � omksm

�
Rϕ � Gm � Gm � ��� ‘H � p � q

�
X � Z ���

Therefore it makes sense to modify this spectral sequence a little, replacing the degree fil-
tration on � omksm

�
Rϕ � Gm � Gm � , by the decreasing filtration

0 � � HS� 2d � 1 �
� HS� 2d � ����� � � HS

0 � R � omksm

�
Rϕ � Gm � Gm �
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with
� HS

i for � 2d � i � � 1 determined by the requirement that we have a triangle
� HS

i � �
Rϕ � Gm � D � � D

1 � i �
� HS

i


1 � �

Here
�
Rϕ � Gm � D � � D

1 � i is the canonical map associated to the filtration
� D� of Rϕ � Gm. As

above, we obtain for every i the associated ith graded piece � HS
i , and we put

‘� i
�
X � Z � : � � HS� i


 � i � �
The filtration

� HS� gives rise to the modified Hochschild–Serre spectral sequence

E p � q
2 � H p � ksm � ‘� � q

�
X � Z � � � ‘H � p � q

�
X � Z ���(14)

In this modified spectral sequence, the E2-terms are easy to interpret, thanks to the calcu-
lations above. By construction we have that for i  0 that

‘� i
�
X � Z ��� � D

i � 1

 � i � �

On the other hand, ‘� 0
�
X � Z � fits into an exact sequence

0 � Alb
�
X ��� ‘� 0

�
X � Z ��� Z � 0 �

This suggests that ‘� 0
�
X � Z � is represented by the total Albanese variety Alb � � X � defined in

Section 1.1. We will see in Section 3.2 that this is indeed the case, and we will use it below
to simplify the notation. The Albanese property of ‘� 0

�
X � Z � will not be used in an essential

way before Section 3.3.
In terms of Galois cohomology, we get the following expression for the E2-terms of the

modified Hochschild–Serre spectral sequence.

H p � ksm � ‘� � q
�
X � Z � ���

�������� �������
0 if q  0 �
H p � k � Alb � � X � � k̄ � � if q � 0 �
H p � k � Hom

�
NS

�
X �	� k̄ � � � if q � � 1 �

H p
cont

�
k � Hom

�
Br
�
X �	� Q � Z � 1 � � � if q � � 2 �

H p
cont

�
k � H � q

�
X � Ẑ � � if q � � 2 �

Remark 2.4. If all Galois cohomology groups of k with finite coefficient modules are finite,
then

Hs
cont

�
k � Hom

�
Br
�
X �	� Q � Z �

1 � � � � lim� -------
n

Hs � k � Hom
�
n Br

�
X �	� Q � Z �

1 � � �
and

Hs
cont

�
k � Ht

�
X � Ẑ � ��� lim� -------

n
Hs

cont
�
k � Ht

�
X � Z � n � �

(see [J, Rem. 3.5]). The finiteness condition is fulfilled when k is a p-adic field.

Calculations over an algebraically closed field

For X over the algebraic closure k̄ of k the above gives us:

‘Hi
�
X � Z ���

�������� �������
0 if i � 0 �
Alb � � X � � k̄ � if i � 0 �
Hom

�
NS

�
X �	� k̄ � � if i � 1 �

Hom
�
Br
�
X �	� Q � Z �

1 � � if i � 2 �
Hi
�
X � Ẑ � if i  2 �
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High degree homology

Over an arbitrary field k of characteristic 0, we see from the modified Hochschild–Serre
spectral sequence that the canonical map Rϕ � Q � Z �

1 � � Rϕ � Gm induces for i  2 an iso-
morphism

‘Hi
�
X � Z ��� R � iHomkét

�
Rϕ � Q � Z �

1 �	� Gm ���
The right hand side of this equation is canonically isomorphic to the ith continuous étale
homology group Hcont

i

�
X � Ẑ � as defined in [K, � 3.2] (recall that X is proper over k).

Calculations in degree 0 over a p-adic field

Now let us assume k has cohomological dimension � 2, which is the case when X is a
p-adic field (see [S, Prop. II.15]). Then the E s � t

2 -terms of the modified Hochschild–Serre
spectral sequence vanish for s  2. We get an exact sequence

‘H0
�
X � Z ��� Alb � � X � � k ��� H2 � k � Hom

�
NS

�
X �	� k̄ � � ���

The kernel ‘H0
�
X � Z � Alb of the Albanese map ‘H0

�
X � Z � � Alb � � X � � k � fits into an exact

sequence

H2
cont

�
k � Hom

�
Br
�
X �	� Q � Z

�
1 � � � � ‘H0

�
X � Z � Alb � H1 � k � Hom

�
NS

�
X �	� k̄ � � ��� 0

When k is a p-adic field, we actually have

H2 � k � Hom
�
NS

�
X �	� k̄ � � ��� Hom

�
NS

�
X � Gal � k̄ � k � � Q � Z �

and

H2
cont

�
k � Hom

�
Br
�
X �	� Q � Z �

1 � � � � Hom
�
Br
�
X � Gal � k̄ � k � � Q � Z �

as we easily deduce from Tate duality for finitely generated groups (compare Proposi-
tion 4.1.

3. The cycle map, the Albanese property and Poincaré duality

In this section we will construct a cycle map for zero-cycles into the homology of degree
zero, and check that this map satisfies the Albanese property. Then we prove Poincaré
duality for curves (Theorem 2 from the introduction).

3.1. The cycle map for zero-cycles

Let k � be a finite extension of a field k of characteristic 0. The canonical isomorphism (9)
gives in degree zero a canonical isomorphism

‘H0
�
Speck � � Z ��� Z �

The canonical generator of ‘H0
�
Speck � � Z � will be called the fundamental class of Speck � .

We will denote it by


Speck � � � ‘H0

�
Speck � � Z � . We now define the cycle map

cl :
�

0
�
X ��� ‘H0

�
X � Z �(15)
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from the group of zero-cycles into homology by sending a closed point x � X to the image
of


x � under the mapping i � : ‘H0

�
x � Z � � ‘H0

�
X � Z � , where i is the inclusion. By construc-

tion the cycle map commutes with the push-forward associated to a morphism of varieties
f : X � Y .

The following lemma implies that Lichtenbaum’s pairing of
�

0
�
X � with Br

�
X � , as de-

fined in [L1, � 3], factorizes via the cycle map and the Yoneda pairing.

Lemma 3.1. With notations as above, we have that for any r 
 0 and any ω � H r � X � Gm �
the image of cl

�
x � � ω � Hr � k � Gm � under the pairing (2.1) coincides with the image of ω

under the composite mapping

Hr � X � Gm � i �� � � Hr � x � Gm � tr� � � Hr � k � Gm �	�
where the mapping tr is induced by the trace map.

PROOF. Immediate from the definitions.

Later, it will be important that the cycle map for zero-cycles is already defined on the
sheaf level. Let

�
X be the free sheaf on ksm of abelian groups over X , i.e., the sheaf asso-

ciated to the presheaf U �� Z


X
�
U � � . For every U smooth over k we have that a morphism

s : U � X induces via pull-back a homomorphism from the complex of sheaves Rϕ � Gm to
the sheaf Gm, both restricted to U . Thus we get a homomorphism

c
�

:
�

X � R0 � om
�
Rϕ � Gm � Gm ��� ‘� 0

�
X � Z �(16)

of sheaves on ksm; it follows from the definitions that taking sections over k gives back the
original cycle map (15).

Proposition 3.2. Let X be a proper smooth geometrically irreducible variety over a field of
characteristic zero. The cycle map factorizes via rational equivalence, giving a homomor-
phism

cl : CH0
�
X ��� ‘H0

�
X � Z �

PROOF. The group
� rat

0

�
X � of zero-cycles rationally equivalent to 0 is generated by zero-

cycles of the form π � � f � , where π : C � X is a morphism of a nonsingular projective curve
C to X , and

�
f � is the divisor of a rational function f on C. Since cl

�
π � � f � � � π � cl

� �
f � � , it

is sufficient to check the proposition for a nonsingular projective curve C.
Since ‘� 0

�
C � Z � is represented by a commutative group variety locally of finite type,

the universal property of the total Albanese variety implies that the map
�

X � ‘� 0
�
X � Z �

induced by (16) factorizes via the Albanese map. Taking sections over k and using the
injectivity of the map

‘H0
�
C � Z � � ‘� 0

�
C � Z � � k �

(Hilbert’s Theorem 90), we get that the cycle map (15) factorizes as
�

0
�
C ��� Alb

� �
C � � k ��� ‘H0

�
C � Z ���

The kernel of the first map is equal to
� rat

0

�
C � by the Abel–Jacobi theorem.
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3.2. The Albanese map

In this section we will prove that the map

c
�

:
�

X � ‘� 0
�
X � Z �(17)

induced by the map (16) satisfies the Albanese property. In particular, ‘� 0
�
X � Z � is repre-

sented by the total Albanese variety Alb � � X � , as was claimed and used in Section 2.2.
The covariant functoriality of ‘� 0

� � � Z � , will enable us to reduce the proof to the case
where X is a principal homogeneous space for an Abelian variety, and then the statement
follows from Proposition 3.3 below, which claims that the cycle map induces for any abelian
variety A an isomorphism between A itself and the connected component ‘� 0

�
A � Z � 0 of

‘� 0
�
A � Z � containing zero.

Proposition 3.3. Let A be an abelian variety over a field k of characteristic zero. The map

a : A � ‘� 0
�
A � Z � 0

x �� c
� � 


x � � 
 0 � �
is an isomorphism of (sheaves represented by) abelian varieties.

PROOF. The map a is a priori only a morphism of varieties, but since ‘� 0
�
A � Z � 0 is (rep-

resented by) an abelian variety, and 0 is mapped to 0, it is a homomorphism of abelian
varieties. In order to prove that a is an isomorphism, it is sufficient to check that the induced
map on n-torsion

nA � n‘� 0
�
A � Z � 0

is an isomorphism for all n � N. This is equivalent to proving that the induced map of finite
n-torsion groups

an : nA
�
k̄ ��� n‘H0

�
Ā � Z � 0 � � n‘H0

�
Ā � Z ���

is an isomorphism.
Let ϕ : A � k be the structure map, and let n : A � A be multiplication by n. We define

Rϕ � Gm � n � to be the cone of the induced map

Rϕ � Gm
n �� � � Rϕ � Gm �

and we put

H i � Ā � Gm � n � � : � H i � k̄ � Rϕ � Gm � n � �
‘Hi

�
Ā � Z � n � � : � R � iHomk̄sm

�
Rϕ � Gm � n � � Gm ���

We get long exact sequences

H0 � Ā � Gm � n �� � � H0 � Ā � Gm ��� H0 � Ā � Gm � n � ��� H1 � Ā � Gm � n �� � � H1 � Ā � Gm � � �����

and

����� � ‘H1
�
Ā � Z � n �� � � ‘H1

�
Ā � Z ��� ‘H0

�
Ā � Z � n �	��� ‘H0

�
Ā � Z � n �� � � ‘H0

�
Ā � Z �

Recall that the pull-back n � is the identity on ϕ � Gm, multiplication by n on Pic0 � A � k � and
multiplication by n2 on NS

�
Ā � , and that NS

�
Ā � is torsion free (see [Mum, � 8]. This implies

that

H0 � Ā � Gm � n � ��� n Pic
�
Ā �
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and

‘H0
�
Ā � Z � n � ��� n‘H0

�
Ā � Z �

It follows that we have a map

an �
: nA

�
k̄ ��� ‘H0

�
Ā � Z � n � �

that fits into the following commutative diagram.

nA
�
k̄ �

an an �

n‘H0
�
Ā � Z � ‘H0

�
Ā � Z � n � �

Hence it suffices to show that an �
is an isomorphism.

The cohomology sheaves � i � Rϕ � Gm � n � � are torsion for every i � Z, as we see from
the above expression of the endomorphism n � as multiplication by powers of n. Therefore
the comparison between smooth and étale cohomology gives us that the group ‘H0

�
Ā � Z � n � �

is canonically isomorphic to the group Hom
�
Rϕ � Gm � n � � k̄ � � computed in the derived cat-

egory of étale sheaves on k̄. We will now define a suitable complex of abelian groups
that represents the complex of étale sheaves Rϕ � Gm � n � , in order to be able to compute
Hom

�
Rϕ � Gm � n � � k̄ � � in the derived category of abelian groups.

Let � be the complex of abelian groups
� �

nĀ � Ā
div� � � Div

�
Ā � nĀ �

where
� �

nĀ � Ā is the multiplicative group of invertible functions on Ā having no poles or zeroes

on the n-torsion points, and Div
�
Ā � nĀ � is the group of divisors on Ā with supports outside

the n-torsion points. The moving lemma for divisors implies that � is quasi-isomorphic to
the complex

� �
Ā � � div� � � Div

�
Ā �	�

hence we have a canonical map of complexes of groups (étale sheaves over k̄)� � Rϕ � Gm �
that induces an isomorphism in cohomology of degree � 1.

Defining
� �

nĀ � Ā � n
� to be the cokernel of the injective map

� �
nĀ � Ā � � �

nĀ � Ā
f �� f � n

and Div
�
Ā � nĀ � � n � to be the cokernel of the injective map

Div
�
Ā � nĀ � � Div

�
Ā � nĀ �

D �� n � 1 � D �	�
we see that the corresponding complex � � n � maps canonically to Rϕ � Gm � n � , inducing an
isomorphism

H0 � � � n � � �� H0 � Ā � Gm � n � � � n Pic
�
Ā �
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that sends the class of a function g on Ā with div
�
g � � n � 1 � D � for some divisor D to the

n-torsion divisor class


D � � Pic

�
Ā � . Since k̄ � is a divisible group, hence injective, we also

see that

‘H0
�
Ā � Z � n � ��� Hom

�
H0 � Rϕ � Gm � n � �	� k̄ � ��� Hom

�
H0 � � � n � �	� k̄ � ���

In particular, we obtain a perfect pairing between ‘H0
�
Ā � Z � n � � and n Pic

�
Ā � into k̄ � , and the

map an �
induces a pairing

nA
�
k̄ � � n Pic

�
Ā ��� k̄

� �
From the above discussion and the definition of the cycle map we see that this pairing is
given by the formula

�
x � 
D � � �� f

�
x � � f

�
0 �	�

where D is a divisor with support outside the n-torsion points of Ā and f is a function
with div

�
f � � n � 1 � D � . In other words, this pairing coincides up to sign with the Weil

pairing, which is nondegenerate (see for example [Mum, � 20]). We conclude that an � is an
isomorphism for every n � N.

Remark 3.4. In the proof of the proposition we pass to torsion elements, since there would
have been no point in considering the composite map

A
�
k̄ ��� ‘H0

�
Ā � Z ��� Hom

� � � k̄ � �	�
which is zero: since k̄ � is an injective étale sheaf, the right hand map factorizes via
Homk̄sm

�
Gm � Gm ��� Z.

Corollary 3.5. Let A
�

be an extension of Z by an abelian variety A0 over a field k of char-
acteristic zero. Let A1 be the connected component of A

�
mapping to 1 � Z. We have an

isomorphism of sheaves on ksm represented by group varieties

a
�
: A
� �� ‘� 0

�
A1 � Z �

such that a
�

restricted to A1 is the canonical map

A1 � ‘� 0
�
A1 � Z �

of sheaves of sets induced by the cycle map c
�
.

PROOF. For a scheme T that is smooth over k with x1 � A1 � T ���� /0 we send x � Ai � T � to

c
� � 


x � �
i � 1 � x1 � � �

i � 1 � 
 x1 � � � ‘�
�
A1 � Z � � T ���

It follows from Proposition 3.3 that this map does not depend on the choice of x1. Since the
extension

0 � A0 � A
�
� Z � 0

is locally trivial on the smooth site over k, we have sections locally everywhere so the above
defines a homomorphism

a
�
: A
� �� ‘� 0

�
X � Z ���

If we have a global section x1 � A1 � k � , it follows easily from Proposition 3.3 that a
�

is an
isomorphism; otherwise we make a base change to a finite extension of k such that we obtain
a global section of A1, and we apply Proposition 3.3.
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Theorem 3.6. Let X be a proper smooth geometrically irreducible variety over a field k of
characteristic zero. The homomorphism of sheaves

c
�

:
�

X � ‘� 0
�
X � Z �

is the universal homomorphism of
�

X into sheaves on ksm represented by group varieties
locally of finite type of which the connected component containing zero is an abelian variety.
In particular, ‘� 0

�
X � Z � is represented by the total Albanese variety of X.

PROOF. Let A be a commutative group variety locally of finite type of which the connected
component containing zero is an abelian variety. Let

f :
�

X � A

be a homomorphism of sheaves. We will show that f factorizes via the cycle map c
�
.

Let A0 be the connected component of A containing zero. In order to be able to use
Corollary 3.5, we need to replace A by an extension A

�
of Z by A0. Let

� 0
X be the subsheaf

of
�

X of elements of degree zero. Since X is geometrically connected, we have that
� 0

X
maps to A0, so

�
X � � 0

X ( � Z) maps to A � A0. We take the fibre product A
�
� A � A � A0 Z, and

we have a homomorphism

f
�
:
�

X � A
�

defined by f
� �

z � � �
f
�
z �	� deg

�
z � � . We denote by π : A

�
� A the canonical projection. In

order to prove the theorem, it is sufficient to show that f
�

factorizes via the cycle map c
�

and
a homomorphism from ‘� 0

�
X � Z � to A

�
, since f � f

�
� π.

Let A1 � A
�

be the connected component mapping to 1 � Z, and let

f 1 : X � A1

be the morphism of varieties induced by f
�
. By Corollary 3.5 we have the following com-

mutative diagram.

�
X

c �

f

�
A
�
a

�
‘� 0

�
X � Z � f 1

� ‘� 0
�
A1 � Z �

Since a
�

is an isomorphism, the diagram gives the desired factorization of f
�

via ‘� 0
�
X � Z � .

3.3. Poincaré duality for curves

The proof of Poincaré duality for curves in the present setting is analogous to the proof of
duality for cohomology with coefficients in the nth roots of unity µn of a smooth projective
curve ϕ : C � Speck over a field of characteristic not dividing n. Writing Z � n � j ��� µ

�
j

n , we
have that geometric Poincaré duality consists in that case of a composite morphism

Rϕ � Z � n � 1 � L	
Z � n

Rϕ � Z � n � 1 � � Rϕ � Z � n � 2 � tr� � � Z � n � 1 � 
 � 2 �

in the derived category of n-torsion sheaves on Speck that induces an isomorphism

Rϕ � Z � n � 1 � �� R � omkét � Z � n
�
Rϕ � Z � n � 1 �	� Z � n � 1 � 
 � 2 � �(18)

in the derived category of Z � n modules on két (see for example [D, Dualité]).
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A natural integral analogue of the above duality would be a pairing

Rϕ � Z �
1 � L	

Rϕ � Z �
1 � � Rϕ � Z �

2 � tr� � � Z
�
1 � 
 � 2 �

inducing an isomorphism

Rϕ � Z �
1 � �� R � om

�
Rϕ � Z �

1 �	� Z �
1 � 
 � 2 � ���

Here the complex Z
�
1 � is by definition quasi-isomorphic to the sheaf Gm in degree 1 (see

[L2]), whereas there are several working definitions for the complex Z
�
2 � .

The pairing to be constructed is a kind of intersection pairing, hence we need represen-
tatives of the complex of sheaves Rϕ � Z �

1 � on the smooth site over k with good intersection
properties. For this we take the Suslin–Voevodsky complexes of equidimensional cycles.
Once the pairing is constructed, we will prove that this pairing induces the desired iso-
morphism using Theorem 3.6; the comparison with the cycle map we need for this uses
Friedlander–Voevodsky duality. We will first recall the necessary definitions and results.
For consistency with the rest of the paper, the notation Z

�
i � will not be used in the rest of

this section.

Sheaves of equidimensional cycles

Let ϕ : X � k be a variety over a field of characteristic zero. As in [FV] we denote by
zequi

�
X � r � the presheaf on ksm that associates to every smooth scheme U locally of finite

type over k the group zequi
�
X � r � � U � of algebraic cycles on X � U that are equidimensional

of relative dimension r over U . For a variety Y we denote by zequi
�
X � Y � r � � U � the presheaf

U �� zequi
�
Y � r � � X � U �

Observe that when X is smooth over k, then

zequi
�
X � Y � r ��� ϕ � ϕ � zequi

�
Y � r ���(19)

For a presheaf F we denote by Fsm the associated sheaf, and by C � � F � the associated sim-
plicial complex of presheaves, i.e., the complex of presheaves associated to the simplicial
presheaf

U �� F
�
∆
�
� U �	�

where ∆
�

is the standard cosimplicial scheme over k (see for example [FV, � 4]).
By [V, Th. 3.4.2 and Cor. 4.1.8] we have a canonical isomorphism

Gm � C � � zequi
�
A1 � 0 � � 
 � 1 � �(20)

The right hand side is the complex we will use to define our pairing. When X and Y are
smooth over k, the natural embedding of presheaves

zequi
�
X � Y � r � � � zequi

�
X � Y � r � dimY �

induces by [FV, Th. 7.1] quasi-isomorphisms of the associated simplicial complexes of
presheaves.

C � � zequi
�
X � Y � r � � �� C � � zequi

�
X � Y � r � dimY � ���
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This is what we will call Friedlander–Voevodsky duality. From this duality and the homo-
topy invariance of complexes of presheaves of the form C � � � � (see [FV, Lemma 4.1]) we
see that the pullback map

zequi
�
X � r � � zequi

�
X � A1 � r � 1 �

induces a quasi-isomorphism of associated simplicial complexes of presheaves.

Theorem 3.7. Let ϕ : C � Speck be a smooth projective geometrically irreducible curve
over a field of characteristic zero. There is a pairing

Rϕ � Gm
L	

Rϕ � Gm � Gm

 � 1 �

that induces an isomorphism

Rϕ � Gm
�� R � omksm

�
Rϕ � Gm � Z �


 � 1 �
in the derived category of sheaves on the smooth site over k. In particular, we have for any
i � Z an isomorphism

H i � C � Gm �
�� ‘H1 � i

�
C � Z ���

PROOF. By (19) and (20) we have a natural homomorphism

C � � zequi
�
C � A1 � 0 � � � Rϕ � Gm �

Since C is a smooth projective curve, this is a quasi-isomorphism after sheafifying for the
smooth topology by [V, Th. 3.4.2]. We have an obvious symmetric pairing of presheaves

zequi
�
C � A1 � 0 ��� zequi

�
C � A1 � 0 � � zequi

�
C � A2 � 0 �

that takes closed subvarieties V � W on A1 � X � U to the cycle associated to the fibre product
V � X � U W � A2 � X � U . This induces a pairing

C � � zequi
�
C � A1 � 0 � � � C � � zequi

�
C � A1 � 0 � � � C � � zequi

�
C � A2 � 0 � ���

Composing with the push-forward map

C � � zequi
�
C � A2 � 0 � � ϕ �� � � C � � zequi

�
Speck � A2 � 1 � �

and the isomorphism

C � � zequi
�
Speck � A2 � 1 � � � C � � zequi

�
A2 � 1 � ��� C � � zequi

�
A1 � 0 � �	�

we obtain a pairing of complexes of presheaves that induces a pairing

Rϕ � Gm


1 � L	

Rϕ � Gm


1 � � Gm



1 � �

Shifting the degrees gives the pairing we require.
In order to check that our pairing induces Poincaré duality, it is sufficient to check that

we have isomorphisms

� i � C � Gm ��� ‘� 1 � i
�
C � Z �

of the homology sheaves in degrees i � 0 and 1, since the homology sheaves of the complex
Rϕ � Gm and its dual vanish in all other degrees. We first prove the case i � 1. Since both
source and target are representable by an extension of Z by the Jacobian of C, it would by
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Theorem 3.6 be sufficient to check that the sheaf-theoretic cycle map (17) factorizes via the
map

� 1 � C � Gm ��� ‘� 0
�
C � Z ���(21)

We will construct a candidate (23), but we will not quite need to prove that this composite
map coincides with the cycle map (17). Consider the following diagram of pairings, in
which all vertical arrows become quasi-isomorphisms after applying C � � � � and where all
pairings are defined via intersection products or fibre products in the obvious way.

zequi
�
C � A1 � 0 � 	 zequi

�
C � A1 � 0 � zequi

�
C � A2 � 1 � ϕ � zequi

�
A2 � 1 �

zequi
�
C � A1 � 1 � 	 zequi

�
C � A1 � 0 � zequi

�
C � A2 � 1 � ϕ � zequi

�
A2 � 1 �

zequi
�
C � 0 � 	

zequi
�
C � A1 � 0 � zequi

�
C � A1 � 0 � ϕ � zequi

�
A1 � 0 �

(22)

We have a natural map
�

C � zequi
�
C � 0 �	�

and from the leftmost column we get a map

zequi
�
C � 0 ��� � 1 � C � Gm ���

Composing with (21) we get a map
�

C � � 1 � C � Gm ��� ‘� 0
�
C � Z ���(23)

Since ‘� 0
�
C � Z � is the total Albanese variety of C, the universal property gives a commuta-

tive diagram
�

C � 1 � C � Gm � ‘� 0
�
C � Z �

‘� 0
�
C � Z �

(24)

We will check that the right-hand diagonal arrow in this diagram is the identity. Since we
deal with a morphism of sheaves represented by smooth group varieties, it is sufficient to
check this at the global sections, provided we pass to the algebraic closure k̄ of k. From the
bottom row of diagram (22) we see that (23) sends the cycle associated to a closed point
i : x � � C to the element in ‘H0

�
C � Z ��� Homk̄sm

�
Rϕ � Gm � Gm � represented by the morphism

Rϕ � Gm
i �� � � Rψ � Gm � Gm �

where ψ : x � Spec k̄ is the structure map. This coincides with the cycle map (15), hence
the right-hand diagonal arrow of (24) is the identity, so the homomorphism (21) is an iso-
morphism.

In order to prove that

� 0 � C � Gm ��� ‘� 1
�
C � Z �

is an isomorphism as well, we simply observe (using the calculations in Section 2.2 and the
symmetry of the pairing) that this mapping can be obtained from the isomorphism (21) by
applying the functor � omksm

� � � Gm � .
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4. Generalized Tate duality

In this section we will prove Theorems 1 and 3. These are actually straightforward conse-
quences of Theorem 4.3 below, which asserts that the complexes

�
i defined in Section 2.2

satisfy Tate duality when X is smooth and proper over a p-adic field. This in turn follows
from the duality for the graded pieces � i which is classical Tate duality, since the � i consist
of (direct limits of) étale finitely generated groups, tori and abelian varieties concentrated in
a single degree.

A crucial role in the proof of Theorem 4.3 below will be played by the following collec-
tion indexed by i 
 0 of compatible systems of pairings into H2 � K � Gm � � Q � Z with long
exact rows.

����� Hr � 1 � K ��� D
i � Hr � K � � D

i � 1 � Hr � K � � D
i � Hr � K ��� D

i � �����

� � � �
����� H1 � r � K ��� i � H2 � r � K � �

i � 1 � H2 � r � K � �
i � H2 � r � K ��� i � �����

(25)

For i 
 0 this system is constructed from the triangles (10) and (12) using the Yoneda pairing.
It will allow us to glue the Tate duality for the � i (see Proposition 4.1 in order to obtain
duality for the

�
i. In the gluing process some caution is necessary, since some of the

duality pairings for the � i are only perfect after taking suitable completions. Lemma 4.2
provides the essential arguments that will allow us to proceed. In Section 4.3 we will prove
Theorem 3. Throughout this section X is a smooth, proper and geometrically irreducible
over a p-adic field K.

4.1. Classical Tate duality

Proposition 4.1. Let X be a smooth and proper geometrically irreducible variety over a
p-adic field K. Consider for i 
 0, r � Z the Yoneda pairing

Hr � K ��� D
i � � H2 � r � K ��� i ��� H2 � K � Gm ��� Q � Z �

(i) For every i 
 0, r � Z the pairing is nondegenerate.
(ii) The pairing is perfect if the pair

�
i � r � is not in the set

� �
0 � 0 �	� � 0 � 2 �	� � 2 � 1 �	� � 2 � 3 ��� .

(iii) The pairing induces perfect pairings

H2 � K ��� D
0 � � H0 � K ��� 0 �

� � Q � Z �
H1 � K ��� D

2 � � H1 � K ��� 2 �
� � Q � Z �

H0 � K ��� D
0 � � � H2 � K ��� 0 � � Q � Z �

H � 1 � K ��� D
2 � � � H3 � K ��� 2 � � Q � Z �

(iv) For i � 0 or 1, r � Z the groups H r � K ��� i � and H2 � r � K ��� D
i � vanish if the pair

�
i � r � is

not in the set
� �

0 � 0 �	� � 0 � 2 �	� � 1 � 1 �	� � 1 � 2 ��� � For i  1 the groups H r � K ��� i � and H2 � r � K ��� D
i �

vanish if r is not in the range i � 1 � � � � � i � 1.

PROOF. For i � 0 � 2 the proposition follows from Hilbert’s Theorem 90 and Tate–Poitou
duality for finitely generated groups (see [M2, Thm. I.2.1]). For i � 1 the proposition follows
from Tate duality for abelian varieties (see [M2, Cor. 3.4]).
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For i  2 the proposition follows from Tate–Poitou duality for finite groups, since

� i � lim-------�
n

n � i �

where the complex n � i consists of the (finite) n-torsion subgroup n � i � 1 � � i � of the Galois
module � i � 1 � � i ��� H i � 1 � X � Gm � placed in degree i � 1. Hence for all r � Z we have

H2 � r � K ��� i ��� lim-------�
n

H2 � r � K � n � i �	�

and

Hr � K ��� D
i ��� Hr � K � R lim� -------

n

�
n � i � D ��� R lim� -------

n
Hr � K � � n � i � D ��� lim� -------

n
Hr � K � � n � i � D �	�

since the groups Hr � K � � n � i � D � are finite (see [M2, Th. I.2.1]).

4.2. Gluing dualities

As was mentioned in the introduction of this section, we will need the following technical
result for the proof of Theorem 4.3.

Lemma 4.2. Let X be a smooth and proper geometrically irreducible variety over a p-adic
field K. Consider the compatible system of pairings (25).

(i) The boundary map H1 � K ��� 2 ��� H2 � K � �
1 � has finite image.

(ii) For i � 1, 2 the boundary map H0 � K � � D
i � 1 ��� H1 � K ��� D

i � has finite image.
(iii) The boundary map H � 1 � K � � D

2 ��� H0 � K ��� D
3 � has finite image.

PROOF. (i) The image of the boundary map is the cokernel of the map

Pic
�
X ��� H1 � K � �

2 ��� H1 � K ��� 2 ��� H0 � K � NS
�
X � �	�

which is well-known to be finite.
(ii) For i � 1 the image of the boundary map is the cokernel of the map

H0 � K � � D
1 ��� H0 � K � � D

0 ���
The image of this map contains the image of the composite map

CH0
�
X � cl� � � ‘H0

�
X � Z � � H0 � K � � D

0 ��� Z �
which coincides with the degree map for zero-cycles, hence the cokernel under consideration
is finite. For i � 2, we consider the commutative diagram

H0 � K � � D
1 � H1 � K ��� D

2 �

Hom
�
H1 � K � �

1 �	� Q � Z � Hom
�
H2 � K ��� 2 �	� Q � Z �

obtained from the system of pairings (25). The right hand vertical arrow is an isomorphism
by Proposition 4.1, and the image of the bottom arrow is finite by part (i) of this lemma.

(iii) The image of the map H � 1 � K � � D
2 ��� H0 � K ��� D

3 � is the cokernel of the map

H � 1 � K � � D
3 ��� H � 1 � K � � D

2 �	�
hence a quotient of the cokernel of the natural map

‘H1
�
X � Z ��� H � 1 � K � �

∞ � � H � 1 � K � � D
2 ��� H0 � K � Hom

�
NS

�
X �	� K � � ���
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In order to show that the latter cokernel is finite, it is sufficient to prove that it has finite
exponent, since K � � K � n is finite for any n � N. Therefore it is sufficient to prove that the
cokernel of the map

ε : ‘H1
�
XL � Z ��� H0 � L � Hom

�
NS

�
X �	� K � � �

has finite exponent for some finite extension L of K in K.
We will finish the proof by showing that this is a rather straightforward consequence

of the fact that for divisors algebraic equivalence modulo torsion coincides with numerical
equivalence. So let us take L large enough such that NS

�
XL � � NS

�
X � and such that we have

a finite collection

fi : Ci � XL

of smooth, projective, geometrically irreducible curves Ci over L mapping to XL, that gener-
ates a subgroup of finite index in Hom

�
NS

�
X �	� Z � via the intersection product. To be precise,

taking
�

1
���

Ci � to be the group of 1-dimensional cycles on the disjoint union of the Ci we
have that the right kernel of the pairing

�
1
���

Ci � � NS
�
X � � Z

∑ai


Ci � � 


D � �� ∑ai
�
fi � �



Ci � �



D � �

is precisely the (finite) torsion subgroup of NS
�
X � .

After tensoring with L � we obtain a map

�
1
���

Ci � 	 L
� � Hom

�
NS

�
X �	� L � �

of which the cokernel has finite exponent. By Section 2.2 we have a canonical isomorphism

�
1
���

Ci � 	 L � � ‘H1
���

Ci � Z �	�
which fits into the following commutative diagram by the projection formula.

�
i
� �

Ci � 	 L � Hom
�
NS

�
X �	� Z � 	 L �

‘H1
� �

Ci � Z �
� fi � �

Hom
�
NS

�
X �	� L � �

‘H1
�
XL � Z � ε

H0 � L � Hom
�
NS

�
X �	� K � � �

Hence the cokernel bottom arrow has finite exponent.

Theorem 4.3. Let X be a nonsingular complete variety over a p-adic field K For i 
 0, let
�

i be the complex defined in Section 2.2, and consider the Yoneda pairing

Hr � K � � D
i � � H2 � r � K � �

i ��� H2 � K � Gm ��� Q � Z �

(i) For every i 
 0 and r � Z the above pairing is nondegenerate.
(ii) For every i 
 0, r � � 2 the pairing is perfect.
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(iii) For every i 
 0 the following induced pairings are perfect:

H2 � K � � D
i � � H0 � K � �

i �
� � Q � Z �

H1 � K � � D
i � � H1 � K � �

i �
� � Q � Z �

H0 � K � � D
i � � � H2 � K � �

i � � Q � Z �
H � 1 � K � � D

i � � � H3 � K � �
i � � Q � Z �

(iv) For every i 
 0, r  2, the cohomology groups in the pairing are zero.

PROOF. In all four cases the proof will proceed by induction on the the level i of the ‘fil-
tration’

�
i, using Proposition 4.1 and Lemma 4.2 and the following commutative diagrams

with exact rows that are obtained from the system of pairings (25).

Hr � 1 � � D
i � 1 � Hr � � D

i � Hr � � D
i � Hr � � D

i � 1 � Hr � 1 � � D
i �

H3 � r � �
i � 1 � � H2 � r � � i � � H2 � r � �

i � � H2 � r � �
i � 1 � � H1 � r � � i � �

(26)

and

H3 � r � �
i � 1 � H2 � r � � i � H2 � r � �

i � H2 � r � �
i � 1 � H1 � r � � i �

Hr � 1 � � D
i � 1 � � Hr � � D

i � � Hr � � D
i � � Hr � � D

i � 1 � � Hr � 1 � � D
i � �

(27)

Here Hq � � � is short for Hq � K � � � , and � � denotes the Pontryagin dual Homcont
� � � Q � Z � .

The exactness of the bottom rows is clear at the duals of torsion groups (which are equipped
with the discrete topology); at the duals of groups which are not purely torsion (which are
equipped with the profinite topology), the exactness follows from [M2, Prop. 0.20] and
Lemma 4.2.

(i) In order to show that H r � � D
i � � H2 � r � �

i � � is injective, consider diagram (26). By
the induction hypothesis and Proposition 4.1, we know that all vertical arrows but the middle
one are injective. Moreover, the map H r � 1 � � D

i � 1 � � H3 � r � �
i � 1 � � is either an isomorphism,

or the image of Hr � 1 � �
i � 1 � D � Hr � � D

i � is a finite group I by Lemma 4.2, in which case
we replace the left column of diagram (26) by the map I � I � . The injectivity follows by a
diagram chase.

The map H2 � r � �
i ��� Hr � � D

i � � is treated similarly.
(ii) For r � � 2 the surjectivity of the maps H r � � D

i � � H2 � r � �
i � � and H2 � r � �

i � �
Hr � � D

i � � follows by a similar diagram chase, using Proposition 4.1 and the induction hy-
pothesis, which give the surjectivity of the second and the fourth vertical arrows and the
injectivity of the rightmost vertical arrow in diagrams (26) and (27).

(iii) The injectivity and surjectivity of the map

H0 � �
i �
� � H2 � � D

i � �

follows immediately from Proposition 4.1 and the above commutative diagrams, since
H0 � �

i � � H0 � � 0 � and H2 � � D
i � � H2 � � D

0 � for all i 
 0. The injectivity and surjectivity
of

H1 � �
i �
� � H2 � � D

i � �
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follows by induction from diagram (27), Proposition 4.1, and Lemma 4.2, since we may
replace H2 � �

i � and its dual by finite groups in the diagram, and then the upper row remains
exact after taking profinite completions. For the isomorphisms H0 � � D

i � � � H2 � �
i � � and

H � 1 � � D
i � � � H3 � �

i � � we use similar arguments.
For the arrows in the other direction, like

H2 � � D
i ��� �

H0 � �
i �
� � � � H0 � �

i � �

we have injectivity by part (i) of this theorem, and the surjectivity follows by diagram chas-
ing in (26) and (27) and induction on i from Proposition 4.1.

(iv) This follows from Proposition 4.1.iv by induction on i.

4.3. Proof of Theorem 3

(i) Let ϕ : X � SpecK be the structure morphism. Consider the triangle

ϕ � Gm � Rϕ � Gm � τ � 1Rϕ � Gm � ϕ � Gm


1 �

in the derived category of sheaves on the smooth site over K. Since

H1 � K � τ � 1Rϕ � Gm ��� H1 � K � R1ϕ � Gm

 � 1 � � � Pic

�
X � K � � K �

and ϕ � Gm � Gm, the associated long exact sequence of cohomology groups contains the
exact sequence

0 � Pic
�
X ��� Pic

�
X � K � � k � δ� � � Br

�
K � ϕ �� � � Br

�
X �	�

where the first term is zero by Hilbert’s Theorem 90. This exact sequence coincides with the
exact sequence in the first statement of the theorem. The Cartier dual of the map ϕ � Gm �
Rϕ � Gm gives rise to the degree map

‘H0
�
X � Z � deg� � � Z �

so the Yoneda pairing gives the following compatible system of pairings into Q � Z.

Br
�
K � ϕ �

Br
�
X �

� �
Z ‘H0

�
X � Z �deg

Since Br
�
K � is the Pontryagin dual of Z, and Br

�
X � is the Pontryagin dual of ‘H0

�
X � Z � by

Theorem 4.3.iii, we have that the kernel of ϕ � is the dual of the cokernel of the degree map.
Therefore these two (finite cyclic) groups have the same order.

(ii) Take
�

1 as in Section 2.2, and consider the triangle

ϕ � Gm � �
1 � Pic0 � X � K � 
 � 1 � � ϕ � Gm


 � 1 � �
Now we proceed as in the proof of part (i) of the theorem, observing that

H1 � K � �
1 ��� Pic0 � X �

and

Ext0Ksm

� �
1 � Gm ��� ‘H0

�
XK � Z � Gal � K � K � �

as we see from the calculations in Section 2.2. The final statement follows from the fact that

‘H0
�
XK � Z � Gal � K � K � � Alb

� �
X � � K �
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by Theorem 3.6.

References

[SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier (eds.), Théorie des topos et cohomologie étale des schémas
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