A remark on sheaf theory for non-Hausdorflf manifolds*

by Marius Crainic and leke Moerdijk

Much of sheaf theory can be developed for arbitrary topological spaces. This applies, for ex-
ample, to the definition of ’sheaf’ itself, to the existence of injective resolutions, to the properties of
the operations f, and f* associated to a continuous map f : Y — X etc, etc. On the other hand,
there 1s a very basic part of the theory which seems to depend crucially on the Hausdorff property
(together with local compactness and paracompactness). Here one could think of the properties of
soft and fine sheaves, of compact supports, of the operation f; and its right adjoint f' (*Verdier
duality’), etc. Tt is for this reason that, for a large part of the theory, all the standard text make
the overall assumption that the underlying spaces must be locally compact, Hausdorff, and of finite
cohomological dimension (cf. [7, 10, 2]).

There are geometric situations, however, such as foliation theory, where one naturally encoun-
ters sheaves on non-separated manifolds. For example, a central role is played by the holonomy
groupoid of a foliation, and by Haefliger’s classifying groupoid I'?. These groupoids are smooth and
very well behaved in many respects, but they are not all Hausdorff. This fact impedes not only
the (transverse) sheaf theory on foliations, but also the study of the convolution algebra and the
(reduced) C*-algebra associated to the foliation.

Motivated by foliations, we wish to indicate in this short note how sheaf theory can be extended,
in an essentially unique way, to spaces which are locally sufficiently nice, but are not necessarily
separated. The crucial step 1s a suitable adaptation of ’compact supports’ in such spaces. After
this adaptation, all the usual constructions and arguments (of [2], say) up to Verdier duality (which
includes Poincaré duality) and beyond, remain valid for this more general class of spaces.

This note was originally written as an appendix to an earlier version of [6], where we apply the
extended sheaf theory to the study of the cyclic type homologies of non-separated smooth groupoids,
such as holonomy groupoids of a foliations.

1 . Overall assumptions. For any space X in this paper we do assume that X has an open cover
by subsets U C X which are each paracompact, Hausdorff, locally compact, and of cohomological
dimension bounded by a number d (depending on X but not on U).

2 . c-soft sheaves. Let X be a space satisfying the general assumptions in 1. An abelian sheaf
A on X is said to be c-soft if for any Hausdorff open U C X its restriction A|y is a c-soft sheaf on
U in the usual sense. By the same property for Hausdorff spaces, it follows that c-softness is a local
property, i.e., a sheaf A is c-soft iff there is an open cover X = |JU; such that each A|y is a c-soft
sheaf on A.

3 . The functor T'.. Let A be a c-soft sheaf on X and let A’ be its Godement resolution (i.e.
A'(U) = T(Udiscr; A) is the set of all (not necessarily continuous) sections, for any open U C X).
For any Hausdorff open set W C X, let T'.(W,.A) be the usual set of compactly supported sections.
If W C U, there is an evident homomorphism, “extension by 0” T'.(W, A) — T'.(U, A) C T(U, A").
For any (not necessarily Hausdorff) open set U C X, we define I'.(U,.A) to be the image of the map:

Pr.(w,4) —1(U,A"),

*Research supported by NWO



where W ranges over all Hausdorff open subsets W C U. An alternative definition follows by
choosing a Hausdorff open cover in Proposition 6 below.

Observe that T'.(U,.A) so defined is evidently functorial in .4, and that for any inclusion U C U’
we have an “extension by zero” monomorphism (U, A) — T.(U’, A) .

The following lemma shows that in the definition of T'.(U,.4) it is enough to let W range over
a Hausdorff open cover of U; in particular, it shows that the definition agrees with the usual one if
U itself is Hausdorff.

4 . Lemma Let A be a c-soft sheaf on X. For any open cover U = |JW; where each W; is
Hausdorff, the sequence @, T.(W;, A) — T'.(U, A) — 0 is ezact.

Proof: Tt suffices to show that for any Hausdorff open W C U, the map @, T.(W N W;, A) —
I'.(W, A) is surjective. This is well known (see e.g. [7]). O

5 . Example: If M is a manifold (not necessarily Hausdorff), we put C°(M) := T.(M;Cs3),
where 5% is the sheaf of smooth functions on M. Similarly we define Q¥ (M) by using the sheaf Q%
of k-forms on M. These are the natural objects with the property that constructions performed in
coordinate charts patch globally (as insured by the Mayer-Vietoris sequence below). For instance,
this is the case for the DeRham differential.

If by C°(M) we denote Connes’ version [4] of compactly supported functions, there is an
obvious surjection C° (M) — C°(M) which is not injective in general (take for instance M =
(0,2) Ux (0,2), X = (0,2) — {1}). The advantage of CS°(M) over Connes’ version consists on the
existence of DeRham differential, better functorial properties, Poincaré duality, and the fact that
the construction extends to arbitrary sheaves (and these are esentially used in [5, 6]). We remark
that, in the case of étale groupoids G, the two convolution algebras C°(G), and C°(G) define (by
the construction in [4]) the same C*-algebra.

6 . Proposition (Mayer-Vietoris sequence) Let X = |, U; be an open cover indexed by an ordered
set I, and let A be a c-soft sheaf on X. Then there is a long ezxactl sequence:

- — P TeUipis, A) — EPT Uiy, A) — To(X, A) — 0 (1)
i0<i1 io
Here Us,. ;, = Uiy N. .. NU;,, as usual. (There is of course a similar exact sequence if I is not
ordered.)

Proof: The proposition is of course well known in the case where X is a paracompact Hausdorff space.
We first reduce the proof to the case where each of the U; is Hausdorff, as follows. Let X = UjEJ W;

be a cover by Hausdorff open sets, and consider the double complex C, , = P FC(I/V]'D...J'POUZ'D“Z'Q VA
where the sum is over all jo < ... < jp, %o < ... < 2. For afixed p > 0, the column
Cp.« is a sum of exact Mayer-Vietoris sequences for the Hausdorff open sets Wj, ;,, augmented by
Cp_1 = ®ju<...<j,. T.(Wj,..j,,A). Keeping the notation U;, ;. = X = W, ;, if ¢ = -1 =p, we
observe that for a fixed ¢ > —1, the row C, ; is a sum of Mayer-Vietoris sequences for the spaces
Us,y..i, with respect to the open covers {W; N Uiﬂ..iq}. So, if the proposition would hold for covers
by Hausdorff sets, each row C, ; (¢ > —1) is also exact. By a standard double complex argument it
follows that the augumentation column C_; , is also exact, and this column is precisely the sequence
in the statement of the proposition. This shows that 1t suffices to show the proposition in the special
case where each U; is Hausdorff.

So assume each U; C X is Hausdorff. Observe first that exactness of the sequence (1) at
I'.(X,A) now follows by Lemma 4. To show exactness elsewhere, consider for each finite subset
Iy C I the space U'o = UiEIu U; and the subsequence:

C— P Ui, A — P Telliy, A) — T(U, A) — 0 (2)
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of (1). Clearly (1) is the directed union of the sequences of the form (2), where Iy C I ranges over
all finite subsets of I. So exactness of (1) follows from exactness of each such sequence of the form
(2). Thus, it remains to prove the proposition in the special case of a finite cover {U;} of X by
Haudorff open sets.

So assume X = Uy U...UU, where each U; i1s Hausdorff. For n = 1, there is nothing to prove.
For n = 2, the sequence has the form

0 — To(Uy N Uy, A) — To(Ur, A) @ Te(Uz, A) — To(Uy N U, A) — 0 .
This sequence is exact at T'.(X,.A) by 4, and evidently exact at other places. Exactness for n = 3
can be proved using exactness for n = 2. Indeed, consider the following diagram, whose upper two

rows are the sequences for n = 2,3 and whose third row is constructed by taking vertical cokernels,
so that all columns are exact (we delete the sheaf A from the notation)(compare to pp. 187 in [1]):

0 0 0 0

0—————=>T(Ui2) —————= T () @l (U2) —————= T (h UUz) ——0

[o(Ui23) — Di<icj<ale(Usj) ——=T(U1) @ To(Uz) ®T.(Us) ——=T (U3 UUs UUs) —=0

T.(Uy23) ——=T(U13) ® To(Ugz) —————=T.(Us) i C 0

0 0 0 0

To show that the middle row is exact, 1t thus suffices to prove that the lower row is exact. This row
can be decomposed into a Mayer-Vietoris sequence for the case n = 2, already shown to be exact,

0 — Te(Ur23) — Te(U13) @ To(Uzz) — T (UsN (U1 UUR)) — 0

and the sequence 0 — T'.(Us N (U; UUs)) — T'.(U3) — C' — 0 . The exactness of the latter
sequence is easily proved by a diagram chase, using exactness of the right-hand column.

An identical argument will show that the exactness for a cover by n + 1 opens follows from
exactness for one by n opens, so the proof is completed by induction. [l

Proposition 6 is our main tool for transfering standard facts from sheaf theory on Hausdorff
spaces to the non-Hausdorff case, as illustrated by the following corollaries.

7 . Corollary Let Y C X be a closed subspace, and let A be a c-soft sheaf on X. There is an

exact sequence 0 — T (X =Y, A) LN I.(X,A) - T.(Y,A) — 0 (i is extension by zero, r is the
restriction).

Proof: This (including the fact that the map r is well defined) follows by elementary homological
algebra from the fact that the Corollary holds for Hausdorff spaces, by using 6 for a cover of X by
Hausdorff open sets U; and for the induced covers of Y by {U; NY} and X =Y by {U; —Y}. O

8 . Corollary For a family A; of c-soft sheaves on X the direct sum ®A; is again c-soft, and
I.(X,®A4;) = ®T(X,A;) . In particular, when working over R, we have for any c-soft sheaf S of
R-vector spaces and any vector space V that the tensor pmduct SerV (here V is the constant sheaf)
is again c-soft, and the familiar formula T,(X,S@r V) ZT.(X,S)@rV



9 . Corollary Let A, — B, be a quasi-isomorphism between chain complexes of c-soft sheaves
on X. Then T'(X,A)) — T.(X,B.) is again a quasi-isomorphism.

Proof: By a “mapping cone argument” we may assume that B, = 0. In other words, we have
to show that T'.(X,.A.) is acyclic whenever A, is. This follows from the Mayer-Vietoris sequence 6
together with the Hausdorff case.
(We remark that it is necessary to assume that the chain complexes are bounded below if X
does not have locally finite cohomological dimension, as in 1). O

The following Corollary is included for application in [5].

10 . Corollary Let Y C X be a closed subspace, and let § : X — R be a continuous map such
that 0=1(0) =Y. Let A be a c-soft sheaf on X. Then for any o € T.(X, A),

aly =0 iff 3e>0: afp-1_c=0
(here aly is the resiriction r(a) as in 7).
Proof: For ¢ > 0, write Y. = {z € X : |[#w)| < ¢}, and for each open U C X write
(U, A) ={aeT (U, A): aluay. =0} .
It suffices to show that @DOFi(X,A) — TY(X,A) is epi. Let {U;} be a cover of X by

Hausdorff open sets, and consider the diagram:

Dieso (Ui A) ——@,; T2Us, A) —— B, To(Ui — Y, A)

Doso TN, A) ———TYX, A) — = T(X =V, A)

where the isomorphisms on the right come from 7. We wish to show that » is epi. Since u is epi by
the Hausdorff case, it suffices to show that 7 is epi, or, equivalently, that 7’ is epi. This is indeed

the case by 6. O

It is quite clear that using c-soft resolutions one can define compactly supported cohomol-
ogy H*(X,A) for any A € Ab(X). In particular, we get an extension H?(X,—) of ['.(X,—) to all
sheaves; this extension is still denoted by T'.(X, —).

11 . Proposition Let f : Y — X be a continuous map. There is a funcior f: Ab(Y) — Ab(X)
with the following properties:

@ For any open U C X and any B € Ab(Y), T.(U, f1B) = T.(f~1(U), B).

ai) For any point x € X and any B € Ab(Y), f1(B)s = T.(f~ 1), B).

aw) fi 1s left exact and maps c-soft sheaves into c-soft sheaves.

av) For any fibered product

IxxY sy
ql lf
7 —>X

along an étale map e and for any c-soft B € Ab(Y'), there is a canonical isomorphism q.p*B = e¢* f 1.
(see 13 below for the case where e is not étale).

Proof: Of course the proposition is well known in the Hausdorff case. For the more general case,
recall first from [3] the correspondence for any Hausdorff space Z between c-soft sheaves S on Z and



flabby cosheaves C on 7, given by T'.(W,S) = C(W) (natural with respect to the opens W C 7).
Given the cosheaf C, the stalk of the corresponding sheaf S at a point z € Z is given by the exact
sequence:

0—C(Z—-2)—C7Z)— 8. —0. (3)

We use this correspondence in the construction of f,. (However, see remark 12 below for a
description of fi which doesn’t use this correspondence).

We discuss first the construction of fy on c-soft sheaves. Let B € Ab(Y') be c-soft. First, assume
X is Hausdorff. Let B be a c-soft sheaf on Y, and define a cosheaf € = ¢(B) by C(U) = T.(f~1(U), B).
Note that C is indeed a flabby cosheaf, by 6. Hence there exists a c-soft sheaf & on X, uniquely
determined up to isomorphism by the identity T'.(U,S) = C(U) for any open U C X. Thus, if X is
Hausdorff, we can define fiB to be this sheaf S.

In the general case, cover X by Hausdorff opens U;, and define in this way for each 7 a c-soft
sheaf 8; on U; by T.(V,S;) = T.(f~'(V),B) . Then (again by the equivalence between sheaves and
cosheaves) there is a canonical isomorphism 0; ; : S; |, — S;|v,, satisfying the cocycle condition.
Therefore the sheaves §; patch together to a sheaf § on X, uniquely determined up to isomorphism
by the condition that S|y, = S; (by an isomorphism compatible with 6; ;). Thus we can define f113
to be S.

We prove the properties &) — (iv) in the statement of the proposition for B € Ab(Y) c-soft.
Property &) clearly holds for any open set U contained in some U;. For general U, property (i) then
follows by the Mayer-Vietoris sequence. Next, identity (3) yields for any point z € X an exact
sequence 0 — T.(Y — f~l@), B) — T.(Y,B) — f1(B); — 0, and hence, by 7 the isomorphism
@2 of the Proposition. Finally, adv) is clear from the local nature of the construction of f:.

For general A € Ab(Y) we define fi(A) € Ab(X) as the kernel of the map fi(S°) — f1(S?)
where 0 — A — 8% — 8! — ... is a c-soft resolution of A (from the first part it follows that it
is well defined up to isomorphisms). The properties (i) and @ are now immediate consequences of
the definition and of the previous case. Using 9 and %) it easily follows that f, transforms acyclic
complexes of c-soft sheaves on Ab(Y) into acyclic complexes on Ab(X). This immediately implies
that fy 1s left exact. I

12 . Remark. We outline an alternative construction and proof of Proposition 11, which does
not use the correspondence between sheaves and cosheaves. This construction will be used in the
proof of 13 below. We will assume that B is c-soft and X is Hausdorff. (As in the proof of 11,
the construction of f, for general X is then obtained by glueing the constructions over a cover by
Hausdorff opens U; C X.)

So, let B be a c-soft sheaf on Y. For any open set V C Y, denote by By the sheaf on Y obtained
by extending B|y by zero. Thus By is evidently c-soft, and T.(Y,Byv) = T'+(V,B). Moreover, an
inclusion V- C W induces an evident map By — By .

Now let Y = |J W; be a cover by Hausdorff open sets. This cover induces a long exact sequence:

.— GBBWW1 —>EBBWl0 —B—0

i0<i1 ig

of c-soft sheaves on Y. By Corollary 9, the functor T'.(Y, —) applied to this long exact sequence
again yields an exact sequence, and this is precisely the Mayer-Vietoris sequence of 6. For each
0, ..., i let fio .t Wiy 5, — X be the restriction of f; this is a map between Hausdorff spaces,
so we have (fi, . ;.) !(BWiD ., ) defined as usual. Define fi(B) as the cokernel fitting into a long
exact sequence:

,,,,,

- — P Sioi) 1 Bw,,.,) — P i) (Buw,,) — f1(B) — 0. (4)

i0<i1 ig

For z € X, we have (fi,) !(BWID Yo = L(f~L@yNW;,; B) by the Hausdorff case. So taking stalks

of the long exact sequence in (4) at z and using the Mayer-Vietoris sequence 6 for the space f~!@)
we find f1(B); = T.(f~'@),B) as in 11 @i). Property 11 @) is proved in a similar way (using 7).



The functor fi can be extended to the derived category D(Y') by taking a c-soft resolution 0 —
A— 8% — 8" — ... and defining Rf:(A) as the complex fi(S*). Up to quasi-isomorphisms,
this complex is well defined and does not depend on the resolution 8*, by 7. (In this way, we obtaine
in fact a well defined functor Rfy : D(Y) — D(X) at the level of derived categories, which is
sometimes simply denoted by fi again). In particular, H*(R¢1(A)) gives in fact the right derived
functors R* f of fi.

13 . Proposition(’Change of base’) For any pullback diagram:

IxxY Lty

| b

J—X
and any sheaf B on'Y, there is a canonical quasi-isomorphism (Rq)p*B ~ e¢*(Rf)B .

Proof: Using Mayer-Vietoris for covers of X and Z by Hausdorff open sets, it suffices to consider
the case where X and 7 are both Hausdorff. Clearly it also suffices to prove the lemmain the special
case where B is c-soft.

Let Y = UW; as in 12, so that fi(B) fits into a long exact sequence (4) of c-soft sheaves on
X. Applying the exact functor e* to this sequence and using the lemma in the Hausdorff case, one
obtains a long exact sequence of the form:

. — P e Blw,,.,) — P ar*Blw,) — " [1(B) — 0. (5)

i0<i1 ig

Now let p*(B) — S* be a c-soft resolution over the pullback Z xx Y. Then for any open U C Y,
S;;—l(W) is a c-soft resolution of p*(Bw ), so ¢ y(S;_l(W)) is a c-soft resolution of ¢ p*(B). The lemma

now follows by comparing the sequence (5) to the defining sequence

. EB 1(Sp-1w,,,, ) — @Q!(Sp—lwlo) — q:(8) — 0
i0<i1 ig
% def
for ¢:(p*(B)) = ¢:(S). O

14 . f, on étale maps. Let f:Y — X be an étale map, i.e. a local homeomorphism. It is well
known that the pullback functor f* : Ab(X) — Ab(Y) has an exact left-adjoint fy : Ab(Y) —
Ab(X), described on the stalks by fi(B)s = @®yes-1(By. This construction agrees with the one
in 11. In particular, for étale f, the counit of the adjunction defines a map Xy : fif*(A) — A ,
“summation along the fiber”, for any sheaf 4 on X.

15 . f, on proper maps. Define amap f : Y — X between (non-necessarily Hausdorff) spaces
to be proper if:

(i) the diagonal Y — YV x x Y is closed.

(i1) for any Hausdorff open U C X and any compact K C U, the set f~!(K) is compact.
It is easy to see that if f is proper then f; = fi, as in the Hausdorff case. Furthermore, for any
c-soft sheaf A on X, there is a natural map T'.(X, A) — T'.(Y, f*A) defined by pullback, as in the
Hausdorff case.

16 . Verdier duality: Given amap f : Y — X, the functor f; has a right adjoint f' at the level
of the derived categories. This Verdier duality is a very special case of Section 5 in [6]; alternatively,
one remarks that the proof in the Hausdorff case (see e.g. [2]) extends to our setting since the
basic properties of I'., and f; are preserved. Let us point out Poincaré duality as a special case:
H*(M;or) = H? *(M)V for any n—dimensional manifold M (where or denotes the orientation

sheaf of M).
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