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NONCONFORMING FINITE ELEMENTS AND THE CASCADE
ITERATION

ROB STEVENSON

ABSTRACT. We derive sufficient conditions under which the Cascade iteration applied
to nonconforming finite element discretizations yields an optimal solver. Key ingredients
are optimal error estimates of such discretizations, which we therefore study in detail. We
derive a new, efficient modified Morley finite element method. Optimal Cascade iterations
are obtained for problems of second, and using a new smoother, of fourth order as well as
for the Stokes problem.

1. INTRODUCTION

The Cascade multi-level iteration has been defined and analyzed for solving symmetric
elliptic scalar problems of second order discretized on conforming finite element spaces by
Bornemann and Deuflhard [BD96] and Shaidurov [Sha96]. As the full multi-grid method,
cf. e.g. [Hac85, §5], the Cascade iteration is based on the use of a hierarchy of corresponding
auxiliary discretizations on coarser meshes. Going from the lowest level to the highest
one, on each level the obtained approximate solution from the previous level is used as
a starting value of a number of iterations of a simple iterative solver (a smoother) like
Conjugate Gradients. However, since in contrast to multi-grid, this smoother is not capable
to significantly reduce the (smooth) algebraic error from the previous level, this error should
already be strictly less than the final error that one permits. This is achieved by applying
an increasing number of smoothing iterations on lower levels. On the other hand, since the
problems on lower levels have a smaller dimension, the complete algorithm can be shown
to be optimal, i.e., using a number of operations proportional to the number of unknowns,
on the finest level an approximate solution is obtained with an algebraic error that, in
energy norm, is of the same order as the discretization error.

In a recent paper [BD99], Braess and Dahmen analyzed the Cascade iteration applied to
the discretized Stokes equations. The velocity component of the solution can be character-
ized as the solution of a symmetric elliptic variational problem on the space of discretely
divergence-free velocities. Such spaces are non-nested, which means that explicit prolonga-
tions had to be introduced in the Cascade iteration. A difficulty is that these prolongations
have an energy-norm that is larger than one. Yet, since only oscillating parts of the pro-
longated function are responsible for an increase in energy norm, and these oscillating
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parts are reduced by subsequent smoothing iterations, it could be shown that the Cascade
iteration yields an approximate velocity vector having an algebraic error that, in energy
norm, is of the same order as the discretization error.

In the present paper, we use the idea behind the analysis from [BD99] to analyze the Cas-
cade iteration in an abstract setting of general nonconforming finite element discretizations
of symmetric elliptic problems. As applications, we construct optimal Cascade iterations
in the following three situations:

(a). Laplace equation and nonconforming P; elements,

(b). Biharmonic equation and Morley finite elements,

(c). Stokes equations and nonconforming P; elements for the velocity and Py elements
for the pressure.

Key ingredients to the analysis of the Cascade iteration are optimal discretization error
estimates. In one framework, we derive such estimates for less regular problems, and for
fully regular problems, where in the latter case a reduced set of conditions suffices. Our
analysis for less regular problems follows the one from Brenmer in [Bre99] quite closely.
For less regular problems it may be necessary to apply the nonconforming finite element
discretization with a modified right-hand side, in order to make the discrete system well-
defined. We show how cheap modifications can be constructed that yield optimal error
estimates without needing additional regularity conditions. In particular, we construct a
new efficient modified Morley method.

Standard smoothers for problems (b) and (c) yield a Cascade iteration that is only
suboptimal. To obtain an iteration that is optimal, we construct more powerful smoothers,
that involve a call of simple conforming multi-grid method applied to a scalar problem of
second order.

The paper is organized as follows: In §2, we state the abstract variational problem and
its discretization. In §3, we formulate the Cascade iteration and give sufficient conditions
under which it is (sub)optimal. The smoothing property of (preconditioned) Conjugate
Gradients is studied in §4. In Section 5, we derive error estimates for nonconforming finite
elements. Finally, in §6, we discuss aforementioned applications.

2. BASIC ASSUMPTIONS

Let V be a closed subspace of a Hilbert space H' over IR, and let a(, ) be a symmetric
bilinear form on V satisfying

(A) a(v,v) T ol (v EV).

In order to avoid the repeated use of generic but unspecified constants, here by C' S D we
mean that C' can be bounded by a multiple of D, independently of parameters which C'
and D may depend on. Obviously, C' 2 D is defined as D S C, and ¢ S D when both

C < D and C 2 D. We consider the following symmetric and elliptic variational problem:
Given f € V', search u € V such that

(2.1) a(u,v) = f(v) (vey).
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Let H° be a Hilbert space such that
H' — H°
with dense embedding. For s € [0,1], we define H® = [H°, H']; being the interpolation

space obtained from HY and H! by the method of complex interpolation. We assume the
existence of an a € (0,1], and another Hilbert space that we denote by H'**, for which

Ht s !

with dense embedding, such that for f € (H'~*)", the solution u of (2.1) is in H'** and
satisfies

(B) |ullzre S ||f]lar=ay (reqularity).

Example 2.1. A typical application is characterized by H® = L*(Q) for some domain
Q C R, H' = H'(Q) or H' = Hj(Q), in which case (2.1) is a problem of order 2r, and
H'T =H'N H(H'Q)T(Q), or products of these spaces. We will consider applications where
VY = H', as well as an application concerning the Stokes problem where V is a proper
subspace of H'.

Let (Vi)k>o0 be a sequence of finite dimensional subspaces of H°, which are not necessarily
nested, or contained in V. Let V_; = {0}. For each £ > 0, we assume that we have a
scalar product ag(, ) on V + Vi1 + Vi that coincides with a(, ) on V, and, for & > 1, with
ag—1(, ) on Vi_1. We put

1

o = ax(, )2

For s € [0,1], we equip Vi with norms || || defined by interpolation between || |1 :=
o, and || |lox := || ||[3o- We define 8y, := infozy, ey, loelbor - Note that ﬁk_l is the smallest

okl

constant such that
(2.2) 16 < ﬂk_lH l|o,k (inverse inequalily).
We assume that

(C) Breer /B S 1.

Example 2.2. In the situation from Example 2.1, and for Vj being a standard (non-
conforming) finite element space with respect to a shape-regular, quasi-uniform mesh with
meshsize hy, and for a,(, ) being uniformly equivalent to the sum of the squared H"-norms
on the elements, we have 3, T hJ.

For some f; € V}, we approximate the solution u of (2.1) by the solution u; € Vj of
(2.3) ar(ug,vr) = fe(ve)  (vr € V).

As we will demonstrate in §5, for suitable choices of fi error estimates of the following
type are valid: For some s € [0,1 — a],

(2.4) lu = willa, S BN Ngo-ay + B W gy (F € (H)).
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Remark 2.3. Compared to the s = 1 — a case, (2.4) for s < 1 — a requires additional
smoothness of f without yielding a qualitatively better error estimate as function of ;.
On the other hand, taking f € (H®)' for s < 1 —a generally allows for simpler constructions
of fr. Note that taking f, = f|Vk is only possible if V, C H".

Remark 2.4. It V = H', then (2.1) defines a homeomorphism between f € (H') and
u € HE. If, in addition

(2.5) la(u, 0)] S [lullellollzo-e (v € HF, v eHY,

then from the fact that H' — H1~* is dense, it follows that for v € H!** the mapping
v+ a(u,v) on H' has a unique extension to a bounded linear functional on H'=*, with
norm that can be bounded on some multiple of ||u||31+a. Together with (B), this means
that f <» u defines a homeomorphism between (H'~*)" and H'*t®. So when s = 1 — a, the
meaning of the error estimate (2.4) does not change if we replace (both terms) 82| f|| (21—«
by B¢]|u||i+« and quantify over u € H'** instead of over f € (H'=*). A similar remark
applies to other error estimates that we are going to derive (e.g. (3.4), (3.5) and (5.13)).

Similarly for s € [0,1 — a), if |a(u,v)| < [Jullpe-«||v]|lns (v € H*=*, v € H'), then
f(v) := a(u,v) satisfies || ||y < ||ulnz-:. However, since f € (H*)' does not imply that
u € H*7%, (2.4) for s € [0,1 — a) cannot be written in terms of u only.

For comparison, if V is a proper subspace of H', then the mapping (H') = H' : f = u
defined by (2.1) is not injective. If moreover V «— H'~* is not dense, then even [ — u
restricted to (H'~*) is not injective. Normally, fr will be a function of f, and so will be
ug. Yet, if f — w is not invertible it cannot be concluded that uy is a function of u. Indeed,
in our application concerning the Stokes problem, it will turn out that this is not the case,

which means that ||u — ug||,, cannot be bounded in terms of norms of « only.

Assuming an error estimate of type (2.4), in the next section we derive sufficient condi-
tions under which the Cascade iteration solves (2.3) with an algebraic error in the || ||14-
norm which, as function of 3, has the same order as (this bound on) the discretization
error, while taking a number of operations that is proportional, or almost proportional to
the number of unknowns.

3. THE CASCADE ITERATION

To solve the discrete system (2.3) on some level j, we assume the availability of some
basic (semi-)iterative method (a “smoother”) on all levels 1 < k < j. The (algebraic) error
after m iterations of this method on level k starting with an initial error vy will be denoted
by Skm(vk). As in [BD96], we assume that there exists a v > 0, and linear operators

Skm : Vi — Vi such that
(D> ’lsk,m(vk>’|],k < Hgk,mkal,k (Uk € Vk),

(F) [ Skmllihc1n <1,
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(F) |‘§k,m”1,k<_1_a,k < ( k_lm_"’)a (smoothing property).
Furthermore, since the spaces Vj are generally non-nested we need an explicit prolonga-
tion
If Ve = Ve
The Cascade iteration now reads as follows:

e Compute the exact solution ug of (2.3) on level 0. Put uf = u,.

o For k=1,...,7: On level k, apply m()
(2.3) using I}_,u}_, as starting value. Denote the result as uj.

iterations of the smoother to the equations

Below, we analyze u; — u} in the || ||1,;-norm.
Lemma 3.1. Let IF_, : Viey — Vi, be defined by

(3.1) ak(i]l:_lwk—lyvk) = agp(wp_1,vr) (wp—1 € Vi—1, v € Vi).
Assume (D), (E), (F),

2) () S 1,
=0
(33) H[li‘c—l - j]]:—ll‘l_a7k<_17k_l 5 /6k‘a7
and that for some s € [0,1 — a] the exact solutions of (2.3) salisfy
(3.4) luk = Ty lli—a S B lga=ay + B llgey (€ (H)').
Then
(3.5)

J=

I\uj—uHmNZ( @) Plgaay + B0 W lgey) (€ (),

Proof. For 1 < k < j, there holds
up —up =5, 0 (up — IF_ i),
and so by (D),
lur = uillie < 18, 0 (e = TEwiy)lhe.
Following [BD99], we write

up = Wiy = we — [_yupy + illcc—l(uk—l — ) + (15—1 - il]:—l)(uk—l — Uj_q).

From

Hs’k,mgn( — I yunn) e S B2 ) T Flgo-ey + By (m) 7 fll ey
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by (F) and (3.4);
19, i T (it = i) < oy = iy
by (E) and (3.1); and
19, o (T = F_ )i = w2l S (m) 7 iy = i e
by (F) and (3.3), we conclude that there exists a constant ¢ such that
(3.6) lux = willig < EB2m) T Fllg—ey + e85 (mi”) 7| Fll ey

(1 em?) s =
Assumption (3.2) shows that

HHl—I—c )y < P TS M) T <

and so (3.5) follows from a recursive application of (3.6). O

Theorem 3.2. (¢f. (IBD96, BD99]) Assume (D), (E), (F), (3.3) and (3.4). Let
(3.7) B = p™™ and dimV, = p*

where one may think of p > 1 as the mesh refinement factor, 2r > 0 as the order of the
equation, and d as the space dimension. Assume that the computational work involved in
performing the prolongation IF_, and m iterations of the smoother on level k is proportional
to dimVy, and mdimV}, respectively.

(a). Let r < dvy. Choose mgj_)z = mc for some ¢ € (p"/7,p?). Then the approzimate
solution u} from the Cascade ileration salisfies

gl i o> =)

Yo
~ o=\ ~ =\ . —s—a . r(l—s
s = 6 ls S (B W ll=oy + (B fll gy > § 38,77 ife =022 4
(£l if e < iz
requiring a number of arithmelic operations that is proportional to mdimV; (optimal
complexity).
(b). Let r = dv. Choose mgj_)- = mp® 102 Then

Hw—um.<{ N(ﬁmﬂ)WWwaf #s=1—a}
2o R BT (W lge=ey + 50 lgey) if s <1—a

whereas the required number of arithmetic operations is proportional to mdimV;(1 +
log(dimV;))'*%/ (") (suboptimal complexity).

Proof. Apart from a straightforward counting of the number of operations, the proof follows
by applying Lemma 3.1, where the appearing geometrical sums should be estimated in an
obvious way. Note that (3.2) follows from the fact that i — m(J)Z- is an exponentially

increasing function. U
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4. PRECONDITIONED CONJUGATE GRADIENTS AS A SMOOTHER

Since with the Cascade iteration on lower levels many smoothing iterations are applied,
it pays off to accelerate a basic iterative method by conjugate gradients (CG), in which
case the basic iterative method is viewed as a preconditioner. As we will see, in common
situations the resulting iteration satisfies the smoothing property (F) with v = 1, instead
of v = 1 that one would get without this acceleration. As shown in Theorem 3.2, having
a sufficiently large value of v is essential for getting an optimal method.

We assume that for each k, some scalar product ((, ))x on Vy is given, which, as explained
at the end of this sectlion, in applications will incorporate the choice of the preconditioner.

We put e = (, ));N By Riesz’ representation theorem, there exists a linear operator

A 1 Viy = Vi and an [, € V;, such that

(4.1)  ap(wp,vi) = (Apwe, ve)e (Wi, o € Vi) and  fi(ve) = (fr,vi)r (vi € Vi),
and so (2.3) is equivalent to

(4.2) Apug, = fr.

Since Ay is SPD with respect to (', )&, we can apply CG to (4.2) as our smoothing iteration,
and in the following we will verify the assumptions (D), (F) and (F).

~1
Using || - |16 = [IA7 - [|%, it is well-known that the error Sy . (vi) after rn CG-iterations
starting with vy satisfies
4.3 Sh.m = i A :
(4.3) 1Skm (el = min  [lp(Ar)vell e

Following [Sha96], cf. also [Hac85, Exercise 6.6.8(i)], for A > 0 we define
¢A7m($) = (—1)m+1(2m + 1)_1\/§T2m+1(\/%),

where Ty, 41 1s the Chebychev polynomial of order 2m +1. The polynomial ¢, , minimizes
maxgepo,a] [vVp(z)| over {p € P, : p(0) = 1}. There holds

(4.4) max [vVzoam(z)] = (2m+1)""VA

z€[0,A]

and
4.5 bam(2)] = 1.
(4.5) Jmax [oam()]

Defining S*j,m = qép(,&k),m(Ak)a assumptions (D) and (E) follow from (4.3) and (4.5)
respectively. From (4.4) and
T ar(vr, vr) 9 [|vE |30

p(A) = sup V) < g o,
stmby,  IIoillE oimbv, el

we find that
(4.6) 18k mollie < (2m 4+ 1) p(AR) 2 |loxlle < (2m + 1) ex 57 [vkl |20
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where

(4.7) Cp = sup HWHHO sup |||Uk”|k
ozveevy Vklle ounevy ||vg]lao

By applying interpolation to (E) and (4.6), we conclude that a sufficient condition for the
CG-iteration to satisfy (F) with v = 1, is that ((, ))x is selected such that

Now we come to the selection of ((, )z and the discussion of the implementation of above
CG-iteration.
Let {pg,i: i € Ki} be a basis of Vi, and let

Gy RM™VE 5 Vv — E Vi Pk
1€EKy

denote the corresponding bijection between the coordinates of an element and the element
in Vy itsell. Define the mass- and stiffness-matrices My, Ay € [RAmVixdimVi 1 4 the vector
fk c Bdlmvk by

<M]CWk,V]C>: ((Dkwk, (I)kvk)‘HO, <Aka,Vk>: ak((bkwk, @kvk) and <fk,Vk>: fk(‘I)kvk),

where <, > denotes an Euclidean scalar product.
Having the basis on V; fixed, there is clearly an one-to-one correspondence between SPD
matrices W), € RIMVE*dimVe 11 scalar products ((, ))& on Vi via the relation

<Wie, - >= (Of, pr))i-
Using this correspondence, ¢4 defined in (4.7) can be rewritten as
Cp = K/(lele),

and so (4.8) means that Wy should be spectrally equivalent to some multiple of My,
uniformly in . ) )
From the definitions of Ay and f; in (4.1) it easily follows that

Ak = q)kW;IAk‘I);1 and fk = q)kwgzlfk

We conclude that the result 4y of the application of m CG-iterations to (4.2) using the
scalar product ((, )z and initial value 4}, satisfies iy, = @1y, where Gy, is the result of the
application, with initial value ®; 42, of m CG-iterations to Wi Ayu, = W 'f; using the
scalar product <Wy-,->, or equivalently, m preconditioned CG-iterations to Ayu, = f;
using the Fuclidean scalar product <-,-> and preconditioner Wy.
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5. ERROR ESTIMATES FOR NONCONFORMING DISCRETIZATIONS

Making use of the assumptions from §2 throughout this section, we will derive sufficient
conditions for (3.3) and (3.4). Our analysis will follow the lines from [Bre99] quite closely,
in particular Lemma 3.4, Theorem 3.5, Lemma 3.7 and Theorem 3.8 from that paper.
Differences are that we end up with simpler constructions of the discrete right-hand sides
fx, and that within the same framework we derive a reduced set of conditions for the fully
regular case a = 1. Furthermore we allow that V < H'~* is not dense (cf. Remark 2.4).

We start by considering [ € (H'™*),i.e. s =1— a, and

(5.1) fr=foly forsome Ij:V,— H7™°.

Since for applying duality arguments we will consider solutions corresponding to different

right-hand sides simultaneously, in this section we will use the notations u{f) and u,gcf) to
denote the solutions of a(u,v) = f(v) (v € V) ((2.1)) and ag(ug,vx) = f(Lyvg) (vk € Vi)
((2.3)) respectively.

Remark 5.1. Tn [Bre99] it is assumed that I maps into V instead of only into H'~*. The
present approach will give rise to a reduced set of conditions for the case a = 1.

Theorem 5.2. (a). Assume

(@) inf lu— villa, S B llulloss (€ H)  (approzimation),
Vg k

(H) ar(utD,v0) = f(Ion)| S B2 N Nlga-aylloallie (F € (H'7), vp € Vi) (consistency).
Then
(5.2) [ — a0, S BN fllgmay (F € (H2)),

i.e., with f = f oIy, the error estimate (2.4) is valid for s =1 — a.
(b). If, in addition,

(53) jax(u) =i ) S B Fllgo-oylgllga-ey  (frg € (HT)),
then
(54) [l = L o= S BN ooy (F € (M)

Proof. (a). Given f € (H'=), let @z € Vy, satisfy ag(ir, v) = ar(u'), vg) (vx € Vi). Then

lu? i)l = inf Jful) — o,
Vg Vk
On the other hand, there holds

e — uDlfs = sup Lol e on) = S|

O£ EVy |0 |1, 0£vrEVy vkl

The proof of (5.2) follows from (G), ||[u!)]|z14a < £l z1==y (ie. (B)) and (H).
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w1 )
(b). Let f € (H'=®)". There holds ||ul/) — [ku](cf)”'yl—a = SUPgLye(p1-o) w. For

arbitrary g € (H'=*), we write
lg(u? = 1| = Ja(u?, ul) — ax(u?), uf)
jar(u® — 0 ) + (@ = u — ) 4 () — )|
2 llgllao=oy Il llger-oy
by (5.3) and (5.2), which completes the proof. O

AN

We discuss the non-standard condition (5.3). We first consider a special case:

Proposition 5.3. If for all k, I}, is the trivial injection (necessary is Vi C H'™®), then
(5.3) follows from (5.2) and

M) an(eo0) = fo)l S BN Noo-ayllonllae— (F € (H'T), 00 € Ve V),
which is a slightly stronger assumption than (H) for this Ij.

Proof. Given f,g € (H'=*), by (I) and (5.2) we have

ar(u) —ul? uf) = Jap(u, uf? — @) + a(ul) >>—ak<uk L ul?]
= Jar(u, uf?) — ul) — f(ui @)
S B llgo-ayllu® — ”Hawﬂi"l\f!\ =y llgll ger=oy
which is (5.3). O

The following proposition shows that in the general case (5.3) can be deduced from an
extra consistency assumption.

Proposition 5.4. Assume (5.2), and let TI* : H'** — V. be such that

(J) (7 = T)ulla, S Billullzsa (v € HF?)
and
(K)  Jar(uD, ) — f(LITF0)| S B2 fllga-ayllollaose (F € (H2) 0 e H'T?),
Then (5.3) is valid.
Proof. The proof follows from the assumptions and (B) by writing for f, g € (H'~°Y,
ar(u) =l w9y = ap(u) — oD TR 4 ay(ul) — ulD, W) — @) =

E

ak(u(f)7Hku(g)) — f([knku(g)) + ak(u(f) — u](c‘f)’ulgg) — u( 9) + ([ — Hk)u(g))

It will turn out that (5.4) can be used to prove (3.4):
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Proposition 5.5. (a). Assume (5.4) and

(55) ’l”k“l—a,k = H[kvk”yl—a (Uk € Vk)

Let TI* : H't* =V, be a mapping such that

(L) [ [Py

Then

(5.6) I — Dok S BN fllgo-oy  (f € (H'7)),
(b). If, in addition, the prolongation If_, salisfies

(M) 1T = ey T Nl ia S B2 flullzora (u € H'T?)

and

(N) 1 lh=aker-ap-1 S 1,

then

(5.7) lut? = B w2l S B llpo-ey (f € (K0,

i.e., with fr, = foly, (3.4) is valid for s =1 — a.
Proof. (a). By (5.5), (L), (B) and (5.4), for f € (H'~)" it holds that
I — P har S 0 = ) =
< NI = Dullgo=e + [ — L oo S 6201 =)
(b). By writing
ch) - 115—1“201 = “ch) — Mul) 4+ (Hk - [l]:—lnk_1>u(f) + [1];—1(Hk_1“(f) - ugcf—)l%
the proof follows from (5.6), (M), (N), (B) and (C). O

u

In a special case (5.7) follows already from (5.4) and a condition slightly stronger than
(N):
Proposition 5.6. Let o = 1 and I} be the trivial injection, and suppose that If_, : Vi_y —
Vi has an extension to a projector 7;’;_1 Vi1 + Ve = Vi. Then (5.4) and

(0) Hil]:_lkaO,k N || vk]| 1o (vk € Vi1 + Vi).
imply (5.7), i.e. (3.4) with f, = f|v and s=1—a=0.
k

Proof. For f € (H"), we have

lut? = IE D o = 1y () = ) o S JJul? — w0
by (O), and
lut? — ul? oo < Jlul? — uD|lgo + ul — i lno S B2 Fll oy

by (5.4) and (C). O
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For a0 < 1, estimate (5.5) allows us to switch between discrete and continuous fractional
norms. It can be verified using the following proposition.

Proposition 5.7. Assume Im I, C H' and

(P) | Txvrllzo = ||vllok (ve € Vi),
(Q) | Tkvllze < JJvkllie (v € Vy).
Let TI* : H' — Vi, be some mapping satisfying

(R) Mol e S ol (v € HY,
(S) 1T = LIT*|l 0 30 S B

Then |[Iyvg|lae = ||vkller (8 € [0,1], vi € Vi), d.e., (5.5) is valid.

Proof. Using ||Iyvr||%e < |lvi]lox and (Q), interpolation shows that |[lyve|ae S vl
(t S [0, 1],Uk S Vk)

The estimate ||, vg||zo 2 |lvk|lox implies that there exists an F*¥ :TmlI, — V, with
F*I, = Id and ||Fk- l|o.x < || |lo on Im I. Let Q* : HY — Tm I, denote the H -orthogonal

projector onto Im ;. Then for F*Q* : H® — V;, we have
IF*Q%0llox S Q% 0|l < [[vllge (v € H®),
and
IF*Q 0|1k S B IIF*QH (I = Ll*)ollos + [TF0]le S ol (v € HY)
by (2.2), (R) and (S). Interpolation shows that ||vg|lex = |F*Q*Lovkllix S |[Tevilze
(t €1[0,1], vy € V). O
Remark 5.8. From Remark 2.4 we learn that if V = H!, and
)| S lllssclolaas (0 €HF 0 H) ((25))
then (H) and (K) can be rewritten as
(5.8) |ax(u, o) — a(u, Top)| S BRullssallosllie (v € HT, vp € Vi),

(5.9) |ag(u, TTF0) — a(u, IITF0)| S B2 |||+ ||| 0040 (v € H'T™ v e H'TY),

where a(, ) here is the extended form on H'** x H!'=*,

This reformulation of the consistency assumptions has the following advantage: Suppose
there is some § > « and a Hilbert space that we denote by H!'T, such that H't® =
[H', H'*?], ., and for which we are able to verify (2.5), (5.8) and (5.9) with a replaced by
. Then since, assuming (Q) and (R), the estimates (2.5), (5.8) and (5.9) are also valid for
a replaced by zero, the method of complex interpolation shows that they are valid for the
original a, and so (H) and (K) hold.

We note that it is generally not possible to apply interpolation arguments to (H) and
(K) directly because of the regularity limitation.
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In our application concerning the Stokes problem, V is a proper subspace of H'. For
this application we will verify (H), but it can be shown that (5.8) is not valid.

Now we have derived sufficient conditions for (3.4) with f, = f o I}, we come to the
verification of (3.3). We start with a lemma.

Lemma 5.9. Assume (5.4), (5.5) and (5.7). Then for PF=" 1V, — Vi_y defined by

ak—l(P:_lukaUk—l) = ag(uy, ]f_lvk—ﬂ (ur € Vi, vh—1 € Vio1),
it holds that
(5.10) 1PE ) — uf) |caner S B2 flga-ay  (f € (H'7)).

Proof. By (5.5) and duality, we have to prove that

o1 (PE =2 B gl ooyl sy (fg € (HI7)).
We write

(Lo (P ) — 0i2)) = arca (w2, PE M) — i) =
ar(Tui?y uil)) = a2y 0l) = F( T = D)2y,

and

(ITfy = Do = T — ) + La? — a0 — 1y,
From (5.5), (5.7), (5.4) and (C), we conclude that

Py = Te)ul2 DL S Ul -oy B2 9l o-oy

which completes the proof. O

Remark 5.10. In relation to multi-grid convergence theory, we note here that (5.5), (N),
(5.7) and (5.10) imply that ||/ — [£_1P5_1||1—a,k<—1+a,k < 33, which is the so-called ‘ap-
proximation property’ (cf. [Hac85]). One may consult [Bre99, proof of Lemma 4.2] to
verify this statement.

Proposition 5.11. Assume (5.2), (5.5) and (5.10), then
15y = IEyhma et i S B2
i.e., (3.3) is valid.
Proof. By (5.5) and duality, we have to prove that
l9(T( Ty = T )usen)l S Billgllgo-ayllusollie-r (9 € ('), wpmr € Vi),

By the definition of i,f_l given in (3.1), we have

gL Ty = TE_Yuper) = an(ul®, (T, = T8 uer) = an(ul® (T, = Dugoy)
(9)

= apr (Pl — o uis) + an(u®) —al®ugy).
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By (5.2) and (C), there holds

lar(u, — ) wei)| < 82119l rer-oy [ wrmt | 1,61

The inverse inequality (2.2) and (5.10) show that
ok (P — i)l S0 BP0 = w2 hmpen s e

S Blgllgo-ayllus-1llie-1,
which completes the proof. O

Finally in this section, we return to the verification of (2.4) and (3.4). So far we assumed
that fi, = foly, where, besides other conditions, Iy satisfied (5.5), i.e., |||[1—ak < ||k ||z1-a-
For @ = 1, this condition is easily fulfilled, but for a < 1 the verification will be difficult
without assuming that 7, maps into H'. On the other hand, to ensure that for f € (H'~*)’,
fi = [ oI is well-defined, it is already sufficient that I maps into H'~.

In view of this observation, in the following we relax the conditions on the construction
of fr. Yet,if Vi ¢ H'=* it will not be possible to take f, = f|Vk In that case it may make
sense to consider only right-hand sides f € (H®)’ for some s < 1 — , which then allows
for a further simplification of the construction of f;. However, as noted before, due to
the regularity restriction, imposing stronger conditions on f will not lead to qualitatively
better error estimates as function of 3.

Theorem 5.12. Let s € [0,1 — a], and let Gy be a mapping from Vy, into H*. For [ €
(H?)', let ugcf) now denote the solution of ar(ur,vy) = f(Gror) (vi € Vi), which is the
system (2.3) with fr = f o Gy.
(a). Assume (5.2) and
(T) 1(Te = Ge)okllns S By llowllie (vk € Vi)
Then
[ =l < B2l go-oy + BN flloey (€ (7)),

i.e, (2.4) is valid.
(b). In addition, assume (5.5), and

(U) I(Zk = G [pecprsa S B

for some mapping TI* : H'** =V, satisfying

(V) (7 =150l S Bellollpasa (v € HF?).

Then (5.6) gives

(5.11) I — o S BN llgaay + B I llwey (€ (),
and (N) and (5.7) give

(5:12) e = B s S B ooy + B W ey (€ (),

i.e., (3.4) is valid.
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Proof. In this proof, let &,(Cf) denote the solution of ag(ux,vr) = f(lyve) (vi € Vi).
(a). By (T), we have

Jar (6 — i o) = 1F((T = Gl S B ey lloallie (e € Vi),

or
(5.13) 4t =« Naw S BE2N Fll a0y

The proof now follows from (5.2).
(b). By (5.6) or (N), (5.7) and (C), it is sufficient to show that

~(f f a—s s
i —uhar S AT W gy (F € (),
which by (5.5) and duality is equivalent to

(5.14)  |g(Te(a) — u)| S B lgll eyl Fllwey (g € (K=Y, f € (H)).
By writing

g —u)) = an(@?, o) — )

(5.14) follows from
lan(a@, i — )] = (T = GO aD)] S | llgey B gl o=y
by (U) and (B), and
Ja(@ = 2 + a0 — 1409, 80 — D) < 5 gll ey B | Fllgeey
by (5.2), (V) and (B), and (5.13). O
As we will see in the applications in §6, the conditions of above theorem can be satisfied
for (G, mapping only into H?®. Properties of the generally more complicated I}, are still used

to obtain relevant estimates, but I, will not enter the practical computations. In particular
for s =1 — a, this approach will give rise to new, cheaper nonconforming discretizations.

6. APPLICATIONS

6.1. Nonconforming P;. Let Q C IR* be a bounded polygonal domain without slits. We
consider the Poisson equation with homogeneous Dirichlet boundary conditions, i.e., we
take

H =L1*Q), H =Hy,Q)nHQ) t>1), V=H
and a(u,v) = [, Vu-Vuvdz. Then (A) holds, and elliptic regularity theory shows that
there exists an o € (3,1], such that for f € H='**(Q), the solution u of (2.1) satisfies
[ullzee SIS lm-1+e ((B)).

Let 79,71, . .. be a sequence of conforming triangulations of Q, such that 744 is generated
from 7, by refinement, sup;,, diam(7T) = 27% and the triangles satisfy a shape regularity

condition uniformly over the levels. We define E}, V) as the set of all edges and vertices
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of 7, and Ey, Vi as the set of internal edges and vertices of 7. For e € F, m. will denote
the midpoint of e, and n. is a unit vector normal to e.
We consider the nonconforming P, finite element space, i.e., we take Vi = N where

N, ={v € HTETk Py(T): v is continuous at m. for e € Ey,
and it vanishes at m, for e € E;\Ey.},
and define

ag(ug,vg) = Z / Vuy - Vordz.
T

TETk

It holds that 8y, < hy :=27% and so (C) is valid.
We equip the spaces N with nodal bases {n;. : ¢ € F}, defined by

(6.1) Mhe(ms) =0.:  (e,¢ € Ey).

From (e, k)12 = 5675112, it follows that the mass matrices are uniformly well-conditioned
(diagonal) matrices. The analysis from §4 shows that CG-smoothing with any precondi-
tioning matrices that are uniformly well-conditioned satisfies (D), (E) and (F) with y = 1.
Since the values of the other parameters appearing in Theorem 3.2 are given by r = 1,

p = 2 and d = 2, this theorem shows that for any ¢ € (2,4) the Cascade iteration with
() =

il ~ mc' yields an optimal solver in case (3.3) and (3.4) are valid.
We define the prolongation in the usual way, that is,

m

(I}_,vi_1)(m.) = average, of Uk_1|T_(me) (e € Ey),

where 7,1 2 T; D e.

It is clear that [1]:—1 extends to a projector [7;_1 : Ni_y + N, — N, that is L?-bounded.
This means that if we had confined ourselves to the @ = 1 case, which corresponds to
0 being convex, then by Theorem 5.2, Proposition 5.3, Proposition 5.6, Lemma 5.9 and
Proposition 5.12, it would have been sufficient to verify only (G) and (I) to conclude (3.3)
and (3.4) (with s =1 —a =0 and f; = f|Nk> It is well-known that (G) and (H) (with
I;; being the trivial injection) are valid, see for example [BS94, §8.3]. Exactly the same
technique that yields (H) shows the slightly stronger (I) as well.

In the general case, we have to verify a larger set of conditions from §5. For convenience
of the reader, we give arguments for all these conditions, however, since most of them have
been discussed earlier in the literature, our treatment will be concise. The reader who
prefers more details is referred to [Bre99] and the references cited there.

Following [Bre99], we define an auxiliary space

(6.2) Ny = [ 2(T)nC(Q) N H(Q),

TETk

i.e., Ny is the space of continuous piecewise quadratics with respect to 75, which are zero

on 90, We define I, : Ny — Ny C Hy(Q) by
([k'Uk)(me) = 'Ulc(me) (6 S Ek); ([lc'Uk)(P) = 'Uk|T(P) (P S Vk)a
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where T' € 74, 1s some triangle that contains p.

By the L2-stability of the properly scaled canonical bases of N, and N, estimate (P)
follows easily.

By the continuity in the midpoints of the edges, if vy € Ny is constant on a Ty € 7
as well as on each of its direct neighbors Ti,... T, € 74, it is constant on U!_,T;, and
so (I — Ix)vy = 0 on Ty. Using a homogeneity argument one can now conclude that for

arbitrary v, € Ny, there holds ||(1 — ]k)Uk”L?(TO) < hk\/Z;):O |Uk|i11(Ti)’ and so

(6.3) 107 = Te)vellze < hellowllie (k€ N,

which using an inverse inequality gives (Q).
The mapping TT* : H}(Q) — Ny that we will use on all places in §5 is defined by

k —i vds e &
o)) = 1o [vds (e 1)

Since II*¥ locally reproduces linear polynomials, an application of the Bramble-Hilbert
lemma, a homogeneity argument and interpolation show that

(6.4) (7 =Tl + b (T =10 lla, S illollme (L€ [1,2], v € Hy(Q) N H' (),

which gives (J), and thus (G), as well as (R) and (V).
Since also IIT* : HM(Q) — HL(Q) locally reproduces linear polynomials, the same
arguments show that

(65) (7 = LIM)ollme S B Nollme (g €[0,1], ¢ € [1,2], v € Ho(Q) N H(Q)),
giving (L) and (9S).
Similar arguments that gave (6.3) show that

<6'6> H(I - Lf—l)vk—]HLQ 5 thUk—l H],k—l (Uk—] S Nk_1),

which by applying inverse inequalities gives (N).
Since both II*¥ and IF_,II*~! locally reproduce linear polynomials, the Bramble-Hilbert
lemma gives

101" = BT ollze S Allvllm (v € Hy(2) N H* Q).

Since furthermore by HHkUHLk < llvllzt ((R)), and H[,]:_]Uk_ﬂ[l’k < |lvk=1]l1,6=1, which
follows from (6.6), there holds |[(TT* — IF_,TT*"Y)v||,x < ||v]|#, interpolation gives (M).
For uw € H} ()N H*(N), v € Hi(), integration by parts shows that

(6.7) |/Vu -Vodz| = — / Avvdz| S | g2 vz,
Q Q

where (u,v) — — fQ Awwvdz is the unique extension of a(, ) to a bounded bilinear form on

H( N HAQ)) x L2(Q). For u e H(Q)N H%(Q), vy, € N;, integration by parts on each
( 0 0 ) ) g yp
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T € 1, shows that

(6.8) ag(u, vg) /Au[kvkd;v—/ﬂu Iy — Dogdz — Z/ o t)[vk]d
ecly,

where [vg] denotes the jump of v; across e in the direction of n.. By (6.3), | [ Au ([} —

DNogdz| S < hi||w| g2 ||vk|[1k- Since [vg] is linear on e, and zero in its mldpom‘r it holds that
[.[vi]ds = 0. An application of [CR73, Lemma 3] now shows that | Y, [ (On,u)[vs]ds| S
th |2 ||vk|1,5, and so

(69) |ak(u,vk) + / Au ]kvkdx| ,S thuHH2’|Uk’|17k.
Q

We now substitute v, = IT*v in (6.8), where v € H}(Q) N H*(Q). Using (6.4) and (6.5)
we find that | [ Au(ly — IIT*vdz| < hj||lu|lg2||v]|m2. Since [ [ITFo — v]ds = 0, [CRT73,
Lemma 3] and (6.4) give

13 [@nllolds] = 13 [(@nalil = olds| S bl (1 = Dyl < el o

and so
(6.10) |ag(u, TTF0) + / Au LITFvdz| S b3 ||| g2 ||v]| 2
Q

Because of (6.7), (6.9), (6.10), Remark 5.8 with § = 1 shows (H) and (K).
From Theorem 5.2, Propositions 5.4, 5.5 and 5.7, Lemma 5.9 and Proposition 5.11, we
now conclude (3.3) and (3.4) with s =1 —a and f; = f o [;.

Finally, we will simplify the construction of fi. Since 1—a < 7, it is known, see [Osw94],
that Ny C H'=*(9), and furthermore that the following inverse inequality is valid:

(6.11) ol S B oulle (or € M),

This means that with G being the trivial injection, (T) and (U) with s = 1 — « follow

from (6.3) and (6.5) respectively. Theorem 5.13 now shows that (3.4) with s =1 — a is

also valid when f; = f|N . From Theorem 3.2 we conclude the optimality of the resulting
k

Cascade iteration, that is,
luj = il S AR la—ee (f € HTF(Q))

taking O(dimV;) operations.
Moreover, we note that by (5.11) we have the optimal error estimate

T — uglh—op S RIS -1ea (f € HTH(Q)),
which seems new for f, = f|Nk and a € (%, 1).
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6.2. Morley element. Let Q C IR* be a bounded polygonal domain without slits. We
consider the biharmonic equation with homogeneous Dirichlet boundary conditions, i.e.,
we take

H =L*Q), H' =HQNH*Q) (t>1), V==H",

and a(u,v) fQ fizl af2am 3328”T7d:v Then (A) holds, and elliptic regularity theory shows
1

that there exists an a € (4, 2] where a = 3 corresponds to the case of ) being convex,

such that for f € H=*72%(Q), the solution u of (2.1) satisfies ||u]|g2+2a S || f||g-2+22 ((B)).

Let 79, 71, ... be a sequence of conforming triangulations of €, such that 744, is generated
from 7, by refinement, sups, diam(7) = 2% and the triangles satisfy a shape regularity

condition uniformly over the levels. We define Ey, Vi, Ei, Vi, m., n. as in §6.1.
We consider the Morley finite element space, i.e., we take V, = M}, where
M, ={v € HTe-rk P(T): v is continuous at p € Vi, and it vanishes at p € Vk\Vk,
On,v is continuous at m, for e € Ey, and it vanishes at m, for e € Ek\Ek}.

and define

aQUk aQUk
Uk’vk Z/ Z 8:628:6] 8:628:6](]T

Tery

With hy := 27% it holds that B; < h? and so (C) is valid.
We equip M}, with the properly scaled canonical basis

(6.12) {Greie€ B} U{b,:pc Vit
defined by
<=]‘Cv‘f(p) =0 (P € V;c)a ek,e(ﬁ) = 5p,j5 (ﬁ S V}g)’
anggk,e(mé) = |€|_15e,5 (é € Ek>, 8n€0k,p(me) =0 (6 S Ek>,

The resulting mass-matrix is uniformly well-conditioned as function of £, and so the analysis
from §4 shows that CG-smoothing without, or with any preconditioners that are uniformly
well-conditioned satisfies (D), (E) and (F) with v = 1. Since the values of the other
parameters appearing in Theorem 3.2 are given by r = 2, p = 2 and d = 2, this theorem
shows that with mgj_)z = m4';'/, the Cascade iteration yields a suboptimal solver in case
(3.3) and (3.4) are valid. Later, in §6.4 we will return to this point, where we will introduce
an even more powerful smoother resulting in an optimal Cascade iteration.

We take the prolongation I}, commonly used in connection with the Morley finite

element space defined by

(If_ vx-1)(p) = average; of vi_1|, (p) (p € Vi),

(6.13) On,(I¥_vk_1)(m.) = average; of ane(Uk—1|T,)(me) (e € Ey),

where 7,1 3 T; D porm_; D T; De.
Let M}, be the so-called Hsieh-Clough-Tocher macro finite element space corresponding
to 7 (see e.g. [Cia91]), where the degrees of freedom corresponding to boundary points
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are set to zero. Following [Bre99], we define Ty : My, — M), C H2(Q) by

(Ikvr)(p) = vi(p) (p € Vi),
On.(Iyvr)(me) = Onvi(me) (e € Ek‘)v'
Oz, (Iror)(p) = average; of Op;(vx|, )(p) (P € Vi, j € {1,2}),

where 7 5 T; 5 p. By the L?-stability of the properly scaled canonical bases of M}, and
M, estimate (P) follows easily. The mapping IT* : HZ(2) — M, that will be used on all
places in §5 is defined by

M0)0) = ol0) (p € Vi)e On(Mho)om) = oo [ Buvds (e o)

Analogously as in §6.1, the following estimates can be shown. For details we refer to
[Bre99] and the references cited there.

(6.14) (1 = Ie)orllre < hilloellie (v € My),
(6.15) (I =TIz + AT — Tl S Aol (€ [2,3], v € Hy(Q) N H'(Q)),
(6.16) (I = LI™)ollga S By "ol (g €[0,2], ¢ € [2,3], v € Hg(Q) N H'(Q)),
. T A1 )VE=1]||12 S R |Vk=1]|1,k=1 Vk—1 k—1),
(6.17) (7 = Ti_)or-illze S Bgflow-i]| (Vi-1 € Mi_1)

(6.18) T = LT ollie S Billollae (v € Hy(Q) N H(Q)).

Similarly as in §6.1, these estimates imply (G), (J), (L), (M), (N), (Q), (S) and (V).
For v € H3 () N H*(Q), v € HF(Q), integration by parts shows that

(6.19) la(u,v)| = — / V(Au) - Vodz| < el me||o||ms
Q

where (u,v) — — fQ V(Au) - Vodz is the unique extension of a(, ) to a bounded bilinear
form on (HZ(Q)N H?*(Q)) x Hy (). For u € HZ(Q)N H?*(Q), vi, € My, integration by parts
on each T' € tau shows that

(6.20) ag(u,vg) + / V(Au) - V(Iyog)de =

Z/VAU [k—kadT—ZZ/anea u)[0z,vi]ds

Tery =1 e€Fy,

where [&Ejvk] denotes the jump of &Ejvk across e in the direction of n.. By an inverse

inequality on M, + M; and (6.14), there holds

1> / V(&) V((Ie = Doe)da| < Jlullwehi (1= Tovellze < hallwllme [ ollr.x.

Ter,

Using the continuity of v, € M} in the vertices, it is easily verified that in m. for e € Fj
not only the normal, but also the tangential derivative of vy is continuous, and that it
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vanishes in m, for e € E;\ E;. Since furthermore [0z, v1] is linear, fe[axjvk]ds = 0, which
by [CR73, Lemma 3] gives |Z] >, fe(aneamju)[axjvk]dﬂ S hel|ul| e ||vl1 .k, and so

(621) |ak(u,vk) + / V(Au) . V([kvk)dx| ,S thuHHSH’Uk”Lk.
Q
Analogously as in §6.1, by substituting vy = IT*v in (6.20), where v € HZ(Q) N H*(Q),
(6.22) |ak(u,Hkv) + / V(Au)- V([kﬂkv)d;v| Ny H RIS
Q

follows using ||(Ix — TT*)v]|z2 < A3||v]|me by (6.15) and (6.16). Because of (6.19), (6.21)
and (6.22), Remark 5.8 with § = % shows (H) and (K).

From Theorem 5.2, Propositions 5.4, 5.5 and 5.7, Lemma 5.9 and Proposition 5.11, we
now conclude (3.3) and (3.4) with s =1 —a and f; = f o I;.

Finally, we will simplify the construction of fr. We start by considering in Theorem 5.13
the s =1 — a case, i.e., f € H**7%(Q). Let
Ny =[] PAT)NC(Q) N HY(Q),
Tey
which is the same space as in (6.2). Since o € (3,1] and thus 2 — 2o € [1, 2), it is known,
see [Osw94], that N, C Hi~**(Q), and furthermore that the following inverse inequality is
valid:

(6.23) ollimse SR lle (€ )
We define Gy : My — N, by
(Grok)(p) =vi(p)  (p € Vi), (Gru)(me) = average; of vg|  (me) (e € Fy),

where 7, 3 T D e.
Using the local reproduction of linear polynomials, similar arguments that were used for

(6.3) show that

(624) H([ — Gk)UkHL2 5 hZHUkHLk (Uk € Mk)
Since G, even locally reproduces quadratic polynomials, the Bramble-Hilbert lemma gives
(6.25) (7 = G)T]lre S Billollme (v € H3(Q) 0 H*(Q)).

From (6.23), (6.24) and (6.25), and concerning I, the estimates (6.14) and (6.16) and
the inverse inequality || ||g2-20 S A" 7| ||z2 on My D Tm I}, we conclude that

I(7k = Gr)villma—2e S hilloelhe (vx € M),

(= GOullgicse S Wl (0 € HAQ) 0 H#2(0)),
which are the conditions (T) and (U) respectively for s =1 — a.
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Theorem 5.13 now shows that (3.4) with s = 1 — « is also valid when f, = foGj. From
Theorem 3.2 we conclude the suboptimality of the resulting Cascade iteration, that is,

luj = willg S W fll-evee (f € HT5F22(Q)),
taking O(dimM,;(1 + log(dimM,))'*+'/*) operations.
By imposing stronger conditions on f, the construction of f; can be simplified further.
For s < 1, there holds M}, C H**() and the following inverse inequality is valid:
[okllmzs S 7% |vkllz2 (v € My).
From (6.14) and (6.16), we conclude
(7% = Dyvillz=e S A7 llowlle (v € M)
and
(T = Dol S B2l (v € HAQ) 0 H*2(00),

which are (T) and (U) with Gy replaced by the trivial injection. Theorems 5.13 and 3.2
now show that for such s € [0, i) and f, = f|M , there holds
k

* a 1 —2s
s = w3l S A (1 lar=ee + M=) (feH * (),
requiring O(dimM;(1 + log(dimM;))'+1/*) operations.

It is interesting to compare error estimates for the following constructions of fj:
(a). fiu = f| x which is the standard Morley method;
(b). fk =fo [k, which was analyzed first by Brenner in [Bre99];
(¢). fx = fo Gk, where Gk M, — Nk = HTGT P (T)N C(Q) N HF() is the linear
interpolator. This modified Morley method was proposed by Arnold and Brezzi in

[ABS5];
(d). fx = f o Gk, introduced in this paper.

As for Ny, there holds Ny C H;7?*(9Q), and so also (c¢) is well-defined for any f €
H=?t22(Q). Furthermore the following inverse inequality is valid:
By this inverse inequality and the local reproduction by Gy of linear polynomials, there
holds ||(1x — Gr)vk||g2-20 S B3 ||vk]lix (v € My), which is (T) with s = 1 — o and Gy
replaced by (/. Theorem 5.13(a) or (5.2) show that
lu—urllay S ANz (f € HTT22(Q)),
for (b), (¢) and (d); and for any s € [0, 1),

)4
= wtlloy, S BN fll-sszn + B2 f e (F € H(9),

for (a). So with respect to the energy-norm, (b), (c¢) and (d) give optimal results in terms
of smoothness of f that is required, where (c) is the cheapest of these.

A

Vg

H2 22~
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The estimate (5.11) shows that the errors in the || ||;—, z-norm satisfy

T = il S B f o (F € H422(90),
for (b) and (d), and

1
1T = el oo S B v+ B2 g (€ HT(), 5 € 0,),

for (a).
Since G%IT* does not reproduce quadratics, (U) with G replaced by Gy, is not valid for
any s € [0,1 — a]. Instead, for s € [0,1 — a], there holds

1 = G o] e S B2 ol < B2 ollpnen (v € HE(Q) O H(2)),

from which, using a minor modification of Theorem 5.13(b), we infer that for (c) there

holds
0 — uplliap S R\ fllr—2v2e + B | [l (f € H7?(Q), s €[0,1 = a]).

This bound is of order h7* only if s < 1 — 2a, which means that (d) requires smoother f
than (b) and (d) to give a bound of the same quality. Since 1 —2a = % for a = g, on basis
of these bounds, (c¢) should be preferred to (a) for a < %, but for % <a< %, the situation
is even reversed.

We conclude that at least with respect to the || |[1-, s-norm, the best method is (d). In
our situation of having nested triangulations, we may even replace GG by the quadratic
interpolator with respect to the coarse mesh 741, which has the advantage that with respect
to the canonical bases on My and N,_,, this mapping is represented by a (non-square)
diagonal matrix. Numerical experiments should indicate whether or not this modification

has a quantitatively adverse effect on the resulting discretization error.

6.3. A nonconforming finite element discretization of the Stokes equation. On
some bounded convex polygonal domain Q C IR?, we consider the stationary Stokes equa-
tions written in variational form: For f € H='(Q)? find u € Hj(R)? and p € L) :=
{q € L*(Q) : [, qdz = 0}, such that

(6.26) a(u,v) +b(v,p) = f(v) (v e Hy(Q)?)
b(u,q) = 0 (g € L5()),
where a(u,v) = [ Z] yVu; - Vv;dz and b(v,q) = — [, qdivvdz. Tt is known that
f e (L*(N))? impliesu € H*(Q)? and p € H'(R2) with
(6.27) lallgrye + ol S Nl ey
Let 79, 71, . .. be a sequence of conforming triangulations of Q, such that 7441 is generated

from 7, by refinement, sup;,, diam(7T) = 27% and the triangles satisfy a shape regularity
condition uniformly over the levels. We define Ey, Vi, Ei, Vi, m., n, as in §6.1.
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For f € (L*(©2)')?, and with @ = HTerk Po(TYNLE(2) and Ni being the nonconforming
P finite element space with respect to 7, from §6.3, we consider the following discretization:

Find u, € N? and p; € Q. such that

ar(Ug, Vi) + 0x(Vi, pr) = f(vi) (vi € N?)
bip(ug,qr) = 0 (qx € Qk),

where ag(ug, vi) = X e, Jr 25:1 V(ug);-V(vi)jdeand bp(vi, q) = =D pe,, [z adivvide.
With Z being the closed subspace of Hj(£2)? defined by

Z={veHyQ)?:b(v,q) =0 (g€ Ly(Q))},

the velocity component u of the solution of (6.26) can be characterized as the solution of
the following elliptic problem: Find u € Z such that

(6.29) a(u,v) =f(v) (v eZ).
Analogously, with

(6.28)

Zip = {vi € N} 1 bp(vi,qx) = 0 (qx € Qr)},

the velocity component uy, of the solution of (6.28) is the unique solution of the problem
of finding uy € Zj, such that

(630) ak(uk,vk) = f(Vk) (V < Zk)

Particular for the pair (N2, Q) is that a local basis of Zj, is available, and so that instead of
solving the saddle-point problem (6.28), solving (6.30) is a feasible method to approximate
u. We will consider the Cascade iteration.

Above problem fits in our general framework with a(, ) and ax(, ) as above, f; = f|Zk

assuming f € (L*(R2)')?, and
HO = L)%, H' = HY(Q)?, H? = HYQ)?* N H*(Q)A V=17, V, = Zi.

Clearly (A) holds and (6.27) shows (B) with @ = 1. Note that Z,_; ¢ Z; ¢ Z. There
holds B < hi := 2% and so (C) is valid.

Remark 6.1. In view of Remark 2.4, we note that here we encounter a case where Z —»
H® = L*(Q)? is not dense, which means that the mapping f — u, even restricted to
(L*(©2)")?, is not injective. Moreover, since Zy ¢ Z, an £ € (L*(R2)’)? that yields a zero
solution u, may give a nonzero discrete solution ug, from which we infer that uj is not a
function of u.

We postpone the discussion of the smoother, and first verify estimates (3.3) and (3.4)
using the theory from §5.

It is known that the sequence of pairs (N7, Q) is LadySenskaja-Babuska-Brezzi (LBB)
stable, 1.e.,

b
v = inf sup | k(vk7Qk>| Z 17

0£4k€Q% o v, en? || Villaxl| Gkl 12
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and obviously also that
br(v
I, - sup v )l <
0#£¢€LE(Q),04v, EHJ ()2 +N} Hvk“ak“‘ll‘ﬂ
The general theory of mixed methods (see e.g. [BS94, §10]) shows that for v € Z,

| P
inf Hv—kaM (1+ ) meHV_VkHam

v,EZ Yk vieEN,

and so (G) follows from

lgjf\, IV = Villax < Bellviigye (v € Hg(92)%).

For f € (L*(R2))?, let (u,p) € (Hy(Q)> N H*(Q)?) x (L3(Q) N H'(Q)) denote the corre-
sponding solution of (6.26). Integration by parts and a density argument shows that for
all v e L*(Q)?,

/Q(—Au + Vp) - vde = f(v),

and so for v, € Hy(Q)? + NZ, integration by parts on each T' € 71, gives

(631) a,k(u,vk) — f( ) = —bk Vk,p + Z Z aneu] Vk p[Vk . ne]ds,

GEEk

where [w] denotes the jump of w across e in the direction of n.. Since both [(vy);] and
[Vk - n.] are linear on e and zero in its midpoint, an application of [CR73, Lemma 3] shows
that

(6.32) 1> /Z (On.1))[(Ve)i] = pIvi - melds| S hi(llullgrey + lplla) Vil

eEEk J
If vi, € Z + Zj, then from Q; C L3(£2) we have

(6.33) br(ve,p)| = inf |b(vi,p — 1) < Te|[Villa, inf |lp — qrllze.
ILEQK Ik EQK

From (6.31), (6.32), (633),
inf g —qllz < hellgllm (g € Lg(2) N H' ()
kEQk

and (6.27), we conclude (I).
Before introducing the prolongation, from [FM90] we recall that curly, defined by

(curly U)|T = curl v, (T € 7) with curl = [72 —-217 is a bijection between the Morley

dr
finite element space My and Zj;. Since starting from here until the end of this paper, we
will consider simultaneously the Stokes equations discretized on Zj; and the biharmonic

equation discretized on M}, to avoid confusion we will use the following notations:
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.y . . St St (St) " (bih bih bih
Definition 6.2. With (1'1(.: )(, ) [,f_(l ), Skm, km, | Ht ay )(, ), If ( ' ), Sl(ﬁm),
S,(Cii) I thlh , we mean the bilinear form, the prolongatlon, the operators re]ated to the

smoother and the norms corresponding to the discretized Stokes equations on Zj; and the
discretized Biharmonic equation on My respectively.

We now define

I',f_(ISt) = curl; o [,’j_(lbih) ocurly!, : Zy_, — Zy.

Remark 6.3. If, for all k, M} and Zj are equipped with bases such that curly is a bijection
(St)

between both sets of basisfunctions, then obviously the matrix representations of I}_}

and [,f_(lbih) are equal, up to permutations.

(bih)

-1

~ (bih
The canonical extension of [,]: to an operator [,f_(l ) s My + M, — M is a

(St) bih)

. ) ~ (St ~ _
projector, and so [,lf_l extends to a projector [,lf_(l ) = curlko[,]c‘“_(1 ocurl Y7+ 2 —

Z;. The arguments that yield (6.17) for [,f_(lbih), show the same result for its extension,

i.e.,
bih .
N = T yosllie S 02 IS (orlary (o6 € Moy + M),
TeTy
... = (bih) - (bih) o . .
By writing I/, " =1— (I —1I;_, '), and applying inverse inequalities, it follows that
(bih)
(6.34) > 7 0l S S el (0 € Moy + My).
TETy TeTy
Since |lcurlvg|[(r2y2 = /D rer, |’Uk|§;11(T), (6.34) is equivalent to lef_l kHOS]:) S il ey

(Vi € Zg—1 + Zy,), which is (O).
From Theorem 5.2, Proposition 5.3, Proposition 5.6, Lemma 5.9 and Proposition 5.11,
we conclude (3.3) and (3.4) with s =1 —a =0 and f;, = f|z
k

We equip Zj, with the standard basis defined by applying curly to the basis of M} from
(6.12). This basis on Zj is given by

¢
(6.35) {bre == || pete s € € B} U L&y = Z €| ™ ke e, p 2 p € Vidy

=1
where . is the nodal basisfunction of Ny defined in (6.1), t. = [(n.)s —(n.):]” is a unit
vector tangential to e, the edges e;, ... es are all edges in Ej that contain p, and n., , is the

unit vector normal to e; pointing in the counterclockwise direction with respect to p, see
Figure 1.

A difficulty with defining a suitable smoother for the system (6.30) is that, although
properly scaled this basis on Zj is not uniformly well-conditioned as function of k with
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FIGURE 1. Basis functions ¢y and {, of the space Zj

respect to || ||(z2)2. In view of results obtained in §4, this means that e.g. unpreconditioned
CG not necessarily satisfies (D), (E), (F).

An alternative approach to define a smoother, first followed on [Bre90], is based on the
relation

(6.36) (J,Ecbih)(uk,vk) = aiSt)(curlkuk,curlkvk) (ug, v € My).
This relation and the one between the bases (6.12) and (6.35) of M}, and Z; show that

the stiffness matrices corresponding to both problems are equal, and so any smoothing
iteration developed for one problem has its direct counterpart for the other, where the
practical realizations are equal.

In §6.2 in the biharmonic framework, we considered CG-iteration without precondition-
denote the corresponding sequence of pairs of operators as meant at the beginning of §4,

ing, or with preconditioning matrices that are uniformly well-conditioned. Let (S

where S l(:;l: ) is the linear operator defined using the Chebychev polynomial. We showed
that this sequence satisfies (D), (E) and

(6.37) ISER 0| S (him ) ol (1€ [0,1], 00 € M),

which is (F) with v = 1.

Since (6.36) is equivalent to || - || b,ih)

= |lcurly - Hf]:), we directly conclude that the

corresponding operators Sk’m = curl; o S,(CE)::) ocurl;' and SA’,(C’S;) = curl; o g,(cf’;l) o curl’
in the Stokes framework satisfy (D) and (E). Using [PB87, Proposition 8.1], in [Bre90,

Proposition 3] it was shown that
(6.38) loell S lleurlorllyy (vr € M),
From (6.37) with ¢ = 1 and (6.38), we conclude that

(6.39) ISEVEISE S BT mEvllSY (ve € Za),
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which is (F) with v = % Since the values of the other parameters appearing in Theorem
3.2 are given by r = 1, p = 2 and d = 2, from this theorem we may only conclude that
(i = ~

for such a CG-smoothing and with m;”; = m4’j*, the Cascade iteration for solving the
discretized Stokes equations yields a suboptimal solver.

Remark 6.4. We give some comments on multi-grid convergence theory.

Instead of CG, let us consider a linear iteration as a smoother. The above analysis
shows that the smoothing property in the biharmonic framework implies this property in
the Stokes framework, with a 4 that is halved. Here with smoothing property, we mean
the condition on the smoother as imposed in the theory from [Hac85].

A different condition on the smoother is imposed in the convergence theory from [BPX91].
It turns out that validity of this condition generally does not carry over when switching
from the biharmonic to the Stokes framework. Indeed, using [Ste98, Remark 2.9], it can be
checked that e.g. damped Richardson iteration with symmetric preconditioning matrices
that have uniformly bounded condition numbers satisfies this condition in the biharmonic
framework, as it satisfies the smoothing property from [Hac85], but that it not satisfies the
condition from [BPX91] in the Stokes framework.

Nevertheless, the theory from [BPX91] may still be used to analyze the multi-grid method
applied to the discretized Stokes equations. Indeed, because the error amplification op-
erator of the multi-grid method is linear, the analysis of this operator as a whole can be
carried out in the biharmonic framework. So, in particular, one can still prove that the
variable V-cycle, which is covered by the theory from [BPX91], yields uniformly bounded
condition numbers.

Yet, there is one point where one has to pay for the fact that in the Stokes framework
these simple iterations do not satisfy the condition imposed on a smoother in [BPX91].
Since the biharmonic operator is not fully regular, it is not possible to show that the so-
called mildly variable V-cycle (see [Ste98]) gives uniformly bounded condition numbers.
On the other hand, damped Richardson iteration with preconditioners of the type dis-
cussed below does satisfy the condition from [BPX91] in the Stokes framework, and so for
this smoother it can be shown that the mildly variable V-cycle gives uniformly bounded
condition numbers.

To construct better smoothers in order to obtain a Cascade iteration that is optimal,
we study the conditioning of the basis (6.35) of Zz. Using that {nz. : e € E} is an
L*(2)-orthogonal basis of Ny, for vectors ¢ = (¢.)eep, and d = (d,)pev,, we infer that

(6.40)
1Y cetre+ Y dyipllireye = > el el meelliz + > 1y, — da [Ple]™ 1.l 72

e€ly pEVE e€ly e€El}

where pe, p. denote both vertices of 7, on ¢ € Fy, and d,, := 0 when p € V;\V;. Further-
more, there holds

(6.41) > ldy, —dy,

e€ oy,

QMﬂmﬂéi/wfm%
Q
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where d’ is the function in the conforming P; finite element space Nk = HTe-rk P (T)N
c(Q)n HI(Q) defined by d'(p) = d,.

Defining Ak S RdlmN’“XdlmN’“ by <Akd d>= f vd . V(]N,Id.r, for M, € JRAimZy, x dimZ;,
being the mass-matrix corresponding to (6.35), from (6.40) and (6.41) we conclude that

I
well 0

Simple conforming multi-grid preconditioners Wk for Ak are available that take ~ dirnNk
operations, and for which kx(W;'A;) < 1. We now consider CG-smoothing applied to
(6.30) with respect to the basis (6.35), with preconditioning matrices Wy, that satisfy Wy, =

I R
|:0 VA(\)/' :| Let (SIQS;), Slgsa;))k denote the corresponding sequence of pairs of operators as

meant at the beginning of §4, where S ) is the linear operator defined using the Chebychev
polynomial. Since k(W7 'My) <1, the analysis from §4 shows (D), (E) and

(6.42) 1SS S At m 0 (vi € Z),

which is (F) with v = 1. Sincer =1, p = 2 and d = 2, from Theorem 3.2 we conclude that

for any ¢ € (2,4) and m( )Z ~ mc', the Cascade iteration with CG-smoothing and such a
preconditioner applied to the discretized Stokes equations yields an optimal solver.

6.4. The new smoother analyzed in the biharmonic framework. We have seen that,
with respect to bases (6.12) and (6.35) on M} and Zj, the stiffness matrices corresponding
to the discretization of the biharmonic equation on M}, and that of the Stokes equations on
7, are equal. In the previous subsection we used this fact to analyze the application of CG-

smoothing without, or with simple preconditioning maftrices deveioped in the biharmonic

framework to the Stokes equations. Using || - || lblkh S |lcurl- H ((6.38)), it appeared that

such a CG-iteration satisfies the smoothing property (F) in the Stokes framework with
v = 1. In addition, in the Stokes framework we developed new preconditioners, involving
a multi-grid call on a second order scalar problem, and we showed that CG-smoothing with
such preconditioners satisfies (F) with v = 1.

In this subsection, we analyze CG-smoothing with these new preconditioners in the
biharmonic framework. With (S,(CS:,L) , S'I(CSm) )i denoting the sequence of pairs of operators
corresponding to this preconditioned CG iteration 1n the Stokes framework, we define
S,(Cb;l) = curl;' o S kym ) o curl, and S = curl;' o S ) o curly. Obviously, again (6.36)

shows (D) and (E) in the biharmonic framework Condition (F) will follow from the fol-
lowing proposition.

Proposition 6.5. With ||zx||—+x = supo;éwkezkw (t € [0,1], zi € Zy), there
holds

(6.43) leurlavgl| S S Joellfs”  (vn € My).

w5
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Proof. With rot, defined by (roty w)r = rot W (T € 1) where rot = [—i —] integra-

dry Oz
tion by parts show that for vy € M}, wy € Z;, there holds

(curlk 'Uk,Wk)(L2)2 = (Uk,I‘Otk Wk)L2 + Z / [Wk X ne]ds
EEFk

where [w}, x n.] denotes the jump of wy x n, across e in the direction of n.. Since [wy x n_]
is linear on e and zero in its midpoint, it holds that fe[wk x n.]ds = 0. An application of
[CR73, Lemma 3] and an inverse inequality now show that

% bh St
|2/ Wi x nlds| S e |3 Tonl2 o Iwe 50 S 0l8 w5
eeEk TETk

Since |(vg, roty Wi) 2| < f|‘vk|| (bih) Hwkﬂl by we conclude that |(curly Uk,Wk) 2y 2| S HwkH1 &
which completes the proof. O

Note that by interpolation, (6.36) and (6.38) imply that

el &2, S lewrlgnd 5 (¢ € [0,1], v € M),

and (6.36) and (6.43) imply that

(6.44) leurleogl 530 S ol 3, (0 € [=1,1], v € My).

From (6.42), (6.36), and (6.44) with ¢ = 0, for o < 1 we obtain that
156 el S (B m=) ol {28), (o € M),

which is (F) with v = 2. Since r = 2, p = 2 and d = 2, from Theorem 3.2 we conclude that
for any ¢ € (2,4) and m\. = ~ mc', the Cascade iteration with CG-smoothing and this new

J—i

preconditioner applied to the discretized biharmonic equation yields an optimal solver.

REFERENCES

[AB85] D.N. Arnold and F. Brezzi. Mixed and nonconforming finite element methods: Implementation,
postprocessing and error estimates. M2 AN, 19:7-32, 1985.

[BD96] F.A.Bornemann and P. Deuflhard. The cascadic multigrid method for elliptic problems. Numer.
Math., 75:135-152, 1996.

[BD99] D. Braess and W. Dahmen. A Cascade algorithm for the Stokes equations. Numer. Math., 82:179-
191, 1999.

[BPX91] J.H. Bramble, J.E. Pasciak, and J. Xu. The analysis of multigrid algorithms with nonnested
spaces or inherited quadratic forms. Math. Comp., 56(193):1-34, 1991.

[Bre90] S.C. Brenner. A nonconforming multigrid method for the stationary Stokes equations. Math.
Comp., 55(192):411-437, 1990.

[Bre99] S.C. Brenner. Convergence of nonconforming multigrid methods without full elliptic regularity.
Math. Comp., 68(225):25-53, 1999.

[BS94] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer-
Verlag, New York, 1994.



NONCONFORMING FINITE ELEMENTS AND THE CASCADE ITERATION 31

[Cia91] P.G. Ciarlet. Basic error estimates for elliptic problems. In P.G. Ciarlet and J.L Lions, editors,
Finite Flement Methods (Part 1), volume IT of Handbook of Numerical Analysis, pages 17-352.
North-Holland, Amsterdam, 1991.

[CR73] M. Crouzeix and P. A. Raviart. Conforming and nonconforming finite element methods for solving
the stationary Stokes equations. RAIRO Anal. Numér., 3:33-76, 1973.

[FM90] R.S. Falk and M.E. Morley. Equivalence of finite element methods for problems in elasticity.
SIAM J. Numer. Anal., 27(6):1486-1505, 1990.

[Hac85] W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Berlin, 1985.

[Osw94] P. Oswald. Multilevel finite element approzimation: Theory and applications. B.G. Teubner,
Stuttgart, 1994.

[PB87] P Peisker and D. Braess. A conjugate gradient method and a multigrid algorithm for Morley’s
finite element approximation of the biharmonic equation. Numer. Math., 50:567-586, 1987.

[Sha96] V.V. Shaidurov. Some estimates of the rate of convergence for the cascadic conjugate gradient
method. Comp. Math. Applic., 31:161-171, 1996.

[Ste98] R.P. Stevenson. An analysis of nonconforming multi-grid methods, leading to an improved
method for the Morley element. Technical Report 9823, University of Nijmegen, 1998. Submitted.

DEPARTMENT OF MATHEMATICS, UTRECHT UNIVERSITY, P.O. Box 80.010, NL-3508 TA UTRECHT,
THE NETHERLANDS.
FE-mail address: stevenso@math.uu.nl



