A Parallel linear system solver for

circuit simulation problems

by

Wim Bomhof
and

Henk A. van der Vorst

Universiteit Utrecht

M

U

Department
of
Mathematics

Preprint

nr. 1123
December 1999

This preprint is available from:

http://www.math.uu.nl/publications/Preprints/

A Parallel linear system solver for circuit simulation problems

Wim Bomhof* Henk A. van der Vorst!

December 3, 1999

Abstract

This paper presents a parallel mixed direct/iterative method for solving linear systems
Ax = b arising from circuit simulation. The systems are solved by a block LU factorization
with an iterative method for the Schur complement. The Schur complement is a small and
rather dense matrix. Direct LU decomposition of the Schur complement takes too much
time in order to achieve reasonable speedup results. Our iterative method for the Schur
complement is often much faster than the direct LU approach. Moreover, the iterative
method is better parallelizable. This results in a fast sequential and well parallelizable
method.

Keywords: Preconditioner, Parallel iterative method, mixed direct/iterative method, Sparse LU
factorization, Circuit simulation, Iterative solution methods, Schur complement, GMRES.

AMS subject classifications: 65F10, 65F05, 65F50, 65Y05, 94C05

1 Introduction

In circuit simulation often a series of linear systems has to be solved. For example, in transient
analysis, a DAE leads in each time-step to a system of nonlinear equations, usually to be solved
with the Newton method. For a single Newton step a linear system

Az =b (1)
has to be solved. Most circuit simulators handle this problem by LU factorization of A.

Tterative methods for linear systems have been less effective in circuit simulation. However,
recently Lengowski [16] has successfully used CGS with an incomplete LU drop tolerance
preconditioner. In this approach, very small drop tolerances and only a few CGS steps are
used. Compared to the LU approach this saves up to about 50 percent in the number of

*Mathematical Institute, University of Utrecht, Budapestlaan 6, Utrecht, The Netherlands and Philips
Research Laboratories, WAY41, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands, e-mail:
bomhof@math.uu.nl

fMathematical Institute, University of Utrecht, Budapestlaan 6, Utrecht, The Netherlands, e-mail:
vorst@math.uu.nl

flops. Nguyen' has used a block Gauss-Seidel method with a dynamic partitioning. This
works well, but only for some types of circuit simulation problems. Unpreconditioned Krylov
methods converge too slowly in practice.

Existing parallel LU codes do not perform well for circuit simulation matrices. Our exper-
iments with the SuperLU code by Demmel et al [3] showed no speedup for relevant circuit
simulation test problems (the matrices of Section 2). SuperLU uses the column elimination
tree of A for coarse grain parallelization. The column elimination tree of A is the elimination
tree of AT A, and for circuit matrices AT A is often a nearly dense matrix. In that case, the
column elimination tree is almost a single chain and then parallelization on a coarse grain level
is not successful. On a fine grain level, SuperLU parallelizes the computations by pipelining
the computations of the dependent columns. This introduces some parallel overhead, and the
poor speedup indicates that this overhead is too large.

The undocumented sparse LU code PSLDU of Rothberg [22], only available on SGI platforms,
is also not very suitable for circuit simulation matrices. This code allows no pivoting (SuperLU
has partial pivoting), in order to make parallelization easier. However, this is not really
effective, the speedup results were unsatisfactory for our test matrices. Also, for our problems,
some form of pivoting is necessary for numerical stability. In the experiments with PSLDU,
we preordered A with a suitable row permutation in order to avoid too small pivots on the
diagonal. This is not very realistic, because in practice a suitable permutation can only be
determined during the LU factorization. However, we were mainly interested in the maximum
attainable speedup for PSLDU.

In this paper, we will propose a block LU factorization with an iterative method for the
Schur complement to solve linear systems Az = b. An outline of the method is in Section
3. The preconditioner for the Schur complement is described in Section 4. In the sequential
case there is some freedom in choosing the number of unknowns for the iterative part of the
method. With a suitable choice it is possible to optimize the method see Section 5. Section 6
describes an algorithm to find a suitable parallel block partition of the matrix. Possible pivot
problems are discussed in section 7. The last section of this paper describes the numerical
experiments.

2 Properties of circuit matrices

Matrices from circuit simulation are very sparse, e.g. the average number of nonzeros per row
is usually smaller than 10. The nonzero pattern is often nearly symmetric. Table 1 shows
some characteristics of our test matrices, arising from actual circuit simulation. The matrices
are taken at some Newton step during a transient simulation of a circuit. Modified Nodal
Analysis [21] was used to model the circuits. The Sparse Tableau Analysis method [21] for
modeling circuits might lead to matrices that are less suitable for our method.

We will assume that the matrix A already has a fill reducing ordering. The minimum degree
ordering [19] of A + AT is a good ordering for circuit matrices that do not already have a fill
reducing ordering. The minimum degree ordering) should be applied symmetrically to A,

'Personal communication with T.P Nguyen (Philips Electronics, Eindhoven)

that is, the permuted matrix is Q7 AQ.

The diagonal pivot is not always a suitable pivot in the LU factorization, and partial piv-
oting is necessary for numerical stability. In practice threshold pivoting [5] with very small
thresholds, say 0.001, works fine (see also Section 8 and [14]).

problem n | nnz(A) h flops | nnz(L+

x103 x108 | U)x 103
circuit_1 2624 36 131 0.86 41
circuit_2 4510 21 95 0.51 32
circuit_3 12127 48 85 0.54 68
circuit_4 80209 308 308 15.28 461

Table 1: Characteristics of test matrices. The dimension of the problem is n. nnz(A) is the number
of nonzeros of A. flops is the number of MATLAB flops for [L,U] = 1u(4,0.001) and = = U\(L\b). h
is the height of the elimination tree of A+ A7 (assume no exact numerical cancellation). The matrices
are available from: http://www.math.uu.nl/people/bomhof/.

Our test problems are rather small. Solving the largest problem takes only a few seconds
on an average workstation. Nevertheless, even for these problems a parallel solver is useful
because one may have to solve thousands of these systems for one circuit simulation.

The amount of fill-in in LU factorization is usually very small for circuit simulation problems.
For our test problems nnz(L+U) < 1.6nnz(A), where nnz(A) is the number of nonzeros of A.
Furthermore, the number of floating point operations per nonzero entry is small (between 11
and 50). This implies that an iterative method is only cheaper than a direct method, when
the number of iterations is small. Note that one matrix vector product costs 2nnz(A) flops,
so the third and the fifth column indicate how much room there is for an iterative method.
The height A of the elimination tree gives a rough indication of the possibilities for parallel
elimination of unknowns, see section 6.

3 Outline of the parallel solver

The parallel algorithm is based on a doubly bordered block diagonal matrix partition:

AOO 0 e 0 AOm
0 Ay . : A
A=PTAP=| : .. -. 0 : : (2)
0 oo 0 Apim
| Ao Am1 ... Amm |

P is a permutation matrix. The vectors x and b, of Az = b, are permuted in the same way
to Z and b. For circuit matrices often ng := size(A;m) < n/20. The matrix A is suitable for
our parallel block LU linear solver with m processors:

Algorithm 1: The parallel linear solver

parallel for i =0:m — 1,
Decompose Au LiiUiz' = PnAn
Lini = ApiUii ™"

Uim = Lii ' Pii Aim
yi = Lii " Pib;

S (@) = LmiUim

20) = Ly

end

S = Amm — ZZ’ZBI st

Ym = bm - Z:l?)l Z(Z)

Solve parallel: Sz, = ym

parallel for : =0:m — 1,
z; = Ui (i — Uim@m)

end

This is a coarse grained parallel algorithm, which means that the negative influence of parallel
overhead on the speedup will be relatively small. As a part of the system solve one has to
solve the a reduced system

STm = Ym ,

with the Schur complement S. This has to be solved as fast as possible in order to achieve
a reasonable speedup. A dense direct method may of interest, because S is rather dense and
the Mflop rates for dense methods are much higher than for sparse direct methods. However,
often S will be too small (usually size(S) < 500) for efficient parallelization of the direct solver,
especially in a distributed memory environment. Solving Sz, = y., directly may cost up to
80 percent of the total flops for solving Az = b. So, the Schur complement forms a bottleneck
for parallel computation. In the next section, we will present a preconditioner which makes
it very attractive to use an iterative method for the Schur complement. The most expensive
part of the iterative method, the matrix-vector product, is better parallelizable than a direct
solution method.

A nice property of the above algorithm is that in exact arithmetic the residual of Az = b is
equal to the residual of Sz, = ym, if Sz = ym is solved iteratively and z; = ii_l(yi —
Uim®m). This is easy to show.

In Section 6 we describe how to identify a permutation matrix P, which permutes the matrix
A into the block form (2). Note that a circuit simulator can use the same permutation for
P each Newton step because the sparsity pattern of A does not change. So, the costs of
constructing a suitable P can be amortized over the Newton steps.

4 The preconditioner for the Schur complement

Unpreconditioned iterative methods for solving the reduced system Sz, = y.,, converge very
slowly for circuit simulation problems. Preconditioning is a prerequisite for such problems, but

it is difficult to identify effective preconditioners for the Schur complement S. The diagonal
elements of S are often relatively large, but zeros on the diagonal may occur, so that simple
diagonal scaling is not robust. The ratio of the smallest and the largest eigenvalues of S
may be very large, 106 or more, and S is very likely to be indefinite, that is, it has both
eigenvalues with positive and negative real part. This makes the problem very difficult for
iterative solution methods.

Our preconditioner C is based on discarding small elements of S. The elements that are larger
than a relative threshold define the preconditioner:
e — 4 Sij if |s45] > t|si| or [sij| > t]sjj]
" 0 elsewhere,
t is a parameter: 0 <t < 1. ¢ = 0.02 is often a good choice. Note that the preconditioner C
will be symmetric if S is symmetric. The number of nonzeros of C can be much smaller than

the number of nonzeros of S, see Figures 1 and 2. Construction of the preconditioner C' costs
only 3nnz(S) flops and is easy to parallelize.

0

100

200

300

0 100 200 300

Figure 1: Nonzero pattern of a Schur complement S of problem ‘circuit-4’, nnz(S) = 26675, size(S) =
346.

For the preconditioner action, it is necessary to solve systems of the form Cz = r. These
systems can be solved very efficiently by sparse direct techniques. A sparse LU decomposition
of C will be too expensive, because of a large amount of fill-in. However, the amount of fill-
in will be very small after reordering the matrix with the minimum degree algorithm. For
example, the matrix of Figure 2 has 1181 nonzeros and the sparse LU factorization of the
reordered matrix has 1206 nonzeros, a fill-in of only 25 elements.

The minimum degree algorithm defines a permutation matrix P, so that we actually deal
with D:
D=PlcP.

The sparse LU factorization is performed with partial pivoting. This leads again to a permu-
tation matrix, Q:

LU =QD =QPTCP or C=PQTLUPT.

OI' Z/,_. 0
100 — 100!
200/ s 200/ S
300, L i 300/
0 100 200 300 0 100 200 300

Figure 2: Left: nonzero pattern of the preconditioner C' of the S from Figure 1, with ¢ = 0.02,
nnz(C) = 1181. Right: Matrix D, this is C' after the minimum degree ordering.

Solving the system Cz = r is straight forward.

Other orderings P for the preconditioner C' are possible as well. For example ’s colperm
permutation is a very effective ordering for circuit simulation problems. In this ordering
the number of nonzeros per column of D is nondecreasing. This ordering is very cheap to
generate, because we only have to sort the number of nonzeros per column. This can be
done in O(ng) operations which is important because the ordering algorithm is part of the
sequential bottleneck of the parallel program. This colperm ordering sometimes gives very
poor results for non-circuit simulation problems. For instance, for discretized PDE problems
the reverse Chuthill Mckee ordering [10] turns out to be a successful alternative ordering for

C.

In Section 8, we show that this preconditioner is very effective. The convergence of GMRES
[23] is not very sensitive to the threshold parameter ¢. The matrix vector product Sv is
the most expensive part of the GMRES process. For sufficiently large S, it makes sense to
parallelize this matrix vector product in order to increase the scalability of the parallel solver.

For the comparison of the direct and the iterative approach for solving Sz,, = y,,, we will
treat S as a dense matrix. Solving the system with a dense direct LU solver costs ~ 2/3ng3
flops. Now, assume that after kg GMRES steps the residual is sufficiently small and assume
that the matrix vector product flops of the GMRES process are the CPU-determining costs.
Then the GMRES process costs kg - 2ng? flops. Under these assumptions, the iterative
approach is cheaper from about ng > 3kg.

5 Switching from direct to iterative

In this section we will propose a criterion for the switch from the direct to the iterative part.
With this criterion we try to minimize the computational costs of the method.

Solving Sx,, = y,, with a preconditioned iterative method is much more efficient than with
a direct method if S is relatively small (but not too small) and dense. The iterative method
performs very badly, compared with the sparse direct method, if S is large and sparse. There-
fore, at some stage of the sparse LU factorization of A, it is more efficient to switch to the
iterative approach. We will try to find a criterion for this.

Now, suppose that there are m + 1 unknowns left at a stage of the Gaussian elimination (GE)
process, so the right lower submatrix in the GE process is an (m + 1) x (m + 1) matrix 7"

c d"
=[]

with V an m X m matrix. We will assume that d and e have the same sparsity pattern,
because the sparsity pattern of A is nearly symmetric. So this is a reasonable approximation.
T is a Schur complement and we can take it for system Sx,, = ¥y, to be solved with an
iterative solver. The costs of kg matrix vector products Sw are approximately

kg (4nnz(e) + 2 nnz(V)) flops. (3)

We can also decide to perform one more Gaussian elimination step. Then the Schur comple-
ment becomes

S=V—(1/c)ed"

and kg matrix vector products plus the Gaussian elimination cost approximately
2 kg nnz(V) + 2 nnz(e)? flops (4)

if we assume that bc! introduces no extra fill-in in V. The amount in (3) is smaller than in
(4) if
nnz(e) > 2 kg . (5)

This is a motivation to use the number of nonzeros as a criterion for the choice between the
direct and the iterative approach. However, we do not know k¢ in advance. Moreover, we have
neglected some numbers of flops, that are different for the m and m + 1 case. For example,
the flops for constructing the preconditioner, the flops for the az + y and zTy operations in
GMRES and the flops for the forward and the backward solve of the preconditioner. Note also
that the number of GMRES steps kg, required to reach a sufficiently small residual, increases
slowly with increasing m. We conclude that criterion (5) is of limited use in practice. We
use the criterion nnz(e) > ¢, with a guessed parameter ¢ instead of 2kg. For the circuit
simulation test problems ¢ = 40 turns out to work well. Both CPU-time and the number
of flops to solve the system Az = b are small for this g, see section 8. The results are not
sensitive to q.

The direct/iterative partition of the unknowns can be made before the actual block LU
factorization takes place. It is based on the symbolic Cholesky factor Lo of A + AT. In the
algorithm ¢; is used for the number the number of nonzeros in column i of L¢:

¢; = nnz(Lo(:, 1)) - (6)

The nonzero structures of the L and U factors of LU = A (without pivoting) are related
to the nonzero structure of L¢o: struct(L) C struct(L¢) and struct(U) C struct(LcT). The

equal sign holds if struct(A) = struct(A”). The nonzero pattern of A is nearly symmetric for
circuit simulation matrices.

The partitioning algorithm is:
Algorithm 2: Direct/iterative partitioning

input: matrix A, parameter g
output: boolean vector direct

[L¢, parent] = symbolic_Cholesky(A + AT)
direct(1l : n) = true
direct(root) = false
fori=1:n
if (ci > q)
j=i
while (direct(j) = true)
direct(j) = false
j = parent(j)
end
end
end

The vector parent is a side product of the symbolic Cholesky algorithm. parent(i) is the
parent of i in the elimination tree of A + AT. direct(i) = false means that unknown 4 will
be solved iteratively. Once the algorithm marks an unknown ¢ ‘iterative’, all its ancestors are
marked ‘iterative’.

In the parallel case, one has to choose S at least so large that a load balanced distribution of
the parallel tasks is possible, see next section.

6 Finding a suitable block partition

We use the elimination tree of A+ AT to determine a permutation matrix P, which permutes
the matrix A into form (2). In our algorithm we use the direct/iterative partition proposed in
Section 5. The elimination tree breaks up into many (one or more) subtrees if we remove the
unknowns of the Schur complement in the elimination tree. These subtrees are independent
of each other in the Gaussian elimination process, see [18]. Grouping the subtrees in p groups
(p is the number of processors), with approximately equal weights, gives the block matrix
partition (2). A load balanced partition will not be possible if there are too large subtrees.
In that case, one can easily split these subtrees into smaller ones, by moving more unknowns
to the Schur complement. For some problems this results in a large Schur complement which
leads to modest parallel speed ups. With a small height h of the elimination tree it is usually
possible to have both a load balanced partition and a small Schur complement. Circuit
simulation matrices often have a small h relative to the number of unknowns n.

We will describe the partition algorithm in more detail in another paper [1]. Other imple-

mentation issues will also be discussed in that paper.

Note that we have found the permutation matrix P in an indirect way. We start with a fill
reducing ordering, then we use the elimination tree to find the independent blocks. Better
parallel orderings might be possible by directly partitioning the graph of the matrix A into p
independent subgraphs instead of partitioning the elimination tree of A. There exist packages
such as METIS [13] and Chaco [11] for this task. It is not clear whether these packages
are suitable for circuit simulation problems or not. The aim of METIS is to find a load
balanced distribution with a Schur complement which is as small as possible. This does not
have to be optimal for our mixed direct/iterative method where we like to have dense rows
and columns in the Schur complement. METIS can assign weights to vertices and edges of
the graph. However, in our case the weights depend strongly on the elimination ordering
which is not known in advance. For a large number of processors it is desirable to have the
Schur complement as small as possible because the direct part of the method (Algorithm 1)
parallelizes much better than the iterative part. In that case packages like METIS and Chaco
are useful.

7 Pivoting

Threshold pivoting [5] with a small threshold ¢ is used in the local LU decomposition of

Ay
Ami '

So, the diagonal entry is chosen as pivot if agf) >t ag-’ic) for ¢ < 7 < n The diagonal block
A;; almost always contains a suitable pivot for circuit simulation problems. However, in very
exceptional cases there might be a suitable pivot only in the A,,; block. Then A;; is nearly
singular. This is not allowed, because exchanging rows of A destroys the structure of the block
matrix (2). This problem is solved by moving the trouble causing unknown to the iterative
part of the solver. So, the size of A;; is decreased by one and the size of S is increased by
one. This will not happen very often for circuit simulation problems. In fact we implemented
the method without this pivot strategy, but that did not cause any stability problems for
the circuit simulation test problems. This pivot strategy is comparable to the delayed pivot
strategy which Duff and Koster [6] use in the multifrontal code.

This strategy can be refined by using two pivot threshold parameters. One for pivoting inside
the diagonal blocks and one much smaller threshold to detect if it is necessary to move an
unknown to the Schur complement. This improves the stability of the local LU decomposition
of the diagonal blocks.

Note that in the sequential case pivoting is not restricted to the diagonal block Agg, partial
pivoting without any restrictions is possible.

Another possibility is to replace small diagonal pivots a; by a suitably large entry if there
is no pivot inside the diagonal block. This is equivalent by making a rank one correction
Beiel to the original matrix A. Afterwards, the local L and U factors together with the
preconditioner C can be used as a preconditioner for the system Az = b. A drawback of this

approach is that the iterative process for Az = b is much more expensive than for Sx,, = yp,.
This is due to the longer vector lengths (n > ng) and due to the more expensive matrix vector
product. In [17] Li and Demmel do not use partial pivoting during the LU decomposition at
all. Instead, they permute large entries to the diagonal before the actual LU factorization.
During the LU factorization they replace small pivots by larger ones. Iterative refinement is
applied afterwards. This results in a scalable parallel LU code.

In subsequent Newton steps of a circuit simulation it is often possible to use the same pivot
sequence during a number of Newton steps, as long as the pivots satisfy the threshold pivot
criterion. The local LU factorization can take much advantage of an unchanged pivot se-
quence, because of reduction of symbolic overhead which leads to a faster factorization. Note
that the matrices in the local LU factorization are extremely sparse which implies that the
symbolic part of the LU factorization is relatively expensive.

8 Numerical experiments

8.1 The preconditioner

In this subsection we report on the preconditioner results for the problems of Section 2.
We enlarged this set of problems with a number of other circuit simulation and non-circuit
simulation problems. The full set of test problems is given in Table 2.

problem n | nnz(A) h flops | nnz(L+

x103 x108 | U) x 103
circuit_1 2624 36 131 0.86 41
circuit_2 4510 21 95 0.51 32
circuit_3 12127 48 85 0.54 68
circuit_4 80209 308 308 15.28 461
memplus 17758 99 137 2.27 122
TIa 3432 25 249 8.07 100
TIb 18510 145 579 45.30 458
Tlc 1588 13 65 0.18 18
TId 6136 53 306 11.63 155
lap-md128 16129 80 533 57.24 705
lap_nd128 16129 80 368 67.86 902
lap_nd256 65025 324 750 589.61 4563
orsirr_1 1030 7 195 2.65 51
watt__1 1856 11 355 11.47 126
sherman3 5005 20 482 22.28 220
heat 6972 28 696 116.11 692

Table 2: Characteristics of test matrices, see Tabel 1 for explanation of the symbols.

The matrices ‘memplus’, ‘orsirr_1’, ‘watt__1’ and ‘sherman3’ are available from the Matrix
Market [20]. Matrix ‘memplus’ is a circuit simulation matrix. The ‘TIx’ matrices were kindly

10

provided by Kai Shen. He used these matrices to test a parallel distributed memory sparse
LU code [12]. The ‘TIx’ matrices are circuit simulation matrices resulting from a transient
simulation. All the matrices from the Matrix Market and the ‘TTx’ matrices were permuted
symmetrically with MATLAB’s minimum degree ordering symmmd [10] of A+ A”. The original
ordering of ‘circuit_x’ is already a fine ordering. The matrices lap-. .. are discretized Laplacian
operators on the unit square. Matrix ‘lap nd128’ is on a 128 x 128 grid and ordered with
nested dissection, ‘lap-nd256’ is on a finer 256 x 256 grid and ‘lap-md128’ is ordered with
minimum degree. For some problems there was no right hand side b available. In that case
we used a vector of all ones for b.

Note that the number of flops for an LU factorization of a circuit simulation matrix is rather
sensitive to the ordering that is used. For example Larimore [15] reports for ‘memplus’
5597.6 - 106, 698.5 - 10°, and 30.4 - 108 flops, for an LU factorization of A with the orderings
colamd, colmmd, and amdbar. With MATLAB’s symmmd only 2.0 - 10° flops are needed.

Two parameters are fixed for each different problem; the pivot threshold for the local LU is
0.001 and the GMRES tolerance is 10~7. For circuit simulation problems we use a precon-
ditioner threshold of ¢ = 0.02, a value of ¢ = 40 for the direct/iterative parameter, and the
colperm fill reducing ordering for C'. This ordering is nearly as good as the minimum degree
ordering, but much faster to compute. For non-circuit simulation problems we use ¢ = 0.005
and the minimum degree ordering on C. The parameter g is chosen problem dependent:
g = max(60,0.5 max;(nnz(L(:, 7)), with L the symbolic Cholesky factorization of A + AT. It
turns out that these ¢, ¢ and fill reducing orderings lead to small CPU-times and a nearly
optimal (with respect to different parameter choices) number of flops. The parameter q is for
circuit simulation problems smaller than for other problems. This can be explained partly by
the slower GMRES convergence of non-circuit simulation problems. Note that the results are
not very sensitive to the value of the parameters ¢ and ¢. The results are shown in Table 3.

Although we developed the method for circuit simulation problems, the methods also works
reasonably well for some other problems. For problems ‘circuit_3’ and ‘TIc’ parameter ¢ is
too large to do anything iteratively. For all the other problems the GMRES convergence is
very fast which leads to a significant reduction of flops compared with the direct method. For
‘circuit_4‘ and ‘memplus‘ the number of nonzeros of the preconditioner C is more than 20
times smaller than the number of nonzeros of S. Nevertheless, the iterative method converges
very well. For ‘circuit_4’, ‘TTa’, ‘TIb’ and ‘TId’ solving the Schur complement directly costs
more than 80 percent of the flops for solving Az = b directly. This part can be done much
faster with our preconditioned iterative method. For these problems a fast Schur complement
solver is a prerequisite to have reasonable speedup results. Note that we have ng > 3kg for
each problem , which indicates that it is attractive to use the iterative approach for the Schur
complement, see section 4.

For problem ‘TTb’ the LU factorization of the permuted preconditioner D is rather expensive.
Considerable savings (in the number of flops) are possible by discarding small elements during
the LU factorization of D. This can be done as follows: Start with the LU factorization of
D and stop when the columns of L become too dense. Take the Schur complement, discard
small entries as described in Section 4, and reorder this approximate Schur complement.
Proceed with the LU decomposition until completion. Now we have a sort of incomplete LU
factorization of D which can be used instead of the exact L and U factors of D. Problem

11

parameters flops

problem q t Ord ns | nnz(S) | nnz(C) k.G | direct | hybrid

x103 x103 x 108 x 108
circuit_1 40 | 0.020 col 127 7.5 .7 6 0.86 0.47
circuit_2 40 | 0.020 col 57 2.5 3 5 0.51 0.47
circuit_3 40 | 0.020 col 0 0 0 0 0.54 0.54
circuit_4 40 | 0.020 col 344 26.8 1.1 6 15.28 3.15
memplus 40 | 0.020 col 166 10.8 4 5 2.27 0.94
TIa 40 | 0.020 col 348 22.2 2.4 5 8.07 0.93
TIb 40 | 0.020 col 1265 63.0 10.4 12 | 45.30 7.38
Tlc 40 | 0.020 col 0 0 0 0 0.18 0.18
TId 40 | 0.020 col 434 28.2 2.6 7 11.63 1.58
lap_-md128 112 | 0.005 | mmd 1011 138.5 15.8 19 57.24 27.65
lap nd128 95 | 0.005 | mmd 1305 140.3 16.0 17 | 67.86 | 30.44
lap_nd256 191 | 0.005 | mmd 2649 591.3 32.2 24 | 589.61 | 252.81
orsirr_1 60 | 0.005 | mmd 245 194 14 14 2.65 1.43
watt__1 88 | 0.005 | mmd 432 51.4 9.1 8 11.47 5.26
sherman3 95 | 0.005 | mmd 627 83.9 13.6 11 22.28 15.64
heat 193 | 0.005 | mmd 894 222.6 26.4 18 | 116.11 56.04

Table 3: Solving the Schur complement iteratively. Ord is the symmetric ordering applied to C.
Minimum degree (MATLAB’s symmmd) is mmd and colperm is col. ng is the dimension of the Schur
complement S. The number of GMRES steps is kg. The (MATLAB) flop counts are the number of
flops to solve Az = b by a direct LU method and by our hybrid (mixed direct/iterative) method.

‘TIb’ can be solved with only 4.02 - 10% flops by using this approach. This is a reduction of 46
percent compared to our original mixed direct/iterative method. Most of the test problems
reported here are too small to benefit from this approach.

Our experiments showed that the time step, that the circuit simulator selects in the circuit
simulation process, has almost no influence on the GMRES convergence for Sz, = yn,.

8.2 Sequential and parallel experiments

The parallel method was implemented with multiprocessing C compiler directives for SGI
shared memory systems. The matrix vector product of the GMRES method was parallelized.
The other parts of the GMRES method are not parallelized. We will discuss implementation
issues in another paper [1]. Note that a distributed memory implementation is possible as well
because we have a coarse grained algorithm that does not need complicated communication.

The direct solver we used (for the direct part of our method) was our own implementation
of GP-Mod. This is the sparse LU method of Gilbert and Peierls [9] extended with the
symmetric reductions of Eisenstat and Liu [8], [7], see also [4]. Any sparse LU method
for the Schur complement is allowed as a direct solver, including, for example, multifrontal
methods. We choosed GP-Mod because it is relatively easy to implement. Moreover, in [4] it
is reported that, for circuit simulation problem ‘memplus’, GP-Mod is faster than SuperLLU
and also faster than the multi frontal code UMFPACK [2].

The same parameters are used as in section 8.1. But for the non-circuit simulation matrices

12

Liu’s minimum degree ordering [19] is applied to C instead of MATLAB’s symmmd. The results
on the SGI Power Challenge are showed in Table 4. Table 5 shows the parallel results for the
SGI Origin 200. With the Power Challenge we could measure the wall clock time because we
were allowed to run our processes with the highest possible priority. For the Origin 200 we
do not report the wall clock time because there were other minor processes on the system,
which made accurate wall clock timing unreliable. Therefore, we measured the CPU-time,
which is close to the wall clock time if the system load is modest. Note that processes which
are waiting for synchronization are still consuming full CPU-time, so it is fair to measure
CPU-time.

problem Time (sec.) Speedup

SuperLU direct hybrid 2 4 6 8 10
circuit_1 0.085 0.052 0.051 | 1.66 | 2.25 | 3.83 | 3.76 | 5.20
circuit_2 0.082 0.035 0.040 | 1.88 | 2.58 | 3.58 | 3.29 | 3.88
circuit_3 0.334 0.084 0.085 | 1.99 | 3.94 | 545 | 591 | 6.98
circuit 4 2.367 1.130 0.709 | 1.99 | 3.60 | 5.94 | 7.14 | 9.27
memplus 0.440 0.191 0.168 | 1.92 | 3.68 | 4.69 | 6.18 | 8.00
lap_md128 1.470 2.096 1.544 | 1.88 | 3.34 | 4.55 | 4.13 | 5.65
lap_-nd128 1.740 2.534 1.643 | 1.79 | 297 | 3.95| 5.31 | 4.56
lap_nd256 11.364 28.401 11.387 | 1.49 | 2.56 | 3.18 | 4.72 | 5.34
orsirr_1 0.076 0.083 0.075 | 142 | 1.89 | 2.36 | 2.27 | 2.50
watt__1 0.241 0.331 0354 | 1.76 | 1.44 | 1.75 | 2.04 | 1.74
sherman3 0.440 0.662 0.559 | 1.61 | 1.85 | 2.43 | 2.08 | 2.10
heat 2.639 5.758 2671 | 1.64 | 1.86 | 1.65 | 1.31 | 1.00

Table 4: Parallel results on a SGI Power Challenge with 12 R10000 processors at 195 MHz. The time
to solve the system by SuperLU [4], by our own direct solver and by our hybrid solver is in columns
2, 3 and 4. The speedup results in the next columns are relative to the results in the hybrid column.

From the results in section 8.1 one might expect a large reduction in CPU-time for some
circuit simulation problems. But, for example, for ‘circuit_4’ the gain is less than a factor
of two. This is easy to explain by an example: Suppose we solve a problem directly and
80 percent of the flops is in the Schur complement part of the computations. The other 20
percent are very sparse flops which are much slower. So, suppose that the 80 percent takes
0.5 seconds and that the 20 percent also takes 0.5 seconds. Now, suppose we can speedup the
Schur complement part by a factor of 10 by using an interative method. Then the number of
flops reduces from 100 percent to 20 + 80/10 = 28 percent. The CPU-time reduces only from
1 second to 0.5 + 0.5/10 = 0.55 seconds. Moreover, the direct Schur complement flops are
faster than the iterative ones and the iterative method introduces some extra overhead due
to datastructures etc. In the worst case (‘circuit_2’) there is even a small loss in CPU-time.

Problems ‘circuit_3’ and ‘TIc’ have no iterative part in the sequential case. So they do not
benefit from the mixed direct/iterative approach, as already noticed in the section 8.1. In
the parallel case both problems have a small Schur complement, so the work involved with
the Schur complement is only a small fraction of the overall amount of work, and the method
is still parallelizable in this case. Problem ‘circuit_3’ has good speed-up results, ‘TIc’ is too
small to have good parallel results.

13

problem Time (sec.) Speedup
SuperLu direct hybrid 2 3 4
circuit_1 0.080 0.051 0.048 | 1.57 | 2.00 | 2.17
circuit_2 0.074 0.035 0.037 | 1.80 | 2.22 | 2.37
circuit_3 0.285 0.074 0.074 | 1.86 | 2.75 | 3.62
circuit_4 1.781 0.882 0.558 | 1.89 | 2.81 | 3.50
memplus 0.358 0.169 0.143 | 1.83 | 2.49 | 3.19
TIa 0.430 0.254 0.090 | 1.54 | 1.57 | 1.63
TIb 3.198 1.509 0.538 | 1.53 | 2.30 | 2.39
TIc 0.037 0.017 0.017 | 1.74 | 2.34 | 245
TId 0.564 0.376 0.151 | 1.60 | 1.69 | 1.87
lap-md128 1.289 1.783 1.298 | 1.77 | 2.28 | 2.68
lap-nd128 1.557 2.191 1.416 | 1.67 | 2.15 | 2.82
orsirr_1 0.074 0.087 0.074 | 1.35 | 1.58 | 1.81
watt__1 0.209 0.331 0.307 | 1.61 | 1.33 | 1.35
sherman3 0.402 0.641 0.489 | 1.55 | 1.72 | 1.74
heat 2.227 3.905 2202 | 148 | 1.73 | 1.83

Table 5: Parallel results on a SGI Origin 200 with 4 R10000 processors at 180 MHz. See also Table
4 for explanation.

For reference the results of the SuperLU code [4] are also in the tables. For circuit simulation
problems our direct method is faster than SuperLU. This is not remarkable, because of the
sparsity of circuit simulation problems, see [4]. The difference in time between our direct
implementation and the SuperLU code shows that our direct implementation is sufficiently
efficient although the Mflop rate is low. For ‘circuit-4’ we have only 15.39/1.1297 = 13.6
Mflops which is much lower than the peak performance of 390Mflops of the SGI R10000
processor. For the mixed direct/iterative solver the Mflops rate is even worse. This is normal
for circuit simulation problems because of, among other things, the poor cache reuse and the
large symbolic overhead for these extreme sparse problems.

For the non-circuit simulation problems SuperLU is always faster than our direct sparse
LU implementation. However, the speed of our hybrid method is often comparable to the
SuperLU method for these problems. This is remarkable because it was not the intention to
solve these kind of problems with our method. Note that SuperLU uses dense supernodes in
order to speed up the computations when the L and U factors become dense. In contrast, our
method tries to keep everything sparse. The fast results of our method were obtained with a
g parameter such that a relatively large part of the work is in the iterative part of the method.
As a consequence the parallel speedup results are not exceptional, because the iterative part
is less well parallelizable than the direct part of the method (only the matrix vector product
of the iterative method has been parallelized). For non-circuit simulation problems, there is
often a significant amount of work in the other parts of the iterative method. However, for
our test problems these parts are too small for parallelization.

For circuit simulation problems ‘TTa’, ‘TIb’ and ‘T1d’ something similar occurs. The sequen-
tial timings for these problems are up to three times faster than the timings for the direct

14

method and the parallel speedup results are a bit disappointing. This is due to the expensive
Schur complement system solve. We may conclude that a good sequential performance often
leads to less well parallel results. The best parallel results are obtained with the three circuit
simulation matrices: ‘circuit_3’, ‘circuit-4’ and ‘memplus’. These problems have a heigth h
of the elimination tree which is small relative to the number of unknowns n, this is good for
parallelization, see Section 6. The problems ‘circuit_1’, ‘circuit_2’ are too small for reasonable
speedups.

The overhead for determining the block partition (see Section 6) and for memory allocation
is not included in the timings because we assumed that we are in a Newton process. So these
actions have to be done only once and can be reused in the Newton process.

For all the problems reported here it was possible to find a suitable pivot inside the diagonal
block. However, there exist problems for which this is not possible (for example, Matrix
Market [20] problems ‘Insp3937” and ‘e20r3000’). A solution to this problem is described in
section 7. We have not implemented this in the code. Therefore, we had to choose a smaller
LU pivot threshold in some cases. For problems ‘circuit_1’ and ‘circuit_3’ we used a pivot
threshold of 0.0001 if there were 5 or more processors. For ‘TIb’ we always used a value of
0.0001. These small pivot thresholds do not lead to stability problems for these problems.

For the CPU-time measurements of the sequential method we used the same parameters as in
the previous subsection. The iterative part of the method is less well parallelizable than the
direct part of the method. Therefore, we increased parameter q for some non-circuit simulation
problems and for the problems ‘TTx’ if there were 3 or more processors. This results in more
direct work and in less iterative work. Moreover we increased the preconditioner threshold
t in order to reduce the costs of the not parallelized preconditioner action and to increase
the number of parallel matrix vector products. Globally this leads to slightly faster parallel
results.

Demmel, Gilbert and Li also report on parallel results for problems ‘memplus’ and ‘sherman3’
with their shared memory SuperLU code [3]. These results have been copied in Table 6. The
speed-up results for ‘memplus’ are much worse than our ones. For the non-circuit simulation
problem ‘sherman3’ our results are worse.

Speedup
problem 4 proc. 8 proc.
memplus 1.73 (3.68) 1.73 (6.18)
sherman3 2.36 (1.85) 2.78 (2.08)

Table 6: Parallel speed-ups of SuperLU on a SGI Power Challenge with 16 R8000 processors at 90
MHz, from [3]. Our results (from Table 4) are between parentheses.

Jiang, Richman, Shen, and Yang report 12.81 seconds for ‘TIb’ on 8 processors of a 450 MHz
Cray T3E [12] which is not very fast. This is caused by the unlucky combination of the
minimum degree ordering and the ‘S’ factorisation method for circuit simulation problems,
although a better ordering has not been identified yet. For a number of non-circuit simulation
problems they have very nice results.

15

9

Conclusions

In this paper we have proposed a preconditioned iterative method for the solution of a Schur
complement system for circuit simulation problems. This leads to an efficient sequential
method which is sometimes much faster than direct sparse LU factorization. Moreover, the
method is often well parallelizable which is supported by the parallel experiments. Note that a
good sequential performance does not automatically lead to good parallel results. The method
is not restricted to circuit simulation problems, although the results for these problems are
better than for most other problems.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

W. Bomhof, Implementation of a parallel mized direct/iterative linear system solver. To
appear.

T.A. Davis, 1.S. Duff, An unsymmetric-pattern multifrontal method for sparse LU fac-
torization. SIAM J. Matrix Anal. Appl., 18(1) (1997), pp. 140-158.

J.W. Demmel, J.R. Gilbert. X.S. Li, An asynchronous parallel supernodal algorithm for
sparse Gaussian elimination. SIAM J. Matrix Anal. Appl., 20(4) (1999), pp. 915-952.

J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, JJW.H. Liu, A supernodal approach
to sparse partial pivoting. STAM J. Matrix Anal. Appl., 20(3) (1999), pp. 720-755.

L.S. Duff, A.M. Erisman, J.K. Reid, Direct methods for sparse matrices. Oxford Univer-
sity Press, Oxford, 1986.

1.S. Duff, J. Koster, The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. STAM J. Matrix Anal. Appl., 20(4) (1999), pp. 889-901.

S.C. Eisenstat, J.W.H. Liu, Fzploiting structural symmetry in a sparse partial pivoting
code. SIAM J. Sci. Comput., 14(1) (1993), pp. 253-257.

S.C. Eisenstat, JJW.H. Liu, Ezploiting structural symmetry in unsymmetric sparse sym-
bolic factorization. SIAM J. Matrix. Anal. Appl., 13(1) (1992), pp. 202-211.

J.R. Gilbert, T. Peierls, Sparse partial pivoting in time proportional to arithmetic oper-
ations. STAM J. Sci. Comput., 9(5) (1988), pp. 862-874.

J.R.Gilbert, C. Moler, R Schreiber, Sparse matrices in Matlab: design and implementa-
tion. STAM J. Matrix Anal. Appl., 13(1) (1992), pp. 333-356.

B. Hendrickson, R. Leland, An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations. STAM J. Sci. Stat. Comput., 16(2) (1995), pp. 452-469.

B. Jiang, S. Richman, K. Shen, and T. Yang, Efficient Sparse LU Factorization with Lazy
Space Allocation. In STAM 1999 Parallel Processing Conference on Scientific Computing.

G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irreqular
graphs. SIAM J. Sci. Comput., 20 (1999), pp. 359-392.

16

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

K. Kundert, Sparse matriz techniques. In: Circuit Analysis, Simulation and Design,
Albert Ruehli (Ed.), North-Holland, 1986.

S. I. Larimore, An approximate minimum degree column ordering algorithm. MS
Thesis, CISE Tech Report TR-98-016, University of Florida, 1998. Available at:
ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps

L. Lengowski, CGS preconditioned with ILUT as a solver for circuit simulation. Nat.
Lab Unclassified Report 828/98, Philips Electronics N.V., 1998.

X.S. Li, J.W. Demmel, Making Sparse Gaussian elimination scalable by static pivoting
Proceedings of Supercomputing 98 conference, November 7-13, 1998, in Orlando.

J.W.H. Liu, The role of elimination trees in sparse factorization. STAM J. Matrix Anal.
Appl., 11(1) (1990), pp. 134-172.

J.W.H. Liu, Modification of the minimum degree algorithm by multiple elimination. ACM
Trans. Math. Software, 11 (1985), pp. 141-153.

Matrix ~ Market, Collection of test matrices, available at:
http://math.nist.gov/MatrixMarket/index.html.

W.J. McCalla, Fundamentals of computer-aided circuit simulation. Kluwer Acad. Publ.
Group, Dordrecht, the Netherlands, 1988.

E. Rothberg, Silicon Graphics, Inc., man-page for PSLDU.

Y. Saad, M. Schultz, A generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

17

