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Abstract

A standard boundary element method (BEM) discretisation for the electromagnetic com-
patibility (EMC) problem is analysed, revealing the near-singularity of the dense linear system
for the lower frequency range. Next, a new basis transformation is presented, that separates
the dominating capacitive effects from the small, but important inductive effects. On this
basis a sparse approximate inverse is constructed, that is used not only as a preconditioner,
but also as a smoother for a multi-level preconditioner. The number of matrix-vector mul-
tiplications for the iterative solver is further reduced by reusing information: Ritz vectors,
obtained from previous right-hand side solves, are injected into the search space of GMRESR,
thereby skipping the stagnation phase. Reuse of information from the previous frequency
computations has also been attempted, but this is less effective. Test results for the different
methods are presented and compared.

1 Introduction

All electrical appliances have to be conform the electromagnetic compatibility (EMC) laws, which
means that the eradiated electromagnetic field must comply to some restrictions. To shorten the
design process, it is important to be able to get fast and accurate predictions for EMC properties.
This involves calculating the response of a conducting shape to several excitation sources for a
wide range of frequencies. These results can also be used for the analysis of an electrostatic
discharge. Also, the same type of problem has to be solved for electromagnetic scattering and
antenna simulations.

These problems can be solved by solving the Maxwell equations on the domain, using a finite
element method (FEM) [8]. However, we are interested in the properties of the eradiated field,
which theoretically extends to infinity. In practice the domain can be truncated at some distance,
but we will have to extend the domain far beyond the size of the object, and impose some artificial
boundary condition.

An alternative approach uses a boundary integral formulation, leading to a boundary element
method (BEM). This electromagnetic problem can be written as an integral equation on the
surface of the conductor. In this way we can calculate the currents resulting from the excitation,
which we can use to calculate the eradiated fields. Hereby, we reduce the domain of the problem
from 3- to 2-dimensional, and skip the need to extend the domain beyond the size of the object.
This can dramatically reduce the number of unknowns, but it makes it necessary to solve a dense
linear system instead of the sparse system involved with the FE method. The BE method is most
effective for problems with lots of empty space.

It is also possible to combine the two methods. If some regions of the domain are dense with
conductors, these can be treated with the FE method, while other, more empty regions, including
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the exterior, are treated with the BE method. This requires some connection mechanism for the
different types of regions.

We will study the pure BE method to solve EMC problems. However, the methods described
here can also be used for other problems of the same type, and may also lead to good precondi-
tioners for the BEM part of a mixed method.

Modelling with the boundary element method leads to the necessity to solve many large dense
linear systems. Because of the bad condition and the density of the matrix this is often done with
direct solvers, but we will show that, after constructing a clever basis, an iterative solver combined
with a good preconditioner may lead to a faster method.

2 Physics and discretisation

The problem of interest is written as a boundary integral equation on the conductor surface I" [1]

é/VrG(x,x')Vf- "Nd?z' /G x,x)J(x)d?2 + Z(x)J(x) = EF(X)  Vxer . (1)
r
Here, G is the Green function
o , e—ik|x—x’\ )
(x,x') = W ) (2)

w is the angular frequency of the excitation, ¥ = w/c = 2w /X is the corresponding wave number
and Vr indicates the gradient or divergence restricted to the conductor surface I'. The first integral
is called the capacitive part and is due to the surface charge density p :

Ve -J+iwp=0 . (3)

The second integral is called the inductive part and is due to the surface current density J. The
third term is due to the surface impedance Z which is often very small. The right-hand side is the
external electric field, which acts as a the driving force. Equation (1) is called the Electric Field
Integral Equation (EFIE). The EFIE is known to lead to problems with internal resonances [1],
but since our models only consist of thin plates and wires, this should not be a problem here.

To solve the linear EFIE (1), we discretise it with a Galerkin approach, which is also called
the method of moments in this context. We rewrite the EFIE in a weak form, where we use only
a finite number of test functions ¥,(x), 2 = 1...n, and we use the same functions as a basis for
the current density :

= 2,9,(x) . (4)

This results in a set of linear algebraic equations that can be written in matrix form
Az =b , ()
with
A = C+L+R
C, = é / A Vr - ¥,(x)* G(x,x') Vi - ¥,(x') @°z'd°x

L, = ’—“2’ / / T, (x)* G(x,x') ¥,(x') d*s'd*x (6)
¢ r
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b, = /F\Il,(x)* Ef (x) d*z .



The conductors are composed of thin wires and plates. The conductor surface I" should there-
fore contain a front and back plane for each plate. If the plate is thin enough, we can combine
the current on the front and back surface in one current. This reduces I' to one plane per plate
and helps to significantly reduce the numerical work. For the thin wires we will use only currents
along the wire, independent of the angle.

3 Matrix properties

We can derive some properties of the matrix A by examining the integrals in (6). First we note
that the matrix A is a dense, complex symmetric matrix. Next we see that A has the largest
elements for close interactions, which are mostly imaginary. This means that A/i is relatively
close to a real symmetric (indefinite) matrix. Consequently, most eigenvalues of A will be close to
the imaginary axis. Using energy conservation arguments, we can show that all eigenvalues of A
must have positive real parts. However, for most eigenvalues, the real part is small compared to
the imaginary part.

Very important for the spectrum of A is the fact that, in general, the capacitive matrix C has
a large null space. Cz represents the electric field due to the charge accumulation that results
from a current represented by x. If this current is a divergence free current, there will be no
charge accumulation and Cxz will be zero. In the discretised case, such divergence free currents
are the currents that form a closed loop. For each independent loop there will be an independent
divergence free current and together they span the null space of C. Depending on the model
geometry, its dimension will typically be in the order of 1/2 of the dimension of C.

From the definitions (6) we see that C' oc 1, while L oc w. This implies that for small enough
frequencies w (A much larger then the size of the model), the inductive part L will be much smaller
than the capacitive part C. Since the resistive part R is usually very small, the capacitive effects
will dominate. However, on the null space of C only the inductive and resistive effects are left,
which are relatively small. This results in a cluster of relatively small eigenvalues of the dimension
of the null space of C. These eigenvalues can be several orders of magnitude smaller than the
remainder of the eigenvalues and this is a big problem for iterative solvers.

To make this more precise, we analysed the continuous spectrum of an infinite board and infinite
wire in appendices A.1 and A.2. When using an approximately uniform grid, this continuous
spectrum can give an indication of the behaviour of the discrete spectrum of A. In the case of a
discretised board/wire of finite size, we can expect the eigenvectors to correspond approximately
to modes that fit on the board/wire and on the discretisation. This gives upper and lower cutoff
frequencies of the order of 27/L < |q| < 27/h, with uniformly distributed values in between. Since
we may expect the solution to oscillate with wavelength A\ over interior regions, we have to chose
a grid sufficiently fine to be able to accurately represent this. In practice h < A/20 is used, which
means that 27 /h > 40w /X = 20k. The result is that most of the eigenvectors of the matrix will
come from the region beyond the resonance (|g| > k).

For the inductive part of the spectrum, the eigenvalues are proportional to 1/|g| so that the
high frequency eigenvalues tend to cluster towards the cutoff eigenvalue, which is nice for the
convergence of an iterative solver. However, this cutoff eigenvalue will tend to zero for increasingly
fine grids, leading to a growing condition number of the matrix. The capacitive part of the
spectrum is proportional to |q|, which does not lead to clustering and is thus not favourable for
the convergence of an iterative solver. Here, finer grids also lead to a growing condition number.

In total this gives us the following estimate for the (spectral) condition number of A for low
frequencies and no resistance

472 A2
K(A) R 122 = 72 (7)
where possible resonances may lead to even worse values. Note that for low frequencies the edge
effects and the geometry dictate the element size h, leading to a much smaller h than required by



the inequality used above. As a conservative example, for a pretty coarse grid size of 1 cm and an
intermediate frequency of 10 MHz (A=30 m) we still get x(A) 2 107.

For the higher frequencies, not the high frequency modes but the resonances lead to problems.
Since the resonances depend strongly on the geometry and the frequency, this condition number
is quite hard to estimate.

4 Constructing a new basis

For low frequencies, standard preconditioning techniques will encounter severe difficulties because
of the large cluster of small eigenvalues dictated by L + R. Since the contribution of L + R to the
elements of A will be very small compared with the contribution of C', a standard preconditioner
will not be able to capture the behaviour of A on the null space of C. It is possible to precondition
the part dominated by C, but the large cluster of small eigenvalues will remain unaffected.

To overcome the problem of the cluster of small eigenvalues we will try to separate the con-
tribution of L + R, visible in the small eigenvalues, from the contribution of C, seen in the large
eigenvalues. To achieve this, we will use a basis for the small eigenvalue subspace and a basis for
the remaining large eigenvalue subspace.

From the topology of the discretisation we can construct a set of basis vectors K; for the null
space of C, which contains all the independent loop currents. We then have that CK; = 0, and
since CT = C also K;'C = 0. Note that in practice K; will contain mainly small local loops on
the boards and only a few global loops, resulting in a sparse K;. The basis vectors K, for the
remainder of the space can still be chosen freely. K. need not be orthogonal to K, but should not
make small angles with K either, because this would lead to numerical problems in the solution
process. We now define the basis transformation @ = (K;, K.) by

KNL+RK, K '(L+RK, )

Ag=QTAQ = ( K!(L+RK, KI(C+L+RK. ¥

On this new basis, C is restricted to one block. As a result, the contribution of L + R, that
determines the behaviour of A on the null space of C, is not hidden behind the C' any more, and
a preconditioner may be able to capture it. Note that Ag is still symmetric.

The question remains how to select K., the second part of the new basis. Since the first part
deals with chargeless currents, K, should represent all possible charges. Furthermore, we know
that the operator associated with the potential due to charges is quite well behaved (see appendix
A). In electrostatics this is given by

V(x) = / Glx, x')p(x)da! | )

where p is the surface charge density and V' the electrostatic potential. We will try to get a similar
operator for K} CK,, by choosing the right basis vectors K. Since capacitive effects dominate
this part of Ag, we hope KI(C + L + R)K, will behave alike. The basis vectors K. describe a
current, which means that they always have total zero charge. It is therefore impossible to get
pure charge basis functions. However, we can devise currents so that one charge element has a unit
positive charge and the others have a small negative charge, such that the total charge is again
zero. Filling K, with these vectors makes sure that KX CK, is (up to a constant) the discretised
operator of equation (9).

This can also be expressed in matrix terms. From the EFIE (1) or from equation (3) and
E = —VV we can see that the “current — field” matrix C' can be composed from the “charge —
potential” matrix D associated with (9), the surface gradient matrix R and the surface divergence
matrix RT :

C = RDR" . (10)

C is the n X n matrix in (6) and D is an m X m matrix associated with (9), with n the total
number of current degrees of freedom and m the number of charge degrees of freedom. The surface
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Figure 1: Left: Current and charge of the quasi-charge basis functions on the wires. Right:
Current for the quasi-charge basis functions on the boards. The dotted lines denote the grid, the
arrows the current (thickness is proportional to the current).

gradient matrix R is a sparse n X m matrix with on each row one +1 and one —1 element. From
(10), we see that K;, the null space of C, is equal to the null space of RY. This null space K; has
at least size n — m, but since R does not have full rank it is larger. For each disconnected part
of the conductor surface the gradient of a constant function is zero, thus decreasing the rank of
R by one, and increasing the dimension of the null space of C' by one. As a result, the dimension
of this null space is n — m + p, where p is the number of disconnected parts in the conductor
surface. We would like KICK, = KIRDRTK. to have the same nice behaviour as D, so we
would like to chose K. such that K CT R=RTK.=1. Unfortunately this is impossible because
R does not have full rank. We can chose K. such that KJR = RTK. = 1 — E, where 1 — E
is a projection on the space of total zero charge per disconnected conductor. In the case of one
connected conductor (p = 1), the matrix E has all elements equal to 1/m. We now see that
KICK.= KIRDRYK. = (1 - E)D(1 — E), which represents D restricted to the space of total
zero charge and potential. This is physically the same, because the total charge is zero and only
potential differences are important.

This ideal K, can be constructed, but it takes too much time and it will lead to a dense
matrix K., which makes basis transformations expensive. However, we can make a cheap sparse
approximation by quasi-charge currents. These are currents that transport charge from a region
around a particular charge element to that central charge element. The resulting charge is large
positive on the central charge element and small negative on the remainder of the region. In the
case of a wire, the quasi-charge current is fully determined by the required charge distribution.
For the board, we have some freedom in choosing the currents and that freedom can be used to
try to minimise K lT K.. The quasi-charge currents we used are shown in Figure 1.

Choosing these quasi-charge currents for the second part of the new basis will lead to an “over-
complete” basis @ with (n —m + p) + m = n + p vectors. The null space of Q will correspond to
the null space of K. and its basis will be formed by the vectors with a constant quasi-charge on
the disconnected parts of the conductor. Since we now know these vectors, this subspace can be
deflated in the iterative solver.

The new () basis can also be seen from an other point of view. The operator KlT can be
interpreted as a discretised version of the surface rotation, while the currents in Kj are divergence
free. The currents in K. have a strongly peaked divergence (charge) and a relatively low rotation.
This basis transformation might thus be related to a splitting in divergence free and rotation free



currents. A side effect is that K" K, is relatively small, which results in small K;' AK, and K] AK;
due to a relatively dominant and constant diagonal of A.

As a result the K, lT AK; part is decoupled rather well from the KT AK, part. This decoupling
leads to an effective block-diagonal preconditioning with separate preconditioners for the K lT AK;
and the KX AK, blocks.

5 Preconditioning

We can now use a conventional preconditioner for the matrix Ag, but we will have to adjust this
to the density of Ag. We propose to use the sparse approximate inverse of Grote and Huckle [3],
also because of its its potential parallelism. This approach is very expensive for a dense matrix,
so we will apply this to a sparsified matrix Ag’. We get this sparsified matrix by using only those
matrix elements that correspond to interactions between physically close elements. To gain even
more, the sparsity pattern of the approximate inverse can be fixed in advance, again by using a
small-distance criterion. The results is that we do a simple Frobenius norm minimisation

min |4 M — I||r (11)

where the sparsity pattern of M is fixed. We will refer to this as the sparse approximate inverse
(SAI) in the remainder of this paper.

In the sparsification of the matrix, we throw away the terms that are important only for the
long range behaviour. Hence we cannot expect a good preconditioner for long range effects. For
the highly oscillating eigenfunctions, the resulting long distance field will be negligible because
of the cancellation. For these highly oscillating eigenfunctions the near interaction terms are the
most important ones and they can be represented quite well in the preconditioner. This results
in an effective preconditioner for the removal of the highly oscillating modes corresponding to the
extreme eigenvalues that caused the bad condition (7) for low source frequencies. This is precisely
what we see in practice, the best preconditioned eigenfunctions are the fast oscillating ones, and
the bad ones are only varying over larger distances. Fourier analysis confirms that preconditioning
with the exact inverse of the truncated operator works well for highly oscillating functions; for
more details see appendix A.3.

A problem with the SAT preconditioner is the convergence behaviour when the discretisation
is refined. To maintain convergence speed we need to increase the number of nonzeroes per row
in A‘g’ and M as h~2, which leads to rapidly growing costs.

If we combine the SAI preconditioner with a preconditioner for the slowly varying eigenfunc-
tions, using a coarse grid, we obtain a multilevel preconditioner [4]. It is easy to construct a
coarser basis for the two new scalar quantities and we put these coarse basis functions in a tall
rectangular interpolation matrix P, and define the accompanying restriction to be PT. We form
the corresponding coarse grid matrix directly from the fine grid matrix by

Agp = PTAgP . (12)

As a smoother we use the sparse approximate inverse. This gives us all the ingredients for a
multigrid V-cycle that approximates the solution of Agz = b, and can be used as a preconditioner
for an iterative solver like GMRES [7]. The V-cycle consists of a recursion of 3 steps :

e Pre-smoothing: The high-frequency modes in the residual b are damped by multiplication
with the smoother M :

ry = Mb

e Coarse grid correction: Now that the residual r; is smooth, it can be represented rather
well on the coarser grid (r. = PTr;). The much smaller coarse grid system can be inverted



approximately (z. & Aé}grc) and the solution can be interpolated to the finer grid for the
correction of the previous solution :

o = X1+ P Aé}; PTT'1
b— Ague = (1—Aq P Agp PM)ry (14)

T2

¢ Post-smoothing: The high frequency modes are again removed from the residual :

3 = To+ Mnry
rg = b— AQ$3 =01- AQM)’I‘Q (15)

The coarse grid solve will be done by another V-cycle on the coarse grid, introducing an even
coarser grid. This will continue until the grid is coarse enough to do a direct solve. For our problem
we coarsen the grid by a factor of approximately 2 in each direction leading to around 4 times less
coarse grid unknowns. To perform the V-cycle on the coarser grid, we also need a smoother for
that level. Here, we again use the SAT preconditioner, now applied to A%y = PTAgP.

Note that the calculation of Ag from A is very expensive because of the large and dense matrix
A. However, we do not need to know Ag explicitly, but we only need a sparsified version for the
SAI smoother, which is not too expensive to construct. The matrix vector multiplications with Ag
can be performed by consecutive multiplication with @, 4, and QT. Agp is calculated explicitly
using (QP)T A(QP), which is cheaper because of the low column dimension of QP.

Note that this method for obtaining the coarse grid matrix cannot trivially be used in combi-
nation with a matrix-free matrix vector multiplication like the fast multipole methods. However,
we only need to know A explicitly to be able to do matrix vector multiplications with the coarse
grid matrices. If we have an efficient matrix-free way to calculate matrix vector multiplications on
all levels, we do not need to know A explicitly. By combining the different levels of interpolations
and restrictions with the different levels of projections in the fast multipole method, in principle
a matrix-free multigrid method is possible.

6 Reusing information

In practical EMC simulation we have to solve the system (5) for multiple right-hand sides and
multiple frequencies. We would like to make optimal use of this by maximally reusing information.

The reuse of the GMRES polynomial for multiple right-hand sides, as done as in most block
methods, is not advantageous in our case. In general, this will increase the number of iterations
(the fixed GMRES polynomial is optimal only for one right-hand side) and it may only save on
the GMRES inner products, vector updates and the reduced system solve, which are not the cpu-
dominating factors here. Simonicini and Gallopoulos compared some methods and proposed their
own MHGMRES method [9], but they still assume that the matrix vector product is relatively
cheap in order to make the method profitable. In our case, the dense matrix vector multiplication
will dominate the cpu-costs, and only a reduction in the number of matrix vector products can
significantly decrease the work. To accomplish this, we have to reuse matrix vector multiplication
information from previous solves with the same matrix. This can be done by starting the next
solve with the search space from the previous solve, for which we still know the image under A. For
this we can use the GCR method [2] with some additions. What we get is GMRESR [10], which
allows the injection of an arbitrary search space and variable preconditioning. In [11], GMRESR
is also used to inject a search space from previous right-hand side solves, but we will do it slightly
different.

When solving Az = b with GMRESR, we build a search space V and shadow space U, such
that AV = U and UHU = 1, and chose the best approximation to the solution from the search
space V. If we start V' with b and expand it with the residual in each step, then we are building the
same Krylov subspace as in ordinary GMRES and, in exact arithmetic, we get the same results for
GMRESR and GMRES. However, since we store the shadow space separately, V is not restricted
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Figure 2: The GMRESR algorithm with search space injection and variable preconditioner M.

to Krylov subspaces, but we can use any subspace. This implies that we can expand V differently.
For fast convergence, we have to expand V' with an approximate solution to Av = r, where r is the
residual. The way this approximation is made (the preconditioner) can change from step to step,
leading to a variable preconditioned method. An other degree of freedom is that we can start the
iteration with any pair (V,U) that satisfies AV = U and UHU = 1. We will call this search space
injection. The GMRESR algorithm with search space injection and variable preconditioning is
shown in Figure 2. Unfortunately we have to pay for this flexibility: we have to keep and update
both V' and U, leading to twice as many vector updates and double the memory requirements
compared with GMRES. However, since our matrix-vector multiplication is the most expensive
part in terms of cpu-time and memory requirements, this is not a big problem for our application.

The complete injection of the previous V' and U will lead to a large search space, and this
will lead to much work in the orthogonalisation and it might also lead to memory problems. To
prevent this, we want to reuse only the most relevant information. To separate the relevant from
the less relevant information, we calculate Ritz values and vectors from V and U, and select those
Ritz vectors that represent eigenvalues that cause slow convergence. These Ritz vectors can now
be injected in the next solve.

From a pair (V,U) we can calculate harmonic Ritz vectors and values by calculating the
eigenvalues and vectors of UV :

1
W= vvy & (16a)
y=\UVy & (16b)
Uy =NUURVy = AVy - A1 -UUDVy = (16¢)
AVy=AVy+r = (16d)
Az =Xz +r . (16e)

Note that the residual 7 is orthogonal to U. In the first step we assume that UMV is non-singular,



thus A # 0. If U and V are near orthogonal, the projection in (16¢) will move almost all information
to the residual r, leading to very bad Ritz vectors and values. In practice we have not observed
this, but if it would happen this would only imply that we will not see any acceleration from the
injection of these vectors.

Since the preconditioned matrix determines the convergence behaviour, we would like to reuse
the Ritz-vectors and -values of the preconditioned system in further solves. We therefore have
to use implicit preconditioning, where the A in the algorithm is the preconditioned matrix. As a
consequence we can not use a variable preconditioner.

The Ritz vector injection really improves the robustness of the method. It results in the removal
of the stagnation phase in the convergence, as is seen in Figure 3 (see the discussion in section 7),
and it will make the cpu-time needed to solve the system less dependent on the problem. Only
for the first right-hand side we need to overcome the stagnation phase, but the other right-hand
sides will require an, almost constant, small number of iterations.

When solving the same problem for different frequencies, it is possible to use the solutions
obtained with the previous frequencies as an initial guess for the new frequency. In order to
predict the way the solution will change when the frequency is changed, we investigate how the
operator changes when the frequency changes. This change is nonlinear and it has two sources.
First, the Green function (2) changes, which has a complicated effect. Second, the factor 1/w in the
capacitive part and the factor w in the inductive part of the EFIE equation (1) give a more traceable
change. This second change implies that the capacitive and inductive parts of the solution scale
as w and 1/w, respectively. Since we separated these parts in the basis transformation, we can use
this scaling as a crude predictor. This strategy works well for simple problems, low frequencies,
and small frequency differences. Since it is very expensive to calculate the new matrix A for a
new frequency, it is not an option to go through the frequency domain with very small steps, as is
sometimes done in continuation problems. The only way to make this effective is to get a better
predictor scheme.

One way of improving the predictor is to exploit a longer frequency history. The “Marching-
on-in-Frequency” approached described in [6] has a slightly different background, but the idea can
be used and enhanced here. The idea is to use the linear combination of the solutions at previous
frequencies that minimises the residual, as a starting point for the new solve. In view of the
different behaviour of the capacitive and inductive parts of the solution, this can be optimised by
allowing different coefficients for the different components of the previous solutions. Experiments
indicate that for very small frequency steps the residual reduction can be considerable, up to only
one order of magnitude from the residual of the previous solutions, if 5 or 6 frequencies were used.
For the larger frequency steps, we could get up to 2 orders of magnitude reduction using 3 previous
frequencies; exploiting a longer history could not decrease the residual further.

For second and later right-hand sides it is possible to combine this strategy with the previously
described Ritz vector injection in order to overcome initial stagnation. We now reuse both the
solutions of the previous frequencies and the Ritz vectors of the previous right-hand sides (at the
same frequencies), which gives good results for small frequency steps (see Figure 3). However,
for the first right-hand side we do not have the Ritz vectors. Reusing Ritz vectors from previous
frequencies does not work well since the most essential eigenvectors change most rapidly with the
frequency. The stagnation of the solver for the first right-hand side is, so far, an unsolved problem.

7 Experimental results

In our experiments we have used 3 different methods for the solution of the linear systems :

- A direct solver from LAPACK,

- Full GMRESR with the sparse approximate inverse (SAI) preconditioning,

- Full GMRESR with the multigrid V-cycle (MG) as preconditioner.
The iterative solvers where terminated when the relative residual norm was less than 1078,

We have tested the different methods for a test problem with two boards, two connecting
wires, and a long antenna wire. The boards are square and their physical size is 2x2 meter, the
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Figure 3: The result of reusing information. All lines for 100MHz, first (o) and second (x) right-
hand side, with (-) and without (—-) information from 3 previous frequencies (IMHz steps).

n | calc. A | direct GMRESR & SAI GMRESR & MG

320 6 3 5+ 4= 9 (4)| 6+ 2= 7 (9

672 28 30| 14+ 2= 39 (62| 18+ 9= 26 (10)

1430 131 | 405 | 29+ 164= 193 (94) | 42+ 52= 95 (14)

2102 307 1461 | 47 + 455 = 502 (125) 79 + 120 = 199 (15)

2900 537 | 3926 | 73 + 1046 = 1119 (151) | 134 + 243 = 377 ( 16)

measured order 1.7 31|14 2.6 25 (06) | 1.6 22 2.0 (0.2
expected order 2.0 3010 2+a 24a ( a)| 20 20 20 ( 0)

Table 1: Cpu-time in seconds, crude order estimation and expected order for the calculation of
A and the 3 solution methods. Times are split in preparation and solve time. The number of
iterations is shown in parenthesis.

antenna is about 4 meter long. This is still a relatively simple geometry, but it already gives a
good impression of the behaviour of the different methods. Figure 3 shows an example of the
convergence history using different combinations of the SAI and MG preconditioners and the
information reusing methods described in section 6. In Table 1 we show the cpu-times for one
right-hand side and one frequency of 100 MHz (A = 3 m), using 5 different grid sizes ranging from
12 to 40 elements per wavelength. Note that since the physics is scalable, the numerical results
are the same when all lengths (including the wavelength) are scaled.

We may expect that the effectiveness of our approach is frequency dependent. The idea of the
basis transformation (section 4) was inspired by low frequency problems and based on relatively
strong capacitive effects. From Figure 4 we see for which frequency range this approach works well.
We see that the convergence deteriorates as the frequency increases. For the largest frequencies
the solvers did not converge within an acceptable number of iterations. For these frequencies the
wavelength A is so small compared with the element size (h = 7.4 cm) that this discretisation
does not make much sense. Drastic refinement of the discretisation was not possible because of
computer memory limitations. Reducing h with a factor of 2 would result in a 2 Gbyte matrix.
This will only be possible on a parallel machine or with a matrix free method for the matrix vector
multiplication.
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Frequency dependence for n=2900
T
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Figure 4: Frequency dependence for problem size n = 2900. The maximum element size was
h = 7.4 cm. The vertical line shows the frequency where A = 10h.

8 Conclusion

We have seen that by constructing a better basis, we have effectively changed a linear system
that was difficult to solve into one that could be preconditioned with (slightly adjusted) standard
methods like SAT and multigrid, and this leads to effective iterative methods. By reusing infor-
mation we can reduce the work even further. For the dense linear systems in EMC problems, we
have shown that, with these techniques, iterative methods can be substantially faster than a direct
solver.

The next step will be to get rid of the explicit use of the dense matrix, by using a matrix-free
method which hopefully leads to further improvement for the larger problems.
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A Fourier analysis

A.1 The infinite board

In this section we will derive exact eigenfunctions and -values for the continuous infinite board
problem. We look at the EFIE (1) where the conductor surface is an infinite plane with constant
surface impedance Z. Any current can be decomposed in longitudinal and transversal plane waves
so we will look at the result of the action of the operator on the left hand side of equation (1) on
the separate plane waves.

We consider general plane waves with wavenumber q and current direction a

Jq(x) = ae™?™ | (17)
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The inductive field will be given by

Z'k ! ! !
El(x) = ?/G(x —x)Jq(x")d%x

= Zk—a/G(x' —x)ea* @y
c
ika iq-x 1q-y 2
= e [ Gy)e Yy

= Mg | (18)

where G(y) = e—‘:’jl‘” is the Green function and G(q) is its 2-dimensional Fourier transform. This

Fourier transform can not be calculated directly but when we first calculate the Fourier transform

of the regularised function e_li;llyl e #¥ and then let u go to zero we find that

Gl@) = —i——2— for k#lql , (19)

/12 — |q|2*

where the * denotes the complex conjugation of the root. In a similar fashion, we find the capacitive
field

E{(x) = CZ—kV/G(x’—x)V'-Jq(x')d%'
— _i . iqx 9
o (@ 2)ae " G(q) (20)
and the resistive part
Ef(x) = Zae'™ . (21)

Adding this together we find

Ba(x) = (£ Gl (a-06(@a+ Za) o (22)

and we see that Jq is an eigenfunction (Eq = A(q)Jq) if a is either parallel or orthogonal to q.
The parallel eigenvalues are

e = L (k=) 6w + 2

k

1 %

21 q 2\ 2
TR 2
and the orthogonal eigenvalues are
ik ~
A(a) = —Gl@+Z

2r [ la?\"?

These eigenvalues are plotted in Figure 5. Note that the orthogonal currents have no charge
accumulation, so A, includes only inductive and resistive effects. This is reflected in the fact that
A1(q) « k for |g| > k (short range interactions), which is conform the factor w in the inductive
term in the EFIE (1). The longitudinal wave does have charge accumulation and therefore A
includes capacitive effects. As a result we see that A (q) oc 1/k for |q| > k, which is conform the
factor 1/w in the capacitive term in the EFIE (1).
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Figure 5: The continuous eigenvalues of the longitudinal () and transversal (AL ) current waves
in absence of resistance. To include resistance Z should be added to the eigenvalue. The absolute
value is shown while the text shows on which complex axis the values should be.

Note that, in absence of resistance, \(|q| = k) = 0 which means that there is no external field
necessary to sustain this current, because the EFIE (1) is already satisfied. This also means that if
there is a driving force for this mode, it will grow without restriction, which is called resonance. In
a realistic problem, we have a (possibly small) resistance and we have a finite system size, but we
can still expect damped resonances. In this case, a small driving force will result in large currents.
This also means that the discretised system has a very small eigenvalue, which can slow down the
convergence of an iterative solver.

We can also look at the eigenvalues and -functions of the electrostatic potential operator (9),
corresponding to the matrix D introduced in section 4. Assuming a plane wave for the charge
density pq(x) = €'1* we get

Va(x) /G(x’ —x)elax @z
= €9%G(q) (25)
which shows that pq(x) is an eigenvector with eigenvalue

M) =Gl = - (1- 190 (26)

Since the D operator uses V - J as input in stead of p, we get an extra factor i/w according to
equation (3), resulting in

Ap(q) = i'/\p(q) . (1 - ﬁ>_2 . (27)

w T ock? k2

This has the same behaviour as A (q) in Figure 5b but with a k=2 scaling. We also see that
Ap(q) « 1/k for |q| > k, as it should be.

A.2 The infinite wire

We will try to do the same for an infinite wire, as we did above for the infinite board. We will
consider an infinitely long straight wire with radius R and surface impedance Z. Under the model
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restriction that the current is in the tangential direction (parallel to the wire axis) and uniform
around the wire, we have Fourier basis for the surface current consisting of

J,(x) = Ze'™ | (28)

where Z is the unit vector in the tangential direction and x, is the tangential component of x:
X, = 7 - x. The resulting inductive field is given by

El(x) = /Gx —x)J, (x")d*s’
— ZkZ/G qu=d2.iL'l
— —eiqx‘/G(y)eiqydey
c r
= PG (29)

where we now introduced a special 1-dimensional Fourier transform of G on the wire surface T,
given by

G(g) / G(y)e®-dy

e—tklyl
— / 'Y= d2

e—tkRV2—2cos 0+22
2R / / cos(qRz)dfdz . (30)
2=0J 0=

V2 —2cosf + 22
Unfortunately, this can not be calculated analyticly. Still, we continue with the capacitive field

ES(x) = iV/G(x' —x)V' - J, (x")d*z'
ck T
. 2 -
= a0 (31)
and the resistive part
R 7o iq-X
E; (x) = Zze'"'™ . (32)
Adding this all together we find
ik ~ iq® ~
Bux) = (260 - L) +2) 3,09 (33)
which shows that J, is an eigenfunction with eigenvalue
ik 2\ ~
o) == (1 - Z—2> Gla)+ 72 . (34)

_ From this, we can already see that there is a resonance for ¢ = k, unless a singularity in
G(q) changes this. This is not the case, since we know that this resonant mode is the so called
transverse electromagnetic (TEM) mode [5, chapter 8]. Other resonant modes are not allowed by
the model restrictions mentioned at the beginning of this section, and could only occur at very
high frequencies (A § R).

Just as we did for the infinite board, we can also look for the eigenfunctions an -values of the
operator D for the wire. In exactly the same way, we get the eigenfunctions

V-J =€ (35)

with eigenvalues

Ap(q) = =G(q) . (36)
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Figure 6: The continuous eigenvalues of the preconditioned operators (A (q)) in absence of resis-
tance, using a truncation distance of Ry = 0.1A. Only the real part is shown, the imaginary part
is small.

A.3 Preconditioning with truncated interaction

As described in section 5, we sparsify the matrix before we make the SAT preconditioner. We do this
by throwing away all elements except those that correspond to interactions between physically close
elements. We still expect good results for the highly oscillating eigenfunctions and we can verify
this using Fourier analysis. The sparse matrix corresponds to a truncated interaction operator.
We consider the operator truncated at distance Rr. For this operator all analysis above will hold,
but now using the truncated Green function

_J Gly) for |y|<Ry
GT(Y)_{ 0 for |y|>Rs - (37)

This means that the eigenfunctions of the truncated operator are the same as above, but the
eigenvalues are different, which implies that the full operator, preconditioned with the inverse of
the truncated operator, also has the same eigenfunctions. The eigenvalues are those of the full
operator divided by those of the truncated operator, leading to (for Z=0)

)\P(Q): /\(q) _ a(q) , (38)

A(q) @T(Q)

for the parallel, orthogonal and the “D” eigenvalues on the plane. The truncated Fourier transform
Gr can not be found analyticly, but we can make a numerical approximation. In Figure 6 we
show AP (q) for an example where Rz = 0.1\. We see that the high frequency tails of Figure 5
have been preconditioned quite well, but that the low frequency part still has a pole.

In practice, the interaction is not truncated outside a pure circle, but outside some discretised
shape of the size of a few elements. Furthermore, we use an approximate inverse of this truncated
operator, in stead of the exact inverse. This means that, even in the limit of a very large board
and very fine grid, we can expect deviations from this theoretical behaviour, but the general idea
will still apply.
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