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Abstract

We consider problems of the following type. Assign independently
to each vertex of the square lattice the value +1, with probability
p, or —1, with probability 1 — p. We ask whether an infinite path
m exists, with the property that the partial sums of the +1s along
7w are uniformly bounded, and whether there exists an infinite path
m with the property that the partial sums along 7 are equal to zero
infinitely often. The answers to these question depend on the type of
path one allows, the value of p and the uniform bound specified. We
show that phase transitions occur for these phenomena. Moreover, we
make a surprising connection between the problem of finding a path to
infinity (not necessarily self-avoiding, but visiting each vertex at most
finitely many times) with a given bound on the partial sums, and the

classical Boolean model with squares around the points of a Poisson



process in the plane. For the recurrence problem, we also show that

the probability of finding such a path is monotone in p, for p > %

1 Introduction

In this paper we consider a connected, infinite, locally-finite graph, G, with
vertex set V, and edge set F. This will generally be Z2, although many
of our results can be extended to other graphs. One particular vertex is
distinguished and called the origin, 0. To every vertex v € V, we assign a
random variable X, which takes value 1 with probability p and value —1
otherwise, independently of the values at other vertices.

A path from a vertex zy say, is a sequence of vertices m = (2o, 21, 22, ... )
such that (z,—1,z) € Efori=1,2,... For such a path we define the partial
sums ST = Y., X,, for n = 1,2,... , where, for our later convenience,
we do not count the value at the starting point, zg. We are concerned
with the question of whether there exists an infinite path = with either
sup, {|S;| < oo} or with ST = 0, for infinitely many n. Note that these
problems are symmetric in p around % The answers to these questions will
depend upon the types of paths we allow ourselves to use. We will consider
three different types of infinite paths:

Definition On the square lattice, Z?, an oriented path, = = (2o, z1, .. .),
is a path such that z; —z;_1 = ey or z; —z;_1 = eq, fori =1,2,..., where e;
and ey are the first and second coordinate vectors. A self-avoiding path
is a path whose vertices are all distinct. Finally, a just-visiting path is a
path in which any vertex appears only finitely many times.

All oriented paths are self-avoiding, and all self-avoiding paths are just-

visiting. Note also that the existence of an infinite self-avoiding path with



bounded partial sums starting at some vertex, implies that there exists one
from every other vertex. Such a path can can be constructed, for exam-
ple, by taking the shortest self-avoiding path from the chosen vertex to the
bounded path and thereafter following it. This also true for just-visiting
paths, analogously.

On the integer line (where integers are connected by an edge if their
difference is one), the answers to these questions for self-avoiding paths are
well known, as they refer to the simple random walk. (For information
about this see for example [8].) Here we have that when p = 1 we have no
bounded partial sums, but we do have partial sums that are zero infinitely
often, almost surely. At all other values of p we have neither behaviour. If
we consider just-visiting paths, it can be shown that there are no paths with
bounded partial sums, almost surely, for any value of p, but for all p € (0,1)
there are just-visiting paths with partial sums that are zero infinitely often.

Benjamini and Peres [5], answered both questions (and many other more
general ones), for self-avoiding paths on trees. Given a tree, 7', the boundary,
0T is the set of rays or infinite self-avoiding paths emanating from the root,
0. If we denote by dim(97T) the Hausdorff dimension of this boundary (see
[7] for an explanation of Hausdorff dimension) then their theorem states that
a path from 0 with bounded partial sums exists with positive probability if
and only if dim(97") > log(%). If we denote the packing dimension by

v/ p(1-p)

Pdim (97" (see [7]), then they show that for Pdim(97") < log(ﬁ) there
p(1-p

are no self-avoiding paths with partial sums returning to zero infinitely often,
almost surely, while for dim(97)> log(——=—) these exist with positive
s (0T g(2\/m) p
probability.
A sufficient condition for having infinite paths with both bounded partial

sums and partial sums that are zero infinitely often, is the existence of



AB percolation, for appropriate parameter values. From our viewpoint AB
percolation asks for the almost sure existence of a self-avoiding path of the
appropriate type, which has alternate 1s and —1s. Thus the partial sums are
zero at every other point along the path, and never exit either of the intervals
[0,1] or [-1,0]. It has been shown (for example) that AB percolation occurs
on the triangular lattice for an interval of values of p around 1/2, see [2].
AB percolation has been shown not to occur, for any value of p, on the
square and hexagonal lattices, see [3]. We note that AB percolation occurs
for self-avoiding paths if and only if it occurs for just-visiting paths. An
interesting feature of AB percolation is that its probability is not monotonic

in p on [1/2,1] for many graphs, see [12].

We end this section with some notation used throughout. The product
measure described above is denoted by P,. Denote by E, the correspond-
ing expectation operator. We call two vertices adjacent if there is an edge
between them, and we call two edges adjacent if they share a vertex. We
define the distance between two points, v' = (v],v3),v? = (v}, v37) € R* as

|vl — vi| + vy — v3|, the L;-distance. An interval in R is said to have size s

if it contains exactly s integers.

The next section in this paper contains our principal results, and the sub-
sequent sections contain the proofs.
2 Principal results

Our first theorem states that there is a non-trivial phase transition for ori-

ented paths.



Theorem 1 On the square lattice the following hold.
(a) There are no infinite oriented paths with sums bounded in an interval of
size M > 2, P,-almost surely, for

pElO, 1 —/T=1/4cos?(n /(M + 1)))U(1 + VT = T/dco?(@/(M+ 1)) |

2 2 ’

In particular, for p € [O, % - % %) U (% + %\/g, 1}, there are no paths with
sums bounded in any interval, Pp-almost surely.

(b) There are, P,-almost surely, infinite oriented paths with partial sums
that return to zero every 42 steps for p € (0.475,0.525). This immediately
implies that there are oriented paths with partial sums that are bounded and
that return to zero infinitely often, with positive probability, and thus also

self-avoiding and just-visiting paths with the same properties.

We see here a contrast with AB percolation, which occurs for no values of p
on this lattice.

We need a separate statement to rule out the possibility of infinite self-
avoiding paths with bounded partial sums, or with partial sums that return
to 0 infinitely often, for p close to 0 and 1. We shall formulate the next
result for more general graphs.

For a graph G, let og(n) be the number of self avoiding walks from the
origin of length n. Let cg = lim,_ Ug(n)l/”, if this exists. cq is called
the connectivity constant of G. For the integer lattice (and many others),

existence of the connectivity constant follows from subadditivity.

Theorem 2 let G be a graph with a well-defined connectivity constant cg.
Then there are, Pp-almost surely, no infinite self-avoiding paths with partial

sums that return to 0 infinitely often or with partial sums that are bounded



in some interval for

1—- /1- = 1+, /1- =

2 2 '

For the square lattice it has been shown rigorously that ¢y < 2.7 (see
[1]), which implies that we have no infinite self-avoiding path with bounded
partial sums for p € [0,0.035) U (0.965, 1].

For just-visiting paths, the situation is quite different. For every p €
(0,1) we can define a minimal interval size, I(p) say, to be the minimal
integer, such that there exists a just-visiting path from the origin, with

partial sums bounded in an interval of length I(p), with positive probability.

Theorem 3 On the square lattice the following hold.
(a) For any p € (0,1) we have 2 < I(p) < oco. That is, for any p € (0,1)
there is, with positive P, probability, an infinite just-visiting path from the
origin with bounded partial sums. We can take this path so that the partial
sums are equal to 0 infinitely often.
(b) We have

lim I(p) = oc.

p—1
That is, for any interval J on the real line we can find p, close to 1, such that
for this value of p, no just-visiting paths with all partial sums in J exists,

P,-almost surely.

Our next result gives a connection between two apparently unrelated pro-
cesses, the percolation of just-visiting paths with bounded sums, and the
classical Boolean model.

Consider a Poisson process of rate A in the plane and centre a diamond

(with fixed orientation) of radius 1/2 at every Poisson point, that is, v



is in the diamond centred at a Poisson point z if the distance between v
and z is at most 1/2. This process is known to have a critical point for
percolation A., such that for A < A, there is no percolation (that is, the
union of all diamonds contains no unbounded connected component almost
surely), while for A > X, percolation occurs. Later we shall need to talk
about diamond processes formed by placing a diamond of radius r at each
of the points of the Poisson process, and we denote the critical point for this

model by A.(r). It is can be seen by a simple scaling argument that,
2 _ .2
riAc(r1) = raAc(ra) (1)

for any two values, ry and 7. See [13] for information on this type of model,

and the results mentioned above.

Theorem 4 Consider a sequence ¢1,qz, qs, . .. of numbers in (0,1) converg-
ing to 1.

(a) If limsupy_.o 2N2%(1 — qn)?* < Ao then for N sufficiently large there
P, y-almost surely does not exist an infinite just-visiting path with partial
sums bounded in [0, N].

(b) If either

Ae < liminf 2N?(1 — qn)? < limsup 2N?(1 — qn)? < o0
N—oo N—oo

or
liminf 2N?(1 — qn)* = oo,
N—=oo
then for N sufficiently large there exists with positive P, probability an

infinite just-visiting path with partial sums bounded in [0, N].

Two remarks are appropriate here. In the first place, we could replace the

interval [0, N] in this theorem by any sequence of intervals Jy,Jy, ..., with



Ji, of size k. We chose the above formulation for the sake of simplicity of
the statements. Secondly, the results in (a) and (b) together will imply that

we can strengthen the result of Theorem 3(b) in the following sense:

Corollary 5 The interval size I(p) defined before Theorem 3 satisfies

lim (1 —p){(p) = %
Our next result gives a relationship between paths with partial sums that
return to zero infinitely often and those with partial sums that do not con-
verge to +o0o. It is motivated by the question of whether the probability
of an infinite self-avoiding path with bounded partial sums is monotone in
p > 1/2. This we do not know, but we can prove a monotonicity statement
for the probability of having an infinite self-avoiding path with partial sums

equal to zero infinitely often. This quickly follows from the next result.

Theorem 6 On the square lattice, for any value of p > 1/2 such that with
positive probability, there is an infinite self-avoiding path with partial sums
that do not converge to +o0o, there is, with positive probability, an infinite

self-avoiding path with partial sums that return to zero infinitely often.

Corollary 7 On the square lattice, for p > 1/2, the probability that there
exists an infinite self-avoiding path with partial sums that are equal to zero

infinitely often is monotone decreasing in p.

3 Proof of Theorem 1

The first part of the theorem is proved via a recurrence method, the second

part with a second moment method.



Proof of Theorem 1(a) We will show that the expected number of oriented
paths of length n, from any point on the line z + y = 0 to a given point
(a,b) (with a +b =n, a,b € Z), with sums bounded in the interval, tends
to zero as n tends to infinity. To see that this suffices, observe that for any

interval,
E, (number of paths from the origin of length n with

partial sums in the interval) =
E, (number of paths to the origin of length n with
partial sums in the interval) =
E, (number of paths to the point (a,n — a) from the line
z +y = 0 with partial sums in the interval),

for any a € Z.

Given an interval, I, of size M, and a point (a, b) (with a4 b > 0) define
W(a,p) to be the random vector with elements v, ) ;, i € I which record the
number of oriented paths from z +y = 0 to (a,b) which have partial sums
bounded in the interval and final partial sum i.

Let A, p) be the random M x M matrix that has entries,

A = 1 i=j5-1,

0 otherwise,

if (@, b) is assigned value +1, and

1 i=j41
A = j+1,

0 otherwise,

if (a,b) is assigned value —1.



Then,
Viap) = Map) (Via=1,3) + Viap-1))

We now take the expectation of both sides of this equation, noting two
things. The first is that A, ) is independent of V(,_; ;) and V(,p_1). The
second is that the expectation of V() is the same as that of V(. gy if e +b=
c+d. Thus we may write V,, to be the expectation of any Viapy With a+b = n.
Let A be the expectation of Ao,0) (which is also the expectation of Aap) for
any (a,b), as they are identically distributed). Hence we have that,

Vi = /_\(‘7n—1+‘7n—1)
= 2AV,

= 2"A"™V,.

From this we see that if the largest absolute value of an eigenvalue of 2A
is less than 1, lim,_,., V,, will be the zero vector. This then implies that
with probability one the number of infinite paths with sums bounded in the

interval is zero. Now if we denote the entries of A by S\Z-j, we have that,

p 1=7-1
5\2']'= l-p 21=35+1
0 otherwise

It can be easily calculated that the largest eigenvalue of this matrix is

2¢/p(1 — p)cos(n/(M + 1)), which gives the result. O

For the proof of Theorem 1(b) we need the following combinatorial
lemma, which we will prove at the end of this section. We denote by N,, the

number of oriented paths from (0,0) to (n,2n) with final partial sum zero.

10



Lemma 3.1 We have, for n even,

2 2
3n 3n
n 3n/2
PP(NTL > 0) Z 2 9
3n i k 3n—k ) .
Zk:l T(TL, k) 1=0 p—z(l - p)_ +
i 3n/2—1
where
3/2 k(35— 2q k 3n—k—1
T(n, k)= Z Z 2%4C'(a, m) ,
a=0m=0\ M —a m 3n —2a — (k—m)

and C(a, m) is the coefficient of t** in the series expansion of (1—+/1 — t2)™.
With n = 14 and p € (0.475,0.525) this gives us a lower bound of 0.93.

Proof of Theorem 1(b) Lemma 3.1 shows that the probability of diago-
nally crossing a n X 2n rectangle, with a final partial sum of zero is high. We
then combine several of these events in a particular way, with a probability
that is still high. Finally we place these rectangles onto a larger grid in such
a way that we can show that this stochastically dominates supercritical ordi-
nary site percolation on the square lattice. This then implies the existence,
with positive probability, of a path with the required property.

We define, for even n, the following events C1,...,Cy.

Cy = {There exists an oriented path from (0,0) to (n,2n) with final partial

sum 0},

Cy = {There exists an oriented path from (0,0) to (2n,n) with final partial

sum 0},

C3 = {There exists an oriented path from (—2n,n) to (0,0) with final partial

sum 0},

11



(n,2n)

__________

Figure 1: The event C'; dashed lines indicate paths that cross the rectangles

(-n,-2n)

with final partial sums of zero

C4 = {There exists an oriented path from (—n,—2n) to (0,0) with final

partial sum 0}.

The event C'= C; N Cy N C3NCy then has probability at least 0.753 > 3/4,
for n = 14 and p € (0.475,0.525) (using the fact that the events Cy and Cy
are independent of C5 and Cy). It is illustrated in Figure 1. We denote by
w 4 C' the event that C' occurs, but translated to w from (0, 0).

We now move to the larger grid formed by the vertices {(2an,an) +

12

(2n,n)



Figure 2: The larger grid; the grey areas are those we consider, heavy lines

indicate the edges of the larger distorted lattice

(bn,2bn) : a,b € Z} with edges from (2an,an)+ (bn,2bn) to
(2(a+ 1)n, (a+ 1)n) + (bn, 2bn) and (2an,an) + ((b+ 1)n,2(b+ 1)n). Note
that this grid is a distorted version of the square lattice, and so has the same
critical point for oriented independent percolation, which is known to be no
more than 3/4 (see [11]). We call a vertex, (2an,an)+ (bn,2bn), on this
grid ‘open’ if the event (2an,an) + (bn,2bn) 4+ C occurs - see Figure 2.

A path of open vertices on the large grid then implies a path on the
standard grid with partial sums that are zero every 3n steps. This certainly

happens with positive probability for n = 14 and p € (0.475,0.525). 0

Finally we prove Lemma 3.1.

13



Proof of Lemma 3.1 We shall estimate the probability that N, > 0 via

a second moment method. The probability a particular oriented path from

: : 3n 3n/2 3n/2
(0,0) to (n,2n) has a final partial sum of zero is 3n/2 p> (1 = p)onie.
n

3n
There are of these paths, so that the expected value of N, is

3n 3n
n 3n/2

p3n/2(1 B p)Sn/2.

Given two of these paths, if they meet at precisely k vertices (excluding
(0,0)), we claim that the probability that they both have partial sum zero
at (n,2n) is

2
Fofk) [ 3n—k : .
Z n pSn—z(l _ p)Sn—k-l-z_ (2)

To see this, we condition upon the sum along the shared portion of the two

k _ _
paths. The probability this sum is equal to j is " pUTR2(1 = p)(h=i)/2,
=
ket

when =2 is an integer, and zero otherwise. The sums along the non-

shared portions of the two paths are independent and each have probability

3n—k . .
. pBn=k=1)/2(1 — p)Br=k+1)/2 of being equal to —j. Thus sum-
n—k—j

2

ming over the possible values of j we find that the probability that both

paths have partial sum zero at (n,2n) is equal to

2
k k 3n —k (k+4) (k—3)
Z p(Sn_T)(l j— p)(STL— 2 )

< kg 3n—k—j
J=—k, P) 2

j with same parity as k

If we now substitute ¢ for #, we find formula (2) above.

14



Thus to calculate the expected value of N2 we need to know only how
many (ordered) pairs of oriented paths from (0,0) to (n,2n) there are that
meet in precisely &k places (excluding (0,0)). If we denote this number by

T(n, k) then we have that,

2

3n L 3n—k : :
B, (N2) =Y T(n, k)Y P ekt
k=1 i=0 \ 1 3n/2 —i

We shall now first show that 7'(n, k) is equal to the number of paths in
Z? with a certain property. Consider a pair (m,7’) of oriented paths in Z?
from (0,0) to (n,2n). We map (call this map A) this pair to an undirected
path (zg,21,...,23,) in Z? as follows. Start in the origin, that is, 29 =
(0,0). The path is now constructed sequentially as follows. If 7 and 7’ both
make a step to the right, then z; = 2y + e;; if # and 7’ both make a step
upward, then z; = zg — ey; if 7 goes up, and 7’ goes to the right, then
21 = 20 + €; if ™ goes to the right and 7’ goes upwards, then 2o = z1 — €.
This procedure is repeated for each of the steps of 7 and #’. Here, e; and
e denote the unit vectors. For example, if # = ((0,0),(1,0), (1,1),(1,2))
and ' = ((0,0), (0,1),(0,2),(1,2)) then we find the two dimensional path

shown in Figure 3. Let us define a relevant path of length 3n in Z? to be

a series of vertices zy, zy, 2, ..., 23, with zg = (0,0), 23, = (—n,0) and
llzi — zi—1|| = 1,i=1,2,...,3n. Define a k-path of length 3n as a relevant
path of length 3n in which precisely &k of the z;, 1 = 1,2,...,3n, have second

coordinate 0. The map A described above maps a pair of paths (7, 7’) that
meet in k places to a k-path in a bijective fashion. We conclude that T'(n, k)
is the number of k-paths of length 3n, and we shall now explain how we can

find this number.

Given two one dimensional sequences, y = (yo,¥1,--.,Y2.) (of length 2a)

15



(-1,0) $ 00

(-1,-1) (0,-1)

Figure 3: Path produced from = = ((0,0),(1,0),(1,1),(1,2)) and 7' =
((0,0),(0,1),(0,2),(1,2) by map A or from z = (0,-1), y = (0,—1,0),
and S = (v, h,v) by map B.

and z = (29,21, ...,Tsn—24) (of length 3n—2a), both starting in 0, and mak-
ing steps of size +1, and a sequence S = (s1,S2,...,83), S € {v,h}, i =
1,2,...,3n containing 2a v’s and 3n — 2a h’s we can construct a path
z = (29,21,...,23,) of length 3n, in the following way. Start in the ori-
gin. We copy steps in z to horizontal steps in z and steps in y to vertical
steps in z, and the order in which this is done is governed by the order of
the letters in S. For instance, if we take 2 = (0,-1), y = (0,—1,0), and
S = (v, h,v) we again find the path in Figure 3. We call this map B. It is
easy to see that every relevant path can be produced from this procedure

given the appropriate choice of z, y and S, and that B is injective.

Map B produces a k-path of length 3n from y = (yo,y1,...,%2), ¢ =
(2o, 21, ... ,234-24) and S if and only if all of the following hold, for some

m < k:
1. 9 = Y24 = 0 and m of the steps of y end at zero, that is, the set

16



{0 <i<3n—2a;y =0} contains m elements;
2. 29 =0, 352, = —1;

3. k—m of the steps of y either occur after a step of z that ended at zero

but before another step of z, or before any steps of z.

We shall now count how in how many ways this is possible. The probability
generating function for the first return time for a one dimensional simple
symmetric random walk is given by (1 — /1 —t2). Thus the probability
that such a random walk returns to the origin for the mth time at time 2a is
the coefficient of 2% in (1 — /1 — £2)™. Denote this coefficient by C'(a,m).
There are 22% such simple symmetric random walk paths of length 2a, and
they are all equally likely. Hence the number of paths y above of length 2a

with precisely m steps that end at zero is is 22¢C'(a, m).

3n — 2a
There are choices for z. Given z and y, we need to find
n—a

how many sequences S of h’s and v’s give k-paths. Now S must contain
2a v’s, and we identify these, in order, with the 2a steps of y and label
those that correspond to steps in y that end at 0 with a star. We need to
fit the remaining 3n — 2a h’s into this sequence, such that & — m of them
appear either before any v, or after a starred v but before any other v, and

the other 3n — 2a — (k — m) appear in other places. We claim that we

3n—k—-1
can do this in ways. This is the product of
m 3n —2a— (k—m)

the number of ways in which (kK — m) h’s can be fitted into the (m + 1)
places that are either before any v, or after a starred v but before any other
v (denote this number by W(k — m, m + 1)) and the number of ways in

which the remaining h’s can be fitted into the remaining 2a¢ — m places. To

17



calculate W (k — m, m 4+ 1) we work out the number of ways in which the
(k —m) h’s could be fitted into the (m + 1) places if the h’s were labelled
hi,ha, ..., hg—m, and then divide by the number of labellings, (kK — m)! We
can put hy into (m+ 1) places. There are then (m 4 2) places into which we
can put hg, directly to either side of A; and into the places in which we did
not put hy. There are, similarly, (m + 3) places where we can put A3, and as

we continue in this manner, there will be (m + 7) places in which to put h;.

k
Hence W(k —m,m+ 1) = (m+1)(m"(',3)_';;f;1+(k_m)) = . Counting the
m

number of ways in which we can fit the rest of the h’s into the other places
works in exactly the same way. Thus if we sum over m and a we find the

total number of k-paths,

n ok 3n — 2a k 3n—k—-1
T(n, k)= Z Z 22C'(a, m)
a=0m=0

n—a m 3n—2a — (k—m)

Finally, since N, is non-negative and integer-valued, the second moment

bound
Ep(Nn)?

y4
T,V

then gives the desired result. O

P(N, > 0)

4 Proofs of Theorem 2 and Theorem 3

The proofs of these results are not difficult and are based on simple counting
arguments. We will, however, need the following lemma. The proof of the

lemma comes after the proof of the theorem.

Lemma 4.1 If, for a given value of p, there is an infinite self-avoiding

path with bounded partial sums, with positive probability, then there is an

18



infinite self-avoiding path whose partial sums returns to 0 infinitely often,

with positive probability.

Proof of Theorem 2 We start by noting that if there exists a path with
partial sums that return to 0 infinitely often, with positive probability, then
the expected number of points that can be reached from 0 by a self-avoiding
path with final partial sum 0 must be infinite.

However the expected number of points that can be reached from 0 by
a self-avoiding path with final partial sum 0 is certainly no greater than the
expected number of finite self-avoiding paths that have partial sum 0 on

their last step. The number of self-avoiding paths of length n is og(n). The

n
probability that such a path has final partial sum 0 is p”/2(1 —p)”/2
n/2

for n even and 0 for n odd. Thus this last expectation is,

S alm) | | 20— p)n

n>0, n even n/2

< S oam)2n(p(1 - p))"/?
n>0, n even
< o0

for p such that 22¢4p(1 — p) < 1. Hence for these values of p (which are
those given in the theorem) there can be no path with partial sums that

return to 0 infinitely often.

The part of the theorem referring to bounded partial sums then follows

immediately from Lemma 4.1. O

Proof of Lemma 4.1 We first show that
P,(3 a path 7 with S} =01i.0.) =0 (3)
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implies that for all z € Z,
P,(3 a path = with S = z i.0.) = 0. (4)

To see this, suppose that an integer, z say, exists such that the event in (4)
has positive probability. Then there must exist a non-random vertex, x say,
such that with positive probability, there exists a path which has partial
sums that are z infinitely often, passes through z, and has partial sum z at
xz. Then we have a path from z that has partial sums that are zero infinitely
often. This contradicts (3).

Now, if we have an infinite self-avoiding path with partial sums that
are bounded, then these partial sums must visit some value infinitely often.
Thus, by the previous paragraph, if we have an infinite self-avoiding path
with partial sums that remain bounded, with positive probability, we must
have an infinite self-avoiding path with partial sums that are zero infinitely

often, with positive probability. O

Proof of Theorem 3 To prove the first part of this theorem we first fix
€ (0,1). We can find a box size, m, such that with probability higher than
3/4 the box
B(m)={(z,y): 2,y {0,1,...,m—1}}
-1 1

contains the configuration . We call this a balancing configu-
-1 1

ration. Now divide the square lattice into boxes such that (z,y) is in the
box indexed by (a,b),a,b € Z if @ € {ma,ma+1,...,m(a+ 1) — 1} and
y € {mb,mb+1,...,m(b+1)—1}. Call the box indexed by (a, b) ‘open’ if
it contains the above balancing configuration, and ‘closed’ otherwise. These
events are independent and have identical probability for all boxes. The fact

that we have site percolation on the oriented lattice when boxes are open
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with probability greater than 3/4 now implies that with positive probability
we have an infinite sequence of adjacent (that is, sharing one boundary edge)
open boxes (see [11]). We now show that this event implies the existence of
a just-visiting path that has bounded partial sums returning to 0 infinitely
often.

Our path takes the shortest route from balancing configuration in one
open box to balancing configuration in the next, in the infinite sequence
of adjacent open boxes. When at a balancing configuration the path moves
about on the -1s or 1s until its partial sum becomes zero. When this happens
it goes to the next open box in the path. The partial sums never leave the

interval [—3m, 3m], so we have our path.

For the second part of the theorem we use a renormalisation argument, and
then count paths. We will show that for p € ( ®N+'\/6/7,1] we can have no
paths with bound N, from which the result follows.

Fix N. We will use the enhanced square lattice, which is obtained from
the ordinary square lattice by adding edges between all pairs of vertices
at Euclidean distance /2. We divide the square lattice into disjoint boxes,
{B(N+1)+((N+1)a,(N+1)b) : a,b € Z}. We call a box ‘open’ if it contains
a vertex with a —1 assigned to it, and ‘closed’ otherwise. Now if there exists
a circuit of adjacent closed boxes around the origin then there can be no
path from the origin with partial sums bounded in some interval of length N.
There is such a circuit of adjacent closed boxes surrounding the origin if and
only if there is no infinite self-avoiding path of open boxes in the enhanced
square lattice. Note that the number of self-avoiding paths of length n on
the enhanced square lattice is less than 8 x 7”. The probability that a box

2N+1)2

is closed is pl Hence the probability to have a path of length n of
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open boxes in the enhanced lattice is at most 8 x 77(1 — p(2N+1)*)n Thig

tends to zero, as n — 0o, in the range indicated in the theorem. O

5 Proofs of Theorem 4 and Corollary 5

Before we start with the involved proof of the theorem, it is worth to explain
why the result is reasonable. When p is close to 1, there will be mostly +1s
around with isolated —1s every now and then. Therefore, partial sums will
typically increase. We can essentially only decrease partial sums along a
just-visiting path, when we see two neighbouring vertices both with label
—1. Therefore, these double —1s play an important role, and the only way
to keep the partial sums bounded is to jump around from one such double
—1 to the other. For p close to 1, the spatial distribution of these double
—1s will be close to a Poisson process. Depending on the density of these
double —1s it will or will not be possible for a sequence of partial sums to
stay within a given bound. This is where continuum percolation comes in.
If the double —1s are too far apart from each other, that is, if a certain
percolation process does not percolate, then the bound will be large. If the
percolation process does percolate, then we can use an infinite path in the
percolation process to find a path with partial sums that remain bounded.

A significant amount of work is necessary to turn this idea into a proof.
The connection with continuum percolation is made in Proposition 5.1,
Lemma 5.2 and LLemma 5.6. In Lemma 5.3 and Lemma 5.7 this is translated
into statements concerning the existence of paths with bounded partial sums
for particular values of the parameter p. In the final proof of the theorem

we then show how we can obtain the general result.

Fix A > 0. On the grid (Z/N)? assign the value 1 to each vertex with prob-
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ability pxn, and the value —1 otherwise, independently of all other vertices,

and where py is defined as to satisfy
2N (1 —pn)? = A (5)

Next we put a point at the centre of every edge of the grid which has —1s
at both ends, and the resulting points form a point process which we call
Ilx. We shall also need the point process 113 defined as follows. Consider
an edge which contains a point of [I. This point is in Hj\} if and only if the
parallel edge immediately to the right or above it has +1s at its endpoints.
We call such a configuration of two adjacent —1s with two adjacent +1s to
the right or above it a balancing configuration. ll% contains no other points,
hence 117 is a subset of I1y. We write 11 x(S) to denote the number of points
of [l in S. The number of points of [ in S that are due to edges that are
completely contained in S is denoted by Ilx(S7). Similar definitions apply

to H]'*\}.

Proposition 5.1 The point processes Iy converge weakly to a homoge-

neous Poisson process with rate A when N — oo.

To prove this more or less obvious result, it suffices to prove convergence
of the avoidance function, that is, the probability that a finite union of
rectangles contains no points, see [6], Proposition 9.1.1X. This can be done
directly from the definition of the pys. However, in the proof of the forth-
coming Lemma 5.6 we shall need a estimate about weak convergence that
is uniform for XA in a given interval. For that estimate we shall use an ex-
plicit Stein-Chen upper bound on the total variation distance between two
distributions. As a warm-up we shall also use this Stein-Chen approach in

the following proof of Proposition 5.1.
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Proof of Proposition 5.1 Consider a union of rectangles R which, without
loss of generality, we will assume has total area 1. We say that en edge e
satisfies e € R if the centre of e is contained in R. We write (5. for the event
that e has —1s on both endpoints. Now Il (R) can be written as
My (R) =D 1a,.
eER
where 1, denotes the indicator function of G.. This indicator function is
increasing in the number of —1s, and has expectation (1 — py)?. We can
therefore apply Corollary 2.E.1 in [4] and conclude that the total variation

distance between a Poisson distribution with parameter E,(IIx(R)) and

ln (R) is bounded above by

1 — =By (R) (

e€ER

(6)
The asymptotic variance of Iy (R) is easily computed: IIx(R) is a sum
of (2 + 0(1))N2 indicator random variables associated with the edges of
the grid. When these edges are not adjacent, the corresponding indicator
random variables are independent. Each edge (apart from those at the
boundary which have fewer) has 6 adjacent edges, and the probability that
two adjacent edges both have a point from Iy is equal to (1 — px)>. These

observations lead to

Ey (Mn(R)*) = (2+0(1))N*(1 - pn)2+6(2+o(1)) N*(1 - pn)” +
+(2+0(1))*N(1 - py)*

- A+ 27

when N — oo, because A = 2N?(1—pn)%. Clearly, limn 00 E, (1IN (R)) = A.
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Hence Var(IIx(R)) converges to A and since

D (1 =pn)* =24 0(1))N*(1 = py)* =0,

eeER
for N — oo, the bound (6) above implies that the total variation distance
between the distribution of Iy (R) and a Poisson distribution with param-
eter E,(I1x(R)) converges to 0. A Poisson distribution with parameter
E, (IIy (R)) certainly converges in distribution to a Poisson distribution with
parameter A, and as convergence in total variation implies convergence in
distribution, we have that Il (R) converges in distribution to a Poisson

distribution with parameter A. O

Next we centre a diamond with radius 1/2 around each point of I1x. The
result we shall call the discrete diamond process, to distinguish it from the
continuous diamond process which is similar, but with diamonds centred
around points of a Poisson process. The process obtained by centring dia-
monds around points of 113 is called the reduced discrete diamond process.
Recall the definition of A, as the critical density associated with the contin-
uous diamond process. The reason for the slightly larger radius in the next

lemma will become apparent soon.

5.1 Proof of Theorem 4(a)

We now first prove the subcritical part of the theorem.

Lemma 5.2 Let A < A.. There exists ¢ > 0 such that for all 6 > 0 we can
find L sufficiently large such that for all large N, the probability (under P, )
that the discrete diamond process with radii (1 + €) connects [0,3L] X 0 to
[0,3L] X L within [0,31] x [0, L] is at most 4.
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Proof Let A < A.. Then using scaling relation (1) we can find ¢ > 0 such
that A < Ac(2(1+¢)). In words, after increasing the radii of the diamonds
by a factor 1 + ¢, the continuous diamond process remains subcritical. Now
let § > 0. Since the continuous diamond process (with increased radii) is
subcritical, we have from Theorem 3.5 in [13] (stated for balls but the proof
also works for diamonds) that the probability that this continuous diamond
process connects [0,3L] x 0 to [0,3L] x L is at most 6/2, for L sufficiently
large. We fix such L. Choose ¢ so small that if we partition [0,3L] x [0, L]
into squares with side length ¢/, with probability at least 1 — §/2 we have
that

(i) a Poisson process with rate A has at most one point in each of the

squares,

(ii) the connectivity structure of the diamonds (of radius (1 +¢)) around
these points does not change when we move points of the Poisson
process around in the squares with side length ¢ in which they are

contained.

We denote this set of squares with side length ¢’ by §. Since Ty con-
verges weakly to a Poisson process with rate A (Proposition 5.1), the P, -
probability that a particular subset of S contains a point of Iy, converges
to the corresponding probability in a Poisson process with rate A. Property
(ii) above than guarantees that if the continuous diamond process does not

connect opposite sides, neither does the discrete one. O

We next turn our previous lemma into a statement about paths with bounded

partial sums.

26



Lemma 5.3 For A < A, there exists N such that for all N > N there are
P

pn-almost surely no just-visiting paths with partial sums bounded in [0, N].

For the proof of Lemma 5.3, we need some more propositions. The ¢ in the
statements that follow is the € dictated by A in the statement of Lemma
5.2. If the discrete diamond process with increased radii does not connect
the top and bottom sides of [0,3L] x [0, L], we say that there is a gap from
0 x [0,L] to 3L x [0, L]. Other gaps are defined analogously. Lemma 5.2
says that the probability of a gap can be made as high as desired by taking
L large (and large N of course).

Proposition 5.4 For § > 0 and A\ < A there exists L, such that for large
N, with P -probability at least 1 — § we can construct a (random) pair of

curves, Cy and Cy contained in [0,3L] x [0, L] such that

1. the curves are self-avoiding and made up of finitely many straight line

segments,
2. the curves start in 0 x [0, L] and end in 3L x [0, L],
3. Cy is the locus of points at distance (1 + €) from C, above Cy,

4. the conditional (that is, given Cy and Cy) joint distribution of the
configuration between Cy and Cy is i.i.d. with the original marginals,

conditioned on the event that there are no adjacent —1s.

Proof According to the proof of Lemma 5.2 there exists L such that the

probability of having an overlapping series of diamonds connecting top and
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bottom of the box [0,3L] x [0, L] is smaller than §/6, and we fix a large such
L.

According to Lemma 5.2, we can now choose N’ such that if we put a
diamond of radius %(1+e) at every pair of adjacent —1s, the probability that
these connect top and bottom of [0,3L] x [0, L] is smaller than §/2. Thus
Ch and C5 with the first three properties above must exist with probability
at least 1 —4/3.

We now show that we can construct such a gap, without finding any
more information about those 1s and —1s in the gap other than that there
are no adjacent pairs of -1s, and possibly that some of the vertices on the
edge of the gap have value 1. We will need to work on the extended rectangle
[—(14¢€),3L+(14¢€)] x[0, L], to take into account the dependencies between
different areas. The probability that there is a gap crossing this extended
rectangle is greater than 1 — § for large L. This can easily be seen by
combining horizontal gaps in [—(1 4 ¢),3L — (1 + ¢)] x [0, L] and [+(1 +
€),3L + (14 ¢)] x [0, L] with a vertical gap crossing [0, L]*. Each of these
gaps exists with probability at least 1—4§/3, which means that the probability
that they all exist must be at least 1 — &. Any gap crossing this rectangle
clearly contains a gap crossing [0,3L] x [0, L].

Order the edges in the extended rectangle [—(1+¢),3L+ (14+¢)] x [0, L],
in some deterministic way and call this set K. Until the end of this proof
all edges mentioned are assumed to be in K. If we have an edge e, with
—1s at both ends, we say that another edge e is in the cluster of e, if there
is a sequence of adjacent edges (e, = eg,e1,...,ex = €p) all having -1s at
both ends.

Set K% to be those (random) edges on the horizontal line closest to

[-(1+¢),3L+ (1+¢€)] x 0 with —1s at both ends, along with all the edges
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in the clusters containing these edges. Let E be the set of those edges in
FE, that lie on the same horizontal line and do not have —1s at both ends,
along with any edges adjacent to those in E}, yet not in it.

In an inductive fashion, to find Eg"l and Eg"l from KL and EY do the
following. Take the first edge in K% in the ordering, and check all edges
in B, N (KLU ELS)S completely within distance (14 ¢) of this edge to see
if they have —1s at both ends. If such an edge exists, set Eg"l to be EYy
along with all such edges and any edges in their clusters around them. In
addition, set Eg"l to be EY along with any edges sharing a vertex with an
edge in E?l, yet not in it. In the case that the first edge in Eg has no edges
in Er, N (EY U FEYL)¢ within distance (1 + €) with a —1 at both ends, move
through the ordering of edges until either an edge is found that does have
this property or there are no more edges in Eé; In the first case proceed
as we would have done for the first edge, except with this edge, and in the
latter case set Eé;H and Eg"l to be Eé; and Ejg.

There must be a value of 7 for which Eé; and Eé;‘l are the same, as are
E% and EEH, if only because there are only finitely many vertices in the
box. At this point either there is an edge in EL which is closer than (1+ ¢)
to the top of the box, or not. If this is so there can be no gap of size (1+¢)
in the box by the manner of our construction, and if this is not so we must
have found a gap (between the locus of points at least (14 ¢) away from all
the edges K¢ and the points (14 €) from this locus back towards the Fgs).
What do we know about the points in our gap? The ends of the edges in
E¢ closest to the edges in K must have value 1, but apart from this, our
construction method has told us exactly that there are no pairs of —1s in

the gap. O
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Proposition 5.5 Given § > 0 and A < A, there exists N" and L such that,
for all N > N", the probability (under Py, ) that there exists a path with
sums bounded in [0, N] from [0,3L] x 0 to [0,3L] X L in [0,3L] x [0, L] is less
than 4.

Proof Take N, L so that the probability that a gap exists is at least 1 —4§/2.
Then if there is a gap from 0x [0, L] to 3L x [0, L], then there exist curves C
and Cy as in Proposition 4. In order to have a path with sums bounded in
[0, N]from [0,3L] x0to [0,3L] x Lin [0,3L] x [0, L], there must exist at least
one path from C; to Cy with partial sum bounded above by N. Since there
are no adjacent —1s between C; and (', if such a path exists, then also a self-
avoiding path from ' to C'y with this property exists: indeed, in the absence
of adjacent —1s, the final partial sum cannot be made less by adding loops.
Denote the number of self-avoiding paths between C'; and 'y with partial
sums bounded above by N by Un. We call an event increasingif its indicator
function is non-decreasing in the natural partial ordering of configurations
of £1s, and we call it decreasing if its complement is increasing. We are
interested in the decreasing event {Un > 0} conditioned on the increasing
event of having no adjacent —1s between the curves. The standard FKG
inequality (see for instance [9]) then implies that the conditional probability
of the event {Ux > 0} is at most the unconditional probability of the same
event, that is, its probability under P,,,. Note that such a path, of length M

say, must contain at least M;N —1s, if its partial sums are to be bounded

above by N. Hence the conditional probability that Uy > 0 is bounded

above by
M M . .
S BN 413V B Py (1= pn)
M>(1+e)N j=(M-N)/2 \ J
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ST BLAN 4+ 1)%4- 317 (1 —py) T 2M
M>(1+€¢)N

4L2(N + 1)2(1 _ pN)EN/26(1+E)N
1—6(1—pn)'/? '
This converges to zero as N — oo. Thus we can find N’ such that for

N > N’ this is less than §/2. O

Proof of Lemma 5.3 First choose ¢ and then define the event the (0,0) is

closed as the occurrence of all of the following events,

e there is a gap from 0 x [0, L] to 3L x [0, L] which is not crossed by a

path with partial sums bounded in [0, N],

e there is a gap from [0, L] x 0 to [0, L] x 3L which is not crossed by a

path with partial sums bounded in [0, N],

e there is a gap from 0 x [21,3L] to 3L x [2L,3L] which is not crossed

by a path with partial sums bounded in [0, V],

e there is a gap from [2L,3L] x 0 to [2L,3L] x 3L which is not crossed

by a path with partial sums bounded in [0, N].

Note that by the previous proposition there exists N’, L, so that this occurs
with probability at least 1 — 44, for N > N’. We now ask whether this
event occurs at other points, in particular at {(2aL,2bL) : a,b € Z}, in
which case we say (a,b) is closed. These events are not independent, but
the events ‘(a,b) is closed” and ‘(¢, d) is closed’ are independent if (2aL —
2cL)? 4+ (2bL — 2dL)* > 8L?. This means we can compare this process
to a 1-dependent ordinary site percolation model on the enhanced square
lattice. A standard counting argument (see for instance [10]) shows that for
4§ sufficiently small, there can be no infinite self-avoiding path of non-closed

points.
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Any path with partial sums that are bounded in [0, N] cannot pass
through gaps without using a section of path that is itself bounded in [0, N].
Thus it must be contained in the non-closed areas, which are, by the above
argument, almost surely finite. Therefore it cannot be infinite itself, almost

surely. O

Proof of Theorem 4(a) If limsupy_,, 2N*(1 — qn)* < A, then we can
find Ny, and A such that for all N > Ny,

IN?(1—gn)* < A < A

If we use this A in Lemma 5.3, we see that there can be no paths with partial
sums bounded in [0, N] for N large enough, almost surely, for the sequence
of pns, defined by this A. However for N > Ny, py < gn, which means that
we can couple the two discrete processes with parameters py and ¢y in the
natural way, that is, the set of vertices with value —1 under gy is a subset of
the corresponding set under py. Now it is a matter of carefully inspecting
the proof of Lemma 5.3. We first showed that the limit point process Iy
is a Poisson process. The only place where this fact was used later was to
assert that appropriate gaps exist in the subcritical Boolean model. The
coupling just mentioned implies that point processes Il associated with
the gns will be stochastically smaller than IIy. (Note that we do not have
information about a possible weak limit of the Il’ys.) This means that gaps
have an even higher probability to occur with the gys than with the pys.
The estimate of the probability to bridge such a gap with bounded partial

sums is monotone in py for N sufficiently large. O
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5.2 Proof of Theorem 4(b)

The proof of the supercritical part of the theorem must be different as we will
need to consider balancing configurations (recall the definition above) the
occurrence of which, as they contain both 1s and —1s, is neither increasing
nor decreasing in p. We begin by considering percolation of diamonds of the
reduced discrete diamond process. In the next lemma, the uniformity of Ny

in A will be important later on.

Lemma 5.6 Given A; < Agown < Ayp < 00. There exists Ny such that for
all N > Ny and X such that Ao, < A < Ay the reduced discrete diamond

process percolates under P, .

Proof of Lemma 5.6 We can choose € > 0 such that Agoun(1 —€)? > A..
Rearranging and using scaling relation (1) above we find that, Aggy,(1—¢€) >
Ae(E(1 = ¢)). In words, after decreasing both the rate of the Poisson process
and the radii of the diamonds by a factor 1 — ¢, the continuous diamond
process remains supercritical. It is clear that this is also true (with the
same €) for any A > Agoun-

Now consider the grid (%eZ)? A square of this grid is called a grid

square. Any diamond of radius %(1 — ¢) centred in a grid square is then

1
2

a grid square S, we denote by Fs the event that HXT(S_) > 1. We first claim

contained in any diamond of radius 5 centred in that same grid square. For

that for N — oo,
Py (Fs) = 1= e/, (7)

uniformly in Agowp < A < Ayp. For this we use the Stein-Chen Poisson

approximation anticipated in the proof of Proposition 5.1 to estimate the
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total variation distance between the distributions of the number of points
in S from Iy and that from a Poisson distribution of rate corresponding to
the expected number of such points, E,(ITx(S)). As in (6), we have that

this total variation distance is at most

1 — e~ B (lIn(5))

E, (I (5))

Var(lly($)) = B, (In(S) +2 Y. (1—pn)*
edges in s

A similar albeit somewhat more complicated computation as in the proof of

Proposition 5.1 now yields that this is bounded above by
| — e 2N+ (5) (1=pw)?
2N (5)" (1 - pw)?

(6 2 GY (N+1)*(1 = pn)° 422 (2)2 (N +1)%(1 - PN)4)

X

Keeping in mind relation (5), this then gives the bound

4

S () e )

4
This tends to zero uniformly in Agoyn < A < Ayp, when N — oco. The fact

() 2<mmn= (521)' (2)

implies that the null probability of Poisson distribution of rate E, (ITx(S5))

that

)
converges to the null probability of a Poisson distribution of rate (2)2 A
Claim (7) follows immediately.

Next we want to show that

Py ({TIR(S7) = 0} n{Iy(S7) > 0}) = 0, (8)
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uniformly in Agoun < A < Ayp, as N — co. The event in (8) can only occur

if we see one of the configurations

-1 -1 -1 -1
-1 -1 -1 -1 -1

somewhere in the grid square. The probability of this is at most 3(eN/4 4+
1)2(1 = pn)® = (eN/4 + 1)%(3)3/245. This goes to zero uniformly for all
Adown < A < Ayp, when N — oo,

According to (7) and (8), we find that uniformly in Agown < A < Ayp, for

all N large enough,

P, (Fs) > 1 - e~ 1= (e/4)*

PN

which is the probability that there is a point in the grid square due a Poisson
point from a Poisson process of rate A(1 — €¢). Hence we can couple the
continuous diamond process based on this Poisson process and the reduced
discrete diamond process in such a way that whenever a grid square contains
at least one Poisson point, it also contains at least one point of l_[]'i\',. The
grid size was chosen in such a way that the union of the diamonds (of radius
1(1 = €)) of the Poisson points, are contained in the union of the diamonds
(with radius %) corresponding to H]"\}. The former process is supercritical by

the choice of ¢, and therefore also the latter process is supercritical, which

is what we wanted to prove. O
We next turn this lemma into a statement of paths with bounded partial

sums.

Lemma 5.7 Given A\. < Aown < Ayp < 00 there exists Ny such that for all
N > Ny and X such that Xjo, < A < Ay there is a just-visiting path with

partial sums bounded in [0, N + 1] with positive P, probability.
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Proof of Lemma 5.7 Fix A such that A, < A < Ay, Recall that
2N%(1 — py)* = A. Then, By Lemma 5.6, the origin is contained in an
unbounded connected components of diamonds from the reduced discrete
diamond process with positive probability. If this is the case, we have a
self-avoiding path # = (mg = 0,7,...) on the grid (Z/N)? starting at
the origin such that 7 visits a balancing configuration at least every N
steps. We may assume that if 7 visits a balancing configuration for the
first time at time nq, say, the partial sums up to that moment are all in
[0, N]. Call this first-visited balancing configuration Wy. ( It is possible
that m, is contained in the intersection of two balancing configurations in
which case we just make a choice and call one of these W;.) Let m; be the
first time m after ny for which m,, ¢ Wi. Define ny as min{n > my : =,
visits a balancing configuration}. Note that it is possible that ny = m;.
The balancing configuration visited at time ny is denoted Ws, where it is
again possible that we have a choice. Define ny, mg and Wy for k =1,2,...
inductively in this fashion. We will now construct a just-visiting path =’. =’
will be constructed from 7 by adding loops of repeating vertices each time
7 visits a balancing configuration. More precisely, 7’ follows 7 up to time
ny. Consider the sum of the labels along 7 until 7 visits the next balancing

configuration Wy, that is, S] — ST

ny fork=mny+1,... ny. These numbers

are uniformly bounded by N in absolute value. We construct the next part
of 7' as follows. Pass around in the balancing configuration W; until you
have reached a sum which guarantees that when we after that travel to Wy
along 7 the partial sums will never be smaller than 0 or larger than N + 1.

When we are in Wy we repeat this process. O
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Proof of Theorem 4(b) We consider two possibilities:
(i) iminfy_ee 2N%(1 — gn)?% = o0,
(ii) limsup oo 2N2(1 — qn)? < 0.

For case (i) we take a grid square S, and we simply note that the prob-
ability that S contains a balancing configuration converges to 1 as N tends
to infinity. Thus, with positive probability, there will be an infinite path
of grid squares containing balancing configurations for N sufficiently large.
Hence the diamonds of the reduced diamond process must percolate, and in
the same way as in the proof of Lemma 5.7 we can move around between
balancing configurations to find our required path.

In case (i) we can find Ay, Agown such that for all large N,
Ac < Acloum < 2N2(1 - Q‘N—1)2(]]2v_1 < Aup < 0.
We can then define Ay as 2N?(1—gn—1)?¢% _, and apply Lemma 5.7 to this

series of Ans, which immediately gives the result. O

Proof of Corollary 5 For this corollary we will show that each of the

following three cases leads to a contradiction:
(i) liminf,—; 2(1 = p)2I(p)* < A,
(i) Ac <limsup,_,; 2(1—p)*I(p)* < oo,
(ili) limsup,_; 2(1 = p)*I(p)* = .

In case (i) we can choose a sequence pS, p$, ..., such that lim;. p? =1
and such that limsup;_,., 2(1 — p?)*I(p$)* < A.. Now as lim;e, I(pf) = 00
the set {I(p¢); ¢ = 1,2,...} must be infinite. This means that we can
next define a new sequence, py,p$,..., which is a ‘more regular’ version

of {p3,ps,...}, in such a way that we can apply Theorem 4(a). So, if
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{p? : I(p?) = N} is non-empty, then we choose p%; to be any element of this
set. If it is empty, we set p}; equal to 1.

Then limsupy _, ., 2(1 = pX41)?N? < A, so by Theorem 4(a) we can
find N’ such that for all N > N’ Pp%-almost surely, there are no paths
with partial sums bounded in any interval of length N. However, from
the construction we have that I(p%) = N for infinitely many N, which
contradicts the definition of [.

In case (ii) we proceed similarly but this time we use Theorem 4(b).
Now we can choose a sequence pJ{,p;, ..., such that lim;_ p;-r = 1,
lim sup;_,. 2(1 — p;-r)ZI(p;-r)2 < oo and liminf; e 2(1 — pZT)ZI(pD2 > A
Again we define a new version of this sequence. If the set {p,:r : [(p;r) =N}
is non-empty, then we define p?v to be any element of this set. If the set is

1

empty, we set py equal to 1 — 261;','21. Here the term 1 — ’\261;}'21 is chosen

to make 2(1 — py)2N2 =X +1 > A..
Next note that

limsup2(1 — p;’:\,H)Q(N - 1)’ <
N—=o0

and that

i 1 2 2
1}\rfn_>1;10f 2(1 = pyy) (N = 1)% > A

Thus by Theorem 4(b) there exists N” such that for all N > N” there are,
with positive probability, paths with sums bounded in an interval of length
N — 1. Thus, by its minimality, I(p?v) must be less than or equal to N — 1,
for N > N”. However we know that I(p}tv) = N, which gives the required
contradiction.

Case (iii) is proved in the same way as case (ii), by considering in this
case a sequence of ps for which 2(1 — p)2/(p)? tends to infinity in the limit.

The only necessary modifications are to define p}\, as an arbitrary constant
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between 1/2 and 1 for cases where {plT : I(pj) = N} is empty, and to use
the other condition in Theorem 4(b). O

6 Proofs of Theorem 6 and Corollary 7

Proof of Theorem 6 We give a proof by contradiction, so we first assume

that there is a value of p > 1/2 such that both,
P,(3 a path = for which S does not converge to 4 c0) > 0, 9)

and,
P,(3 a path 7 with S} = 01i.0.) = 0. (10)

Observe that for p > 1/2, we can take, for example, the path given by
the positive part of the z-axis to give an infinite self-avoiding path 7% such
that, with probability 1,

. u
lim 57 = co.
n—00

In the proof of Lemma 4.1 we showed that (10) implies that for all z € Z,
P,(3 a path = with S = z i.0.) = 0. (11)

From this and (9) it follows that there exists with positive probability a path
74 with

lim ™ = —co.
n
n—oo

We next construct from these two paths a new self-avoiding path with partial
sums that return to zero infinitely often, by moving between the two paths
in a way that ensures that the resulting path does not cross itself. This will

then contradict (10).
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(0.0)

Figure 4: The spiral S

We will speak of a point on a self-avoiding path as being before another
(or as an earlier point) if it is nearer to the origin, measuring along the path.
Points that are after others (or later points) are defined analogously.

For the construction we use the spiral S, shown in Figure 4, which covers
all points in the square lattice, and is self-avoiding. We define a spiral circuit
from a point, «, to be that sub-path of S, starting at o, which passes around
the origin until at Euclidean distance v/2 from a, see Figure 5. We note two
things:

(a) There are an infinite number of points on any self-avoiding path from the
origin which have the property that no earlier points on the path intersect
later points of the spiral.

(b) There exists a last intersection of a self-avoiding path and any spiral
circuit, in the ordering given by the path.

We construct our new path 7" as follows, after starting by following (i.e.

copying the steps of) 7% for a little while:
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1,2)

0,0)

Figure 5: The spiral circuit from the point (1,2)

. Follow 7% until a point when both the partial sum of 7" is below zero
and none of the points on S after this point are already in #”. This
is possible by (a), and the fact that the partial sums of 7¢ are only

above or at any value for a finite number of steps.

. Find the last intersection between 7" and the spiral circuit from the
point where we currently are, and move along S to this point. This is
possible by (b). By the previous step, 7™ avoids any earlier parts of

itself (which were strictly inside the spiral circuit).

. Follow 7™ until a point when both the partial sum of 7" is above zero
and none of the points on S after this point are already in 7. Note

that 7" will never return to earlier points in #”, by the previous step.

. Find the last intersection between 7% and the spiral circuit from the

point where we currently are, and move along S to this point.
. Repeat.
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Notice that it is always possible to keep passing from path to path in this
manner, and thus the partial sums of 7™ are zero infinitely often. We have

a contradiction, and so our result. O

Proof of Corollary 7 The existence of paths with partial sums which
return to zero infinitely often is clearly a tail event and so has probability 1
or 0, by Kolmogorov’s 0-1 law.

Assign to each vertex v € Z* a uniform [0, 1] random variable, U,. We

can use these variables to couple realisations at all parameter values together

. U,>1—p then X,=1,
such that if

U,<1—p then X,=-1.
Theorem 6 states that if with positive probability there is a path with

partial sums not converging to +oo, then there exists with positive proba-
bility, and hence with probability one, a path with partial sums that return
to zero infinitely often. On the other hand, if all paths have partial sums
converging to +o0o, then clearly there does not exist a path with partial
sums that return to zero infinitely often. Hence we have a path with partial
sums that return to zero infinitely often, with positive probability, if and
only if there is a path, with positive probability, whose partial sums do not
converge to +o0o. krom the coupling described above we see immediately
that the probability of the event that all paths have partial sums converging
to 400 is monotone in p. It follows that the probability of having a path
with partial sums that return to zero infinitely often is also monotone in p.

O
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