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Abstract

In this paper we prove existence of multiple-front solutions in a class of coupled
reaction-diffusion equations with a small parameter. By a travelling wave Ansatz we
reduce the problem to a four-dimensional system of ordinary differential equations and
prove existence of a large variety of n-jump homoclinic and heteroclinic solutions, n =
1,2,3,...using geometric singular perturbation theory and Poincaré maps. Numerical
simulations of the reaction-diffusion equations indicate that several of the multi-front
type waves can be stable.

1 Introduction

In this work we consider the existence problem for travelling ‘localized’ structures in a
class of singularly perturbed reaction-diffusion equations. These systems of two reaction-
diffusion equations can be reduced to a certain type of four-dimensional flows by a trav-
elling wave Ansatz. The starting point of this research was the study of travelling struc-
tures in Ginzburg-Landau (GL) and Nonlinear Schrédinger type of modulation equations.
There, a priori, one would also expect a reduction to a four-dimensional system, but owing
to a phase invariance one ends up with a three dimensional reduced ordinary differential
equation (ODE). In the GL context, existence and bifurcations of homoclinic solutions
are extensively studied; see for instance [5] and references there. They are also studied in
model problems in [9, 8, 13, 1]. These solutions correspond to an overwhelming richness
of travelling localized structures that connect one or two different ‘basic’ patterns. These
localized structures may take the form of a front, a pulse, or a multi-front (i.e. a travelling
solution with N layers). As the three-dimensional phase space for the travelling wave
problem in the GL equation, the model problems contain a one-dimensional slow mani-
fold, possibly with fixed points on it, and a perturbed homoclinic manifold. The studies
of these problems made clear that the flow on the slow manifold has an essential influence
on the existence of orbits homoclinic to that slow manifold.

In the present work we show, that the methods developed in [9, 8, 13] can also be
applied to four-dimensional systems. Asin these papers, we use a combination of topolog-
ical and analytical, asymptotic methods to study existence of homoclinic and heteroclinic
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solutions. We will again find that the flow on the slow manifolds plays a significant role
in the existence of homoclinic and heteroclinic solutions. Since the slow manifolds are
two-dimensional in this case, the so-called slow flow is less trivial than in the problems in
[9, 8, 13] and may allow an even richer structure than the structures found there.

The most general form of the systems we study in the current paper is

(1.1) U = U+ F(UP)+eGU, Uy, P, P,),
' e'Py = P+t KU Uy, P, Py).

For e =0, v, u > 0, this problem reduces to

U, = U+ F(U,P),

a2y

in the space of bounded, continuous functions. Thus, (1.1) can be interpreted as a ‘stan-
dard’ scalar nonlinear diffusion equation, of which the coefficients have become functions
that vary slowly in space and time. This variation is then prescribed by the full system
(1.1). For v =0, p > 0, the £ = 0 limit is

(13) Ug = Uxx+fﬂ(U7 P)7
P = P
The motivation to study these systems is mostly a mathematical one, but of course the
diffusion and reaction terms have a physical interpretation in many problems in for instance
chemistry and biology. In the form (1.1) the function G is a small ‘convection’ term, it
may for instance also contain a chemotactic coupling ;—m(UxH(U, P)), H > 0, between U
and P (see for instance [20]). The theory we develop can also be applied in this case, since
expansions in the small parameter ¢ yield a system that is, in essence, of the form (1.7)
that we derive here.

From a mathematical point of view we show how geometrical methods, that are de-
veloped for singular perturbations of three-dimensional systems possessing a homoclinic
manifold, can be applied to four-dimensional systems.

We choose F' such that (1.2) possesses two asymptotically stable, stationary states U_
and Uy for a continuous family of Fy, so

F(Us, Py) = 0 and iF(Ui,Po) <0
ou
by a linear stability analysis. For simplicity we choose £’ to be a cubic polynomial in
U, satisfying these conditions. In general (1.2) would then permit one front solution,
travelling with a unique constant speed ¢ # 0, connecting U_ with Uy. For this fixed ¢
this gives the opportunity to jump either from U_ to Uy in terms of heteroclinic orbits, or
from U to U_. In this paper we want to focus on the case in which orbits can jump back
as well, since this may give rise to multi-jump orbits in the perturbed system as described
below. We therefore impose that F is symmetric, and we make the explicit choice

(14)  F(U,P)=f(P)(U=-UY),



where f(P) > 0 for P € R. Hence U_ = —1 and Uy = +1, independent of F,. This
choice does not influence the essence of our results.

By this choice the resulting ODE we derive has an integrable limit as € | 0, which
possesses two planes U = —1 and U = +1 filled with saddle equilibria and two heteroclinic
manifolds consisting of families of orbits that connect saddle points on both planes. For
€ > 0 but small, the planes U = %1 turn into normally hyperbolic slow manifolds, and by a
Melnikov method primary heteroclinic orbits that survive the perturbation can be found.
These basic, primary heteroclinic orbits form a framework on which more complicated
orbits can be built. These orbits consist of fast jumps that follow one of the primary
heteroclinic orbits, and trajectories along both slow manifolds that connect the fast jumps
to each other. This basic framework is determined by the fast flow, but whether or not
the jumps can be connected is very much influenced by the flow on the slow manifolds.
In sections 3 and 4 we prove for arbitrary n > 0 that, under certain conditions on the
parameters, rich classes of such complicated orbits with n jumps through the fast field
exist.

The models that are developed and studied in [9, 8, 13, 1] are perturbations of a
three-dimensional flow possessing a line of saddle-points and a homoclinic manifold that
connects the saddle-equilibria to themselves. In the perturbed systems the axis of saddle
points becomes a hyperbolic slow manifold and the occurrence of cascades of homoclinic
bifurcations or even explosions of homoclinic orbits to this manifold is proved. These
orbits all make their fast loops close to two primary 1-loop homoclinic orbits. For certain
systems of the type

o=y,
(15)  y§ = z-2+eFi(z,y,29),
¢ = ely(z,y,2p),
where " = % and p,q are parameters, existence of a horseshoe and an uncountable set

of homoclinic orbits that make as many circuits through the fast field as one wishes are
proved in [13]. In the original partial differential equations (PDEs) such orbits correspond
to travelling orbits with arbitrarily many pulses. In GL context the primary, 1-loop
homoclinic orbits are unstable [12], so multi-circuit homoclinic orbits built on them are
likely unstable as well.

Here we however study systems that give rise to families of heteroclinic rather than
homoclinic solutions in the unperturbed (¢ = 0) case. If multi-jump homoclinic or hete-
roclinic orbits in the full singularly perturbed problem exist, it follows from the general
theory developed in [2] that their spectrum will be close to that of the two primary hetero-
clinic connections of the scalar equation (1.2). Here ‘close’ means that it will merge with
that of the scalar problem in the limit ¢ — 0. Since the two fronts in (1.2) with (1.4) are
stable [14], it can be expected that at least some of the multi-jump patterns constructed in
this paper will be stable. Indeed, numerical simulations in section 5 of this paper suggest
that certain n-front solutions of a PDE of the type (1.1) are stable, or meta-stable.

Remark 1.1 The recent results on the ODE derived from a GIL perturbation of the
defocusing nonlinear Schrodinger equation in [18] show that heteroclinic connections cor-
responding to a stable ‘dark’ solitary wave can exist as solution to the original PDE. This



stable structure can possibly be used as the ‘building blocks’ with which multi-circuit ho-
moclinic orbits close to the heteroclinic cycle, maybe corresponding to stable solutions to
the PDE, can be constructed.

The solutions we consider are either stationary or travelling with a constant speed ¢,
A > 0. We therefore start with the travelling wave Ansatz and put U = u(&), P = p(¢)
with & = 2 — e*ct to reduce (1.1) to

uge = f(p)(u’ —u) —&cug — eG(u, ug, p, pe),
pee = —etK(u,ue,p,pe) — M epe.

The function K is supposed to be the term that determines the main character of the slow
flow, therefore we set yu < v+ A. With the definitions u; = v and p; = eh/2¢ we obtain
the following system of ordinary differential equations

ué = v
. ve = f(p)(u®—u)—c'ev—eg(u,v,p,q)
( 6) _ w/2

pe = €77°¢q

q¢ = _5#/2]6(“7 v, P, q) - 5/\+UCQ7

where the functions ¢ and k are the equivalents of G and K. The O(s“ﬂ) term is the
leading order term in the equation for g.

Finally, we make assumptions on the scaling of the perturbation terms. When A =0
the ¢ = 0 fast subsystem of (1.6) is either a forced or a damped oscillator, that does
not exhibit any heteroclinic connections for ¢ # 0. However, when A > 0 the ¢ = 0 fast
subsystem does exhibit heteroclinic connections between the two steady states v = —1 and
u = 1 for all ¢. Moreover, if the wave speed is of the same order as other perturbations,
in other words if A = 1, then the small forcing or damping e*cv can be balanced by other
mechanisms. Thus, we choose A = 1. Note, that this scaling should be changed if G only
contains terms with factors P, and the lowest order of the perturbation is smaller than
O(e).

To obtain equal lowest orders of perturbation in all equations, we choose p = 2 and
end up with

u = v,
an % = SO -0 —eew - cgu0,p,0),
pPe = €&qg,
4@ = _‘Sk(uv v, P, q) - 81+ch'

We show that the approach developed in [8] and [13] can be extended and applied to this
model problem. In this, we focus on the influence of the extra (fourth) dimension on the
methods, since the geometric ideas behind these methods were, a priori, strictly three-
dimensional. The global behaviour of the systems (1.7) appears to be very complicated,
and difficult to describe in such a general context. Therefore we do not study (1.7) in its full
generality, but choose to focus on simple explicit examples. However, since the methods
are mainly of a geometrical nature, they can also be applied to the general model, and to
other classes of singularly perturbed ODEs.



In the first example the equations for p and ¢ decouple, but even in this very simple
case we prove the existence of four families of n-jump homoclinic and heteroclinic orbits
for arbitrary n > 0. These results are formulated in Theorems 3.2 and 3.8. In the papers
[8, 13] it was shown that so-called counteracting effects gave rise to the above mentioned
existence of a horseshoe and an uncountable set of homoclinic orbits. Here we find that the
fourth dimension immediately implies some counteracting behaviour, independent of the
parameters, and yields two sets of 4n—2 n-jump orbits; see Theorem 3.10. Finally, we show
that the second example, in which the equations are no longer decoupled, exhibits even
richer counteracting behaviour, and richer classes of homoclinic and heteroclinic orbits.

The paper is organized as follows. We extend the theory developed in [8] and [13]
in section 2 and apply it to an example in sections 3 and 4. Section 5 is devoted to
some numerical simulations of front-type solutions that correspond to homoclinic and
heteroclinic solutions found in sections 3 and 4. The results and relation to other work
are discussed in the last section.

2 Global geometry for ¢ =0 and ¢ > 0

The slow limit of (1.7), obtained by letting ¢ — 0 in that system, defines two-dimensional
invariant planes {u = +1,v =0}, {u = —1,v = 0} and {u = 0, v = 0}. By the assumptions
on F(U, P) the first two,

My ¥ lu=41,0=0},

are filled with hyperbolic equilibria, and are thus normally hyperbolic. Note that this is
a consequence of considering p en ¢ = p?f as variables instead of p and p;. For ¢ = 0 the
system (1.7) has three integrals

(2.1)  E(u,v,p) = $0* + 1 f(p)u’ — {f(p)u’, pandq.

For each p,q = const. M_ and M, are connected to each other by two heteroclinic
orbits. The two families of heteroclinic orbits form the compact parts Hy of the level set
E(u,v) = 1 f(p). They are subsets of the stable and unstable manifolds of M. Here the
convention is that 7 contains orbits with v > 0 and #_ contains orbits with v < 0. For

fixed p, ¢ the two connecting orbits are

22 (1a(€),02(0) = (+1anh (3y/20()€), £4/270) (1 - tank? (11/27()6)) )

Inside H4 U H_ a family of invariant cylinders filled with periodic orbits exist. The
planes My represent the solutions of (1.1) with trivial U state U = £1. Since M4
are normally hyperbolic, Fenichel theory [11] guarantees, that any C?-small perturbations
preserve nearby hyperbolic slow manifolds M5 = M5 +0O(e) for any compact MG C My.
A special choice of the perturbation g(u,v,p,¢) might guarantee that M3 = M4: the
manifolds M4 are also invariant under the flow of the full, ¢ > 0, system. This is the case

if

g(£1,0,p,q) = 0.



We impose this condition on g, since this provides us with exact expressions for M5 that
will be convenient to describe the slow flow in §2.2.

For small ¢ > 0 the manifolds M3 no longer consist of fixed points, but are slow
manifolds. The slow flow on MY is determined by the function k(u,p) . We come back
to this later. By Fenichel [11] M3 have stable and unstable manifolds, which we call
W2 (M%) and W¥(MY) respectively, that are O(e) close to those of M. From now on
we omit the ¢ in the notation of My and define W*(My) and W" (M) as those parts of
WU (M) that merge with Hy UH_ as e — 0.

2.1 The fast field: Melnikov calculations

While for ¢ = 0 W*(M_) = W5(My) = Hy and WE(M_) = WU (M) = H_, these
manifolds can split for ¢ > 0, giving rise to a splitting distance that is defined more
precisely below. However, some intersections W"(My) N W3(My) may persist, exactly
when this distance is equal to zero. Such intersections consist of solutions v4(§) to (1.7)
that lie both on an unstable manifold W"(M.) or W"(M_) and on a stable manifold
Ws(My) or W3(M_), and thus approach M, or M_ for { — £oo. Since W*(M4) and
WU (My) are three-dimensional manifolds by the assumptions on F'(U, P) and by Fenichel
[11], WS (My) N W™ (M) generically is a two-dimensional manifold, if it is non-empty.
Equivalently, one expects one or more one-parameter families of orbits 7, that connect
M4 to themselves or to each other. In order to find these homoclinic or heteroclinic
solutions, we employ an adiabatic Melnikov method [21, 24] that measures the splitting
distance between respectively the manifolds W"(M_) and W*(M), or W"(My) and
We(M_). This splitting distance can respectively be measured in the hyperplanes ¥, =
{u=0,v>0} and ¥_ = {u=0,v < 0}.

Since the system (1.7) is an O(g) perturbation of an integrable system with periodic
orbits inside the manifolds 4, components of W"(My), W5 (M) inside Hy will intersect
the hyperplane {v = 0} many times. Therefore we may expect homoclinic or heteroclinic
orbits to My that intersect {v = 0} more than once. We make a distinction between
the first intersections W" (M) N WS(M_) or W™ (M_) N W5(My), corresponding to
the first heteroclinic orbits, and next intersections. The first heteroclinic orbits make one
jump through the fast field, next orbits make more than one jumps. For convenience we
denote the first intersections of W*(M_) and W5(M,) with X} by Q(M_) respectively
Q' (My), see Figure 1. Likewise, we define Q(My) and Q='(M_) in ¥_. For the
moment we focus on the intersections with > . The first heteroclinic connections through
Y4 correspond to zeros of the following time-dependent distance function (here & serves
as the ‘time’):

_ vy (€) Z=u2(€) = uz(§)] |o=o
(23)  AW+Ep0,00) = ( F(p0) (L (E) — us (6)) ) " ( Z102(6) - 12()] lomo ) ’

where the wedge product represents the scalar cross-product in the plane. The solutions

7 (§) = (u2(€), v (), pE(€), ¢ (€)) in WH(M-) and 12(§) = (w2 (E), v2(E), pE(E), ¢2(€)) n
W= (M) of equations (1.7) are determined by the initial condition v2*(0) = (0, v, po, qo);

y e

Y0(&) = (u4(&),v+(£), po, qo) is defined as the heteroclinic solution (2.2) to the ¢ = 0 sys-
tem. Here uy(§) = ug(&5po), v4(€) = vy(&po) and 70(0) = (0, 5+/2f(po), po, o). The
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Figure 1: A sketch of the four-dimensional phase space of (1.7) with Melnikov functions
AWy = a(p? — k?) for constants o and . The dashed cycle represents an unperturbed

heteroclinic cycle.

O(e) splitting distance is given by AW, (0, po, go) and depends on the wave speed c; we
therefore denote AW, by AW, (0, po, qo; ¢). The equation (2.3) does not contain any terms
from the p¢, ¢¢ equations, which illustrates that the splitting distance between the stable
and unstable manifolds is only influenced by the fast field. Therefore the perturbations f
and ¢ are important here, and £ is not.

Similar to the derivation of the adiabatic Melnikov function in systems where a ho-
moclinic manifold is splitted [21], one shows that for the perturbed heteroclinic manifold
with v > 0 the splitting is given by

N 04 (§) 0
24 AW O = [ ( F0) (1) - s €)) ) : ( M4, v, 0y 40) ) “

where

q 3
(2.5)  m(t4, 04,0, g0) = —v4¢ = g, 04, p0) + 7 (po) (uf — uy) .
Note that the unperturbed heteroclinic solutions depend on pg. The function g—ﬁ satisfies
%LE:O = 0 and dd_g (%) = ¢p, SO %(5) = qo&. Clearly only even terms in g contribute to

AW4(0, po, qo; ¢), since vy is even.

In the following a point z¢ = (0, vo, po, o) € X4 is said to lie inside @' (M) when
its v coordinate satisfies vy < vy, where (0,v1,po,¢) € Q@ '(M4) has the same p, ¢
coordinates as zo. The point lies outside @' (M) when vy > vy. Similar definitions
apply to other manifolds in ¥4. Clearly Q(M-_) lies inside Q=" (M) for (po, qo) with
AW (0, po, qo; ) < 0, and outside Q™1 (M) for (po, qo) with AW (0, po, go; ¢) > 0.

Remark 2.1 Similar to the derivation of the function AW, we can derive a function
AW_ that measures the splitting distance between @Q(M,) and Q~'(M_) in the hy-
perplane ¥_. If the model (1.7) possesses the symmetry {« — —u, v — —v} then
AW_ = AW,. Such symmetry is convenient, but not essential for our methods.



Remark 2.2 Although we focus on problems with a Melnikov function having no, one or
two zeros, the geometrical techniques we use in section 3 can also be used in systems with
Melnikov functions with more than two zeros. This would however involve much more
bookkeeping and lead to a more complicated structure.

2.2 The interaction of the slow flow and the fast field

The functions AW_ and AW, give us basic information about the global behaviour in
the fast field, and are determined by f and g. The remaining function to address is k,
the function that strongly determines the flow on M4. For g(£1,0,p,q) = 0, this flow is
given by

p = &q,
¢ = —ek(£1,0,p,q) — el cq.

In earlier work, the relative positions of the stable and unstable manifolds and the relative
directions of the slow and the fast flows appeared to strongly influence the existence of
higher order (n-loop) orbits connecting a slow manifold to itself. We refer to [9, 19]
where the relative position of stable and unstable manifolds (‘inner’ and ‘outer’ case)
played a role, and to [8] and [13] where the relative directions of flows (‘cooperating’
and ‘counteracting’) were important. We first explain the notion of cooperating and
counteracting flows in a three-dimensional system and then extend it to the present type
of systems.

Consider the system (1.5) with (0,0, z;¢) = 0 and, for simplicity, F;(0,0, z;p) > 0.
This system possesses a normally hyperbolic slow manifold {# =y = 0} that is fore =0
connected to itself by a homoclinic manifold A filled with families of periodic orbits. Since
the perturbed (¢ > 0) flow is O(¢) close to the ¢ = 0 flow, the flow inside # is still almost
periodic and returns from {y = 0,2 > 1} to itself.

To define cooperating and counteracting flows we compare the flow on the slow mani-
fold and the averaged flow in the fast field. The flow on the slow manifold is 2|x=y=0 > 0.
To quantify the contribution of the fast field to the change in z, we define the averaged
change in z during one fast excursion from {y = 0,2 > 1} back to itself as

Te T.
AZ}‘:/ Zdt:‘s/ Fl(mmyaaza;p) dt’
0 0

where (z.(t),y:(t), 2-(¢)) is a solution of (1.5) with return time 7,. Approximating the
solution (z.(t),y.(t), 2-(t)) by an O(e) close solution (z¢(t),yo(t), 20) of the e = 0 problem
and T by its period Ty, we obtain

To
(2.6) Azf:gfo Fy(2o(t), yo(t), 20: p) di + O(2).

Clearly AZ; depends on z. It also depends on the integral F = 1y — 12 + 12 of the
unperturbed orbit. In the limit £ 1 0 we approach the unperturbed homoclinic manifold
and the integration interval becomes (—oo, 00).



We now consider an orbit, parameterized by zg, F/ and p, ¢, that follows the slow flow
on {z = y = 0} during a time Ts and makes a loop through the fast field afterwards.
During the time 7T z changes with an amount AZ; = fOT'* Z|z=y=0dt > 0. Depending on
zo, I/ and p, AZs(20, F/, p) may be positive or negative. In the former case both AZ; >0
and AZ; > 0, which excludes for instance periodic behaviour. Both fields cooperate in
this case. In the latter case AZ; > 0 but AZy < 0, so the slow and fast flows might
balance each other and allow for a periodic orbit. Here the flows counteract. 1t has been
shown in [8, 13] that this distinction is crucial for the complexity of solutions of (1.5).

We note here, that the expression AZ; is not known in general, since we cannot
control the flow near the slow manifold. We however can exploit the fact that orbits
exponentially close to a hyperbolic slow manifold follow the flow on this manifold during
a time 1 = O(%) before jumping off. This makes AZ (zp, F, p, q) = O(1) for such orbits.
The closer an orbit comes to the slow manifold, the longer it follows the flow on it, and thus
this O(1) change in z can be arbitrarily large. This is made more explicit in Lemma 2.6.

We now return to system (1.7). The flow on the slow manifolds M4 contributes to
the changes in p and ¢ with amounts AP, and AQ; per passage of an orbit through the
neighbourhoods of the manifolds. If the ‘time’ spent near the slow manifold is 7%, these
expressions are given by

T, Ts
O A N ARG
T, T
BQuas = [ ilansds =2 [ (R0, p(©), (€)) - " eq(©)) de.

In these integrals p and ¢ depend on £. Note, that AF; is the same on M_ and M4,
and AQ; is independent of M4 if k is symmetric in u. The contributions of the averaged
fast flow during one circuit from ¥4 to ¥y through the fast field are APf(p, ¢, ) and
AQ¢(p,q, ), with E as defined in (2.1). They can be computed by

Te Te
APy(p,q, E) = /0 pd&ze/O g de,
Te Te
AQs(p, 0, E) = /0 jde = ¢ /0 (—k(u(€), v(€), p, q) — e”cq) d,

where T, is the return ‘time’, and p and ¢ serve as parameters. In §2.3 we omit the
subscript f and in section 3 we approximate solutions and their return time as in (2.6)
to estimate these integrals in some examples. If APy(p,q, F) and AQ¢(p, ¢, ) have the
same sign as respectively APy and AQ; on both M_ and M, the flow is always in one
well-defined direction with respect to p and ¢. In this situation we say that the fast and
slow flows cooperate. Clearly no periodic orbits can exist in this case.

If sign A P¢(p,q, F) = —sign A Pg|pmy, and sign A Qf(p,q, F) = —sign A Qs|my,
a balance between both flows, possibly allowing for periodic orbits, can occur. In both
the p and the ¢ direction the fast flow is opposite to the flow on both slow manifolds.
Therefore this clearly is a counteracting situation. We will see that many more homoclinic
or heteroclinic orbits than in a cooperating situation can exist here. See also [8] and [13].



It is important to notice that the definition of cooperating and counteracting flows in
[8] and [13], which we explained for (1.5), was simple since the system there possessed only
one hyperbolic slow manifold and this manifold was one-dimensional. However, here there
are two such manifolds M4, which can either contain identical flows (or at least flows in
the same direction), or flows in different directions. In the latter case the fast flow always
cooperates with the flow on the one slow manifold when it counteracts to the flow on the
other. Depending on the strength of the flows a balance might be possible.

Since M4 are two-dimensional, the slow flow might cooperate with the fast flow in one
direction but counteract in the other direction. Of course periodic orbits cannot exist then,
but a system with this behaviour can still possess many more homoclinic and heteroclinic
orbits than a fully cooperating system. We will illustrate this with examples in sections 3
and 4.

The slow and the fast parts of orbits v (£) in W" (M) or v3(€) in W3 (M) are related
to each other by the base-points of the Fenichel fibers in W"(My) or WS(My) that we
will describe here. Consider 73 (§) C W3 (My) with 45(0) € Q7' (M4) C {u = 0}. By
geometrical singular perturbation theory [11, 15] there is an orbit 7j\4+(£;p(s), @) C My
with ¥, (0595, 66) = (P0, 40) € M, such that [[v3(€) — vi, (& P5, @)l is exponentially
small for & > 0 with € > O(%) The orbit T, (& p%, @) determines the behaviour of v5 (§)
near M. The points (pf, ¢5) € M+ and (pg, q3) € M+ (which are defined analogously)
are the so-called base-points, where the orbits in W3(My) and W"(My) respectively
‘touch down’ on My and ‘take off’ from My (see also [10, 7]). The orbits in W5(My)
and W" (M) can be parameterized by their base-points.

Whenever an orbit (&) temporarily ‘touches down’ on M4 to follow the slow flow dur-
ing a certain time Ty = O(1) as above and ‘takes off” again after this time, the behaviour
of this orbit near My is determined by one particular orbit yaq, too. This orbit contains
both a touch down point and a take off point for v(£). The position of the base-points
can be computed explicitly; see [10, 7].

2.3 Basic tools to further describe the structure of the phase space

In the present subsection we introduce some basic tools that will be applied in the rest of
the paper. These tools will be used to construct further heteroclinic or homoclinic orbits
with more than one jumps through the fast field. These orbits will be referred to as higher
order connections.

Since the unperturbed flow contains families of periodic orbits inside Hy U H_, a
Poincaré return map for the part of the perturbed flow inside an O(g) neighbourhood of
Hy4 UH_ can be defined, as we in essence already sketched in §2.2. The planes X are
both candidates for the Poincaré cross section to the flow.

We concentrate on ¥, and define the Poincaré return map Py : X1 — X4 as

(2.7)  Pi(E,p,q)=(E+ AE(E,p,q),p+ AP(E,p,q), g+ AQ(E, p,q)).

Note that points on ¥ are defined by their coordinates (F, p, ¢), where F, p and ¢ are the
integrals of (1.7). Since the map is only defined in an O(g) neighbourhood of the region
inside #4 UH_, E must satisfy £ € (0,1 f(p)+0O(e)). The difference AP is a combination
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of the contributions APy and AP,. The same applies to AQ). Repeated applications of Py,
P;' to Q(M_) and Q™' (M) will yield further intersections of W"(M_) and W*(M4)
with 34, and give information about the structure of W"(M_) and W*(M) and about
possible intersections W"(M_) N W3(M,). We define and use the map P_ : ¥_ — ¥_
in the same way.

These Poincaré maps will only be useful to construct orbits that take off from M_,
pass X4, make several circuits through the fast field back to X4, and finally touch down
on M (or take off from M, and touch down on M_). To investigate homoclinic orbits,
that take off from and touch down on one and the same slow manifold, we also need
to map from X4 to X_ or vice versa. Therefore we introduce the ‘half’ Poincaré maps
Q. ¥, »¥_and Q_ : ¥_ — ¥, such that @_0Q, =Py and @, 0 Q_ =P_. We
also define for n > 1:

QM (M) = (Q-004)"0Q(M-) C Xy,

Q¥ (M) = Q;0(0-00,)" " 0Q(M-) C T,
Q7Y (My) = (97'0QIN0QT (My) C Xy,
Q77(My) = 9I'0(Q7'0 Q") o™ (My) C XL

Qm™(M4) and Q7™ (M_) are defined similarly.

The following lemmas and corollary describe how P4 acts on points at a distance d,
d = O(e), from Q~1(My), and how P} acts on points at a distance d from Q(M_).
They will be used to describe W"5(My) globally by further intersections with .

Lemma 2.3 is a general lemma, from which we derive Corollary 2.4. We refer to
[11, 15, 8] for proofs. It describes orbits that start at ¥, pass through a neighbourhood
of M4 and finally arrive at ¥_.

Lemma 2.3 Consider a system

ot = folu,v,w)+efi(u,v,w),
(2.8) v = go(u,v,w)+egr(u,v,w,)
w = ehy(u,v,w),

where = = %, the variables u and v are scalars and w is allowed to be a vector quan-

tity. Assume that the ¢ = 0 system possesses a compact, normally hyperbolic, invariant
slow manifold 'y with stable and unstable manifolds W*(I'g) and W"(I'g). Define local
manifolds W _(I'o) = W3(T'g) N B and W2.(I'o) = W"(I'o) N B where B is a compact
neighbourhood of I'y. Put 0 < e < 1.

Then there is a normally hyperbolic slow manifold I': with local stable and unstable
manifolds W§ _(I'.) and W2_.(I'z) O(e) close to the local stable and unstable manifolds of
['o. Moreover, if d(qo, WS .(I'z)) = d = O(e) for a point qo = (u(0),v(0),w(0)) in B then
the orbit v.(t) with v.(0) = qo passes Iz and leaves B at some t =T such that the estimate
d(:(T),Wp.(L.)) = O(d) holds. Similarly, for the reversed flow, if d(qo, W.(I's)) =
d then the orbit v.(t) with v.(0) = qo passes I'. and leaves B at time t = —T with
d(32(=T), Wi (1)) = O(d).

Here d(.,.) is the standard distance function. For solutions with £ < § f(p) + O(e) spend
only O(1) time outside the neighbourhoods of M4, this lemma immediately implies for
system (1.7):

11



Corollary 2.4 Assume d = O(g). If d(zo,Q~'(My)) = d for a point zg = (u,v,p,q)
with E(z¢) < ¥ +O(e), then d(Q4(z0), Q(./\/l )) = O(d). Similarly, if d(zo,Q(My)) =d
for a point zo = (u, v, p, q) with E(z¢) < X+ O0(e), then d(QF' (z0), Q™ (M4)) = O(d).

Of course, Q_ acts analogously.

The neighbourhood B is determined by the Fenichel normal form for the system and
can be chosen to be a box in the fast Fenichel coordinates (a and b, see (2.9)), say B =
{(a,b,w)|0 < a <A,0<b< A} where 1 > A > e > 0is a constant independent of ¢,
chosen such that the fast flow in (2.8) is O(1) with respect to A. This normal form is used
to study the behaviour inside B (see for instance [15]). We here derive the Fenichel normal
form for equation (2.8). The eigenvalues in the fast directions (so O(1) with respect to
¢) for the linearization about a point (u,v,w) € I'. are Ay with Ay > 0 and A_ < 0
since I’z is normally hyperbolic. According to Fenichel [11] C" coordinate transformations
exist, such that locally (within B) the stable and unstable manifolds correspond to the
coordinate axes in the stable and unstable directions and (2.8) can be rewritten as

@ = Ara+ F(a,b,w,e)a,
(2.9) b=A_b+ G(a,b,w,e)b,
w=c¢cH(a,b,w,e).

within B. Clearly {¢ = 0} and {b = 0} are the local invariant manifolds. The functions
F and G contain linear and higher order terms in « and b, as well as O(¢) terms. H is an
equivalent of hy.

Lemma 2.3 immediately yields estimates on the time of flight and the change in w
within the box B. They are given in the next lemma (see also [8]).

Lemma 2.5 For a solution entering B at t = ty, with bjy = A, a;y, = d with |logd| < %
the time of flight T between entrance in and exit at t = tyy from B is

= O(|logd]);
during this time T the w coordinate of the solution changes with an amount
Aw = O(e|logd|).

Corollary 2.4 does not suffice to describe an orbit that enters a neighbourhood of one of the
manifolds M4 exponentially close to a stable manifold W$(My). In the neighbourhood
of a given trajectory in M4 (that is not a fixed point or an entire periodic orbit) the slow
flow on M4 can be rectified by coordinate changes (p, ¢) — (r, s) such that orbits on M4
are (locally) determined by 7 = ¢R and $ = 0. If moreover the foliations of the stable
and unstable manifolds, parameterized by points on the slow manifolds, are straightened,
the equations on the stable and unstable manifolds are determined by those on the slow
manifold. In other words, the flow on W"*(M4) then also satisfies # = ¢R and § = 0.
See for instance [17, 16]. For system (1.7) this locally transforms the normal form (2.9) in
the neighbourhoods B4 of M4 to

i = \pa+ Fla,b,r s ¢)a,
b=X_b+G(a,b,r s e)b,
r=e(R+ Hy(a,b,r, s, e)ab),
$=¢cHy(a,b,r, s,c)ab.
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By [16] orbits that enter By at s = s,,7 = ro O(e™=) C'-close to W5(My) for some

constant &, leave By after O(1) time O(e™<) C'-close to W" (M) and to {s = so}. The
r coordinate may change with an O(1) amount. We formulate this as

K
€

Lemma 2.6 Solutions to (1.7) that enter By O(e™ <) C'-close to W*(My) with (p,q) =
(po, qo) stay O(e“g) close to the orbit through (£1,0, po, qo) in My for an O(1) distance,
and leave B+ O(e™%) C'-close to W (My).

3 Global geometry, a ‘trivial’ example

In this section we analyse one of the simplest models of the form (1.1) with F as in (1.4)
to illustrate our theory. It has a perturbation GG that is quadratic in P and is reminiscent
of the perturbation in the g-equation of the systems studied in [8, 13]. The reaction term
K in the equation for P is constant. We will conclude that the simplest choice K = 1
already leads to very complicated behaviour. The system of our concern is

Uy = Upp— US4 U —cUp(P*+a),

3.1 .
( ) Pt - an:_‘sza

leading to the ODE

ug = v,
_ 3 _ . 2 _
(3.2) ve = u u+ev(p+a—c),
pPe = £&4q,
g = e(l-cq).

Note, that we chose v = 0 in (1.1) and that a choice v > 0 would have lead to a higher
order term in the ¢ equation. The slow flow in this system is completely decoupled and
is always given by

pe = ¢,
3.3
(3-3) @ = e(l-cq).

This means in particular, that the flows on the manifolds M, are identical, and that the
Z—g = 1-ch' Another consequence is, that for ¢ # 0 the
hyperplane {¢ = 1} is invariant under the flow.

Filling in the choices for f, g and k in (2.4) and straightforward integration give the

orbits in My are determined by

Melnikov functions

AW<(0,po; qo; ) = 2V2(pg +a — o).
The system (3.2) possesses the symmetry
3.4)  {u— —u,v— —v}

as discussed in Remark 2.1, so AW, = AW_, and thus Q4 and Q_ are similar. More
precisely,

(35) Q_=1;'0Q40l_,

13



where I4 are ‘identity’ maps
(36) I- :E—_>2+7 [-I-:E-I-_)E—: [;t((),”,p,Q):(07_7)7P,Q)-

To find a complete global structure we need to apply both @, and Q_ since multi-jump
orbits cross both ¥, and ¥_ and make full circuits through the fast field. The above
identity however enables us to restrict our investigations to one of them.

AW+ (0, po, qo; ¢) = 0 for py = &+/c —a (c—a > 0), which implies that for ¢ > 0, small
enough, and ¢ — a > 0 the manifolds W"(M_) and W3(M), respectively W" (M)
and WS(M_), intersect in a 2-dimensional, transverse way, O(e) close to the hyper-
planes {po = £+/c —a}. These intersections correspond to families of heteroclinic or-
bits vE(¢ : ¢) and FF(&;¢) that make a jump through the fast field near one of the
intersection planes. These families are parameterized by ¢. See Figure 1. In the orig-
inal PDE context each heteroclinic orbit corresponds to a front that connects U = —1
with U = 41 and travels with a speed ¢; see Figure 7 in section 5. We define or-
bits 7%(5;(1) and ﬁ(g,q) where 72:(0;(]) € Xy, ’yhi(O;q) € Y_. The former orbits
satisfy limg_yoo d(vE(&q), My) = 0, limey_oo d(vE(€;9), M) = 0, the latter satisfy
limg_yeo d(’yf(f;q),./\/l_) =0, limey_ oo d(’y}f(f;q),./\/u) = 0. The indices & in the no-
tation denote whether an orbit jumps with positive or negative v, the parameter ¢ relates
an orbit to the g-coordinate of its take off base-point in M4, as described in §2.2. The base
points can be parameterized by only their ¢-coordinates since they correspond to Fenichel

fibers in WY (M) that lie in the transverse intersection of W (M) and WS(My).

Remark 3.1 Since My are not compact, one has to be careful with these limits. The
perturbations in (3.2) are quadratic in p and linear ¢, so they are no longer singular
perturbations for p or ¢ large (O(ﬁ) or O(1) respectively), and My thus cannot be
interpreted as a slow manifold for large p, g. Also, Fenichel theory can only be applied for
compact manifolds. However, compact submanifolds of My may be considered instead.

See the discussion in section 6.

Let p*(q) = £v/¢ — a+0(¢) denote the exact p values for which Q (M) and Q=" (M)
intersect, parameterized by ¢. For general GG in (1.6) that depends on both P and P;, or
for f(P) # const. the parameterization by ¢ would have a leading order effect, but here
it only appears in the O(g) terms. For ¢ —a = 0 and arbitrary ¢, AWy have a double zero
p = 0, which implies by AW.(0,0,¢;¢c) = g—p AWL(0,0,q;¢)=0, % AWL(0,0,q;¢) #0,
% A Wi(0,0,q;¢) # 0, that for each a, ¢ fixed a unique value ¢ = ¢*(a,q) = a + é(q)
with é(¢) = O(e) exists for which the restricted manifolds W"(M_)|, and W5(My)|,,
resp. W"(My)|, and W3(M_)|,, have quadratic contact in a hyperplane with constant
q. When ¢ < ¢*(a, q) for all ¢, the stable and unstable manifolds do not intersect; when
¢ > c*(a,q) for all ¢, both Q(M_) and Q=1 (M), and Q(M,) and Q=1 (M_), intersect
each other in two curves. In other words, for a fixed ¢*(a,q) is the speed for which a
heteroclinic bifurcation takes place in a fixed hyperplane with constant gq.

By construction, |v?| < |vE| in ¥4 when AWL(0,p,q;c) < 0, respectively [vl| > |vg]
when W4 (0,p,q;¢) > 0. Thus the structure of Q(M_) and Q~1(M,) in X, is as in
Figure 1 with k2 = c—a=0O(1) > 0 and a = 2V/2.
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3.1 The Poincaré maps

We approximate the Poincaré map Py to investigate the flow inside the parts of W"5(My)
that are O(e) close to H4 U H_. A solution with initial data (Fy, po,go) on X4 returns
to Xy after a ‘time’ T.(Fo,po,qo). The quantities AFE(Fy, po,qo), AP(Fo,po, ) and
AQ(Fo, po, qo) measure the accumulated change in the variables F, p and ¢ within this
time interval. Thus,

AE(E(),])(),(]()) - f(;TE E(usvvavpqua)dé.:gfoj‘s U?(P§+a—c)df7
AP(E&pOaQO) = foTE p(usavsapsa%)dsz‘sfo; Q.sdga
AQ(E07P0790) - foEQ(Uayvaapa7QE)d£:5foe Ug(l _an)d£7

where (u., v, pe, g-) is the solution of (3.2) with the above initial data. We derive an
expression for /AR approximating (e(€), ve(€), pe(6), 22(6)) by (o(€), vlE), poy o), the
solution of the fast reduced limit problem (i.e. £ = 0 in (3.2)) with the same initial data.
This yields

T()(Eo)
AE(Eg, po, o) = ¢ / VR(p3 + a4 — )d€ + O(=2),

where To(Fp) is the period of the unperturbed periodic solution with F' = Ej. Unlike the
general case, I/ does not depend on pg in system (3.2).
A change of variables, using (2.1), gives

Up

NE(Fo, po, @) = 25/ (pe+a— c)\/%u‘1 —u? 4+ 2Eydu + O(e?),

Um

where u,, and wu, are the intersection points of the orbit corresponding to Fy with {v =
0,u <0} and {v =0,u > 0} respectively. Analogously, one derives

AP(Fo, po,q0) = du + O(e?),

28/” 9o
U \/%u‘l—u?—}—QEo

Up 1 _
AQ(Fo, po, qo) = 28/ \/1 o du + O(e?).

4—u2+2E0

To obtain more convenient expressions for these integrals we define

i
f du,
,/%u‘l —u?+2F
(3.8)  Si(E) = fui\/%u“ —u? 4 2F du,

where the integration is over a contour in the complex plane C that contains the interval

(3.7)  Ti(E) =

[, up]. In general these expressions depend on f(p) as in the Appendix, but here f(p) =
1. We also introduce

1— 2
s du.
,/%u4—u2+2E
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The integrand of this expression becomes zero when u — +00, so the limit lim g1 Ty(E)
4
near the saddles in the £ = 0 system is bounded, while limp.1 T5(E) diverges. This
4

bounded expression enables us to find an asymptotic formula for Ty(£) in the neighbour-
hood of K = %, which corresponds to the neighbourhood of the unperturbed heteroclinic
manifolds 74 and the slow manifolds M4 (see the Appendix). With these notations we
end up with

(3.9)  AB(E,pq) = e(p’+a—c)So(E)+O(?),
(3.10) AP(E,p,q) = eqlo(E)+O0(?),
(3.11)  AQ(E,p,q) = (1 -cq)To(E)+O0(7).

These expressions provide us with approximations for the Poincaré maps Py (2.7) and P_
near Hy and H_.

From these approximations it is immediately clear that periodic orbits do not exist in
(3.2), since Ty(F) # 0 and hence AP = AQ = 0 is not possible.

3.2 Existence of n-jump homoclinic or heteroclinic orbits

We investigate the global geometry of the manifolds W"*(My4) in (3.2). The geometry in
the invariant hyperplane {p = %} (¢ # 0) will be useful to illustrate the geometry of the
full system.

It is immediately clear that AP > 0 for ¢ > 0, and AP < 0 for ¢ < 0. If ¢ =0, then
AQ>0always;ifc>0,thenAQ<0forq>%andAQ>0forq< lj;ifc<0,then
AQ < 0for g< Land AQ >0 for g > L.

Throughout the remainder of this section we assume ¢ > 0 without any restriction.
The properties we prove have straightforward analogues for ¢ < 0. The map Q4 is only
well defined for points on (M _) on orbits that will reach ¥_ in forward ‘time’ £. These
are exactly the points that lie inside @~ (My). If ¢ < a there is no part of Q(M_) inside
Q~'(My) and no higher order intersections can exist. Therefore we choose ¢ > a and
c—a = O(1). We are interested in the flow in the neighbourhood of the region {p* < ¢—a},
and consider only p, ¢ = O(1) with respect to €.

The orbits in {¢ = 1} form a three-dimensional sub-system by the invariance of that
hyperplane. To study this sub-system we consider a fixed speed ¢ > 0 and vary a. We
define

Iy déf{q: ]E,u::I:],UZO} C My
and call their stable and unstable manifolds W#(I'y) and W"(I'y) respectively, to obtain
a system similar to the one studied in [8, 13]. Instead of one, as in [8, 13], there are two
slow manifolds here, but both contain an upward flow (p > 0) which makes them similar
to the slow manifold in [8, 13]. We define restricted Poincaré sections o = X3 N{g =1}
and restrict the maps Q, and Q_ to these planes. Moreover we define the intersection
Wu('2) not by Q(I'-), etc. Note that the Melnikov function gives intersection points
W(Lo)NWe(L4) in ot and W (L3) NWS(I'2) in 0=, O(e) close to e N{p = +/c — a}
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if ¢ —a > 0. Recall that p*(1) = £\/c—=a + O(e) are defined as the exact p-coordinates

of the intersections in {¢ = 1}.

Theorem 3.2 Consider (3.2). Forc >0, c—a=0(1) > 0, and all n = O(|loge|) four
n-jump homoclinic or heteroclinic solutions of the following type exist in {q = %}

two solutions v} (&L, n), i = 1,2, with lime_,_oo d(v},(£), M_) = 0,

two solutions ¥} (&; £, n), 1= 1,2, with limg__o d(5};(£), M4) = 0.

For n odd, the solutions are heteroclinic orbits between My and M_ or vice versa, for n
even they are homoclinic to My or M_. One of each pair v; (&; 1, n) or 7} (&; £, n) makes
all its jumps near p = ++/c — a, the other makes one jump near p = —+/c— a and the
next n — 1 jumps near p = ++/c — a.

Remark 3.3 Without proof we state that Theorem 3.2 is also valid for ¢ < 0, with the

remark that the n and n — 1 jumps take place near p = —v/c — @ now, while the first jump
of the second orbit is near p = ++/c — a.

Remark 3.4 The symmetry (3.4) allows us to construct from each orbit 74 its symmet-
rical counterpart 5, so an existence proof for only the solutions v, suffices.

We first analyse the structures of W"*(I'y+) and then use the obtained information to
prove Theorem 3.2. Throughout we use the notation p* = pi(%).

Applying Q4 to points on Q(I'_) in its domain, and using Corollary 2.4 and Lemma 2.6,
one finds a curve Q4 (Q(I'=)) = Q?*(I'~) as follows. The largest part of Q(I'~) inside
Q™' (I'4) lies O(g) away from Q~'(I'y), i.e. d(zg,Q@7"(M4)) = O(e) where d(.,.) is the
standard Euclidean distance. Points z here are mapped inside and O(¢) away from Q (')
by Corollary 2.4. This corresponds to an O(e) change in E. The change in p induced by
this mapping can be deduced from (3.10), (A.16) in the Appendix and Lemma 2.5: it is
O(ellogel) as long as ¢ = 1 = O(1) and E— ;f(p) = F — 1 = O(¢) but not exponentially
small. In other words, as long as d(zo, Q™' (M4)) = O(e) for zo = (0, vo, po, L) € Q(I'-)
inside Q71(I';), its image Q4 (o) € o has coordinates (0, —vo, po+O(|e loge]), ). How-
ever, Lemma 2.6 implies that points on Q(I'~), inside @~'(I'y) but exponentially close
to one of the intersection points at p = p*, are carried along I'y for O(1) time and O(1)
distance. Hence their orbits are stretched upwards along '} and their images under Q
lie O(1) higher with respect to p (pl,=1/. = £ > 0) and exponentially close to Q(I'y).
Combining the conclusions for these different sets of points on Q(I'_) and appealing to
continuity, we find that Q%(I'_) is a tongue in o_ as in Figure 2(a).

Applying Q~! to points on Q7'(I'y) yields two distinct curves QZH(Q™1(y)) =
Q7 %(I'y) by the following arguments. To find the structure of @=2(I';), we first divide
Q~Y(I'y) into three parts: the part with p > p*, which lies inside Q(I'_), the part with
p < p~ (inside Q(I'~) as well), and the part with p~ < p < p*, which has no preimage
under M. When applying Q_ on the former two parts, we need to consider the back-
ward time direction. Since p = £ > 0, the p-coordinate will always decrease now. Points
with p > p*, or p < p~, inside and O(g) close to Q(I'_) have preimages with about the
same (up to O(|elogel|)) p-coordinate, O(e) close to Q="' ('), by Corollary 2.4. Again
orbits through points exponentially close to the intersection points W"(I'_) N WS(I'y) are
stretched (downwards this time) along I'_, and preimages of these points lie exponentially

17



(b)

Figure 2: (a) The Poincaré section o. The solid curves are intersections W"(I'_) N

ot, the dashed curves are intersections W5(I'y) N o, and dotted curves represent both
W'(I'y) Not and W5(I'~) Nnot. (b) The Poincaré section o~. The solid curves again
represent W"(I'_), the dashed curves represent W*(I';) N o™, and dotted curves are in

W(l4)No~ or WS(I'2)No™.

close to @'(I'~) and O(1) lower with respect to p. By combining the information for
points O(g) away from and points exponentially close to @~(I'_), we find a difference
between the upper and the lower part of @~!(I'_): the preimages of the upper part form
a branch @7%(I';) extending from p = 400 (O(g) close to @' (I'~)) to p = —c0 (expo-
nentially close to @~1(I'=)), while the preimages of the lower part form a tongue Q~%(I'y)
with two ends that extend to p = —oo. This is illustrated by Figure 2(b).

Now applying Q_ to Q*('_) we find a tongue Q3(I'_) C &% that is an O(e) shift
of @*(I'~) mapped onto ;. The preimage of Q~%(I';) consists of three disjoint parts
Q7 3(l4) in o, Both @*(I'~) and Q~3(I'y) are indicated in Figure 2(a).

This procedure can be repeated to obtain further intersections of W"(I'_) and W*(I';)
with o7 and 0~. Analogously (pre)images of the curves Q(I';) and Q~!(I'~), clarifying the
structure of WY(I'y) and W3(I'_), can be found. By the identities (3.5), (3.6) Q*(I'y) =
1_(Q™(L'2)) for n even, Q™(I'y) = I4(Q™(L'2)) for n odd, and Q=™ (I'_) = 17 (Q™™(I'4))
for m even, Q=™ (I'_) = IZ1(Q~™(I'})) for m odd.

It is shown in [8] that the procedure can be continued to obtain curves Q*"(I'y) for
all n = O(]logel); the same can be proved here.

Figure 2 shows part of the structure we described above. All tongues Q"(['y) C o™
(and Q"(I'y) C o7) are disjoint, and so are the tongues and branches Q=" (['z) C o7
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(and @™ (I'y) C o7), since (un)stable manifolds cannot self-intersect. The Q" (I'y)
curves are just single tongues, but each Q=" (I'y) consists of m distinct curves. One of
these is a branch ‘paralleling’ @~'(I'y.), the one closest to the {u = v = 0}-axis is the root
tongue of Q=" (I'y), and the others are all parts of halos surrounding the root tongues
Q7F(y) cWe(l'y) for 1 < k < m odd and Q=F(I'_) ¢ W5(I'_) for 1 < k < m even.

The different tongues in W"(I'y) are ordered with increasing n, and tongues Q" (')
and Q"*!(I'y) alternate. This is indicated by alternating solid and dotted tongues in
the figure. The root tongues in WS(I'y) are ordered and alternate in the same way.
The tongues in the halos of Q=" (I'y) also alternate, in the sense that there is a tongue
Q~'~1(I'~) around each tongue Q~!(I';) or vice versa.

Note that the flow in p direction is always upwards for forward time, so the slow and the
fast fields cooperate; see our discussion in §2.2. This implies that the ‘tip’ of the forward
image of a tongue will have larger p-coordinate than the tip of the tongue itself, and that
the tongues Q" (I'y+) cannot intersect the tongues @~ (I'x+). Thus the only intersection
points Q" (I'y) NQ~™(I'y) are the ones we already found: branches Q=™ (I'ym) intersect
Q(I'+) near p=p~ and p = pT, and tongues Q" (I'1) intersect branches Q=™ (I'y)r p = p*.

Whether the behaviour is cooperating or counteracting can only be measured by the
p-direction here, since the flow is three-dimensional in this case.

Remark 3.5 The structures of W"(I'y)Not, W5(I'y) No™ are very similar to the struc-
tures of the stable and unstable manifolds in the Poincaré section in [8], where homoclinic
connections to one slow manifold are considered.

Proof of Theorem 3.2. An n-jump orbit is, by construction, homoclinic to either '}
or I'_ for n even, and heteroclinic for n odd. For n odd, the orbits must either cross ¢~
in Q(Ly)NQ™"(I'~) or cross ot in Q(I'=)NQ~"([4).

By the above arguments we know that both intersections consist of exactly two points,
one near p = pt and the other near p = p~. Thus there are four n-jump heteroclinic
orbits for each odd n. The application of Q4 to ot or Q_ to o~ shows that all points are
mapped to corresponding intersections Qk(Fi) N Q_Z(F:F) with n =k + [ — 1 that all lie
in the neighbourhood of p = pT. Hence the result is proved for n odd. The case n even
follows analogously. |

In Figure 3 two 3-jump orbits are sketched. They pass 0%, 0= and o% respectively
through points Q(I-) N Q™3 (y), Q*(I-) NQ~*(I'+) and Q*(I'=) NQ~H(I4).

We have already defined the primary bifurcation value ¢*(a, ¢) = a+é(q) Since we con-
sider the fixed hyperplane {¢ = %} here, it is more convenient so view @ as the bifurcation
parameter that depends on ¢, and use a*(¢) rather than ¢*(a) for the primary bifurcation
near ¢ — a = 0. (The ¢ we chose also determines the parameter ¢ = 1 in ¢*(a,q).) As a
increases from a*(c), the new multiple-jump homoclinic and heteroclinic orbits are created
in a sequence of secondary bifurcations ) depending on c.

Property 3.6 For fized ¢ # 0 the bifurcation values a(c) satisfy:

1. For a* there is exactly one heteroclinic orbit from I'_ to I'y and one from 'y to
I_. Fora < a*, WH('y)NWS(I'y) = 0, and for a > a* there are two one-jump
heteroclinic orbits in both directions.
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Figure 3: (a) One 3-jump orbit in W"(I'_) N WS(I'y), connecting I'_ with T'y. The
corresponding intersections p;, i = 1,2, 3, with 67 and ¢~ are also indicated in Figure 2.
(b) The second 3-jump orbit in W"(I'_) N W*5(I'y).

2. For each c fized there exists a sequence of values ay, with ayy > ay, forn > 1 and
a3 > a*, at which a pair of n-jump orbits asymptotic to I'_ for & — —oo and a pair
asymptotic to 'y for £ — —oo are created in a saddle-node bifurcation.

For n odd, two pairs of intersection points Q™" (I'y) N Q(I'y) exist for a > a,
while they do not exist for a < a),. These intersections correspond to heteroclinic
connections 'z — I'y.

For n even, there are two intersections Q=" (I'_)NQ(I'~) and two intersection points
Q™ "(I'y)NQ(y) for a > af, that do not exist for a < a}. These intersections
correspond to homoclinic orbits connecting I'1 to themselves.

3. Forn = 0(1), a}, —a} = O(c*(loge)?), and the bifurcations satisfy the iterative
process ay . = ay, + O(ay) for all n.

We neither prove these properties here, nor explain the bifurcation mechanisms. A com-
plete description of these mechanisms is given in section 4 of [8], and the proof of Prop-
erty 3.6 follows immediately from the proofs there.

Remark 3.7 The symmetry (3.4) transforms the set {W"(I'y) U Ws(I'y) U W*(I'_) U
We(T2)}not into {WH(T)UWS(To)UW™(T4)UWS(Ty)}No~. When this symmetry
is broken, the Melnikov functions that measure the splitting in respectively ¥_ and X,
are no longer identical. This means for instance that for certain values of @, ¢ heteroclinic
connections I'_ — 'y can exist while there are no 'y — I'_ connections, or vice versa.
Likewise, the higher order connections are not created in exactly the same bifurcations.

The symmetry is not essential for finding all homoclinic and heteroclinic orbits in this
system however, but more bookkeeping is needed when it is broken.

We now consider the full system again. Define O'q—i df »# n {¢ = @} and consider
an arbitrary plane O'(;—I- with ¢ > 0, § # % By the Melnikov calculations Q(M_-) and
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Q~'(My) intersect o} in curves that intersect each other at p = p*(g). We define these
curves as Q(M_)z and Q7' (My)g. Curves Q(My); and Q' (M_); in o7 are defined
similarly.

To study the action of Q4 on Q(M_)4, we can apply Corollary 2.4 and Lemma 2.6
as in the three-dimensional sub-system, however, AQ # 0 now. AQ(p,q, £) = O(e) as
long as § = O(1), AE(p, g, E) differs only O(£?) from AFE(p, %, F),and AP(p,q, F) differs
O(e) from and has the same sign as AP(p, 1, E); see (3.9), (3.10) and (3.11), and recall
that we took ¢,q > 0. We apply this to prove the following theorem:

Theorem 3.8 forc > 0, c—a = O(l) > 0, and arbitrary n, there exist two families
V(&5 q,n), 1= 1,2, with limg, o d(74(§), M=) = 0 and two families %} (5 ¢,n), i = 1,2,
with limg__ oo d(7}(§), M4) = 0, of n-jump homoclinic or heteroclinic orbits as solutions
of (3.2). All families are parameterized by q.

We prove the theorem for ¢ > 0 here, the proof for ¢ < 0 will follow in § 3.3.

Proof. Take ¢ > 0,c—a = O(1) > 0, so that the structure of @*!(My) is as in Figure 1.
Consider Q(M_); with § > 0. We divide the curve Q(M_); into three parts again (two
pieces exponentially close to @~1(M), and one O(g) away from Q~1(My)), and apply
Q4 repeatedly.

The images of points z on Q(M_); with d(z,Q~'(M4)) = O(e) form a curve O(e)
close to QQ(My)g, which does not lie in o, but O(e) close to this plane (since AQ =
O(g) # 0). Q4 works on points z € Q(M_); exponentially close to @~!(M}) like it does
on similar points in Q(I'_): the orbits through these points z come exponentially close to
M, where plp, = O(e) > 0 stretches the orbits O(1) upwards with respect to p, and
the images Q4 (z) lie exponentially close to Q(M4). But now, since AQ = O(e) # 0, the
g-coordinate may also change with an O(1) amount. On M all orbits are asymptotic to
q= % as £ = oo by (3.3), so orbits that follow M, for O(%) time tend to ¢ = % before
they leave My again. Hence the images of points on Q(M_)4, exponentially close to
p = p*t, form a curve that lies exponentially close to @ (M), and is asymptotic to Q(L'4).
The points on Q(M_);, exponentially close to p = p~, form a similar curve. When we
connect these curves to the part O(e) close to Q(My )z, we obtain a continuous curve
Q4 (Q(M_)g). Its projection onto o7 (or every other plane o) is a tongue like Q*(I'_),
and the collection of all curves QL (Q(M_);z), § > 0, forms a two-dimensional ‘gully’
Q*(M_) in X_. Since both ends of this gully extend to p = +oo, it intersects @~ (M_)
in two curves close to p = pT. this establishes the existence of the two one-parameter
families of 2-jump orbits homoclinic to M_.

The next image, @°(M_), can thus be found combining information about points
exponentially close to these intersections (Lemma 2.6) and about points O(g) away from
Q™1 (M) (Corollary 2.4). It turns out to be a two-dimensional gully in ¥4, that is an
O(e) shift of Q?(M_) mapped onto ¥, with ends that lie exponentially close to Q(M_)
and are asymptotic to Q(I'-).

Repeating these arguments, we find a collection of two-dimensional gullies Q™ (M_)
that lie in ¥4 for n odd, in ¥_ for n even. Each of them intersects either @~'(My)
or @ '(M_) in two curves near p = pT. These intersection curves represent families of
n-jump homoclinic or heteroclinic orbits, parameterized by the base-points ¢, where ¢ > 0.
They connect M_ with itself (n even) or My (n odd). Symmetric counterparts Q™ (M)
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and corresponding families of n-jump orbits are found by applying I or I_ to Q" (M_).
This completes the proof for ¢ > 0. a

Note, that we proved the existence by only determining the structure of W"(My)
and intersections @~'(My) NQ"(My). For 0 < k < n the (n — k)th jump of each orbit
whose existence we proved crosses Y4 or ¥_ in a point in Q" *(My)NQ~'"F(My). If
we also know the global structure of W9(My), or in other words all preimages Q=" (M4)
of @1 (M), we can locate all these intersections and the corresponding jumps, as we did
in Theorem 3.2 for the sub-system. We will not go into the details of this structure, but
it can be found by arguments similar to those in the present and the next sections.

The main reason why the arguments used to find W"(I'y) also apply to W"(M4)|s>0
is that p has a definite sign that does not change along orbits in this region (in forward
time). For this reason it is clear, that each section Q~!(My4); only contains orbits that
travel upwards with respect to p, which basically gives the gully-structure. However, the
sign of p changes along forward orbits with initial points in ¢ < 0. This is the reason that
we did not address ¢ < 0 in the proof of Theorem 3.2 yet. In the next section we address
the effects of a changing p (or ¢) sign along orbits, corresponding to certain counteracting
effects.

Remark 3.9 Not only the structure of the full two-dimensional gullies Q" (M) in ¢ > 0
(and of Q=™ (My) in ¢ > 1 — we did not show this) is reminiscent of the structure of
Q" (I'y) and Q7™ (I'y), but also the bifurcation mechanism by which they are created is
similar to the mechanism in the three-dimensional sub-system.

This means, that the fourth dimension does not cause significant new behaviour in this
region, but merely forms an extension of the three-dimensional problem: the phase space

for ¢ > % is isomorphic to the product of the phase space restricted to {¢ = %} and R4/,

In the next subsection and in section 4 we will encounter more complicated behaviour,
caused by significant influence of the fourth dimension on the global structure.

3.3 Influence of the fourth dimension: counteracting effects

As mentioned above, we did not consider orbits with initial conditions (and base points)
+

in sections o with ¢ < 0 so far, because the sign of p changes (in forward time) on
such orbits. As long as d(zo,Q~"(My4)) = O(e) for a point zo = (0, vo, po, g0) € Q(M_-)
inside Q~1(My), its image Q. (z¢) has coordinates (uy, vy, p1,q1) = (0, —vo + O(€), po +
O(e|logel), o + Ol(ellogel)) by (3.10), (3.11), (A.16) in the Appendix and Lemma 2.5.
Whether g9 > 0 or ¢o < 0 does not make a significant difference here, although it does
determine whether ¢; > ¢qg, p1 > po, or vice versa. If zy lies exponentially close to
Q™" (My) however, Lemma 2.6 imposes that the forward orbit through z¢ will follow M4
for an O(1) distance. If in this case gy > 0, then the p-coordinate will always increase
with an O(1) amount, which we exploited in the previous subsection. If ¢y < 0, then
the p-coordinate will decrease as long as ¢ stays negative, but might increase afterwards,
depending on the time the orbit spends exponentially close to My and on the orbit in

My it follows. In Figure 4(a) we schematically show some orbits with different initial
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Figure 4: b=0,¢ >0, c—a=0(1) > 0. (a) Passage exponentially close to M of orbits
through Q(M_); with ¢ < ¢1 < ¢;. The value ¢ = ¢ + O(¢) and the corresponding
orbit v,(§) are indicated. (b) The image curve Q4 (Q(M_)z in X_.

points 29 € Q(M_) exponentially close to @~'(My) (and thus to p = p*(q)) and
go = ¢1 < 0. They exhibit different types of qualitative behaviour. Since the points zg lie in
Q(M_) C W"(M_) and are exponentially close to @~'(M.), the orbits are exponentially
close to WS(My) N W"(M_) and enter the neighbourhood of M4 exponentially close to

pT (@) or p~(q1).

To prove existence of rich classes of n-jump homoclinic or heteroclinic orbits, we in-
troduce the boundary value ¢, < 0 as follows. Let ¢ > 0, ¢ —a > 0, and let ;(§) be
the (boundary) orbit in M4 with ~4(0) = (1,0,p™,0). Then there exists a value = < 0
such that v,(Z) = (1,0,p%, ¢(Z)). We define ¢, = ¢(Z) < 0. Note, that this value can be
defined for all ¢ — a > 0, and that it satisfies

1
(3.12)  —q — - log(1 — eqp) = 2¢v/c—a

by the slow flow (3.3). A similar value g can be defined on M_. Since the flows on My
and M_ are equal for (3.2), g5 = ¢. The value ¢; and the corresponding orbit ~;(£) are
indicated in Figure 4(a).

Theorem 3.10 Consider (3.2) with ¢ > 0, c —a = O(1) > 0 and n > 1. There exist
bifurcation values gy = 04+ O(e) and ¢ = g+ O(e), such that for all ¢ < q < gq; there are
2n families v} (& q,n) with lime__o d(v5(§), M2) =0, and 2n families 7} (§; ¢, n), satis-
fying limg_,_ o d(7:(€), My) = 0, of n-jump homoclinic or heteroclinic orbits. Moreover,
for q < qf there exist 4n — 2 families v} (£; ¢, n) and 4n — 2 families 7} (&; q,n) with the
same properties. For ¢ > ¢ only two such families vi(&; q,n) and %% (€5 q,n) exist. The
index 1 in the notation numbers the different families.

The families with ¢ < 0 mentioned in Theorem 3.8 are precisely the two families in
Theorem 3.10 that exist for all g. We first investigate the images of curves QQ(M_); with
¢ < 0 and then prove Theorem 3.10.
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Figure 5: (a) Images Q4 (Q(M_);) for § = qm 9, projected onto a plane o C X_.
Q(My), = I4(QM_),) and Q=1 (M), “HQTN(My),) are drawn to clarify the

picture. (b) Images Q4 (Q(M_)7), pr OJected onto Q(My) C X for §= Go,12
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Consider the curve Q(M_); in a section o with ¢ < 0. Following the above reasoning
for ¢ > 0 we find that Q4 maps the part of Q(M_); that is O(c) away from Q' (M)
to a curve inside and O(g) away from Q(M4). Points z; € Q(M_); exponentially close
to @71 (M) lie on orbits that follow the flow on M for an O(1) distance. Depending
on the length of the trajectory close to M4, p can stay negative, or may change sign.
In the former case AP, < 0 clearly, but in the latter case the final increment of the p-
coordinate may be larger than the first decrement, which makes a positive A P; possible.
The images of the points z; form two tongues exponentially close to (M) as in the
three pictures in Figure 5(a), the upper consisting of images of points close to p = p*(q)
and the lower of images of points near p = p~(7). These tongues both extend to p = +o0
and are asymptotic to ¢ = % by the slow flow (3.3). We call them ‘thin’ tongues, since
they are only exponentially thin with respect to the v-coordinate, but note that they are
O(1) wide with respect to the g-coordinate. Combining this with the information about
points zg € Q(M-) with d(2¢, Q™ (M4)) = O(e), we find a curve Q4 (Q(M_);) € X_
that is connected by continuity, and intersects @~'(M_) in at least two points close to
p = p~(q), corresponding to two 2-jump homoclinic orbits to M_. See Figure 4(b).

The orbits through Q(M_); that follow M, exactly until p = 0 have the largest
negative AP; and correspond to the minima in p of the curve Q1 (Q(M_);z). Let these
orbits be vt (&;¢) and 7. (&; q) respectively. The more negative q is, the deeper the thin
tongues become, because orbits through (p*,q) stay longer in the p < 0 régime. First
the lower little tongue will intersect @~!'(M_) close to p = p~(0), yielding two extra
2-jump orbits. This happens in a bifurcation ¢ = ¢, which is defined such that v, (& ¢;)
follows the orbit in M that is tangent to {p = p~}. Since this tangency in M4 occurs
at ¢ = 0, ¢, obviously satisfies ¢ = 04+ O(g). At ¢ = ¢, two additional 2-jump orbits
bifurcate. For even more negative g the upper little tongue will also intersect @~!(M_)
close to p = p~. Here the bifurcation is given by § = ¢/ = ¢ + O(e) since the orbit
(& @) in My is tangent to {p = p~}. In Figure 5 projections of the image-tongues for
@2 < q < §1 < q; < Go are shown.

These arguments prove that the counteracting behaviour along orbits possibly leads
to two or four additional families of 2-jump homoclinic orbits to M_. The first pair
bifurcates at ¢ = ¢; and the second at ¢ = ¢;/. By the symmetry, such families of orbits
homoclinic to M, exist also. This proves Theorem 3.10 for n = 2.

We now construct further images for § < ¢;. The images for § > ¢j are analogous to
those for ¢ > 0.

Note, that Q4 (Q(M_)g), § < g, consists of either two or three disjoint parts inside
Q™' (My), depending on the relative position of ¢ and ¢. In Figure 6 these parts are
indicated by their boundary points, intersections with @~!(M.) that are numbered 1 to
6. The intersections 1 and 4 correspond to orbits in the two families of Theorem 3.8.
These intersections always exist. The intersections 2 and 3 correspond to the lower thin
tongue, the intersections 5 and 6 to the upper. They exist when respectively § < ¢; and
q < q}. Hence for g < ¢ < g} the two disjoint parts inside Q~'(My) are 1-2 and 3—4,
and for ¢ < ¢ the three disjoint parts are 1—2, 4—5, and 3—6. To map Q4+ (Q(M_);)
to P1(Q(M~-)z) we consider these different parts of the curve Q4 (Q(M_);) separately
(recall that Py = Q_ o0 Q4 ).

From the flow on M4 and in the fast field we know, that the parts to the left of
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the minima of the thin tongues (with Figure 5(a) as reference picture) lie in the region
q > 0, as illustrated by the projections in Figure 5(b). Hence ¢ > 0 on the further forward
trajectories. Since these parts also lie exponentially close to @(M4)|o<q<1/e, Tepeated
application of Q_ and Q4 maps these parts exponentially close to the consecutive images
of Q(M4)]o<q<1/c- Therefore, the forward images of the parts 1-2 and 4-5 (the latter if it
exists) form tongue-like curves Q" (Q(M-)z), n > 1, around the gullies Q" (M4 )|o<q<1/es
and thus each of these curves intersects Q~'(My) twice, giving rise to two (n + 1)-jump
orbits. See Figure 6, where the images 1'—2" and 4'—5" in Q*(Q(M_-)z) = P+(Q(M_)7)
are sketched. Note that every original curve intersects Q= (M_) two times, and that all
their further image curves intersect either Q~'(My) or Q~'(M_) twice as well: every
intersection point Q™1 (M1)NQ™(Q(M_);) with g-coordinate ¢ > 0 yields an intersection
point Q=1 (Mz) N Q" (Q(M-),).

If the upper thin tongue does not extend to p = p~(gq), then the part between its
minimum and the point 4 has images that lie along Q™ (M4 )|o<q<1/e; but do not form full
tongues around them. They intersect @~'(My4) only once. See Figure 6(a).

However, the parts of Q4 (Q(M_);) to the right of the minima of the thin tongues
(with respect to Figure 5(a)) still lie in the ¢ < 0 region, so again counteracting effects
can occur along the forward trajectories of these parts. The largest part in ¢ < 0 inside
Q' (M) is O(e) away from Q' (M_) and is thus just mapped over an O(e) distance by
Q_ (and O(e|logel|) with respect to p and ¢). Its image is simply a copy of the original
curve. This is clearly illustrated by the image of 3—6 in Figure 6(b): the largest part of the
tongue-like curve 3—6 is mapped to a similar large tongue-like part contained in 3'—6" in
P4 (Q(ML2)g). The parts of Q1 (Q(M_);) that are exponentially close to the intersection
points 3 and 6 contain orbits that follow M_ for an O(1) distance. By the same arguments
as above, the images of these points form two thin tongues in Py (Q(M_);), exponentially
close to Q(M_) in X;. Both intersect @' (M) in two points near p = p~ and in one
point close to p = p* as in Figure 6(b). For ¢ > ¢f/, for which the intersection point
6 in Q1 (Q(M_)z) does not exist, only the points near 3 give rise to a thin tongue in
P (Q(ML)g), see Figure 6(a).

Similar arguments can be applied to find further images. To resume, every intersection
point Q4 (Q(M_);) NQ~'(M_) (or later, every point Q" (Q(M_);) NQ™'(My)) in the
region ¢ < 0 gives rise to a thin tongue exponentially close to Q(M) that intersects
Q7 '(Myz) two times near p = p~ and one time near p = p*. One of the resulting
intersection points near p = p~ still lies in the region ¢ < 0, the other (and the point close
to p=p*) in the region ¢ > 0.

Proof of Theorem 3.10. We determine the number of n-jump homoclinic or hetero-
clinic orbits that exist by induction. We consider a curve Q(M_); C X4, and apply Q4
repeatedly to obtain image curves. Label the number of intersection points that these
curves make with Q~!(My) and that correspond to n-jump orbits by C,,. Among these
intersection points there are A,, with ¢-coordinate ¢ > 0, and B,, with g-coordinate ¢ < 0.
By the above observations these numbers satisfy the recursive relations

An+1 = An‘I'QBna
Bpoi = B,

For ¢ < ¢ < ¢; the initial conditions are Ay = 3, By = 1, leading to 4,41 = A, + 2 and

26



4’ 1/ 2'5'¢! 3/

\\\l/{/

|

Figure 6: Images P4 (Q(M_);) C X4 projected onto a plane U;' C Y4 and the relation
between the parts i—j of Q1 (Q(M_-)z;) C X_ and their images 7' —j' in P4 (Q(M_)7).
The dashed curves represent @*'(M). The orientation is the same in all figures. (a)
7=, 9 <@ < g; (b) §= G with @2 <gj.

Cy, = 2n. For § < ¢; we have initial conditions Ay = 4, By = 2, which yield 4,4, = 4,,+4
and C,, = 4n — 2. Clearly the two intersection points near p = p* with ¢ > 0 always exist,
these are element of the families of Theorem 3.8.

These numbers only represent the orbits through Q(M_)z, which are asymptotic to
M_ as £ - —oo. The symmetry (3.4) yields equal numbers of orbits that are asymptotic
to M4 as & = —o0. O

4 Coupled slow and fast flows: more counteracting effects

Although the example in the previous section might a priori have seemed rather trivial,
we have seen that it exhibits very rich behaviour. The structures of the intersections of
stable and unstable manifolds of M4 will become yet more complicated when we choose
different, less trivial and perhaps more realistic, functions G and K. In this section we
extend the example with a coupling term in perturbation K. We choose a coupling that
is quadratic in U, since such term preserves the symmetry (3.4). Since this symmetry is
broken by linear or, in general, odd terms, the quadratic coupling is the simplest one in a
sense. The example we take is

Uy = Up—U34U —elUy(P?+a),

WDy = b — 14U = 1),

leading to the ODE

u§ = v,
_ 3 _ . 2 _
(4.2) ve = u u+ev(p’+a—c),
pe = 4,
6 = =(1+b(u—1) = eq).
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Note that we write 1 + b(U2 — 1) instead of bU? + b. Tn this form the equation is a
clear perturbation of (3.1), and the additional perturbation term is equal to zero on the
slow manifolds and non-zero in the fast field. We will exploit this in the study of more
counteracting effects in this example.

Clearly, the extra term does not change the behaviour of the fast field, so the Melnikov
calculations do not change. However, the integral AQ) gets an extra term and becomes

(43)  AQ(E,p,q)=¢(1 - cq)To(F) — bT3(E) + O(?),

Together with (3.9) and (3.10) this yields the following conditions on periodic orbits in
(4.2) with c—a > 0, b # 0:

p=tvec—a+0(), =0+ 0(g), and T(E) = %—}-0(8),

with

In the regions ¢ < % and ¢ > % the flows on the slow manifolds M4 do not change sign with
respect to ¢. Therefore, within each region the slow contributions AQ), as defined in § 2.2,
always have the same sign. The average flow AQ(F,p,q) in the fast field might however
change sign within the regions and be cooperating or counteracting. The bound between
the cooperating and the counteracting régime with respect to the flow in ¢-direction is
given by AQ(E,p,q) =0, ¢ # 1, so at leading order by

def TQ(E) _l—cq 1

In the Appendix it is shown that 0 < 7(F) < 1 and %T <0for0 < F < % (note
that f(p) = 1 here), so for each ¢ # ! such that 5% € [0, 1] there is exactly one F such
that AQ(E,p,q) = 0. For ¢ = 0, this condition coincides with the existence condition
for periodic orbits. This means that for each b € [0, 1] there is a unique E such that
AQ(FE,p,0) = 0 and two periodic orbits exist, one O(g) close to (p,q) = (p*,0) and one
O(e) close to (p,q) = (p~,0).

For b < 0 there are no solutions of AQ(F,p,q) = 0 in the region 1 — ¢¢g > 0, and for
b > 0 such solutions do not exist in the region 1 — ¢¢ < 0. Thus the system is always
cooperating in one of these regions. From (4.4) below one can even conclude that the slow
and fast fields cooperate for all b < 1 — ¢q in the region 1 — c¢qg > 0, and for all b > 1 — ¢q
in the region 1 — ¢q < 0. Considering the limiting behaviour of Ty(E) and Ty(E) in the
neighbourhoods of £ =0 and ¥ = 1 (see (A.1), (A.16) and (A.17) in the Appendix) we
have

(4.4) lblrf(l) AQ(E,p,q) = (1 —cq—b)2n+0(e?),

(4.5) AQ(E—m,pq) = £v2(1 — ¢q)|log | — eb4v2+h.0.t. when 0< 7 <1
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and we conclude that a small counteracting region near {# = 0,v = 0} (where £ = 0)
comes up when b crosses b = 1 — ¢q. As b increases (or decreases, depending on the
sign of ¢), the counteracting régime within the ¢ = O(1) region grows until eventually,
for b = O(|loge|) and positive enough, it includes the neighbourhoods of W"(M4) and
Ws(My) (take n ~ ). We will show that this counteracting behaviour near W"™%(My)
yields new families of homoclinic and heteroclinic orbits, while the families that exist for
b = 0 stay intact.

In the previous section we studied images Q™(Q(M-_);) of curves Q(M_); C of
for b = 0. We recall that for ¢ < ¢ both the upper and the lower intersection point
QIM_); NQ™H(My) € Xy (respectively near pt(g) and p~(¢)) induce two intersections
Q_(Q(M_);) € X near p~(g) and one such intersection near p*(g). For ¢/ < 7 < ¢},
the upper intersection point only induces the one intersection near p*(q), while the lower
still also yields two intersections near p~(¢). See Figure 5. This induction also holds for
higher order intersections in these regions if they exist.

Higher order intersections in the region ¢ < 0 arise by the following mechanism. Con-
sider an orbit v(£) that comes exponentially close to M4 and follows the flow on M,
until it leaves the neighbourhood of My with g-coordinate 0 < ¢y < % Assume that
it passes X_ at & = & in v(&) = (0,v1,p1,¢1) inside Q1(M_), and hence enters the
neighbourhood of M_ after spending O(1) time in the fast field. Since v(§) is inside and
exponentially close to W"(My)oe at & = &, it satisfies £ = 3+ — n with n = O(e) > 0,
and the change in the g-coordinate during the time in the fast field is

FAQ>G —mpu @) = 3[eV2(1 - eqr)| logn| — ebdv/2]+h.ot.

We recall that AQ measures the average change of ¢ during a full circuit through the
fast field, so by the symmetry the change during the jump from M4 to M_ is given
by 3 A Q. This expression is negative at leading order if b > (1 — cq1)|logn| > 0.
Thus, if 6 = O(|loge|) and large enough the orbit v(£) touches down on M_ with ¢ =
G0 +35AQ(;—1mp1,¢) < qo and g3 < 0 is possible for gy = O(e|logel).

We will use these observations to prove the occurrence of additional homoclinic saddle-
node bifurcations for b >. As in section 6 of [8], the mechanisms behind these counteracting
bifurcations are rather complicated, and iterative processes create more and more different
‘types’ of n-jump homoclinic and heteroclinic orbits. We do not attempt to describe every
single process and bifurcation in detail, but rather prove one general property.

Property 4.1 Consider (4.2) with fized ¢ > 0 such that ¢ —a > 0. As b increases to b=
O(|logel|) a small region around q = 0 arises, where homoclinic saddle-node bifurcations
occur by which new families of n-jump homoclinic and heteroclinic orbits appear. The
families that already existed for b =0 stay intact. As b increases further, more and more
n-jump orbits are created.

Proof. We apply Q_ to map a curve Q(M_); C X_ with § < ¢; ~ 0 to X, and vary
b from b =0 to b = O(|loge]) > 0. For b = 0 the proof of Theorem 3.10 guarantees
the existence of at least three intersection points Q_(Q(M_);) N Q=" (M) with ¢ > 0
in X4, as illustrated by Figure 5(b). If § < ¢} and |§ — ¢j| = O(e|loge]), or § < ¢ and
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|§ — qi'| = O(ellogel|), then at least one of these intersection points lies O(e|loge|) close
to ¢ = 0.

As above, the symmetry yields that the fast field contributes to the change in the
g-coordinates induced by mapping from ¥_ to ¥, with %AQ|5=0 = 5%\/5(1 —cq)| logn|+
h.o.t. with ¢ ~ 0. If we let b increase, this change will become £ A Q[ps0 = e2v/2(1 —
cq1)|logn| —£b2y/2+h.0.t. < 5 AQ|s=o. Since the changes in the integrals £ and p are not
influenced by b, the increment of b only translates the image curve Q_(Q(M_)7) parallel to
the g-axis over a distance —£b2v/2. Hence all intersection points Q_ (Q(M_);)NQ~ (M),
and thus the families of 2-jump orbits described in Theorem 3.10, will stay for increasing
b.

However, if Q_(Q(M_)z)|p=0 contained intersection points with small ¢ > 0 as de-
scribed in the last paragraph, these intersection points can be translated to ¢ < 0 for large
enough b. This yields the existence of one or more additional higher order intersections
(here Q_(Q(M_);) N Q™' (My), corresponding to 2-jump orbits) in the region {¢ < 0}.
Such intersection points induce three, instead of one, 3-jump orbits in the next iteration.
The recursive relation in the proof of Theorem 3.10 now immediately implies additional
n-jump orbits with n > 3 as well. Moreover, among the new intersection points there
are points with small ¢ > 0 again, so the above arguments can be applied to prove the
existence of even more additional n-jump orbits. All these orbits are asymptotic to M_
as £ & —o0.

If b increases, the region that will be translated from ¢ > 0 to ¢ < 0 is enlarged.
Therefore this mechanism applies to a wider range of curves Q(M_); C X_ (with ¢
farther from ¢; or ¢) and the families of new n-jump homoclinic or heteroclinic orbits
become larger.

All arguments can also be applied to curves in (M), and doing so the same result
is obtained for orbits that are asymptotic to My as £ — —o0. a

Remark 4.2 A naive extension of these ideas would be to take AQ < 2(g; — 1), which
would guarantee that all intersection points induced by the flow near M_|,.; /., including
those through orbits that jump off M_ close to ¢ = %, are carried to the ¢ < ¢ region
near M. This would result in three (n + 1)-jump orbits induced by every n-jump orbit
in {¢ < 1}, which would result in 2.3 n-jump orbits.

However, b needs to be of order O(];) to obtain AQ < 2(q — ]Z) Rescaling b = g gives
the ODE system

u = v,
ve = uw—utev(p’+a-c),
Pe = &4,

g¢ = B(u*—-1)+¢(1-cq).

It still possesses slow manifolds given by v = £1, v = 0, but these manifolds no longer
satisfy Fenichel’s condition of normal hyperbolicity. Therefore the geometric singular

perturbation theory is no longer applicable for b = O(%)

The above calculations show that for b < 0 the slow and fast flows in the region
1 — ¢q < 0 counteract. However, the sign of p still does not change along orbits, which
prevents any bifurcation of additional n-jump orbits in this region.
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For b = O(|loge|) and b negative enough, AQ can become positive enough to carry
orbits from the ¢ < 0 to the ¢ > 0 region, and let part of the n-jump families of Theo-
rem 3.10 disappear. In a sense, this mechanism is the inverse of the mechanism in the
proof of Property 4.1.

5 Numerical simulations

In this section we study the behaviour of (1.1) by numerical simulations. The goals of
the numerical simulations are to find out whether the n-jump orbits constructed in the
previous sections can be observed as travelling front solutions of (3.1), and to see which
speed is selected as ‘most stable’ speed, that is, with which speed the observed solutions
travel. The numerical code should select one specific speed, since, given any value of a, the
analysis in sections 3 and 4 guarantees existence of n-jump homoclinic and heteroclinic
orbits that travel with any speed bigger than some critical speed ¢ (a).

5.1 The numerical code

We used a so-called moving-grid code to integrate (4.1). This code by Blom and Zegeling
is described in detail in [4], and applied intensively to reaction-diffusion systems in for
instance [10, 6, 22]. The code is designed to numerically solve systems of time-dependent
PDEs in one space dimension having solutions with steep gradients in space and time, so
the homoclinic and heteroclinic solutions constructed in the previous sections can perfectly
be studied with this code. In order to do numerical simulations the space variable z has to
be restricted to a bounded interval. To ensure that the boundaries of this interval do not
(essentially) influence the dynamics this interval must be large enough. For the simulations
presented here we fixed the length of the interval on z € [0,200]. We investigated intervals
of different lengths and chose the interval so large that enlarging did not influence the
front-type behaviour of solutions with only a small number of fronts.

The space variable z is scaled to # such that the simulations take place on the interval
Z € [0,1]. For the U-variable, that jumps from U = —1 to U = 41 and vice versa, we
both took homogeneous Neumann boundary-conditions

oU v

97 (z=0,t)= 97 (z=1,t)=0
and Dirichlet boundary-conditions
Uz =0,t) =+1, Uz =1,t) = +1,

depending on the type of solution we searched. The different choices did not influence the
dynamics of the solutions. The initial conditions were adapted to the kind of solutions
of our interest. Both block functions with the desired number of fronts and functions
composed of arctan-shaped fronts were used as initial conditions for U. The different
functions with the same number of initial fronts all gave the same result, which indicates
that the observed multi-front waves are attracting.

If b =0 and the velocity ¢ # 0 of a travelling pattern is known, the function P can be
solved explicitly from (3.2):

p(&) = 21

[

— Ci(e)e™ 4 Ca(c),
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Figure 7: Travelling one-front heteroclinic orbit observed in a numerical simulation of (4.1)
with € = 0.02, @ = 3 and b = 0 at time £ = 500. The right picture shows positions of the
grid points as functions of time for the same parameters. At any time instant the densest
part of the grid corresponds to the front.

where C(c) and Cy(c) are constants depending on ¢. This expression indicates that
Dirichlet boundary conditions for P are not suitable. We therefore simply took

(5.1)  P(z,0) =const. or P(z,0)=Ci+ D
and matched this with homogeneous Neumann boundary conditions

oP P

(5:2)  So(E=0,0)=2-(E=11=0.

5.2 Simulations and observations

Independent of the initial condition for P, our simulations suggested that the velocity of
the selected U-solution satisfies ¢ &~ a. Therefore we put C' = %5 (and D = 0) together
with P(0,0) = —2 and P(1,0) = 2in (5.1), or P = 0 if £ was very small. We investigated
solutions with 1-4 initial fronts and different values £, @ and b and running times 7. For
the simulations with 1,2 fronts 100 moving grid points were sufficient, for more fronts we

used 200 grid points.

A representative example with one front is plotted in Figure 7. As initial condition
we took U(z,0) = 2 arctan(z — 80) and P(z,0) as above with a = 3, ¢ = 0.02. The front
clearly moves with a positive speed, that approximately satisfies ec = Az /At ~ 60/1000 =
0.06. Since £ = 0.02 this corresponds to ¢ &~ 3 = a.

The second example shows a solution with three fronts for a = —4. Initially the fronts
lay at 2z = 90, 2 = 115 and 2 = 130, but they immediately moved to respectively z =~ 93,
z &~ 115 and z =~ 133 as one can see from the right picture in Figure 8. In simulations
with different initial conditions the fronts analogously moved to a configuration that likely
corresponds to a solution of (4.1). After this initial adjustment all three fronts moved
with about the same speed —0.04, since the dense parts of the grid are parallel (up to the

current precision). Since € = 0.01 this corresponds to ¢ &~ —4 = a.
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Figure 8: Travelling 3-front heteroclinic orbit observed in a numerical simulation of (4.1)
with € = 0.01, a = —4 and b = 2 at time ¢ = 500. The right picture shows positions of the
grid points as functions of time for the same parameters.

From the analysis in the previous sections we know that n-jump orbits exist whenever
¢ —a = O(1). For the sub-system with P = £¢ = £ the information is more detailed:
for all n = O(|loge|) there are n-jump orbits that travel with speed ¢ > ¢} (a). From
Property 3.6 we know that ¢ (a) = O(e?(loge)?) for all n = O(1), or, in other words, that
ct(a) = a+ O(e*(loge)?.

The simulations here clearly show that the solution to which the integration converges
travels with a speed that satisfies ¢ & a. This suggests that the solution that is selected
by the numerical code satisfies ¢ = ¢ (a), in other words, the simulations strongly suggest
that for every n the solution with the lowest possible speed is the ‘most stable’ one. Such a
selection of the bifurcation speed as the most stable speed also occurs in other systems. As
an example we mention the well-known Kolmogorov-Petrovsky-Piscounov (KPP) equation
Uy =Up +U —U? (z € R, t > 0), where for any ¢ > 2 travelling waves with velocity ¢
exist, and the wave with velocity ¢ = 2 is generally selected as most stable one; see §5.4
of [14].

6 Discussion

The work in this paper mainly consisted of an extension of the methods of [9, 8, 13] to
four-dimensional systems. The most important conclusion is that the global behaviour of
systems as (1.7) is still largely determined by the flow on the slow manifold. With the
extra dimension we find that even the simplest equations (3.2) exhibit very complicated
behaviour.

Fenichel’s persistence theory can only be applied to compact subsets of the unperturbed
normally hyperbolic manifold M. The two examples considered in this paper generate a
(slow) flow on M. that will leave any bounded O(1) region for [¢| > 1. Moreover, p and
q will eventually become so large that (1.6) can no longer be considered as a perturbation
problem. This is not a special feature of the four-dimensional problem. The work by Ai
[1] on the three-dimensional problem proposed in [8] for instance shows that n-pulse orbits
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‘homoclinic’ to a slow manifold do not remain close to that manifold for || > é To avoid
problems with perturbations in (1.6) that become > 1 one must either compactify M (see
[8, 13]) or ‘repair’ the perturbations for p, ¢ large, such that they remain small (see [9]).
By the structure of the originating PDE neither of these approaches can be applied to the
D¢y e equations in (1.6). However, since the region p,¢ = O(1) is the only relevant part
of the phase space in which one can find intersections of the manifolds W"S(My4), we do
not really need to adapt the flow as sketched above. Homoclinic or heteroclinic orbits we
find may not remain close to one of the slow manifolds for || > é, but this would not
influence the ‘jumping structure’ of the orbit.

By the numerical simulations we are sure that at least some of the orbits we construct
are observed in the dynamics of the PDE for long periods of time. Moreover, the problems
on the slow manifold for p, ¢ > 1 are implicitly caused by the simplicity of the examples
considered in this paper. Less ‘trivial’ examples will not have only unbounded solutions
on the slow manifold M.. On the contrary, a slow flow with critical points is certainly
more realistic. In such a realistic situation the homoclinic and heteroclinic solutions will
become connections between these critical points (on the slow manifolds) instead of only
connections between the manifolds. As a consequence, the solutions will remain in a
bounded region of the phase space and none of the ‘problems’ sketched above will arise.

Nevertheless, in this paper we decided not to consider a more realistic example with
critical points on M, but to focus on two simpler examples and take the possible ‘un-
desired behaviour’ for £| > 1 for granted. Certainly, more realistic examples can also be
studied by the methods presented in this paper, but their phase structure will be harder
to unravel.

Both the Gray-Scott model for auto-catalysis [10] and a large family of generalized
Gierer-Meinhardt-like systems [7] have been studied with methods that are in essence the
same as the ones presented here. These systems generate slow manifolds that do have
a critical point. However, their phase structure is significantly less complicated than the
structures here, since there is a reversibility symmetry owing to the absence of ‘convective’
terms. The proof of the existence of n-pulse homoclinic orbits in [10, 7] is largely based
on this symmetry and is, for that reason, relatively simple compared to the proof of
Theorem 3.8 here. On the other hand, the reversibility symmetry in these models gives
the phase space so much structure that one cannot expect to have phenomena as exciting
as the homoclinic explosions and subshift dynamics of [9] and [13]. Our analysis of two
trivial examples of equation (1.6), an equation that includes ‘convective’ effects, has shown
that such phenomena may be observed in systems of this type.

We stress once more, that the methods presented in this paper are applicable to a very
general class of four-dimensional systems of ODEs with two slow and two fast variables
and a heteroclinic or homoclinic manifold in the fast limit. Hence, the methods presented
here are of a more general interest than only for the type of equations derived for PDEs

s (1.1). Although we only worked out the details of two explicit examples it follows from
these examples that the general idea of the methods developed in [9, 8, 13] also applies to
many four-dimensional singularly perturbed systems.

We cannot claim anything about the stability of the numerically observed orbits. The
simulations strongly suggest that at least some of the multi-front orbits can be stable, or
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meta-stable, as solutions to the PDE. Recently, a number of new methods to study the
stability of multi-pulse solutions to (singularly perturbed) systems of reaction-diffusion
equations were developed; see [23, 6, 7]. These methods might be useful for the stability
analysis of the patterns constructed in this paper.
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A Appendix

We derive some useful properties of the complete elliptic integrals 7;(£) defined in (3.7)
and (3.8). By perturbation analysis around K =0, I/ = ( ) and integration of the limiting
expressions we compute

A1) limTo(E) =2x, imTy(E) =0, lim To(E)=oco0 and lim Ty(E)=4,/+~.
( ) 0 0( ) 10 2( ) ET%f(p) 0( ) ET%)’(p) 2( ) f(p)

In order to obtain information about limit behaviour of 7y, 75 and about 7 we will express
Sy and %Ti in Ty and T3 (or T3). Note that in all equations the ¢ is an index. We first
define

7

A2)  Ri(E)= 4 _fori>0,
"2 " %(%f(p)w‘—f(p)'u”?ﬁ)?

d
(A3)  =Ti(B) = —Ri(E).

and find the expression
(A4) T, =2ER; — f(p)Rit2+ S F(p)Rita for i > 0.
Furthermore, rewriting S; yields

7{ fp)u' - fp)u? +28) L () Tisa — f(9)Tisa + 2ET, for i > 0.
\/ fp)ut = fp)u® + 28 ’

Since the integral around a closed curve of any exact differential vanishes, we have

(A.5)

0 = j{ ( \/f )“2+2E)d1t=i57:—1—f()7+1+f()z+%
(A.6) for i > 1,
0 = T+ As.

Combining (A.5) and (A.6) with ¢ = 0 resp. i = 1 leads to the following expression for So:

(A7) So(E) = (58 = 5f(p))To(E) + 3 (p)Ta(E).

We follow the methods presented in [3, 9] to derive
those used to derive (A.6) we have

AT;(F). By the same arguments as

0= f{ d - du=iT,_1 + f(p)Riy1 — [(p) Rits,
U\JS I ()t = F(p)u? + 2E
(A.8) for s > 1,
0 = Ri- Rs.
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By taking i = 0,1,2 in (A4),7=1,2,3 in (A.6) and (A.8) we obtain a linear 7 x 7
system:

26 0 —f 0 L 0 0 Ro To
0 26 0 —f 0 £ o0 Ry T
0 0 28 0 —-f o0 £ Ry 7,
(A.9) 0O 1 0 -1 0 0 0 Ry [ =] 0
0 0 —f 0 f 0 0 Ry To
0o 0 0 —-f 0 f O Rs 2Ty
0o o 0 o0 -—-f 0 f Re 3T,

It follows immediately that By = R3 = 0, or, in other words, the expressions in the integrals
R and R3 are exact differentials. We solve the system (A.9) to obtain expressions for Ry
and R, and hence for £T;(E), i =0,1,2 by (A.3): 28

(A 10) dTO _ f(p)TQ — 4ETO dT1 -0 dTQ _ TQ — TO dTQ _ TQ — TO
' dE ~ AE(—f(p) +4E) dE ~ 7 dE  —f(p) +4E "0 dE T T 4E

from which we derive

f)T?+ (BE = 2f(p))T + (f(p) — 4E)
AE(=f(p) +4F) '

The discriminant of the polynomial f(p)72+ (8E —2f(p))T + (f(p) — 4E) is 16 E(4E —
f(p)) <0for0< K< ﬂfl, so it has no real roots and

d

d f(p)

Together with the limits limgyo 7 (F) = 1 and hmETﬁﬁl T(E) =0 from (A.1) this yields

T(F) € [0,1]. To study the behaviour of 7 in the neighbourhood of £ = Q we substitute
T(%ﬁ2 —n) = d(n) with lim,;06(n) = 0in (A.11) and find

FLO) ) = 4= 803+ ()9
! —4n(f(p) —4n)

We now show by a contradlctlon that 8(n) > nin thelimit n | 0. Assume §(n) = kn+h.o.t.

Direct computation of T( ) from this assumption gives 7 (%] o )) = —k. From
(A.13) we obtain

(A.13)

dr

d . d . 4n+ O(n?) 1
2wy — i L2 oy = - _ ’
ap! G = T = G+ 06 T 70
so k = —Lp. Since we also have %T(O) = —ﬁ and 7 is a continuous function, the

)
should intersect T =1 — ( ST in £*. This would lead to

d )= ) (SEF = 2f () (1 - 45 + (f(p) - 4E7)
- A (= [ (p) + 4F7) o)
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which is impossible since %T(E*) < 4) is needed for an intersection with the line

~f)
T=1- ;1(_1;)_ Hence the assumption §(n) = kn+ h.o.t. must be rejected and § > 1. Now

& can be derived from (A.13):

d §2 4
(A.14) d—n(S(n) = —& + h.o.t. and thus é(n) = fi + h.o.t.

4n (p)| logn|

Hence we end up with
) 4

A. My % Lot
(A15) TS =1 = FTogn T 0"

and can conclude from this and (A.1) that for 0 < n < @:

7 (L) _
(A.16) To(LR —p) = % = /2f(p)| log 7| + h.o.t.
I) _

Furthermore, by substituting (A.1) and (A.16) into (A.10) we find %TQ(M -n) =
O(|logn|), which yields

(A17) T(L2 - ) = 4, /725 + O(n| logn)).
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