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1. Introduction

Let Y be an abelian variety of dimension g over an algebraically closed field k of characteristic
p > 0. To Y we can associate its p-kernel Y [p], which is a finite commutative k-group scheme of
rank p9. In the unpublished manuscript [9], Kraft showed that (fixing g) there are only finitely
many such group schemes, up to isomorphism. (As we shall discuss later, Kraft also gave a
very nice description of all possible types.) Some 20 years later, this result was re-obtained,
independently, by Oort. Together with Ekedahl he used it to define and study a stratification of
the moduli space &7, ; ® k of principally polarized abelian varieties over k. The strata correspond
to the pairs (Y, i) such that the p-kernel is of a fixed isomorphism type. Their results can be
found in [12] and [13]; see also related work by van der Geer in [3].

The present paper is a first step in a program to develop a similar stratification for (good
reductions of ) more general Shimura varieties. For Hilbert modular varieties this has been done
by Goren and Oort in [7]. In general, such a Shimura variety (i.e., some p-adic model) should

come from a Z,)-version of a Shimura datum, involving a reductive group G over Z,) and a

homogeneous space X under G(R) such that (G, X) is a Shimura datum in the usuﬁ sense.
Let us suppose that there is some modular interpretation, say in terms of abelian varieties with
certain prescribed Hodge/Tate classes. Now one might hope that from the data (G, X) one
can cook up some finite set which parametrizes the isomorphism classes of the p-kernels with
“additional structure” that occur on the special fibre. Further one may hope that this leads to
a stratification of the special fibre and that some features of the strata (say the dimensions, and
which strata appear in the boundary of another one) can be described in a group theoretical
way, i.e., starting from (G, X).

To give meaning to such speculations, we study Shimura varieties of PEL-type. In this case
at least some of the assumptions (good reduction, modular interpretation) are well understood,
and we may hope to see a general pattern—if there is one—emerging from this particular case.

To explain our results, consider a PEL-type moduli problem, as stated for instance in [8],
Section 5. The data involved include a simple Q-algebra with involution (Z, %), a x-stable order
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O C 9, a lattice A equipped with an action of &, and a symplectic form ¥: A x A — Z such
that ©(dXy, Xy) = ¥ (Ay,d*Ay) for d € €. This gives rise to a Shimura datum (Gg, X), where
Go=CSpgy (A@, ’gb) The corresponding moduli problem is, roughly, that of principally polarized
abelian varieties (Y, 1) with an action of & such that Hy(Y,Z) 2 A as ¢-modules.

Now suppose that p is a prime of good reduction, of residue characteristic p > 0. Then
D = 0/p0 is a semi-simple F,-algebra and Gg has good reduction G over F,. The p-kernel
group schemes that occur on the special fibre of the moduli space are truncated Barsotti-Tate
groups ¢, equipped with an action ¢: D — End(%) and a polarization form ¢ (on the Dieudonné
module) such that ¢(dmy, my) = @(mq,d*ms). Further, certain discrete invariants (such as the
rank of ¢4) are fixed.

We show that such triples (¢, ¢,:) admit the following classification. Here we work over an
algebraically closed field k and we assume p > 2. Let W be the Weyl group of GG.. The space X
naturally gives rise to a subgroup Wx of W. To a given triple (¢, ¢, ) we associate an element
of Wx\W, and we prove that this gives a bijection

{1somo'1‘phlsm classes of} e W\
triples (¥4, ¢, ¢)
We refer to section 4-6 for more precise statements. Note that Wx\W is a finite set which in
all cases considered can be made fully explicit.
The present paper only deals with finite group schemes with additional structure. Results
about the associated stratifications on PEL-type moduli spaces will appear in [10]. After that it
should be investigated whether a similar group-theoretic description also applies to more general

Shimura varieties. We hope to return to such questions in the near future.

Acknowledgements. | have had many pleasant conversations about the subject with krans
Oort; he explained to me the basic ideas underlying the Ekedahl-Oort stratification. That a
good “encoding” could be done using the Weyl group was suggested by Gerard van der Geer (cf.
his paper [3]). On several questions about algebraic groups I received useful suggestions from
Wilberd van der Kallen. | thank them all cordially.

Notations and conventions. If S is a set we write &(S5) for its group of permutations. In case S =
{1,2,...,q} we simply write G;. We shall write H; C &2, for the subgroup given by

Hy :=={p € G2q | p(j) + p(29 + 1 —j) =2¢+ 1 for all j}.

This group, isomorphic to a semi-direct product {£1}? x &,, is known under several names in the literature
(e.g., the hyperoctahedral group, the wreath product of &, with (Z/2Z), ...). In this paper it will occur as (a
realization of) the Weyl group of type C,.

By a symplectic form on a module N we mean a perfect alternating bilinear pairing. At various points in
the paper we shall work with spaces equipped with a symmetric or skew-symmetric pairing. We shall often use
€ € {x1} for the sign of the pairing. Given a symplectic or orthogonal space (N, ) of even dimension 2q we say
that an ordered k-basis 3 =ej,ea,...,ea, is a symplectic, resp. orthogonal basis, if

0 ifi+j#2¢+1
Plej,ej) =<9 1 ifi+j=2¢+1and < y;
e ifi4+7=29+1andi>j.

If 4 is a finite commutative group scheme we write 4P for its Cartier dual. If M is the Dieudonné module
of such a group scheme, we write MP for the dual Dieudonné module, which is the Dieudonné module of 4P,
We write ¥ [p] for the kernel of multiplication by p. Likewise, ¢[F] and ¥[V] denote the kernels of Frobenius
and Verschiebung. Similar notations M[F] and M[V] are used for the Dieudonné module.

If R is a ring of characteristic p > 0 then we write Frobg: & — x? for its Frobenius endomorphism. In the
particular case that R = k is a perfect field we shall occasionally write o for Frobg.



2. Review of results of Kraft

2.1. Let k be a perfect field of characteristic p > 0. Write C (1) for the category of finite
commutative k-group schemes which are killed by p. Dieudonné theory tells us that C'(1); is
equivalent to the category of triples (M, F, V), where

— M is a finite dimensional k-vector space,

— F: M — M is a Frobg-linear map,

— ViM —> Misa Frob,?l—linear map,
such that FoV = 0 = VoF. For the purpose of this paper it is not so important how this
equivalence is defined. To fix ideas, let us say we will use contravariant Dieudonné theory. A
reference is [6]. In the rest of this paper, whenever we discuss Dieudonné modules we always mean
modules of the kind just described, i.e., corresponding to a group scheme in the category C'(1).

A necessary and sufficient condition for 4 € C(1); to be the p-kernel of a Barsotti-Tate

group is that the sequence
g Lo g Yo, 4

is exact. On the Dieudonné module this means that
Ker(F) =1Im(V) and Im(F) = Ker(V).

If these conditions are satisfied we shall say that & is a BTy; short for: ¥4 is a truncated
Barsotti-Tate group of level 1.

Let us now assume that £ is algebraically closed. In the unpublished manuscript [9], Kraft
showed that the objects of C'(1)) admit a normal form. In the description of this one distinguishes
two types of group schemes.

(a) Linear type. Consider a linear graph T', with all edges labelled either by F' (in which
case we draw it as —— ) or by V (drawn as & ).

v F _F_V

Let ¥ = ¥(I') be the set of vertices of I'. We associate to I' a Dieudonné module (M, F, V) in
the following way. As a vector space we take M = k", that is, for each vertex v we have a base
vector e,. Then define F' and V' according to the arrows in the graph. So, F'(e,) = e, if there
is an F-arrow from v to w, and F(e,) = 0 if there is not an F-arrow starting at v. Similarly,
V(ey) = €y if there is a V-arrow from v to w and V (e,) if v is not the source of a V-arrow.

One readily checks that this defines a Dieudonné module, for which we write Mr =
(Mp, F, V). Write 4 for the corresponding group scheme (well-determined up to isomorphism,
or well-determined once we choose a quasi-inverse to the Dieudoné functor & — M (¥)).

(b) Circular type. Consider a circular graph




where again all edges are labelled by /" or V. We require that the /-V-pattern is not periodic
(i.e., the diagram is not invariant under a non-trivial rotation). Two circular diagrams which
differ by a rotation will be considered equivalent. By the same rules as in the linear case we
obtain a Dieudonné module Mr, corresponding to a group scheme %r.

2.2. Framples. — (i) The category C'(1); has 3 simple objects: (Z/pZ), j, and a,. The
corresponding diagrams are:

(Z/pZ) - @F Hp - @V ap: e (no arrows).

(i) The Cartier dual of % is isomorphic to %, where I is the diagram obtained from T' by
chamging all F-arrows into V-arrows and vice versa.

(iii) The group scheme % is a BTy if and only if I' is a circular diagram.

The category C'(1); is abelian, and all objects have finite length. It follows that every
4 € C(1)g is a direct sum of indecomposable objects. Up to isomorphism and permutation
of the factors the indecomposables occurring in such a decomposition are uniquely determined.
As the following theorem of Kraft [9] shows, the indecomposable objects are precisely the ones
corresponding to the diagrams I' as above.

2.3. Theorem. — (i) IfT is a diagram of the type described above then %r is indecompos-
able. If 9 = % then T’ and T are equivalent, i.e., either T =T of linear type or I and "' are
of circular type and differ by a rotation.

(i) FEwvery indecomposable object 4 € C(1)y, is isomorphic to some %r.

2.4. Remark. — Let us relate the above to the description of group schemes given by
Raynaud in [14]. We assume that & = k. Let & be a finite field with ¢ = p” elements. Write
& := Hom(k, k). We view this as a set with a cyclic ordering (see 4.1 below for a precise

definition); given 7 € .# we write i+ 1 for the embedding Froby<i: kK — k. Consider pairs (¢,¢),
and where 4 € C(1), where 12 k — Endy(¥) gives 4 the structure of a scheme in k-vector
spaces. Raynaud studies the pairs (¢,:) with the property that the augmentation ideal of ¢ is
free of rank 1 over the group ring k[x*]. A (very) special case of loc. cit., Cor. 1.5.1. says that
there is a bijection

sequences of pairs (v, 0;)ic.s With ~, pairs (¢,.) up
vi, 8; € {0,1} and v;-6; = 0 for all ¢ to isomorphism |

In the language of diagrams I, this bijection is obtained as follows. Suppose given a sequence
of pairs (i, d;). Take . as a vertex set, and draw

— an arrow (7) A (14 1) if (v4,8;) = (1,0);

— an arrow (%) N (¢4 1) if (v4,6;) = (0,1);

— no arrow between i and i + 1 if (4, 8;) = (0,0).
This gives us a disjoint union of diagrams 'y, ..., ', of the type described above. The Dieudonné
module M = Mr, & -+ @ My, comes equipped with an action of s (letting z € k act as
multiplication by #(z) on the base vector corresponding to i), and this gives us the desired
scheme in k-vector spaces. We get a BT if and only if there are no pairs (74, d;) = (0,0), in
which case n =1 and I'y is circular. (Cf. [14], Rem. 1.5.4.)

2.5. The canonical filtration. — An important tool in Kraft’s proof of Theorem 2.3 is
a natural filtration on the Dieudonné module M of an object 4 € C(1);. This filtration is
obtained, starting from (0) C M, by iterated application of the operators I’ and V=1,
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More formally, consider the monoid .# with 1 freely generated by the two symbols F and
V= On .# we have a total (lexicographic) ordering such that

(i) FZ<1< V™ Zforall Z € #, and

(ii) if Z1 < Zy then Z1W < ZyW for all W € 4.
If M' C M is a submodule and Z € .# then Z(M') C M is well-defined. Note that if Z; < Z;
then Zy(M') C Zy(M'). In particular, if M’ is a Dieudonné submodule (i.e., stable under F’
and V) then so is Z(M'). (Use that I'V = 0=V F.) Further, if f: My — M, is a morphism of
Dieudonné modules then it maps Z(M;) into Z(Ma).

Now suppose that ¢4 is an object of C'(1); with Dieudonné module M. It follows from the
properties just discussed that there is a unique coarsest filtration

G (O)Q(glg(glgg(gr:M

of M which is stable under all 7 € .#, in the sense that for every term %; and every / € .«
there is an index j such that Z(%;) = %;. This filtration €. we call the canonical filtration of
M. Every term %; is of the form %; = Z(0) or €; = Z(M) for some Z € & .

2.6. Polarization forms. — Let 4 be a B1'; over k with Dieudonné module M. As the
Cartier dual 4P represents the functor .#om (G, Gm,k), to give a homomorphism A: 4 — 4P is
equivalent to giving a bilinear pairing ¢: ¢ X9 — u,. On the other hand, A induces a morphism
of Dieudonné modules u: M — MP, and this is equivalent to a k-bilinear form : M x M — k
with ¥ (Fmy, my) = ¥(my, Vimg)? for all my, my € M.

We define A (or the corresponding p) to be a pg-polarization (short for: principal quasi-
polarization) if the form % is a symplectic form, i.e., a perfect alternating pairing. If char(k) #
2 then this is equivalent to the requirement that A is an anti-selfdual isomorphism, i.e., an
isomorphism with AP = —ko\: 9P — 4PD where k: 4 =+ 4PD is the canonical isomorphism.
This, in turn, is equivalent to saying that the composition ¢ 2 gx9 4 pp is trivial, in which
case we call ¢ alternating. Our motivation for using % in the definition of a pqg-polarization is
the fact that for char(k) = 2 we have an implication “3 is alternating” = “¢ is alternating”,
but as Oort pointed out to us, the converse does not hold in general. (A counterexample can
be obtained with & the 2-kernel of the supersingular elliptic curve.) Notice that if 4 = .#p],
where .7 is a Barsotti-Tate group and if X is induced from a quasi-polarization of .# then 1 is
necessarily alternating.

3. The relative position of two flags

In this section we discuss how the relative position of two flags in a vector space (possibly
equipped with a bilinear form) can be measured by a coset in a Weyl group. First we give
some abstract definitions; after that we do some concrete examples. The basic case is that of
partial flags in a vector space, without further structure (see Example 3.5 below). Once this is
understood, the other examples are easy variations.

Not all formulas given in the examples are needed in this paper. However, in our applications
to Shimura varieties Weyl group cosets will correspond to strata in certain moduli spaces, and
one may ask whether properties of these strata can be read from the corresponding coset. For
instance, the dimension of the strata corresponds to the length of the reduced representative
of the coset, for which we can give simple explicit formulas. On the other hand, it should be



realized that the explicit description of the Weyl groups as permutation groups depends on
choices, whereas the actual Weyl group and the elements w#(P, Q) we consider are canonical.

3.1. We begin by reproducing some terminology and results from Bourbaki [2], Chap. 4,
81, Exercise 3.

Let (W, S) be a Coxeter system. Let X and Y be two subsets of S, and write Wx, resp. Wy
for the subgroups of W they generate. In every double class (Wx -w-Wy) € Wx\W/Wy there is
a unique element of minimal length, for which we write w. Every other element w' € Wx -w-Wy
can be written as w' = zwy with (w') = £(z) + £(w) + £(y). An element w € W is said to
be (X,Y)-reduced if it is the element of minimal length in its double class Wx - w - Wy. The
element w is (X,Y)-reduced if and only if it is both (X, ()-reduced and (@, Y)-reduced.

3.2. Let GG be a connected linear algebraic group over an algebraically closed field. Fix a
maximal torus and a Borel subgroup 7y C By C G. Write W = Wy for the Weyl group, and
let S C W be the set of simple reflections corresponding to the chosen By. For X C S, write
Px C G for the corresponding standard parabolic subgroup. We call a parabolic P of type X if
P is conjugate to Px. Associating to P its type gives a bijection between the set of conjugacy
classes of parabolic subgroups and the powerset P(5) of S.

The variety % of Borel subgroups of GG is homogeneous under G. The choice of the base
point By gives rise to a bijection ¢: W =5 G\ (# X #), sending w € W to the orbit of the pair
(Bo, " Byp). Thus, given an ordered pair of Borel subgroups (B, B2) we can define w(By, By) as
the unique Weyl group element whose image under ¢ is the orbit of (By, By).

If P and @ are parabolic subgroups of types X and Y, respectively, then their relative
position is measured by an element

w(P,Q) € Wx\W/Wy .

To define this element, choose Borel subgroups By C P and By C @, and let w(P, Q) be the
double class containing w(Bj, By). One easily checks that this class is independent of the choice
of By and B,. Alternatively, choose g, h € G such that 9P = Px and "Q = Py, and let
v(P,Q) € Px\G/Py be the class of the element gh~!. Notice that v(P,Q) is independent of
the chosen elements ¢ and h. Then w(P, Q) is the image of v(P,Q) under the natural bijection
Px\G/Py = Wx\W/Wy obtained from Bruhat decomposition.

If we have P and @Q; C @2 then w(P,@Qy) maps to w(P,(Q3) under the natural map
Wx\W/Wy, — Wx\W/Wy,. If w represents w(P,Q) then w™' represents w(Q, P).

3.3. Definition. — Notations as above. We say that a parabolic subgroup @ is in optimal
position with respect to a parabolic subgroup P if for any two Borel subgroups B, B’ C @
we have w(P,B) = w(P,B') € Wx\W, that is, if the class w(P, B) is independent of the
chosen Borel subgroup B C Q. If Q is in optimal position we write w!(P, Q) for this class
w(P, B) S Wx\W

3.4. Remark. — The (X, Y)-reduced element (P, Q) can be represented by a pair (By, B2)
with B; C P and By C (). Hence there exists a Borel subgroup B C @) (namely B = By) such
that w(P, B) = w(P,Q). In particular, if ¢ is in optimal position with respect to P then
w(P,B) = w(P,Q) for every B C (). Conversely, if this last condition holds then () is evidently
in optimal position with respect to P.

3.5. Fzample A. — Let N be a k-vector space of finite dimension d. Set G := GL(N).
Choose a basis ey,...,eq for N. Let Ty C G be the diagonal torus and By C G be the upper



triangular Borel. We identify the Weyl group W with &, in the usual way; the simple reflections
form the set S = {s;,...,54-1} with s; corresponding to the transposition (i i+ 1).
Let
C.Z (O)ZCog_Clg_g_Cr_lgcr:N

be a partial flag in N. The stabilizer of C. in GL(N) is a parabolic subgroup. Associating
Stab(C.) to C. gives a bijective correspondence between partial flags in N and parabolic sub-
groups of (G this allows us to apply the definitions in 3.2 and 3.3 directly to flags.

The type Y C S of C, is given by the rule

(3.5.1) 5;i Y <<= 3Jj:dim(C;) =1.
We are interested in the relative position of a flag
L: (0)CLCN

and a partial flag C. as above. If e := dim(L) then L has type X = S\{s.} and Wx is the
subgroup &({1,...,e}) x &({e+1,...,d}) of 4. (For e =0 or e = d this becomes X = S and
Wx = W.) The set W4 of (X, ()-reduced elements has (Z‘) elements, which can be described
as follows. Choose indices 1 < j; < jo <+ < jJe < d,and let 1 <4y <9 < -+ <ig—e < d be
the remaining ones. Given two such sequences j. and 7., define a permutation

(3.5.2) w=1w(je,7) € Sy by w(im)=m, w(i,) =e+m.

Then w(Jo, i) is an element of Wred and every element of W™ is of this form. The length of

w = w(J.,1.) is given by
€

() = 3 G = m).
m=1

Suppose that C. is a full flag. Set 5(j) := dim(C; N L). The sequence 7 has the property
that for all 7 > 1, either n(j) =n(j—1) orn(j) =n(F—-1)+1. Let 1 < j; < j2 < ---< je be the
indices with n(j) =n(j—1)+1,and let 1 <4y <iy < -+ < ig_ the indices with n(i) = (i —1).
Then w(L,C.) € &, is the permutation w(j., ) as defined above.

Now let C'« be an arbitrary partial flag. To decide whether or not C. is in optimal position
with respect to L we have to refine C. to a full flag C'. and check whether the class 'w(L,C'.)
depends on the choice of such a refinement. By Remark 3.4 we can check this on the reduced
representatives, and combined with the previous computations we find:

Cl. is in optimal position Vj, either C; C Span(Cj_1, L)

(3.5.3) with respect to L orCj.iNL=C;NL.

3.6. Fxample C. — Let N be a vector space of dimension 2¢ over k, equipped with a
symplectic form 9: N x N — k. Set G := Sp(N, 1). Let ey, ..., ez, be a symplectic basis for V.
Let Ty C G be the diagonal torus and By C G the upper triangular Borel. The Weyl group W
can be identified with the group

Hy :={p €Sy |p(f) +p(2¢+1—-j)=2¢+1 forallj}.
We have S = {s1,...,s,} with
(3.6.1) si=( i+1)-(2¢g—1¢ 2q+1—14) fori#yg, and s, =(¢ q+1).
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A partial flag
C.: (0)200§01§§Cr_1§0r:N

is called a partial symplectic flag if (C;)* = C,._; for all j. Every parabolic subgroup Q@ C G
is the stabilizer of a unique partial symplectic flag; as in the previous example we can therefore
phrase everything directly in terms of flags. The type Y C {s1,...,s,} of a partial symplectic
flag C. is given by (3.5.1).
Let L C N be a maximal isotropic subspace. The flag (0) C L C N has type X := S\{s,}.
We have
Wx={peH, |p({l,....q}) ={1,...,q}} 2 &,.

The set W™ C W of (X, §))-reduced elements has 27 elements, which can be described as follows.
Of each pair {r,2¢+1—r} C {1,2,...,2¢}, choose one. Let 1 < j; < jy < +++ < j, < 2¢ be
the chosen elements. Let 1 <4y < iy <.+ <14, <2¢ be the elements that were not chosen, and
notice that j,, + ig41-m = 2¢+ 1 for all m. Define the permutation w = w(i., j.) by w(j,) =m
and w(im) = ¢+ m. (Cf. (3.5.2), where we now have d = 2¢ and e = ¢.) Then w is an element
of W4, and every element of W™ is of this form. A reduced expression of w as a word in the
generators s; is given by

w:ti,-t --til,

[/
where ¢; is the largest among the i, with ¢; < ¢, and where we write ¢; = s, 5,1 :+5;. In

particular, we find
l

fw)= S (g+1in).
m=1

Consider a full symplectic flag C.. The reduced element w(L,C.) representing the class
w(L,C.) € Wx\W is computed in a similar way as in 3.5. More precisely, for 0 < i < 2¢, set
n(7) := dim(C; N L). The sequence n has the property that for every j € {1,...,2q¢}:

(a) either n(j) =n(j —1) orn(j) =n( - 1)+ L

(b) n(j) = n(j — 1) if and only if y(2q + 1 ) = (2 — ) + 1.

Let j; < j» < +++ < j, be the indices where the sequence 1 jumps and & < @y < -+ < 14,
(with i, =2¢+1— jg41-m) the indices where 7 does not jump. Then w(L,C.) is precisely the
permutation w(i., j.) defined above.

To make this concrete, take ¢ = 7. Let L = (ej,ea,...,e7). Let C. be the flag (0) C
(ex(1)) C (€r(1),€n(2)) C +++, where 7 € Hy. Then 7 is a representative for w(L,C.), and the
element w as defined via the sequence 7 is the (X, (})-reduced representative for the class Wx - 7.
For instance, if 7 is given by

T =

12 3 45 6 7 8 9 10 11 12 13 14
2 11 12 7 9 5 1 14 10 6 8 3 4 13

then the sequence 7 is given by

9 10 11 12 13 14
4

01 2 3 4 5 6 7
01 11 2 2 3 4 5 5 6 7 T,

n(i) :
sothatj1:1,j2:4,j3:6,j4:7,j5:10,j6:12,j7:13;i1:2,i2:3, i3:5, i4:8,
15 =9, 16 = 11, 17 = 14. This gives

1

23 4 5 6 7 8 9 10 11 12 13 14
1 8 2 3 4

w=w(L,C.)= 11 12 5 13 6 7 14]°

3
9



which is indeed a minimal representative (length=14) of the class Wx - .

Now let C. be a partial symplectic flag which has a maximal isotropic term (of dimension
q). Combining the previous computations with Remark 3.4 we find that criterion (3.5.3) also
holds in this case.

3.7. Buildings. — As preparation for the next example we need to extend the definitions
in 3.2 and 3.3 to the setting of buildings. All we need from this can be found in [1] or [17]. We
do not assume our buildings to be thick, that is, “building” here means “weak building” in the
sense of [17].

Let A be a building with a strongly transitive, type-preserving action of a group G. Fix
an apartment ¥ and a chamber C' € X, and let (W, S) be the associated Coxeter system. (So
W is the group of type-preserving automorphisms of ¥.) Let p and q be two elements of A, of
types X and Y C S, respectively. Let px and py be the faces of C of types X and Y, and write
Px = Stabg(px) and Py := Stabg(py ). Bruhat decomposition gives a bijection

(3.7.1) Wx\W/WY N Px\G/Py.

Choose ¢, h € G with g-p =px and h-q = py. Define w(p, q) € Wx\W/Wy to be the element
which, via (3.7.1), corresponds to the class of g - h~!, noting that this element does not depend
on the chosen ¢ and h.

If G is a connected reductive group and A is the building of (proper parabolic subgroups
of) G then we recover the definition given in 3.2.

The generalization of 3.3 is immediate: we say that g is in optimal position with respect
to p if for any two chambers C1, Cy having g as a face, w(p,C1) = w(p,Cy). If this holds we
obtain a well-defined element w'(p, q) € Wx \W.

3.8. Notation. — In the situation of 3.7, given X, Y C S we write #(A; X,Y) :=
Wx\W/Wy. Implicit in the notation is the choice of C' € ¥ C A, but up to a canonical
isomorphism the set #/(A; X,Y) is independent of such a choice. In the particular case that
Y = () we shall further abbreviate to # (A; X) := #(A; X,0) = Wx\W. If G is connected
reductive and A = A(G) then we write #/(G; X,Y) for #(A; X, Y) and # (G; X) for # (A; X).

3.9. Fzample D. — Assume char(k) # 2. Let N be a vector space of dimension 2¢ over k,
equipped with a non-degenerate symmetric k-bilinear form ¢: N x N — k. Set G := O(N, ).

A partial flag

. 0)=CcCi € CC1 CC=N

is called a partial orthogonal flag, if (C;)* = C,_; for all j. Let Flag(N,v) be the building of
all such flags, with its natural action of 5.

Let eq,...,e2, be an orthogonal basis for N. Let ¥ C Flag(N,) be the apartment of
all flags C. with the property that each term C is of the form C; = <ej;j € J> for some
J C {1,2,...,2¢}. The full flag (0) C (e1) C (e1,€3) C +-+ C N is a chamber of 3. The
Weyl group W can be identified with the group H, as in 3.6, and the set of simple reflections
is the same set S = {s1,...,5,} as given there. Notice that we can naturally identify W with
Wea = A6(T) ] Za(T).

Let L C N be a maximal isotropic subspace. We are interested in the relative position of L
and a partial flag C, as above with the property that » = 2h is even; in other words, the flag C.
is assumed to have a maximal isotropic term Cj. The flag (0) C L. C N has type X := S\{s,}.
The computation of w (L, C.) is now precisely the same as in 3.6, and again we find that criterion

(3.5.3) holds.



As (7 is non-connected, there is an alternative approach to the relative position of I and C..
Namely, set G' := SO(N, ) C G. Let Ty C G° be the diagonal maximal torus and By C G° the
upper triangular Borel (with respect to the chosen orthogonal basis). Define a subgroup Hy even
and a subset H, ,qqa C &y, by

p(7)+p(2¢+1—j)=2¢+1 forall §, and }

H =
g,even /odd {p €Sx4 the number of 7 < ¢ with p(i) > ¢ is even/odd

The Weyl group W of G is H, even- The set of simple reflections is S° = {s1,...,5,-1,3,},
where s1,...,8,_1 are as in (3.6.1) and

S=(-1 ¢+2)-(¢ ¢+1).

As before, let I, C N be a totally isotropic subspace. Without loss of generality we may
assume that the dimension of {e1,...,e,) N L is congruent to ¢ modulo 2, in which case the
stabilizer P C G° of L is a parabolic subgroup of type X := S\{5,}. (Otherwise it is of type
S\{s4-1}.) The set WOored of (X0 @)-reduced elements in W° has 29=! elements, which can be
described in the same spirit as in the previous examples.

Next consider a partial orthogonal flag

C.I (O)ZCOQC]’C‘_""C‘_Chg""C‘_CQh_]’C‘_CQ}—L:N

with dim(C) = ¢. Let @ C G° be its stabilizer. Recall that in general an orthogonal flag is not
uniquely determined by its stabilizer. (For a parabolic @ C G° there is either a unique partial
orthogonal flag with stabilizer () or there are precisely 3 such flags.) A priori it is therefore not
so obvious how the element w(P, Q) is related to w(L,C.).

Now let § = §(L,C.) € (Z/2Z) be the class of dim(L/L N C}). The point we want to make
is that if we know & we can compute w(P,Q) € # (G° X°) from w(L,C.) € # (Flag(N,v); X)
and vice versa. More precisely, suppose that C. is in optimal position with respect to L, working
inside Flag(N, ). Notice that w(L,C.) is an element of H, s C H, = Ws. Now one can show
that also @ is in optimal position with respect to P (in the building of G°), and that

"L, C) if § is even;
PQ) = w (L, C ’
w' (P, Q) {wﬁ(L,C.) -5, if & is odd.

(Caution: the corresponding formula for reduced representatives # does not hold in general.)

In later applications to Shimura varieties the invariant § will be fixed, and it is the element
w!(P, Q) that we have to consider. With an eye toward such applications, let us describe how
the length of the reduced representative w(P,()) can be computed, assuming that C. is in
optimal position with respect to L. Namely, refine C. to a full orthogonal flag I'., and set
n(7) = dim(; N L). As usual, let the j,,’s be the indices where the sequence 1 jumps and let
the 7,,’s be the remaining ones. Then

£<w(P7Q)) = Z(q - Zm) )

m=1
where [ = dim(L/LNCY}) is the largest index such that i; < ¢. To illustrate this, take the same
data as in the example in 3.6. Then ¢ is odd, and

123 4 5 6 7 8 9 10 11 12 13 14

WPQ)=11 9 8 9 113 105 12 4 13 7 6 14
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which is an element of length 11 in Hy cyep .

3.10. Some functoriality. — Let Gy C Gy be an inclusion of (possibly non-connected)
reductive groups. Suppose G; (i = 1,2) acts in a strongly transitive, type-preserving way on
a building A;. Further suppose given an injective map f: A; < A, which realizes A; as a
sub-poset of Ay and which is compatible with the actions of G;. (The map f will usually not
be a morphism of complexes.) We assume that there are apartments ¥; C A; and a simplex
C which is a chamber of both ¥; and ¥,;. Write (W;,S;) for the Coxeter system associated to
C e CA;

Let pg and gqo be two faces of C' in ;. Write X; C S; for the type of pg and Y; C S; for
the type of qo, working in A;. Write Px, and Py, for the stabilizer of py and g, respectively, in
G;. We have Px, = G N Px,, and Py, = G N Py,. This gives us a diagram

PX1\G1/PY1 — PXz\Gz/PYE

! |

‘W(Gl;Xl,Yl) ‘W(GQ;X27Y2)
where the vertical bijections are obtained from Bruhat decomposition. Write
(3101) W(f) W(Gl;Xl,Yl) — V/(GQ;XQ,YQ)

for the injective map thus obtained.

Now let p be an element in the G-orbit of py and ¢ in the G-orbit of ¢¢. Viewing p and
g as elements of A; we obtain an element wy(p,q) € #(Aq1; X1,Y1); viewing them as elements
of Ay gives wa(p, q) € #'(Ay; X3,Y2). Now it is immediate from the definitions that ws(p, q) is
the image of wy (p, q) under the map #/(f).

As an example of this, let Gy = Sp(N,®) as in 3.6 or Gy = O(N,%) as in 3.9, and
consider the natural inclusion map G; C Gy := GL(N). There is a natural forgetful map
f: Flag(N,v) — Flag(N). Let L and C, as in 3.6 or 3.9. Write X' for the type of L in
Flag(N) (=the building of GL(N)). Then our computations show that, indeed, the answer for
w(L,C.) is the same whether we compute it in # (Flag(N,v); X) or in # (Flag(N); X'). Even
better, in both examples we have a commutative diagram

VVGI — WG

! !

W (Flag(N,¢); X) W # (Flag(N); X')

2

and the reduced representative w(L,C.) is the same whether we compute it in W, or in W,
(Of course, the length of this element in general does depend on the group in which we work.)

3.11. Ezample A (continued). — Since Type A will occur as a unitary group, let us discuss
what happens under duality. Let k := k x k, with involution given by (z1,z3) — (24,21). Let
N be a free k-module of rank ¢, equipped with a non-degenerate alternating hermitian form
P: N x N — k. We have a natural decomposition N = Ny @ Ny, where (21, 22) € k acts on N;
as multiplication by z;. The form % gives an identification of Ny with the k-linear dual of Nj.
Given a subspace Ly C Ny, we write

L :={ny € Ny | ¥(n1,ny) =0 forallny € L} CN,.

11



More generally, if C'; . is a partial flag in V;, we write CIJ:, for the partial flag in Ny whose terms
are the spaces Cf:i (with reversed numbering).
Let G := Ui (N, ). We have isomorphisms

GLi(N1) —— G === GLg(N,).

Under the identification Ny = N}’ the composition of the two maps is given by g — (¢¥) 1.

Choose k-bases €;1,...,€; 4 for N; (i = 1,2) such that 9(eq ,,€3,) = 0 whenever y+ v #
g+ 1. Write 7; C B; C GL(N;) for the diagonal torus and the upper triangular Borel. As in
Example 3.5 we identify the Weyl group W; of GL(N;) with &,, and number the set S; C W;
of simple reflections such that (3.5.1) holds.

Let wy € &, be the permutation of order 2 given by wo() = ¢+ 1 — p. For 7 € &, define
7t 1= wyemowy. We can describe the Weyl group of G as

W = {(71'1771'2) e Wy XW2‘772:7%1}7

where the simple reflections are the elements (s,,s,) € S; X Sy with g+ v = ¢+ 1. For all
computational purposes we can reduce to the case GL, and proceed as in 3.5, but up to a duality
7 +— 7 the answers obtained depend on which of the two projections pr;: G =5 GL(N;) we use.

More specifically, suppose L. C N is a maximal isotropic subspace, i.e., L = L1 & Ly with
Ly = Lf‘. Let Cy .« be a partial flag in Ny and Cy . := C’f‘,. the “dual” partial flag in Ny. Let
dim(ZL1) = e, so that the flag (0) C L; C N; has type X; := S1\{s.} and the flag (0) C L, C N,
has type Xy := S2\{s,-.}. We have a well-defined bijection 3: Wx \W; = Wx,\W, by 7 > 7.
Assume that C; . is in optimal position with respect to L;; if this holds for one ¢ then also for
the other. Then w(Ly,Cy.) = w(Ly,Cy.)Y and B sends the class w(L;,C;.) to the class
’w(Lg, 027.).

4. BT,’s with given endomorphisms

We now start working on the subject proper of this paper: classification of finite group schemes
with additional structure. In this section we deal with BT;’s equipped with an action of a finite
dimensional semi-simple F,-algebra—see problem (GE) in 4.2 for a precise statement. Although
it does not “correspond” to a Shimura variety (as we do not consider polarization forms), we
may view (GE) as the “basic” problem. Understanding this case will make the polarized case
(GPE) considered in the next section much more transparent.

After some reduction steps, a solution of problem (GE) is given in Theorem 4.7. The proof
will occupy most of the rest of the section.

4.1. Definition. — Let .# be a finite set, say of cardinality m. By a cyclic ordering of .#
we mean an equivalence class of bijections (Z/mZ) — .#, two such bijections being equivalent if
they differ by a translation in (Z/mZ). If m is even, say m = 2n then by a bi-cyclic ordering of
# we mean an equivalence class of bijections (Z/nZ) x (Z/nZ) — .#, where two such bijections
are equivalent if they differ by a translation over an element (a,a) in (Z/nZ) x (Z/nZ).

If m = 2n is even then a cyclic or bi-cyclic ordering of .# gives rise to an involution of .7,
denoted 7 — 7. Namely, if v: (Z/2nZ) — # defines the cyclic ordering, resp. if v: (Z/nZ) X
(Z/nZ) — # defines the bi-cyclic ordering, set

y(a) =v(a+n) (cyclic case), resp. y(ay, ay) = v(az,a;) (bi-cyclic case).
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This defines a map 7 +— 7, independent of the chosen representative v and compatible with the
(bi-)cyclic ordering.

4.2. The setup. — Let k be an algebraically closed field of characteristic p > 0. Let D be
a finite dimensional semi-simple F,-algebra. The first problem that we are interested in is the
following:

(GE) Classification of pairs (4,:), where ¢ is a BT over k and +: D — End (%) defines an
action of D on & (with ¢(1) = idg).

As the Brauer group of a finite field is trivial we have D & M, (k1) X -+ X M, (k,), where the

w; are finite fields and r1,...,r, € Z>;. Fixing such an isomorphism, every pair (¢,¢) as in

(GE) is of the form
(&,0) = (A7, 07") X oo (), 0yr)

where (.74, 0;) is a BT, with an action of k;, and where we write " for the induced action of
M, (k;) on 2. Thus, in dealing with problem (GE) we may from now on assume that D = &
is a finite field.

Set .# := Hom(k, k). This set comes naturally equipped with a cyclic ordering, where we
take the successor of an embedding i: kK — k to be Frobgei:. If there is no risk of confusion we
simply write 7 + 1 for the successor of the element ¢ € 7.

Write

ki=r®k and K::/@@Fpkznki.
1ES
Of course, k; is canonically isomorphic to k; the index 7 just reminds us of how s acts. We have
a Frobg-linear isomorphism
Fy, :=id @ Frobg: k; — ki1 .

4.3. Decomposition of the Dieudonné module. — Let (¢, 6) be a BT with s-action. Write
N for the (covariant) Dieudonné module of 7. We can view N as a module over K. There is
a natural decomposition

N= & N;, with Ny:={n€ N |a(n)=i(a)-n foralla€x}.
i€y

The Frobenius and Verschiebung Fy and Vj restrict to homomorphisms

FN‘.I Ni_)Ni-l-l and ‘/N,-:Ni <_Ni-|-17

equivariant with respect to Fy : k; — k;y1, respectively its inverse. The maps Fy, and Vi,
satisfy

(4.3.1) Ker(Fy,) = Im(Vy;,) and Ker(Vy,) = Im(F;) .
This last relation gives (simply writing I’ for Fiy and V for Vy)

dimy (N;) = dimy (Ker(Fy,)) 4 dimy (FN;)
= dimy(V Niy1) + dimy, (Ker(Vjn,,,)) = dimg(Nig1) .

As the index set .# has a cyclic ordering we conclude that d := dim(N;) is independent of ¢ € .7,
so that N is free of rank d as a K-module.
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4.4. Canonical filtrations. — Let
G.: (0):"{0g$flgg$fl:N

be the canonical filtration of NV, introduced in 2.5. As each %, C N is a K-submodule, it is of
the form %, = &I';, where I'; is a k;-submodule of N;. Let
Ci’.: (0) — C’L,O C

=

Cin € C Cig =N

- s I

be the filtration by k;-submodules of N; thus obtained. Note that we take the inclusions in this
filtration to be strict; hence the projection of €, to N; is of the form C} ; with in general j # v.
By construction, for each i € .# there is an index h; € {0,1,...,4;} such that C;,, =
Im(FNi_l).
4.5. Lemma. — (i) For alli € . and j € {0,1,...,(;} there exist indices r(j) = ri(j) €
{0,1,..., hiy1} and s(j) = si(j) € {hit1, ..., liy1} such that

FN,(Cij) = Ciprpgy  and  VG'(Cij) = Cipr a() -
(i) Ifj > 1 then either
CZ‘J' M Ker(FNi) = Ci7]’_1 N Kel‘(FNi) ,

or
Ci; C Span(Ci’j_l, Ker(FNi)) .

In the first case we have r;(j) = ri(j — 1)+ 1 and s;(3) = si(j — 1); in the second case r;(j) =
ri(j—1) and 5;(j) = s;( — 1) + 1.

(iii) The integer £ :={; does not depend on i € . For all i and j we have ri(j) + s:(j) =
hiyi1+7.

Proof. Statement (i) follows from the fact that the canonical filtration %. is (by construction)
stable under Fn and Vil, using that Fyy and Viy commute with the action of k. Assertion (ii)
follows from the definition of the canonical filtration together with (4.3.1). It follows from (ii)
that r;(5)+s:(j) =ri(j—1)+s:(j— 1)+ 1 forall § > 1. Noting that r;(0) = 0 and s;(0) = hsy1
we find that r;(j) + si(j) = hit1 + j. On the other hand, r;(¢;) = hiy1 and s;(¢;) = €;41. This
gives that {; = (;1,. O

4.6. Definition of the element w(.7,0). — For i € Z, let f(i) be the k-dimension of
N[F); := Ker(Fy,). This defines a function

f:.7 = {0,1,...,d}

which (by analogy to the classical notion of a CM-type) we refer to as the multiplication type of
the pair (.77, 6).

The integer d := rkx (/) and the function § should be thought of as “discrete invariants”
of the pair (J#,60), and for problem (GE) we may assume them to be fixed. To state the
theorem below we want to rigidify N, i.e., choose an isomorphism &: N =~ K?. Recall that
K = Hie] k;.

Let G := GLg x = HieyGiv with GG; = GLg ;. The function f determines a conjugacy
class X = X of parabolic subgroups of &, viz., the conjugacy class containing the stabilizer
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of N[F] C N =5 K% The type X decomposes as a “product” of types X; in the factors G;
identifying the Weyl group of G; with &4 as in 3.5 we have X; = S\{sj)}.

Via the chosen isomorphism ¢ we can view N[F]; and C;. as flags in k¢. Combining (ii)
of the lemma with (3.5.3), we find that each (. is in optimal position with respect to N[F];.
This gives us a well-defined element wu(N[F]Z-, Ci,.) € W (Gi; X;). Now define

w(H#,0) € #(G; X) = ] #(Gi; Xi)
1€ESL

to be the element with w;(3#,0) = 'wu(N[F]i, C’i,.). Alternatively, since each C; . is in optimal
position, it follows that also ) := Stabg (%’.) is in optimal position with respect to P :=
Stabg (N[F]), and w(5#,8) is just the element w?(P, Q). One easily checks that this element

does not depend on the choice of . Further it is clear that isomorphic pairs (J#,6) give the
same element w(.77, ).

4.7. Theorem. — Notations and assumptions as in 4.2 and 4.6. Sending (#,0) to the
element w(.77,0) gives a bijection

{isomorphism classes of pairs}

(2#,0) of type (d,f) = V(G X)= T |Gy X 6d—f(i)\6d} .

=sa

(In the last formula, we have written ;) X S4_f(;) as an abbreviation for &({1,...,§(i)}) x
S({f(H) +1,...,d}).)

The proof of the theorem will occupy the rest of this section.

4.8. Standard objects. — We use the notations introduced in 4.6. Let w = {w;}icsr €
W (G5 X) = [lics 7 (Gi; Xi). We shall define a pair (2, 0) = (7,,0,) of type (d,f) such that
w (7, 0) = w. We shall refer to this pair as the standard object corresponding to w.

Fori € ., let e;1,...,¢e; 4 be the standard basis of k. We use the explicit description of
W (Gi; X;) given in 3.5; in particular we identify the Weyl group of G; with &,. Consider the
(Xi,0)-reduced representatives w; € 4. Now define F: k¢ — ki | and V;: k¢ « kI, to be the
Froby-linear, resp. Frob,:l—linear maps given on the base vectors e; ; by

(i)

0 if i (j) < §(2);
= §(i) + m.

it1,m if wi(J)

Fileij) = {

and 0 F<d— i)
(o — it g <d—§(1);
‘/Z(el+17.7) - {ei,n lf] —d- f(l) + wz(n)
One readily checks that this gives K¢ the structure of a Dieudonné module corresponding to a

pair (4, 0,) of type (d,f). We shall write N,, for the Dieudonné module thus constructed. For
each 7 the full flag

(4.8.1) Fio: (0) C (ein) C(einsein) Coo C kY

’

is a refinement of the canonical filtration C;.. Hence w!(Ker(F;),Ci.) = w(Ker(F)), Ei.).
Computing u'z(Ker(Fi), Ei,.) following the recipe in 3.5 we precisely find back the element w.
Hence w(.74,,60,) = w, as desired.
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4.9. The canonical blocks. — We shall freely use the notations introduced in Lemma 4.5.
We refer to the k-vector spaces

B =0C5;/Cs -1 (forie . and j € {1,...,(})
as the canonical blocks. We define p;: {1,...,0} = {1,...,£} by

L ri(7) if CijNnKer(Fy,) =Ci ;210 KQT(FN,-);
pili) = si(f) i Ci; C Span(C’m_l,Ker(FNi)).

It follows from Lemma 4.5 that p; is a permutation.
For each i € .# and j € {1,2,...,£} we obtain a canonical Frobg-linear isomorphism

tij: Bij = Big1,.(5) s

induced by the Frobenius Fi,: Ci; — Ciyq ;) if ri(§) > ri(j — 1) or (inversely) by the Ver-
schiebung Vn,: Ci; = Cigr,s,(5) if 5:(4) > s:(j — 1). In the first case we refer to #; ; as an
F-arrow, in the second case we call it a V-arrow.

In what follows it will be important to follow how the blocks B; ;, thought of as the building
blocks of the modules N;, “migrate” through the circularly ordered system of modules N;. (For
an illustration of this, see 4.11 below.) We shall use the following notations and terminology.

Write & := .% x {1,...,(}. Let p be the permutation of & given by p(i, ) = (i+1, p;(j))-
By an orbit in & we simply mean an orbit under the permutation p. It will often be convenient
to denote an element of &/ by a single letter (usually a). Thus, if a = (i, ) € &, we shall write
ta: Ba — By(q) for the map ¢; ; above, etc.

4.10. Lemma. — For every a € & we can choose an ordered basis 3, for B, such that
Bp(a) ts the image of B4 under t,: By — B,)-

Proof. Clearly it suffices to find the desired bases for a running through one p-orbit O C &.
Notice that O is a finite set with a natural cyclic ordering. Let m := #0 and choose a(0) € O.
Write a(n) := p"(a(0)), so that a(m) = a(0). The composition

ta(l)\ ta(m—1) .
y o

ta(0)
T+ (Bago) = Baq) » Ba(m) = Ba(o))

is a Froby'-linear bijection. Then
e%)a(o) = {b € Ba(O) | e_7(()) = b}

is an Fym -subspace of B, (g) such that the natural map %, (o) @p,m k — Ba(o) is an isomorphism.
Now choose an ordered Fym-basis B,(0) for %), and define 84(,) to be the p"-image of B3,(o).
a

4.11. Remark. — Consider the K-module I := D (4,5)
summand B; ; as multiplication by i(c). Let b € B; ;. Define

tij(b) ifri(f) > ri(j—1);

F(b) =< "/ '

®) {0 if ri(j) =ri(G = 1).

Set Vi,(b) :== 0if C;; C Im(Fy,_,), that is, if j < h;. If j > h; then there is a unique index
v € {1,...,0} such that j = s;_1(v), in which case we set Vi,(b) := t! (b) € Bi_1,,. With

i—1,v

cwBij, where ¢ € K acts on a
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these definitions, L becomes a Dieudonné module of type (d,f); it should be thought of as the
“associated graded” of N with respect to the canonical filtrations C} ..

We claim that a choice of bases (3, as in the lemma gives an isomorphism of L with the
standard Dieudonné module N,. To see this we have to investigate the relation between the
permutations p; and the w;, writing w = w(5,0) = {w; }ic.r.

In order to describe this relation, we first have to “stretch” the permutations p; to become
elements of &4; the stretching factors are precisely the dimensions of the blocks B; ;. More
formally, for i € .#, consider the subset V; C {1,...,£} X Z>; consisting of all pairs (j,n) with
n < dim(B; ;). Define a total ordering of this set by -

G <Gin) € j<j oor j=jandn<nl.
Write (;: {1,...,d} = V; for the unique order-preserving bijection. Now “stretch” p; to a
bijection pg: Vi — Vigq by pg(j, n) = (pi(j), n) Via the bijections (; and (;11 we can view pg as
an element of &,.

Next define m; € &, by

() = {f(i)+v if v <d—f(i);
T v = (d=§(0) if v > d—f(i).

Then the permutations pg and w; are related by the formula w; = ﬂ'iopg. Using this, one
now easily verifies that, indeed, a choice of bases 3, as in the lemma gives an isomorphism of
Dieudonné modules with k-action L, =+ N,,.

To make this concrete in an example, suppose that & has p® elements. Identify .# = Z/3Z,
take d = 6 and f(1) = 2, f(2) = 1, f(3) = 5. Consider the standard object (.74,,0,), with w
given by

o w3 =

123456]. [123456]
2:

_ 1 2 3 4 5 6
13 4 5 2 6 23 1 4 5 6

1 2 6 3 4 5|°

The reader is invited to check that in this case the canonical blocks, and the way they are
permuted, look as follows:

N1 NQ N3 Nl
Bis Bs s Bs s By s
B4 B 4 B34 By
B3 Bs 3 B33 B3
B Bs 2 B3 2 B
1,2 1,2
; por >
By i > B
—_— —_—— —_——
p1 p2 P3

In each N; there are four blocks of dimension 1 and one 2-dimensional block. The permutations
p; are given by

(123 45 B
Pr=ilu4 1 2 5 3| 77

—_ =



their stretched versions are
4 5
Pr=l5 12 36 4| 7|1 26 3 4 5| 7|2 3145

n_123456] ﬁ_[123456] ﬁ_[123
1 6

4.12. F-V-compatible liftings. — Recall that for a € &/, we call t,: B, — B(,) an I-arrow
or V-arrow according to whether it is induced by Frobenius or (inversely) by Verschiebung.

Fix bases 3, as in Lemma 4.10. We are going to lift each §, to an ordered subset v, C (.
(Here @ = (i,7) € & and C, := C; ;.) For every i € .# this will give us an ordered basis v; of
N; with the property that each C} ; is spanned by the first dim(C} ;) base vectors. (To get the
correct indexing for the basis v; we use the bijections ¢; of 4.11.) We want to find liftings 7,
that satisfy the following two conditions:

(i) If t, is an F-arrow then 7,(,) is the image of v, under Fy: Cy — C\y(a);

(ii) If t, is a V-arrow then v, is the image of v,(,) under Va: Cy <= C)py).

If these two conditions are satisfied we shall say that {7, }sce is an F-V-compatible collection
of liftings. If such a collection of liftings exists then it induces an isomorphism of N with the
Dieudonné module L as in the above remark, and it follows from that remark that (77,6)
(2, O)-

4.13. Tops, bottoms, and chains. — Consider three consecutive elements a(—1), a(0) =
p(a(—1)) and a(1) = p(a(0)). We say that a(0) € & is a top if t,(g) is an F-arrow and t,(_y) is
a V-arrow, i.e., if both Frobenius and Verschiebung are injective on B,(). We say that a(0) is
a bottom if t,(g) is a V-arrow and ¢,(_y) is an F-arrow, i.e., if Frobenius and Verschiebung are
both zero on By ().

top: PELA bottom: —1 e L

Write @7t C & for the set of tops, @® C & for the set of bottom elements.

By an F-chain in & we mean a sequence a(0),a(1),...,a(n) such that a(0) is a top, a(n)
is a bottom, and each of the maps #,(,) (0 < v < n) is an F-arrow. Similarly, by a V-chain in
&/ we mean a sequence a(—n),a(—n+ 1),...,a(0) such that a(0) is a top, a(—n) is a bottom,
and each of the maps t,(,) (—n < v < 0) is a V-arrow. With this terminology, the orbits in &/
can be pictured as follows:

AT
F\/bottom
/./V
F

botto \/ 4

m
L

cyclic ordering
— .. e
Ni—s Ni_1 N; Nig1 Niyo Niys

(Going round, the orbit will in general cross itself; this we have not illustrated.)
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4.14. Pairs of marked orbits. — For the arguments that follow we need some observations
about the mutual position of two orbits. We begin with some terminology. Let a = (7, ) and
a' = (i',7") be two elements of &/. We say that « and o' are comparable if i = i'. We write
a <aifi=1and j' <j.

If O C & is an orbit then by a marking of O we mean a map Z — O, written n — a(n),
such that a(n+ 1) = p(a(n)) for all n. Clearly such a marking is fully determined if we specify
one a(n). Let n+— a(n) and n — a/(n) be markings of orbits O and O, respectively. We assume
that a(n) and @/(n) are comparable for all (equivalently: some) n. Given integers n; < ny we
say that O and O' are parallel in the interval [ny, ny] if for all v with ny < v < ny the two arrows
ta(n) and tqi(,) are of the same kind, i.e., they are either both F-arrows or both V-arrows. We
say that the (ordered) pair of orbits O and O’ is up-down at index n if ta(n) 18 @ V-arrow, ¢y (p)
is an F-arrow, and that they are down-up at n if it is the other way around.

Suppose that a'(0) = (45, j§) < a(0) = (o, jo). Let us first follow O and O' backwards in
time. We know that ¢,(_1): Bg(—1) — Bq(o) is an [-arrow if and only if jo < hy,. (This is really
the definition of h;; see 4.4.) In particular, if #,(_1) is an F-arrow then so is #,/(_1), and in
this case it is immediate from the definitions that also a'(=1) < a(—1). Similarly, if #,:(_y) is a
V-arrow then so is #,(_y), in which case we again have a’(—1) < a(—1). Thus, if O and O’ are
parallel in the interval [nq,0] and a’(0) < a(0) then a'(v) < a(v) for all v € [ny,0]. Note that if
O and O' are no longer parallel in [nq — 1,0] then we may still have that a’(n1 — 1) < a(ny — 1).
(Configurations c. and d. in the illustration below.)

Still assuming that a’(0) < @(0), let us now follow O and O’ forward in time. Suppose they
are parallel in the interval [0, ny] but not in [0, ny + 1]. We find that a'(v) < a(v) for all positive
v < n. At index n the pair (O,0') may be either down-up or up-down. In the down-up case we
necessarily have a'(ny + 1) = a(ng + 1).

To summarize, if O and O are marked orbits with «’(0) < «(0) then the possible configu-
rations are

« » 3
a ; \,x/‘/ . .
AN : -
L] \': - - ‘:
: ] % :
; ; up-down
s
; ) Y TN ‘
rd , -
b "/ 0 . 1 .
: o . :
: < . ' \'u - . .
SN - ;
LN
3 . VAN !
e / / . :
c. T o :
' o ¢ e
. L P ‘:\\
e o .
: : \\ /" down-up
3 3/\
e -\
d. T
-
e
: °
ny ny
parallel

4.15. Lemma. — Let O and O' be marked orbits as above.
(i) IfO # O' (as marked orbits) then there is no infinite interval in which O and O' are
parallel.
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(i) Suppose that a'(0) < a(0). Let e := #O and suppose that O and O' are parallel in the
interval [—e,0]. Then a'(—e) < a'(0) < a(—e) = a(0).

Proof. (i) There is an integer N (the l.c.m. of the lengths of O and O’) such that a(n+ N) =
a(n) and a'(n+ N) = a/(n) for all n. Thus, if there is an infinite interval in which O and O’ are
parallel, then they are actually parallel in all of Z. This implies that for every word 7 in the
letters /” and V~! we have Ca0) € Z(N) if and only if Cpioy € Z(N). (See 2.5 for notations.)
By definition of the filtrations C; « and the assumption that a(0) and &'(0) are comparable, this
is possible only if a(0) = &’(0). But this contradicts the assumption that a(0) < a'(0).

(i) Let @ = (¢,7) and o' = (i,j") be two comparable elements of &7. Suppose that p(a') <
p(a); in other words, p;(3') < pi(j). If t, and ¢, are both F-arrows or both V-arrows then
(pi(j) — pi(j")) < j—j'. lterating this e times we obtain (ii); here we have to remark that by (i)
we cannot have a'(—e) = a'(0). O

Now we are ready to prove what we want.

4.16. Proposition. — Let {B,}acw be a collection of ordered bases as in 4.10. Then we
can lift each B, to an ordered subset v, C C, such that the collection {v,} is F-V -compatible.

As remarked in 4.12 above, if we prove the proposition then Theorem 4.7 follows.

Proof. 1t suffices to find F-V-compatible liftings v, for a running through a fixed orbit
O C . In fact, by induction on the integer r > 0 we shall prove the following assertion:
L(r): If O C & is an orbit and O contains an element (7, j) with j < r then we can lift the
B, for @ € O to an F-V-compatible collection {7, }sco-
Let us first make explicit three remarks that follow directly from the definitions:
(1) Consider an F-chain a(0),...,a(n). Let v40) be a lifting of B,y inside C,q). For
0 < v < n, let v4(,) be the image (as an ordered set) of Ya(o) under Fx. Then 74, is
a lifting of B,(,) inside Cy(,)-
(2) Consider a V-chain a(—n),...,a(0). Let y,4(0) be a lifting of B4y inside Cy(g). For
0 <v < m,let y4(-y) be the image (as an ordered set) of v,(g) under V. Then v,(_,)
is a lifting of 3,(_,) inside Cy(_,).
(3) Consider an F-chain a(0),...,a(n). Let v4(n) be a lifting of 84, inside Cy(ny. Then
there is a lifting v4(0) of B4(0) inside Cy(0) such that v,(,) is the image of v,(o) under Fg.
Fix an orbit O C & and a marking Z — O, denoted n + a(n). Let e := #0. As a first
approximation we shall choose, for n in some subset of Z, liftings I'(n) C Cy(n) of Ba(n). These
liftings will be compatible under I” and V', but in general I'(n 4 €) will be different from I'(n).
After that, we shall modify the I'(n) such that I'(n + €) = I'(n) for all n, in which case we can
define the desired liftings v, by 74(n) = I'(n).
Suppose there are ¢ top elements and ¢ bottom elements in O. Let

"'<b0<t0<b1<t1<"'<bq_1<tq_1<bq:(bo+€)<tq:(t0+e)<---

be the integers such that the a(b,) are the bottom elements and the a(t,) are the top elements.

Start by choosing a lifting 1'(b,) of Ba(s,) = Ba(s,)- We apply (3). This tells us that we can
choose a lifting I'(¢,—1) such that I'(b,) is the image of I'(t,—;) under F,, where n = b, — t,_;.
By construction, the elements a(t,_; +v) with 0 < v < b, —1t,_; form an F-chain. The condition
that the I'(n) are F-V-compatible forces us to define I'(£,_1 +v) as the image of I'(t,_1) under
FY;. Similarly, the elements a(t,—; — p) for 0 < g < t4_1 — by—y form a V-chain, and we define
['(t;—1 — p) as the image of I'(f,_1) under V.
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We repeat the previous step, now starting with I'(b,_;). This gives us liftings I'(n) for
by_y < mn < by_y. We continue this process until we arrive at by. Notice that I'(bg) and I'(b,)
are both liftings of 3,(3,) inside Cy(p,), but that in general they will be different.

Next we want to modify the I'(n), for by < n < b, to ordered sets 1'(n), in such a
way that the new liftings are still F-V-compatible but also satisfy 1(by) = 17(b,). Write
a(by) = a(by) = (4,7). We may assume that by was chosen such that j is minimal among the
second coefficients of the elements ¢ € O. By induction we may further assume that statement
L(j — 1) is already proven. Here we should remark that for j = 1 there is nothing left to prove,
as in this case we have By(y,) = Cy(s,) and U'(bo) = Ba(pe) = 1'(bg)-

Set §(bg) = I'(by) — I'(bg). (Concretely: if I'(by) = z1,...,zq4 and I'(by) = y1,..., Y4,
with d = dim(B; ;), then 6(b,) is the ordered set 1 — y1,..., 24 — yq.) As I'(by) and T'(bo)
are both liftings of B,(,,) we have &(b,) C C;j—1. If I'(b,) = I'(by) we are done. If not, let .J
(with J < j — 1) be the largest index such that 6(b,) is not contained in C; y_;. By downward
induction on J it suffices to show that we can modify the I'(n) to -V -compatible liftings I''(n)
such that I'(by) — 1" (bo) C Cig-1.

Let O be the orbit of (¢,J). Let a': Z — O' be the marking with a'(b,) = (¢, /). We now
apply the induction hypothesis L(j —1). It follows that for by < n < b, we can find ordered sets
g(n) C Car(n), of cardinality d = dim(B; ;), in such a way that

(a) the e(n) are F-V-compatible (with respect to the orbit O');

(b) e(by) and §(b,) have the same image in B; ;.

To conclude the proof, there are two cases to consider. First assume that the marked orbits
O and O' are not parallel in the interval [bg, by]. Let v € [bg,b,] be the largest index such that
tar(y) and t,(, are of the opposite kind. For by < n < b, define I (n) by

(p) — ['(n) if n <w;
o )_{F(n)—s(n) if n>v.

Now the whole point is that, because t,:(,) and t,(,) are of the opposite kind, these I'(n) are
again F-V-compatible. By construction, I'(by) — I'"(bg) = I'(by) — I'(bo) — €(by) is contained in
Cig-1.

The other possibility is that O and O' are parallel in the interval [bg, by]. In this case, set

I'(n) :=(n) —e(n).

These are again F-V-compatible, and it follows from (ii) of Lemma 4.15 that also in this case
I"(bg) — I"(by) is contained in C; y_;. Proceeding by induction this finally gives us the desired
liftings v,. O

4.17. 'To conclude this section, let us draw a conclusion from Theorem 4.7 that will be of
use in the next section.

We say that a pair (J#,0) is indecomposable if it is not isomorphic to the product of
two non-trivial BT’s with k-action, and that it is isofypic if it is isomorphic to a power of an
indecomposable pair. Viewing the Dieudonné module N as a module over the (non-commutative)
ring A, = Kk @r, k,[F,V]/(F'V,VF), these notions correspond to the usual notions for A,-
modules. Notice that N is both noetherian and artinian as a A,-module, since it has finite k-
dimension. In particular, N admits a unique decomposition as a direct sum of indecomposables.
For the pair (.7, 6) this means that it can be written as a product of indecomposable pairs, and
that the factors in such a decomposition are uniquely determined. The same conclusions can
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also be derived from the theorem and its proof; in fact, we see that the isotypic factors can be
read from the decomposition of the set & into orbits:

4.18. Corollary. — The pair (H,0) is isotypic if and only if the associated index set
o/ consists of a single orbit. In general, the decomposition of </ into orbits corresponds to a
decomposition of (3 ,0) as a product of isotypic pairs. The pair (,0) is indecomposable if
and only if &/ consists of a single orbit and all canonical blocks are 1-dimensional.

For instance, the pair (J#, 8) corresponding to the example in 4.11 decomposes as a product
of three isotypic factors. Two of the factors are indecomposable; the third one is the square of
an indecomposable pair.

5. BT,’s with endomorphisms and a polarization—cases C and D

In this section we state, and solve, a problem (GPE) about BT;’s with an action of a semi-
simple F,-algebra and a pq-polarization. After some reduction steps the main result is given in
Theorem 5.5. The problem splits up in three cases, referred to as (C), (D) and (A). Mainly for
notational reasons we shall deal with case (A) in the next section.

5.1. The setup. — Let k be an algebraically closed field of characteristic p > 0. Let (D, x)
be a finite dimensional semi-simple Fp-algebra with involution. If (¢4, ) is a pq-polarized BT,
over k, write f ~ fT for the Rosati involution on Endy(%) induced by A. The problem that we
want to consider in this section is:

(GPE) Classification of triples (¢, A, ¢), where (¢, \) is a pq-polarized BTy over k and ¢: D —
Endy(¥) is a homomorphism with ¢(1) = idg and ¢(d*) = +(d)1 for all d € D.

This problem is easily reduced to the case that (D,#) is a simple algebra with involution.
Namely, suppose we have a decomposition of (1), *) as a product of algebras with involution
(Dj, %;). Choose idempotents e; € D with D; = e; - D. Then ¥, := Im(c(ei): 94 — g) is again a
BT, the pg-polarization X induces a pq-polarization A; on %;, and (¢, ) is the product of the
(¢4;, X;) thus obtained.

From now on we assume that (D, ) is simple as an algebra with involution. Write & for
the center of D and put k = {a@ € & | «® = a}. Then & is a finite field and we can distinguish
the following possibilities:

(C) the involution * is orthogonal (of the first kind) and & = &;

(D) the involution * is symplectic (of the first kind) and & = k;

(A) the involution * is of the second kind; either & 2 k X k (case (A1)) or & is a quadratic

extension of £ (case (A2)).
(The chosen labels refer to the root systems of the algebraic groups that will come into play.)
If char(k) = 2 then we shall exclude the case that x is a symplectic involution. In this section
we shall only consider cases (C) and (D). The structures we find in case (A) are not very
different but require additional notations; we shall therefore discuss this case in a separate
section. Throughout, we freely use the notations and terminology introduced in the previous
section.

5.2. Morita equivalence. — By Dieudonné theory, the category of triples (¢, A,:) as in
(GPE) is equivalent to the category C; of 5-tuples (M, Fr, Var, ¢, t), where

— (M, Fyr, V) is the Dieudonné module of a BTy;
— o2 M x M — k is a symplectic form with ¢(F'my,me) = ¢(my, Vmg)? for all my,
my € M;
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— 12 D — Endpum(M) defines an action of D on the Dieudonné module M such that
o(dmy, my) = @(my,d*my) for all d € D and my, my € M.
Recall from 4.3 that M is free as a K-module.
We have a Morita equivalence, which tells us that the category C; is equivalent to a category
C, whose objects are of a simpler kind. The precise description of the category C,; depends on
the type of (D, ). Namely, the objects involve pairs (N, V), where N is a free K-module of
finite rank, and where W: N x N — K is
(C) a symplectic form if  is orthogonal;
(D) an orthogonal form if * is symplectic (char(k) # 2).
(We shall see that the K-rank of N is necessarily even; this explains why the orthogonal case
is labelled (D) and a type (B) does not occur.) Now define C, as the category of 5-tuples
(N, Fn,VN,¥,0), where
— (N, Fiy, V) is the Dieudonné module of a BTy;
— 6: k — Endpwm (V) defines an action of x on the Dieudonné module N; via this action
we can view N as a module over K, and we require that it is free;
— W: N x N = K is a form as just described, such that U(F'ny,ny) = Fi (\Il(nl, Vng))
for all ny, ny € N.

To describe the equivalence Cy RN Ci, fix an isomorphism D 22 M, (k) and set £ = K",
viewed as a left D-module. The involution x on D corresponds to a non-degenerate form y on
Z. More precisely, there is a non-degenerate bilinear form x: .Z x . — &, unique up to a scalar
in k%, such that

(5.2.1) X(d -1y, ly) = x(l,d™ - 1y) forall de D and [y, I, € Z.

The form y is alternating if * is symplectic and symmetric, non-alternating if * is an orthogonal
involution. The equivalence Cy —%5 C; is obtained by associating to an object (N, Fiy, Vv, ¥, 0)
of Cy the 5-tuple (M, Fas, Var, @, t) with M := £ ®, N, with ¢: M x M — k the symplectic
form given by

o(ly @ ny,ly @ ny) (x(l1,13) - W(ny,na)),

= ftr

K/k
with D acting on M through its natural action on ., and with Fjy; := id¢ @ Fy and Vy :=
id » ® V. That this indeed gives an equivalence of categories is more or less standard; see for
instance Knus’s book [4], Chap. I, especially Prop. 7.2.4 and Thm. 9.3.5. As remarked above,
the M are free K-modules; they therefore indeed correspond to free K-modules V.

Now we translate back to group schemes. Throughout we shall use ¢ € {£1} for the sign of
the pairings ¥ involved, i.e., ¢ = —1 in case (C), € = 1 in case (D). Let 2 be a BT, equipped
with an action of k. Consider isomorphisms y: .2 5 P commuting with the s-actions and
such that the corresponding bilinear pairing ¥ on the Dieudonné module is of the type described
above; we shall refer to such an isomorphism y as a k-e-duality. (As explained in 2.6, the precise
condition we want to impose has to be phrased in terms of the pairing W.)

In conclusion, we have reduced problem (GPE) to:

(GPE’) Classification of triples (.3, u, 8), where (.2, 6) is a BT, with an action of k, and where
p: =5 AP is a k-e-duality.

5.3. Decomposition into character spaces. — Let (N, Fy,Vn,V,0) be an object of the
category C,. As in 4.3, the action of k on N gives rise to a decomposition N = &;c.#N;. The
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form W decomposes as a product W =[], ; ¥:, where ¥;: N; x N; — k; is of the same type as
v, and

‘¢i+1(FN,- (n1), n2) = Iy, ('zﬁi(nl, VNI.(nQ))) for all ny € N; and ny € Niyq.
If H; C N; is a k;~submodule then

(5.3.1) FRU(HEY = (Vo (H)) T and VH(HE) = (B, (H)
where L; denotes the perpendicular with respect to the form ;. (In the sequel we shall simply
write L for L;. We trust it will always be clear from the context what is meant.)

Combining (5.3.1) with the fact that N;[F] = Im(Vy,,,) and N;[V] = Im(Fy,_,) we see that
N;[F] = N;[F]* and N;[V] = N;[V]! are maximal totally isotropic subspaces. In particular, the
common dimension of the spaces N; is even, say dim(N;) = 2¢, and dim (N,;[F]) = ¢. Repeated
further application of (5.3.1) then shows that the canonical filtration C; . is self-dual with respect
to 1;. In particular, the common length ¢ of these filtrations is even, say £ = 2m. We have
C'ij = Ciam—j. In particular, if @ = (¢,5) and @ = (i,2m + 1 — j) then %; induces a perfect
pairing

U(i,j) = Yat Ba X Ba — k.

Summing up, the discrete invariants (d, f) introduced in 4.6 are given by d = 2¢ and (i) = ¢
for all 7. In case (D) there is another discrete invariant that we need to keep track of. Namely,
define a function

5 7 = (Z)2Z) by 6(i) = [dimk (Ni[F]/Ni[F]nNi[V])}.

This invariant should be thought of as a “mod p” version of the crystalline discriminant, cf. [11],
section 3.

5.4. Definition of the element w(, u,0). — Let (7, u,0) be a triple as in (GPE’). Write
(N, Fn,Vy,¥,0) for the corresponding Dieudonné module. Let 2¢ be the K-rank of N. As
explained above, (7, 0) is of type (2¢, f) where f is the constant function g.

Let ®: K21 x K20 — K and ¢ k% x k3% — k; be the standard symplectic/orthogonal
pairings. Write G' = Autg (K%, ®) = [[,c , Gy, with G; = Auty, (k%, ;). Choose an isometry
& (N, W) =5 (K%, ®); this allows us to view the N[F]; and C; « as partial symplectic/orthogonal
flags in k?q. Consider the building A = Flag, (K?*?,®) of partial symplectic/orthogonal flags
of K-modules in K?%%; it is the join of the buildings A; := Flag(k?q, ¢i). Let X, resp. X;, be the
type of N[F] C K4, resp. N[F]; C k;?. We shall write #(G; X) for #/(A; X) and #(Gi; X;)
for #'(A;; X;). (Even though in the orthogonal case A is not the building of parabolic subgroups
of G this should cause no confusion, as it is still true that Wa = We.)

The definition of w(.7, 1, 8) now proceeds exactly as in 4.6. Namely, by (ii) of Lemma 4.5
together with what was found in Examples 3.6 and 3.9, each (. is in optimal position with
respect to N[F];. This gives us a well-defined element 'wu(N[F]i, C’i7.) € W (Gy; Xi). We define

1EF

to be the element with w; (27, u, 6) = w* (N[F]i, Ci,‘)- This element is independent of the choice
of £. It is clear from these definitions that isomorphic triples give the same element w.
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As explained in 3.10, if Xj is the type of the stabilizer of N[F] in the group GLy, x then
there is a natural map

(5.4.1) W (G X) — # (GLay k5 X5)

and this maps w(3, 1, 0) to w(.7,0).

5.5. Theorem. — Notations as above. Assume that char(k) # 2. Recall that we set e = —1
in case (C), e =1 in case (D).

(i) Let (2#,0) be a BT, with an action of k, of type (2q,f = q). Let w(3,0) be the
associated element ofW(Gqu’K; Xf). Then there exists a k-e-duality p: # — P if and only
if w(s#,0) is in the image of the map (5.4.1).

(i) If a duality p as in (i) exists then it is unique up to isomorphism. In other words:
sending a triple (7, u,0) as in (GPE’) to the element w(, u,0) € W (G; X) gives a bijection

{isomorphism classes of triples}

(A, 1, 8) of type (2q,§=q) —— W(G; X)= [ 6,\H,.

1€ES

The “only if” statement of (i) is an immediate consequence of what was explained above.
Conversely, if w is an element in the image of the map (5.4.1) then we shall see in 5.7 below
that there exists a pairing of the desired kind on the Dieudonné module of the standard object
(#,0.). The proof of (ii) is more involved, and will take up a large part of the rest of this
section. The proof that we give only works for char(k) # 2. In case (C) the theorem is still true
for char(k) = 2. Our proof of this is much more involved; for the special case that & = F, (no
non-trivial endomorphisms) see [12], Section 7.

5.6. Variant. — In case (D) we have a variant of the theorem, where we replace G by its
identity component; this works provided that we keep the invariant & fixed.

Concretely, fix ¢, and set G° := SOy, x = [[;c,GY. If L C K*?is a maximal isotropic
subspace then Stab(L) C G° is a maximal parabolic subgroup. The set of all parabolics obtained
in this way consists of two GY-conjugacy classes. Let X° be one of these two. Now let (37, u, 8)
be a triple as in (GPE’), of type (2¢,f = ¢). Similar to what we did in 5.4 above, we can
associate to this triple an element w®(J#, u,0) € #(G°; X?). For this, choose an isometry
& (N,¥) =5 (K?%%,®) such that the stabilizer of N[F] is in the chosen class X°. Let P; :=
Stab(N[F]i) and @; := Stab(C;.) C GY. Then Q; is in optimal position with respect to P; and
we can define w” (.37, i, 0) to be the element with w{ (7, u, 0) = w!(P;, Q).

On the other hand, we have associated to (.3, u,f) the function §. As explained in 3.9,
this invariant allows us to compute w®(J, u, 0) from w(#, u, ) and vice versa. Using this, (ii)
of the theorem can be rephrased as follows:

(i") Assume we are in case (D). Fiz a function §: & — (Z/2Z). Then sending a triple
(H, 1, 0) as in (GPE) to the element w®( 5, u,0) gives a bijection

{isomorphism classes of triples

s (G X0
(A, p, 0) of type (2q,f=q,5)} ( )

This is the phrasing that will be used in our applications to Shimura varieties of PEL-type.

5.7. Pairings on standard objects. — We use the notations of 5.4. Let w be an element
of #(G; X). In 4.8 we have associated to w a standard Dieudonné module N,, with an action of
. The underlying K-module is just K?? = @ieyk?q. We claim that there exists a k-e-duality
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p: A 5 #P . corresponding to a form W on the Dieudonné module, such that (s 11y 0u) 18
a triple as in (GPE’). Since the image of w (.74, u, #,,) under the map (5.4.1) is just w(.77,,,0.,)
we have w(J€,, 1, 8) = w for any such p.

To prove our claim, let us first recall the structure of N,,; the description we give will also
be used later. Let £ = 2m be the common length of the canonical filtrations C; .. By definition,
o = .7 x{1,2,...,2m}. We have the permutation p: & — & which sends (¢, j) to (z,pz(]))
If d, := dim(B,) then we can compute the data (p, {da}aed) from w and vice versa. The
K-module N = N, is given by N = @uco Ba with z € & acting on By; ;) as multiplication by
i(z) € k. For each a € & we have an ordered basis 3, of B,. Frobenius and Verschiebung are
given, writing @ = (7, j) by

_ ﬁp(a) if pz(]) S m; e _ ﬁp—l(a) lf] > m;
F(ﬂa) — {0 lf pz(]) >m and V (ﬂa) - 0 lf] S m.

Given a = (i,j) € &/, we write @ := (i,2m + 1 — j), and we call this the opposite of
the element a. Notice that the permutation p has the property that p(a) = ;(:z/). (Drawing
an illustration as in 4.11 this means that the whole picture is symmetric under reflection in a
central horizontal axis.)

Assume we are in case (C). In order to describe the desired pairing ¥, we have to introduce
certain constants. If O is an orbit which is not self-dual, set ¢(a) := 1 for all a € O. If O is
self-dual then it has even length, say 2s. Then Frob®: ¢ — ¢?" is the unique automorphism of
the field Fy2: over F,s. Write ]F‘;Es C F,2s for the subset of elements ¢ with ¢ = —¢. Then we

choose for every a € O a constant ¢(a) € F 5, in such a way that c¢(p(a)) = c(a)?. In particular,
c(a) = —c(a).

For a € &, let now v,: B, x Bz — k be the perfect bilinear pairing given on the ordered
bases 3, and 3; by the matrix

‘ c(a)
anti-diag(c(a)) :=

c(a)

For ¢ € #, let ¥;: N; x N; — k; be the orthogonal sum of the pairings ; ;; one checks
that this is indeed a symplectic pairing. Further, the construction is such that the form W :=
[licsr ¥i: N x N = K satisfies

(5.7.1) U (Fny,ng) = FK(lI!(nl, Vm))

for all ny, ny € N.

Next assume we are in case (D). In this case, set ¢(a) = 1 for all @ € /. The resulting form
V is simply the standard orthogonal form on N & K29, Again one checks that this is a form as
required.

In sum, we have shown that every element w € #/(G; X)) is obtained as w(., u, #) for some
triple (7, u,6) as in (GPE’).

5.8. Brief overview of the proof. — It is clear from the definitions that isomorphic triples
(A, 11, 0) give the same element w(.3#, u, #). On the other hand, we have just shown that every
element of #/(G; X) comes froms some triple (.3, u,#). Thus, the task that remains is to prove
unicity of the polarization form: if (3#,8) is a BT with s-action and puy, py: 37 — P are
two k-e-dualities then (€, py,0) =2 (I, 12, 0).

26



Our proof will combine two results. First we shall analyze the group U of automorphisms of
a pair (¢, 0) which induce the identity on the canonical blocks. We show that, if char(k) # 2,
every f € U with fT = f can be written as f = g'g; see 5.12 below. After that we show
that, given a triple (7, u, ) as in (GPE’), we can choose ordered bases 3, for the canonical
blocks B, which are F-V-compatible and which are also “good” with respect to the pairings
Y.t By X Bz — k; this is done in 5.13. Combining everything, the proof of the theorem is
completed in 5.14.

5.9. Lemma. — Let k be an algebraically closed field of characteristic # 2. Let G be a
connected unipotent k-group (written multiplicatively), equipped with an anti-involution g +— g'.
Then every f € G with ft = f can be written as f = gt - g for some g € G.

Proof. There is an exact sequence 1 — G — G — V — 0, with V a non-zero vector
group (written additively) and G; C G connected and stable under . Choose z € G with
m(z) = —=1m(g). Then g; := aTga is an element of Gy with g;r = ¢1. The lemma follows by

induction on dim(G). O

5.10. Let (J#,6) be a BTy with an action of k. By our results in the previous section,
the Dieudonné module N is isomorphic to the standard object associated to w := w(.7#,6). We
shall work with the description of N given in 5.7. As usual we view N (via the given ) as
a module over K. We identify Endy(7#,8) with the subring of Endx (N) = [];c , End; (N;)
consisting of all endomorphisms which commute with £ and V.

Every f € Endy (57, 0) stabilizes the canonical filtrations C; .. For a € & we can therefore
define gr,(f): B, — B, as the homomorphism induced by f. Now consider the subgroup
U C Auty(.77,0) given by

U={f € Auty(#,0) ‘gra(f):idBa forall a € &/} .

Let U be the unipotent radical of the stabilizer of . inside the group GLK (N); this Uis a
connected unipotent k-group. By construction, U is a subgroup of U.
Consider an element f € U. Given a, a' € &, let P, ,» be the matrix of the composition

BQ%NI_—id)N—»Ba,

with respect to the bases §, and .. This is a matrix of size d, x d,. Clearly we can have
P, o # 0 only if ¢’ < a (notation as in 4.14).

It is not so difficult to analyze the relations between the matrices P, ,.. To state the result,
recall that each t,: B, — B, is called either an F-arrow or a V-arrow. Further let us write
o := Froby: k — k. Now suppose that for each pair (a,a’) € & x & we have a matrix P, o of
size dy X dy, with P, ;+ # 0 only if ' < a. Then a necessary and sufficient condition for this
collection of matrices to come from an element f € U is that for all (a,a’) we have

Py oay = P2, if t, and ¢, are of the same kind;
5.10.1 P( )w’)( ) a,a !
(5.10.1) P, =0 if t, is a V-arrow, ¢, is an F-arrow.

(As we have already assumed that P, ,» = 0 whenever a’ £ a, the only case where we get a new
relation P, o+ = 0 is when o’ < @ and p(a’) < p(a), with t, a V-arrow, t, an F-arrow. In the
terminology of 4.14 this is the up-down case.)

At this point we use what we found in 4.14. Write ¥ for the set of pairs (a,a') € & x &
such that ¢’ < a. Given such a pair (a,a’), consider the corresponding orbits O and O'. We
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mark these orbits such that a(0) = @ and a’(0) = a'. Let [ny,n] (with n; < 0 < ny) be
the largest interval around 0 in which the marked orbits O and O’ are parallel. We say that
(b,b') € ¥ is equivalent to (a,a’) if there exists an index n € [ny, ns] with (b,0') = (a(n),a'(n)).
This defines an equivalence relation on ¥. We say that the class of (a,a’) is a nill-class if the
pair of orbits (O, O') is up-down at index ny. (See the illustration in 4.14.) Finally, we call the
pair (a(n1),a’(n1)) the distinguished representative for the equivalence class of (a,a').

With this terminology, (5.10.1) can be rephrased as follows. If the class of (a,a’) is a nill-
class then we must have P, ,+ = 0. If the class is not a nill-class, with distinguished representative
(a(m),a'(n1)), then P = P,(,,).01(ny) can be chosen arbitrarily and

—n1

Py =P’

In particular, this implies the following result.
5.11. Lemma. — The group U is a connected unipotent subgroup of U.

5.12. Corollary — Assume char(k) # 2. Let (3, u,0) be a triple as in (GPE’). Write
[~ fT for the Rosati involution on Endy(5#,6) induced by u, and notice that U is stable
under t. Then every f € U with fT = f can be written as f = g7 - g for some g € U.

Now we come to the final main ingredient of the proof of 5.5.

5.13. Lemma. — Let (€, p,0) be a triple as in (GPE’). Choose constants c(a) (¢ € &)
as in 5.7. Then for every a € & we can choose an ordered basis (3, for B, such that: (a) (,(a)
is the image of 3, under t,: By, — By, and (b) the form ,: By, X B — k is given on the
bases 3, and B; by the matriz anti—diag( (a ))

Proof. Given an orbit O C &, write O :={a | a € O}, which is also an orbit. It suffices to
find the bases 3, for a running through OUO. If O # O this is easy: for a € O choose ordered
bases 3, satisfying condition (a). (See Lemma 4.10.) For a € O let (3; then be the basis defined
by condition (b). These again satisfy (a), and we are done.

Next suppose that O = O. Then O has even length, say 2s. Fix a marking n — a(n) of O.
For r > 1 consider the Frobj-linear isomorphisms

ta(o)

r) . N ta(l)\ a(r 1)
T = (Bago) == Bapty =+ 1+ = Bagy))
and t t t
r a(s) a(s+1) ba(s+r—1)
U( ) = (Ba(s) - Ba(s+1) > e > Ba(s+r)) .

Using the relation (5.7.1) we see that the diagram

Ba(O) X Ba(s) —ﬂ) k
(5.13.1) T XU(r)l lFrob;
Ba(r) X Ba(s-l—r) - k
Ya(r)

is commutative.
Consider the F,2s-vector spaces

Buo) =D € Buo) | TCI(B) =0} and By = {b € Bugy | U () = b}
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We have %) @r ., k — Byo) and B, @F 2. k — By(s). The maps T0) and U®) restrict
to Frob®-linear isomorphisms

T Buoy = Basy  and U By = B,

inverse to each other. Taking r = 2s in diagram (5.13.1) we find that t,(g) restricts to a perfect
pairing %, (0) X Ba(s) — Fp2s. Next taking r = s in (5.13.1) we find that

H: Boo) X Bao) — Fpze  defined by  H (b, b') = ¢0) (b, 7 (V)

is an e-symmetric hermitian form with respect to the involution Frob® of Fp2. over Fp.. Notice
that the discriminant of such a form is in IF’;S /Norm(]l?’;%), which is the trivial group.

Essentially, all we have to do now is to bring H in standard form. Note that the forms H
are classified by a cohomology group H'! (]Fps s SU(% o0y H)), and by Lang’s theorem this group
is trivial. (See Knus et al., [5], Section 29.19, and Serre [15], Chap. 111, §2.) Hence we can choose
a basis B,(g) on which the form H is given by the matrix anti-diag(c(a(0))). Now define f,(n)
to be the image of 3,(g) under 7", This gives bases 3, as required. [

5.14. FEnd of the proof. — Combining all previous results, let us now complete the proof
of Theorem 5.5. We take a triple (37, p,0) as in (GPE’). Write (N, I, V, W, 8) for the corre-
sponding Dieudonné module with additional structure. Let f — fT be the Rosati involution on
End (57, 0).

Write w := w(.7#, 1, §). Choose constants c(a), for a € & as in 5.7. Write Ny = @yew Ba
for the standard Dieudonné module corresponding to w; we use the description given in 5.7, but
in order to avoid confusion with the module N we now do write the subscript “w”. Let W,, be
the pairing on V,, constructed in loc. cit.

Choose bases 3, as in Lemma 5.13. This gives us an isomorphism of Dieudonné modules
with s-action h: N — N,. Further, taking & as an identification, the two pairings ¥ and
U, induce the same pairings ¢,: B, X B; — k on the canonical blocks. Tt follows that there
is an element f € U with f1 = f such that W, (n1,ny) = W(fny,ny) for all ny, ny € N. By
Corollary 5.12 this f can be written as f = g7 . ¢ for some g € U. Then hog™': N =5 Ny, is
an isomorphism which is compatible both with the k-actions and the pairings. The existence of
such an isomorphism is what we had to prove. [

6. BT,’s with endomorphisms and a polarization—case A

In this section we deal with problem (GPE) stated in 5.1 in case the algebra with involution
(D, «) is simple of type (A). There are some new features, but once we have set up notations
most steps in the proof of Theorem 6.7 are the same as in the previous section. Therefore we
shall explain the new features and state the main result, but only outline the proof.

6.1. The setup. — We consider a semi-simple algebra D with involution % of the second
kind; as explained in 5.1 we may assume that (D, x) is simple as an algebra with involution.
Write & for the center of D and k := {a € &£ | ¢ = a}. Then k is a finite field and either
kE = k X k, which we call case (A1), or & is a quadratic field extension of &, called case (A2).

Set .# := Hom(k, k) and .# := Hom(&, k). We shall typically use the letter i for an element
of .# and 7 for an element of .. Fori € &, set i+ 1 := Frobgoi. For T € j, set 74+ 1 = Frobger
and 7 = 7o*. In case (A2), taking 7+ 1 as the successor of 7 gives 7 a cyclic ordering. We have
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T = 7, using the notation of 4.1. Similarly, if in case (A1) we impose the condition that 7 = 7
then we have a natural bi-cyclic ordering on .#. In both cases the set .# has a cyclic ordering.
We have a natural 2 : 1 map .# — .#; if this sends 7 € .Z to i € .# then we refer to 7 and 7 as
the elements of .# lying over i.

Fori € .# and 1 € .7 we write

Let
K:=r@r, k=[] k and K:=k@p, k= 1] ki= ][ k-r.
i€s i€s res

The maps id ® Froby give Frobyg-linear isomorphisms
Fkrikf—)'k7-+1, Fki:ki%ki+l7 ch.:;}i_)]::i-l-l7 Frg: K - K, FR—RY—)RY

6.2. Morita equivalence. — Similar to what was done in 5.2, we can reduce problem (GPE)
to a problem with ID = &. This time, the category C; is equivalent to the category C, of 5-tuples
(N, Fn,VN,¥,0), where

— (N, Fn, V) is the Dieudonné module of a BT;

— 6: £ — Endpy(NV) defines an action of & on N, making it a free module over K:

— U: N x N — K is an alternating hermitian pairing with respect to the non-trivial

automorphism of K over K.
Note that we only consider modules N which are free over K. To explain why, recall from 4.3
that our modules N are free over K. As we shall see below, the existence of a hermitian pairing
with values in K implies that they are even free over K.
Translating back to group schemes the problem becomes the following.

(GPE’) Classification of triples (J#, i, 0), where (#,0) is a BTy with an action of %, and where
p =y AP s a k-(—1)-duality.
Here we use the ad hoc term “&R-(—1)-duality” for a duality p corresponding to an alternating

hermitian form W on the Dieudonné module.

6.3. Let (N, Fiy, VN, U, 0) be an object of the category C,. As in 4.3, the action of k gives
rise to a decomposition N = @, N;. Using the full action of % this is refined to s decomposition
N = @Te}NT' If 7 and T are the two elements of ualying over 1 € .4 then N; = N, @& N-.

Frobenius and Verschiebung become homomorphisms Fxn_: N; — Nry; and Vi : N,
N;41, equivariant with respect to Fj_: k; — kr41, respectively its inverse.

By a similar procedure as in 4.4, we obtain canonical filtrations

Crot (0)=CrpCCri & CCry, =N

By construction, for each 7 € .# there is an index h, € {0,1,...,£,} such that Crn, =
Im(Fy,_,). The analogue of Lemma 4.5 in this setting is as follows.

6.4. Lemma. — (0) The integer £ := {, is independent of T € 7.
(i) Foreacht € .7 andj € {0,1,...,} there exist indices r(5) = r,(j) € {0,1,...,hrp1}
and s(j) = s:(j) € {hr41,...,L} such that
N (Crj) = Crpapyy  and  VGH(Crj) = Crynggj) -
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(i) For j > 1, either
CriNKer(Fy,)=Crj_1 NKer(Fy,),

or
Cr; C Span(Cr -1, Ker(Fy,)) .

In the first case we have r-(j) = r:(j — 1) + 1 and s;(j) = s;(j — 1); in the second case
r-(j)=r-(j—1) and 5.(j) = s-(j — 1) + 1. Further,

C-jNKer(Fyn,)=Cr ;1 NKer(Fy,) <= C;41-; CSpan (Cq-’g_j, Ker(FN?)) .

(ili) For all 7 and j we have r-(j)+ s-(j) =L+ 7 and r-(j)+ s=({ — j) = L.
6.5. We define the canonical blocks by

Br; =C:;/Cr i1 (for 7 € . and j € {1,...,4,}).

Further we have permutations pr € &, given by

N [reg) i CrynKer(Fn,) =Cr o1 NKer(Fy,);
’0*(]) B Sz (]) lf Cij C Spa’n (Cij_l’ Kel‘(lﬂNr))'

As in 4.9 we obtain, for 7 € . and j € {1,2,...,£}, a Frob-linear isomorphism
trjt Brj = Briip.() s

induced either by Frobenius or (inversely) by Verschiebung.

We have an involution (a,b) — (b, a) of k; 2 k, x kr = k x k over k; = k. We shall write
this automorphism as z — Z. Note that if we restrict this automorphism to one of the two
factors we get an isomorphism k, — k; which, via the identifications k; = k = k-, is just the
identity on the field %k; in other words: if @ € k, then a is the same element of k, but now
viewed of an element of k;. The map k, — k; given by a — @ should be thought of as “complex
conjugation”; in particular, if C; is a kr-module and C3 is a kz-module then it makes sense to
say that a pairing ¢: C; X C> — k; is anti-linear in the second variable.

With this terminology, we have perfect pairings, linear in the first variable, anti-linear in
the second variable,

Uyt Np X N = k. with  ¥:(y,z) = —¢-(z,y) .

In particular, dim(N,) = dim(N;), and it follows that the K-module N is free, as claimed in 6.2.
The canonical filtrations C'; . and C . are dual with respect to the pairings 1, and 9. In
particular, on the canonical blocks we get induced perfect pairings

Prgt Brj X Brop1oj — kr.

6.6. Definition of the element w (5, u,0). — Let (3¢, u, 0) be a triple as in (GPE’). Write
(N, Fn,VyN,¥,8) for the corresponding Dieudonné module. Let ¢ be the K-rank of N. For
7 € ., let f(r) be the k-dimension of N[F], := Ker(Fy_). This defines a function f: .7 —
{0,1,...,q} with the property that f(r) + f(7) = ¢ for all 7.

31



Let ®: K7 x K7 — K be an alternating hermitian form, K-linear in the first variable, K-
antilinear in the second. Write G = Uz (K%, ®) for the group of K-linear unitary automorphisms.
The pairing @ is the product of pairings

pi = (prypr): R X kE = (k2 @ kL) x (k& kL) — ki = ks X ks

(where @, pairs k2 with k), and we have G' = [[;c , G, with G; = Auty, (ki%, ;). If 7 and 7

are the two elements of .& lying over ¢ € .# then we have isomorphisms
GLgk, — Gi —— GlLg, -

Choose an isometry & (N, W) =5 (K%, ®) of hermitian K-modules; this allows us to view
the N[F]; and C. as partial flags in k2. Viewing &k as the dual of k% via the perfect pairing
r we have N[F]; = N[F]+ and Cr. = CH,.

Write P := Stabg (N[F]) and @ := Stabg(%.). Let W = W, and write X for the type of
P. We have a natural decomposition Wx\W =[], , Wx,\W;. The inclusion map G < GL, ¢
gives rise to an injective map

(6.6.1) VVX\W — WXf\WGLq’X ,

writing Xy for the type of the stabilizer of N[/] in GL, z (which is equivalent to knowing the
function f).

Working as in 4.6 and 5.4, using (ii) of Lemma 6.4 and what was explained in Examples 3.5
and 3.11, we obtain a well-defined element

w( A, 1, 0) = w'(P,Q) € Wx\W,

independent of the choice of £.

6.7. Theorem. — Notations as above. Assume that char(k) # 2.

(i) Let (5#,0) be a BT, with an action of i, of type (q,f). Let w(.77,8) be the associated
element of ‘W(Gqu\,;Xf). Then there exists a fi-(—1)-duality p: # — Y if and only if
w(H,0) is in the image of the map (6.6.1).

(i) If a duality p as in (i) exists then it is unique up to isomorphism. In other words:
sending a triple (7, u,0) as in (GPE’) to the element w(.7, i, 0) € W (G; X) gives a bijection

{isomorphism classes of triples

(4, i, 0) of type (q,f) } —— ¥ (G; X).

As explained in 3.11, if W, is the Weyl group of GL, ;. and X, is the type of the stabilizer
of N[F]; then we have natural bijections

Wx \W, —= Wx_\W: denoted © — 7.
Then the set #/(G; X) can be described as
(G X) = {(r-)

veF | T € Wx \W, and m; = 7, for all .}

6.8. Remark. — Suppose we are in case (A1), meaning that & = k x k with involution
(z1,22) = (22,21). Let us number the two factors k as (1) and k(3). The set .# naturally
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decomposes, as a set with bi-cyclic ordering, as .# = .Z#() 11 #2), Write f{V): .7 = #() —
{1,...,q} for the restriction of f to .#().

For v = 1,2, let (™) 0(")) be a BT, with s-action, of type (¢, {*)), with (s, 6)
dual to (A1 9v+1)). Then take (7, 6) := (1), 00)) x (#?) ), which comes with a

natural action of £. Take

p= (_2D g) , where ¢: (220 0y 25 (7 92y
This gives us a triple (57, u, ) as in (GPE’), and every such triple is of this form. One verifies
that Theorems 4.7 and 6.7 are consistent.

6.9. Qutline of the proof. — The proof of 6.7 is essentially the same as that of Theorem 5.5.
By the previous remark we may assume that & is a field.

The first step is to show that if w is an element in the image of the map (6.6.1), there exists a
f-(—1)-duality on the standard object (.%%,, 6,,). For the set & we now take & := & x{1,...,(},
with permutation p given by p(7,j) = (T—}—l, pT(j)). Fora= (1,7) € & weset a:= (T,(+1—7).
Then we proceed exactly as in 5.7, noting that the desired pairings are now hermitian pairings
e By X B — k.

After that we need to prove that the &-(—1)-duality is unique (up to isomorphism). The
arguments in 5.10 do not use any polarization, so that Corollary 5.12 is still valid. Thus only
Lemma 5.13 remains. Our notations have been set up in such a way that we can copy the proof
in 5.13 verbatim.

6.10. An example: the CM-case. — 'l'o illustrate the use of the “multiplication type” f,
and to give a brief preview of what will be done in [10], let us show how to compute the p-kernel
of a reduction of an abelian variety of CM-type. This is very similar to the recipe for computing
the Newton polygon of such a reduction, which we shall recall.

Let I be a CM-field of degree 2g over Q, i.e., a totally imaginary quadratic extension of a
totally real field Fy. Given an embedding o: F' — C, write ¢ for the conjugate embedding. By
a CM-type for F' we mean a subset f C Hom(F, C) such that precisely one of each pair (o,7) is
in f.

Let Y be an abelian variety of dimension g over a number field ¥ C C. Suppose Y is
equipped with an action by an order & C F; this gives us a homomorphisms F' — End(Y) ® Q.
The first homology H = H;(Yc, C) is free of rank 1 as a module over

FooC= [ C9.
o €Hom(F,C)

Hodge theory gives us a canonical (F ®q C)-submodule F°H C H, and we define f C Hom(F, C)
to be the set of weights of this submodule. Then fis a CM-type and we say that Y is of CM-type

(£, ).
Choose embeddings Q — @p < C. Let p be the corresponding place of E above p. Possibly
after replacing F by a finite extension, Y has good reduction Y, over k(p). Via the chosen field

embeddings we can identify
Hom(F,C) = Hom(F, @p) = Hom(F ®q Qp,@p) = HﬁHom(F,T,@p) ,

where 7 runs through the set of places of I’ above p and we write F; for the m-adic completion
of F'. The set f is then a disjoint union of sets f, C Hom(F,T,@p).
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In Tate’s paper [16] it is explained how to compute the Newton polygon of Yy. Namely, the
slopes that occur are just the numbers #f,/[Fr : Q,].

Write k for the residue field of the maximal unramified subfield Q" C @p; this k£ is an
algebraically closed field containing k(p). Assume that the order & is maximal at p and that p
does not ramify in F. (This is what the usual conditions for being a prime of good reduction
mean in the present case.) Then in a similar spirit we can also compute the isomorphism type of
the p-kernel Yy[p] over k. Note that & /p& is the product of the residue fields k(x), and that the
Dieudonné module N of Yy[p] is free of rank 1 over & /p@. In particular, the structure of Yy [p]x
with its action of &/p& is completely determined by the multiplication type fo: &/p0 — k.
Now the assumption that p is unramified in F' gives us a natural identification

Hom (F @ Q,,Q,) = Hom(F © Q,, Q) -~ Hom(6/p0, k),

and by looking at the Dieudonné module of the full p-divisible group Y [p>] we readily find that
fo is just the image of f under this map.

In concrete terms, compute the multiplication type fo C .# := Hom(&/p0, k) as the image
of the type f. Given ¢ € .#, draw an arrow (i) & (t4+1)if 7 € fo, and arrow (i) N (i+1)
if not. This gives us a union of circular diagrams I'; as described in 2.1 (one diagram, of size
[Fx : Qp], for each prime 7), with a natural action of &/p& (letting  act as multiplication by
i(z) on the base vector corresponding to i.) This describes the p-kernel of Y.
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