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Abstract

We consider a Rayleigh type of self-excited auto-parametric sys-
tem. We study the semi-trivial solution and its domain of instability
where non-trivial solutions are initiated. We are interested in the ex-
istence and stability of the non-trivial solutions and we analyze the
behaviour of the solutions by examining it for various values of some
parameters. We divide the discussion on the non-trivial solution in
exact resonance and near resonance cases. In the analysis we use both
normal forms (or averaging) and numerical bifurcation path-following
techniques. The system displays a rich pattern of different bifurca-
tions, a robust heteroclinic cycle and instability behaviour.
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1 Introduction

An autoparametric system is a vibrating system which consists of at least
two subsystems; an Oscillator which generally be in a vibrating state and the
Excited System which is excited indirectly and is coupled to the Oscillator
in a nonlinear way such that the Excited System can be at rest while the
Oscillator is vibrating (this state is called semi-trivial solution ).

A self-excited auto-parametric system is a special type of auto-parametric
system with a self-excited oscillator in its vibrating state. There are many



mechanical systems which are considered to have the characteristics of self-
excited auto-parametric systems, for instance systems with flow-induced vi-
brations; see for instance the books by Tondl, Nabergoj, Verhulst, and Rui-
jgrok ([7], [12], or [13]) and other references there. For a discussion of the
applications in mechanics, the reader may refer to [8], [11], or [13].

This paper discusses a Rayleigh type self-excited auto-parametric system.
We study the solutions of the system, semi-trivial and non-trivial solutions,
and analyze their behaviour. By using the response-oriented approach we
study the instability domain of the solutions. And we focus on varying the
damping coefficient £ of the excited system (and fixing the other parame-
ters) to see the behaviour of the solutions (stabilities and bifurcations). See
the monographs by Guckenheimer and Holmes [2] or Wiggins [15] for the
references on the bifurcation theory.

2 Formulation of a Rayleigh type self-excited
auto-parametric system

We consider a self-excited auto-parametric system of Rayleigh type in the
non-dimensional form:

" — ﬁ(l — :L"2);L" + x4+ fylyZ =

2.1
v' ey @ty + ey = 1)

where # > 0, is the self-excitation coefficient, k > 0 is the damping coefficient
of the Excited System, 7y and ~; are the nonlinear coupling coefficients;
g 1s the tuning coefficient expressing the ratio of natural frequencies of
the undamped linearized subsystems, where the frequency of the z-mode is
normalized to 1. We restrict our discussion in this paper by considering the
important resonance g = % and nearby (detuned) values. The prime indicates
the derivative with respect to the non-dimensional time variable. The first
equation of (2.1) refers to the motion of the oscillator whereas the second one
refers to the excited subsystem. We have chosen nonlinear coupling terms
which are important in this particular resonance case; see also the discussion
at the end of this paper.

To study the system above we divide our discussion into two parts. That
is, the semi-trivial solution and the non-trivial solution.

First, we assume that all the parameters in system (2.1) are small and in



order to apply the averaging method (see [9]), we rescale the parameters as
follows. Let 8 = €83, k = €k, 71 = €71, Y2 = €72, and take ¢ = T+eo. Then,
substituting these into equation (2.1), after dropping the bars, we have the
following standard form

"+ = €p(1 - x’2)x’ — 1y?)
1 (2.2)

-y = —c(l-cy’ + oy + ’ygxy).

o
y+4

Further analysis of system (2.2), as we shall see in the subsequent section,
leads us to the conclusion that periodic solutions exist.

3 The semi-trivial solution and its stability

The semi-trivial solution is defined as the solution of the system (2.2) by
putting y = 0. Thus, we have the well-known Rayleigh equation

2"+ =ef(1 — $,2>I,, y = 0. (3.1)

We put z(7) = Rcos(t + ¢) with 2/(7) = —Rsin(r + ¢) to obtain slowly
varying equations for R and t; after averaging over 7, we obtain:

r o Japn_3p
R = BR(- SR

Y= 0.

For this standard procedure in averaging theory see [9] or [14]. Finding the

(3.2)

3

non-trivial equilibrium for R, we have R = Ry = \/Z And, because of
the translation property for autonomous systems we may take v = 1y = 0.

Therefore, zo(7) = Rocos(T + 1) = \/§COST is an approximation to the
periodic solution of (3.1) up to O(¢). By a simple calculation we conclude
that the semi-trivial solution is a periodic stable solution with period near
to 27 (stable in equation (3.1)).

For the stability investigation of the semi-trivial solution zo(7) in the full
system (2.2), we apply a small perturbation to the solution, i.e., we consider

the perturbations:

r=1xo(T) +u, and y =0+ v. (3.3)



Then, we substitute (3.3) into system (2.2). Thus, after performing lineariza-
tion, we obtain the following uncoupled equations.

u' +u = B(1 - 31‘6(T)2)u',

v+ %v = —e(kv 4 ov 4 yaxo(T)V). (3-4)
By the averaging method (putting u(7) = rcos(t+¢), u'(7) = —rsin(r+¢)
for the first equation of (3.4)), we can show that the differential equation for r
gives asymptotic stability of the trivial solution v = 0. Thus, the semi-trivial
solution is stable in the z-direction. Therefore it remains to analyze the sec-
ond equation of (3.4) in order to investigate the stability of the semi-trivial
solution in the full system.

The second equation of (3.4) is of Mathieu type and its main instability
domain is found for values of g near % (See [14] Appendix 2, for a description
of the Mathieu type equation). Then, the solution of the equation can be
analyzed by putting

1 . 1
v(r) = Rcos(gT + ), with v'(1) = —§R sm(§7' + ). (3.5)

By substituting the relations in (3.5) into equation (3.4) for v, then applying
the averaging over 7 and after absorbing the rescaling factor ¢ into 7, we
obtain:

1 1
R = —ZKR+ ZR’mRosinQ@/},

o (3.6)
Y= §U+Z’Y2ROCOSQ¢a

where Ry is the amplitude of the semi-trivial solution we obtained earlier.
From the right-hand sides of (3.6), we can eliminate the variable ¢ and
after applying the response-oriented approach (see [12] or [13]), we have the
following relation for the boundary of the stability domain:
| .
R? = Ry = — (K + 40%), (3.7)

- A2
2

where R, stands for R-critical. Thus, for ¢* = i + eo, we have the stability
boundary values in terms of ¢ and « as follows:

1 {232_ 2
q2:1+6 %, (38)
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which exists for & < 7, \/g. As an illustration, we take v = 2, kK = 1, and we
have a stability boundary curve, as shown by the R.-curve in figure 1 below.

Re

Ro

Figure 1: Ry corresponds to the semi-trivial solution and R. corresponds to
the stability boundary curve as a function of tuning ratio ¢ for v = 2, k =
1,e =0.1. Values of Ry > R, correspond with instability.

The value k = 72@ is a bifurcation value where the semi-trivial solution

changes its property and a non-trivial solution is initiated. We will see this
phenomenon in the subsequent section.

4 Analysis of non-trivial solutions
The non-trivial solutions of (2.2) can be written in the following form:
1
z = Rycos(T + 1) and y = Ry COS(§T—|-’I7/)2). (4.1)

We substitute (4.1) into (2.2), then we apply the averaging method. Thus,
we obtain the following averaged system (after absorbing the rescaling factor
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€ into 7').

1 3 1 )
R, = 55}21 — gﬁRi’ + 1’7133 sin(thy — 21y)

1 R?
Yy = Z%R—ZCOS(% — 2¢9)
| ! . . (4.2)
RIQ = —§KJR2 - 5’7231R2 SlIl(?,Zh — 2¢2)

1
7#; = o+ 5’7231 COS(I/)l - 2?/)2)-

Note that the combination angle ¢ = 1, — 2¢p, figures in system (4.2) and
we may reduce the system to:

1 3 1 .
Ry = S8R~ gﬁRf + Z’YlRS sin ¢

1 1 .
R/2 = —§RR2 — 572R1R2 Sll’lQb (43)
1 R? ,
o = =20+ (171 R_j — Y2 Ry) cos .

To remove the singularity of the vector field in system (4.3) we define
p=R3, u=Ricosp, v=Rysino, (4.4)
and the transformed system reads

!/

p= —Kp = 72pv
u = %ﬁ(l — %Rf)u—l—’muv%—?av (4.5)
vo= %ﬂ(l - %Rf)v + %’71/0 — 7eu’ — 20,
where R} = u? + v*.
To study system (4.5), we consider exact resonance (o = 0), which is

simpler, and near-resonance (o # 0).

The fixed points of system (4.5) correspond to periodic solutions of system
(4.2). First, we find the fixed points by assuming that p, u, and v are
constants. Then by fixing the values of the parameters 3, 7, and 7, and
letting the value of k varies we study the bifurcations of the fixed points.
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5 Exact resonance

Putting 0 = 0 and assuming that 3 > 0, 43 > 0, and v, > 0, system (4.5)
becomes

po= —Kp—Tapv
1 3
. 2 2
u = 5/3(1 — Z(u + v ))u + Ypuv (5.1)
v = l/3(] — §(uQ +v*))v + L u’
2 4 gnp—mu

Note that system (5.1) is invariant under (p,u,v)—(p, —u,v). p = 0 is an
invariant manifold of the system. This is obvious since taking p = 0 is related
to our previous analysis of the semi-trivial solution. In addition, u = 0 is
also an invariant manifold of system (5.1).

5.1 Fixed points and their bifurcations

To analyze the fixed points of system (5.1), we will make use the existence
of the invariant manifolds p = 0 and u = 0.

Solving fi(p,u,v) = 0, fo(p,u,v) = 0, f3(p,u,v) = 0, where fi, fo, fs
are the right hand sides of (5.1), we obtain the following fixed points. xgo =

(po, uo,vo) = (0,0,0) (the trivial solution), X9 = (0,0,\/E), and Xgo =

3
(0,0, —\/g) (the semi-trivial solution) and the following fixed points corre-
sponding with non-trivial periodic solutions

28k 3 K2 K
X, = ( 8 (1— ——2),0,——> , (5.2)
Y172 473 72

and

16 7, K 4 3 K2 8k K
X, (3%(1 Zﬂ),i\/?)(l 4722) 35 72). (5.3)
Note that the points Xgo, X10, and Xzq are in the invariant manifold p = 0,
the points Xgg, X10, X209 and X; are in the invariant manifold v = 0. Thus,
we may begin the analysis of the fixed points from the manifolds where they
are in, while we need to analyze the point X, separately.

We apply linear analysis by, first, finding the Jacobian matrix of system
(5.1). Then we find the eigenvalues of the corresponding fixed points whose
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stability properties are to be determined. The Jacobian matrix of system
(5.1) is as follows.

—K — Y20 0 —72r
J = 0 16 — 30u? — 2Bvi 4+ yu —3Buv 4 ypu
i’h —%ﬁuv — 27u 38— %QUZ - 25”2 (5.4)

In the invariant manifold p = 0, where the points xgg, X10, and Xz are
located, the corresponding 2 x 2 Jacobian matrix is as follows.

1 93,2 33,2 3
I = ( 20— 0w —§hv by —fun 4 2> (5.5)
—3Buv — 2yyu 3B — gBu” — ZPv

Linear analysis yields that (0,0) which has eigenvalues A\; = X, = %/3 is an

4

unstable node with straight lines phase flows pointing outward. In (0,4/3)

the eigenvalues are 72\/§ and —3. This corresponds with a saddle point with

its stable manifold on the v axis. In (0, —\/g) the eigenvalues are —72\/§
and —3. This corresponds with a stable node with parabolic phase curves
pointing inward. By some algebraic manipulation on the equations in (5.1)

for p = 0 we obtain a separatrix curve u? + v? = % connecting the points

(0, \/g) and (0, _\/§>5 An orbit which starts from a point outside the curve

will never cross the separatrix curve and it will go either to the stable manifold

of (0, \/g) or to the stable manifold of (0, —\/g). Some authors call such
a separatrix curve a saddle-sink connection. This saddle-sink connection
actually corresponds with the semi-trivial solution obtained previously as
we can check it by using transformation (4.4). For the illustration of the
dynamics on the u—v plane see Figure 2.

In the invariant manifold u = 0, where the points xg9, X10, X20, and X;

are located, the corresponding 2 x 2 Jacobian matrix is as follows.

J2 — —K — 720 —2r

%71 %5 - SBUQ - 2&)2
Using a similar analysis as above, we find that in (0, 0) the eigenvalues are —x
and %B This corresponds with a saddle point with its unstable manifold on

the v axis. In (0, \/%) the eigenvalues are —Ii—’yg\/g and —( which correspond

with a stable node. An interesting phenomenon happens at (0, — %) The

(5.6)

eigenvalues are —k —|—’)/2\/§ and — 3, as can be seen from the following matrix
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Figure 2: The dynamics in the u—wv plane.

which is obtained by substituting (0, —\/g) into J,.

J, = ( —rtfi 0 ) (5.7)

i’h _ﬂ

Focusing on the change of values of the parameter k, we see that k = 72\/§
is a critical value where the corresponding fixed point changes its property
(recall the bifurcation value we mentioned in Section 3). We can check easily

that £ > 791/% results in the point (0,—\/5) to be a stable node, while

3
K < 2 % results in the point (0, —\/g) to be a saddle. To see what happens

at kK = 72\/§ we apply the center manifold approach (see [1] for details).

We consider the equations (5.1)(i) and (5.1)(iii) for p and v, respectively,
by taking u = 0. For the sake of simplicity, we fix the values of g =2, v, =
1, 79 = 2. Thus, the system we consider is as follows.

!

p = —kp—2pv

1 5.8
v = v—§v3—|—1p. (5:8)



We translate the point (0, —\/g) to (0,0), the bifurcation value to 0, and

take h(ﬁ, /?;) = alp_2 + axpk + aszk*+h.o.t. as an approximation for the center
manifold, where the bars indicate the new coordinate after translation. After
some calculations, we obtain the values a; = 1 + %\/g, ay; = 0, and a3 = 0

so that h(p, k) = (1 + 21/3)p®. The following equation gives the flow on the
center manifold.

3
Fo= —plr+ 20421+ 2V3)p7)
K = 0.

(5.9)

We see from the flow (5.9) that we have a super-critical pitchfork bifurcation
around (0,0). At £ = 0, the point (0,0) which corresponds with the semi-
trivial solution x5o branches off; The semi-trivial solution loses its stability

while a stable non-trivial solution is initiated. The non-trivial solution which

w—h( B ), —2) (or X; in p—u—v space).

occurs corresponds with the point (

172 47; Y2
Now we investigate the stability of the non-trivial solution. After substi-
. 98k 2 PN . . .
tuting (j]ﬁw( — %?), —W—z) into matrix .J, we obtain the corresponding 2 x 2
2

Jacobian matrix.

0 —26r(]_ 3k
Jh = ( . ( ‘;Jz)) ) (5.10)

im Pl =5

We see from (5.10) that £ = 27, is another bifurcation value where the fixed
point changes its properties as x varies. We can check that for k£ > %’yg
the corresponding fixed point is a stable focus while for £ < 27, the cor-
responding fixed point is an unstable focus. At the critical value we have
a Hopf bifurcation with a pair of purely imaginary eigenvalues. In analyz-
ing the bifurcation, using the center manifold method, we will look for the
approximation for the center manifold, the flow in the center manifold, and
determine the stability of the limit cycle associated with Hopf bifurcation.
First we translate the point (%(1 — %%), —%) to (p,9) = (0,0) and k = 27,
to £ = 0, where the hats indicate the corresponding new coordinate after
translation. We take the same values of § =2, v = 1, v, = 2 as before. To
avoid the algebraic complexity due to the presence of the parameter &, we
take £ = 0 from the beginning. Thus, we have the Jacobian matrix of the

form
4= (

= O

_0?5_2 ) (5.11)



After normalization and applying the center manifold approach, we obtain
the center manifold where the corresponding flow is given by

2
— _2 9 — 958
3 v pu

9 , 3 (5.12)
B = 5@,3 + %@2 - Zﬁfﬂ.

The stability of the limit cycle which occurs can be determined by calculating
the following quantity. (See [2] for a formal presentation of the formula).

1 1
@ = qglfons & Fowy & Gooy + 9u] + g (for + fin)

- gry(grr + 9yy> — JreGoz + fyygyy]v (5-]3)

where wy = %\/5, f, g are, respectively, the right-hand sides of p’, 0" of

(5.12), and the subscripts ‘z” and ‘y’ denote derivation with respect to p and

0, respectively. We obtain a = —%, which is negative. Thus, we have a

super-critical Hopf bifurcation; a stable limit cycle occurs while the periodic
solution changes its stability. To illustrate this phenomenon, we implement

the numerical continuation packages CONTENT and DSTOOL, on the basis

of the analytical results above. (See [5] for more about the packages).

Figure 3: Exact resonance. Bifurcation diagram of system (5.8) on (i) the
£—p plane and (ii) the k—v plane, for 3 =2, vy =1, 4, = 2. BP stands for
branching point and H stands for Hopf point. Solid and dashed lines/curves
indicate a stable and an unstable solution, respectively.

11



Figure 3 gives the corresponding bifurcation diagram which describes the
fixed points by giving p and v as a function of x and their stabilities and
bifurcations. As commonly used, in bifurcation diagrams displayed in this
paper stable solutions are indicated by solid lines/curves and unstable ones by
dashed lines/curves. To illustrate the dynamics in the p—v plane, especially
near the bifurcation point, we refer to Figure 4.

>

(i) (ii) | (if})
Figure 4: Hopf bifurcation. The dynamics in the p—v plane for § = 2, 3, =
L, 2 =2. (i) at k = 1.5, (ii) at kK = % (the Hopf point), (iii) at & = 1.28.

Figure 4 (ii) shows the starting point where the stable limit cycle occurs
while the non-trivial solution changes its stability (from a stable focus (in
Figure 4 (i)) to an unstable focus (in Figure 4 (iii)).

Continuation with respect to the value of k on the limit cycle produced
by the Hopf bifurcation, results in the stable limit cycle breaking down into

a heteroclinic cycle which takes place at k ~ 1.243761; The orbit connects
the saddle points (0,0) and (0, —\/g) which correspond with the points xqq
and Xgq, respectively. Moreover, perturbing the value of k¥ by decreasing it,
the heteroclinic cycle breaks up. Thus, we have a heteroclinic bifurcation
as shown in Figure 5. Figure 5 (i) shows that the stable limit cycle is get-

ting closer to the heteroclinic cycle connecting the saddle points (0,0) and
(0, —\/g). Figure 5 (ii) shows that the limit cycle breaks down into a hetero-
clinic cycle. Finally, in Figure 5 (iii) the heteroclinic cycle breaks up and we

have another saddle-sink connection connecting the saddle point (0, —/%)

3
and the stable node (0, \/Z)

3
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(i) (i) (i)
Figure 5: Heteroclinic bifurcation. The dynamics in the p—wv plane for
B=2, v =1, v =2 (i)at K = 1.26, (ii) at x ~ 1.243761 (the heteroclinic
cycle bifurcation), (iii) at x = 1.1.

Continuing to vary the value of k we find the persistence of the saddle-sink
connection.

Now, we analyze the point X5 which is neither in the u—v plane nor in the
p—v plane. To apply linear analysis, we substitute the non-trivial solution
X, (we take the plus sign) into the Jacobian matrix J to obtain the following

matrix.
;73 (1-25)
0 0 _% Y1 s
0 —hse (Z4 VG (5.14)
inm G —ineVG i+

where C; = 12 — 9:—2 — 24%. Because of the complexity of the expressions
2

in (5.14) we perform a numerical calculation to obtain the eigenvalues. The
eigenvalues of the Jacobian matrix (5.14) are one real and two complex con-
jugate which are of the form ¢ and d +ie. Taking ¢ = 0, which corresponds
with taking s & 0.861002 (for v1 =1, 72 = 2, § = 2), the Jacobian has one
zero eigenvalue and two complex conjugate eigenvalues. This corresponds
with a branching point where the curve of X, points parameterized by &
tangents to the curve of X; points. Moreover, taking d = 0 which corre-
sponds with k & 0.578051 (for v; =1, 72 = 2, § = 2), the Jacobian has one
real eigenvalue and two purely imaginary eigenvalues. This implies the pres-
ence of a sub-critical Hopf bifurcation; an unstable limit cycle occurs while
the fixed point changes its stability. Now we have a complete bifurcation
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diagram for system (5.1). We describe the fixed points by giving p, u, and v
as a function of x as shown in Figure 6.

Figure 6: Exact resonance. Bifurcation diagram of system (5.1) (i) pro-
jected on the k—p plane, (ii) projected on the k—v plane, (iii) projected on
k—u plane, for # =2, vy = 1, v, = 2. BP stands for branching point and H
stands for Hopf point.

Figure 6(i) and Figure 6(ii) are similar to Figure 3(i) and Figure 3(ii), re-

spectively, except that we have new branches of non-trivial solutions which
correspond with Xz. These solutions are shown clearly in Figure 6(iii).
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5.2 The heteroclinic cycle

By combining the dynamics in the u—v plane (see Figure 2) and Figure 5 (iii)
we obtain a robust heteroclinic cycle; a cycle which is formed by two saddle-
sink connections of the invariant manifolds u—v plane and p—v plane. (See
[3] for the definition). This, actually, also follows from system (5.1) when we
integrate a point nearby the unstable non-trivial solution for k < 1.243761.
Figure 7 gives a clear illustration of the cycle in the 3-dimensional phase-
space p—u—uv.

Figure 7: The robust heteroclinic cycle connecting the saddle points x39 and

X20-

In the original system (4.3), x30 and Xz¢ should be identified and corre-
spond with the semi-trivial periodic solution. In system (4.3) the part of the
heteroclinic cycle for p > 0 corresponds with a solution homoclinic to the
semi-trivial periodic solution.

Note that since the heteroclinic cycle persists in the interval of k where
no stable solution takes place (see the bifurcation diagram of Figure 3), we
may further the analysis by studying the stability of the heteroclinic cycle.

Studies on the stability of robust heteroclinic cycles have been done by
several authors. (See, for example, [3], [4], and the references there). In [4]
Krupa and Melbourne develop a general sufficient and necessary condition
for investigating the asymptotic stability of such cycles. They use the fact
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that a trajectory following the robust heteroclinic cycle (see Figure 7) will
spend large amounts of time near the fixed points (x10 and x29) while the
passages outside fixed points will be relatively short. Hence the relative size
of the eigenvalues of the linearizations at the fixed points will be the factor
determining stability. The discussion below will follow this idea.

First, we take the same fixed values of the parameters 3 =2, v =1, 7, =
2 as before and assume that we are in the interval of £ where we have unstable
solutions only. So, we may take k = 1. Recall that the point x;¢ is a saddle

point with its stable eigenvalues A;, = —1 — 2\/§ and A;, = —2 are in the
p—uv plane, while the unstable one A, = 2\/§ is in the u—v plane. The point
Xz0 is a saddle point with its stable eigenvalues vy, = —2\/§ and v, = =2

are in the u—wv plane while its unstable eigenvalue v, = —1 + 2\/§ 1s in
the p—v plane. Thus, our heteroclinic cycle is formed by two saddle-sink
connections as obtained earlier. This is clear from Figure 7 above.

Then we implement the result in [4] saying that if S is a robust heteroclinic
cycle then S is asymptotically stable provided the condition

H min(c¢j,e; —t;) > H €5, (5.15)
J=1 7=1

is satisfied, where

e c; is the magnitude of the maximal real part of the eigenvalue of D f(§;),
linearized vector field near fixed point, restricted to Pj_\P;,

e ¢; is the magnitude of the maximal real part of the eigenvalue of D f(¢;)
restricted to P;\ Pj_1,

e {; is the maximal real part of the eigenvalues whose eigenvectors are
normal to Pj_; + P},

with P;_;, P; the corresponding invariant subspaces. (See Theorem 2.7 of [4]
for more detail in the formulation). We change the condition (5.15) slightly
since in our case, we do not have ¢;. Therefore condition (5.15) reduces to
the standard condition that

m

IIe>I]e- (5.16)
j=1 J

1
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. . . Agq Ve
From the eigenvalues of x19 and x29 mentioned above we obtain that <*—*

1.322781 > 1. Thus, by (5.16) we conclude that our heteroclinic cycle is
asymptotically stable. Therefore, this gives the boundedness of the solution

o~
~

in the interval of the parameter x where no stable periodic solution takes
place.

We find that the stable heteroclinic cycle persists as we vary the value
of k. This is due to the persistence of the corresponding saddle-sink connec-
tions mentioned earlier. Thus, in the interval 0 < x < 0.578051 we have two
attractors; the stable heteroclinic cycles and the stable fixed points produced
by the sub-critical Hopf bifurcation (see the analysis of the point X; men-
tioned earlier). Therefore, the dynamics in that region is attracted either to
the fixed point X5 or to the heteroclinic cycle.

6 Near-resonance

In this section we analyze the full averaged system (4.5) by considering o # 0.
In system (4.5) the symmetry (p, w, v) = (p, —u, v) which takes place in
the exact resonance case no longer exists while we keep the invariance of
p = 0. In the following we discuss this symmetry breaking property when o
is perturbed from 0 as it reflects on the solutions, stabilities and bifurcations,
as K varies.

We follow similar lines for determining fixed points as in the previous sec-
tion, and obtain the following fixed points. yoo = (p1,u1,v1) = (0,0,0) (the
20 4 402 20 4 402

22, Ji- ), and yao = 0,-2,- 1 %)

trivial solution), y10 = (0, 5 — -
2 2

(the semi-trivial solution), and the non-trivial solutions

K
Y: = (p1(ur),ug, ——), (6.1)
Y2
where u; will be determined from the following cubic polynomial in wu;.
30K* + 8ky3 — 4373 16 ko
ud 2 2V —— =0 6.2
T ) e, (6.2)

Using Cardano’s formula for solving a cubic equation, we determine the quan-
: _ P _ 16 ko _ 38K 48ry7—4fy]
tity D = L+ L=, where p = , = . After a rather lengthy

3 By 3032
calculation we arrive to the following expression for D.
1
— m((ﬁ — o)’ + 51843v,k%0?), (6.3)
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where

83k

bo = 492 — 3K2

(6.4)

From (6.4) we restrict the value of £ into 0 < k < 72\/? Then, Cardano’s
formula guarantees the existence of at least one real solution for u; in (6.2)
which unfortunately has a quite complicated expression.

Next, we analyze the stability of the fixed points by using the same
method as before. We consider the Jacobian matrix of system (4.5) as follows.

—K—"v 0 —7ar
J, = 0 30-20u*—3Bv 4y —2Puvtyput2o
by —Bw—tu-ts H-28-202 ) (65)

Since the plane p = 0 is an invariant manifold we start the analysis from

. . . o o2 . o2
the points in that plane, i.e. (0,0), (—:—2, % — 4w_§>’ and <_:_2’ % — ‘;—3)
which correspond to Yoo, Y10, and yaq, respectively. Linear analysis gives the

results that the point (0,0) is an unstable focus, (—i—;’, % — %2) is a saddle,
2

and (=22, — /3 — @) is a stable node as shown in the following figure.
¥2? 3 Y5

V)

Figure 8: The dynamics in the u—wv plane for o = 0.5
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If we compare Figure 8 with Figure 2, points yoo, Y10, and yz¢ actually
correspond with points Xgo, X10, and Xag, respectively. Those Figures show
that the o perturbation does not change qualitatively the dynamics in the
u—wv plane. Also, in the u—v plane we have a separatrix u? + v? = % which
corresponds with the semi-trivial solution. Then, the semi-trivial solution
will bifurcate for a certain value of k where the non-trivial solution Y; 1is
initiated.

Due to the complexity of the expression of Y; we perform numerical
approaches to determine its stability. Solving Det JS‘Y = 0, we obtain a

parameter space k—o showing the stability boundary for the solutions where
the stable semi-trivial solution passing through the boundary branches off in
a pitchfork bifurcation. This is shown by curve P in Figure 9. Furthermore,
continuation by using CONTENT we obtain a Hopf curve H in Figure 9 where
the non-trivial solutions have Hopf bifurcations and a saddle-node curve SN
in Figure 9 where the non-trivial solutions have saddle-node bifurcations.

Figure 9: Near resonance. The parameter space kK —o showing Curves P,

H, and SN for g =2, v =1, 75 = 2.

Note that the boundedness of the range of o is clear from the existence of the
above mentioned semi-trivial solution, yi9 and yzo. Figure 10 and Figure
11 are the corresponding bifurcation diagrams which describe the number of
solutions and their stabilities and bifurcations by giving p and u as a function
of k.
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Figure 10: Near resonance. Bifurcation diagram of system (4.5) (i)
projected on the x —p plane and (ii) projected on the x —u plane, for
B=2 7=1, v =2 o=0.5 (line ). BP stands for pitchfork point, H
for Hopf point, and LP for saddle-node point.

Figure 10 (i) and (ii) clearly illustrate the behaviour of the non-trivial peri-
odic solutions of system (4.5) for o = 0.5 (line /3 of Figure 9). We start from
the stable semi-trivial solution in the outer part of curve P. As the solution
passes through curve P, a pitchfork bifurcation takes place (shown by the
BP point on the right); the semi-trivial solution loses its stability while a
stable non-trivial solution is initiated. On the other hand, continuation on
the unstable trivial solution yqq, from the BP point on the left, we obtain an
unstable non-trivial solution which undergoes a saddle-node bifurcation (at
the LP point) when hitting curve SN. Then, the unstable non-trivial solu-
tion undergoes a sub-critical Hopf bifurcation (at the H point) when passing
through curve H.

It is interesting to see what happens to the non-trivial solution if we take
o closer to 0. Taking o = 0.1 (line /; of Figure 9) we have the bifurcation
diagram as shown in Figure 11.
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(i)
Figure 11: Near resonance. Bifurcation diagram of system (4.5) (i)
projected on the k —p plane and (ii) projected on the x —u plane, for
=2 v=1 v =2 o=0.1(line [;). BP stands for pitchfork point, H
for Hopf point, and LP for saddle-node point.

Figure 11 shows more complicated dynamics than Figure 10. Obviously,
Figure 11 (i) and (ii) tend to, respectively, Figure 6 (i) and (iii) of the exact
resonance case if we take o closer to 0. However, taking o # 0 means we
slightly perturb equation (5.1) such that the symmetry under v = 0 is broken;
a forced symmelry breaking takes place. (See Krupa [3]). Thus, destruction
of the stable robust heteroclinic orbit obtained earlier will take place. In
[10] Swift shows that forced symmetry breaking for such an attracting orbit
leads to the occurrence of a long-periodic orbit. We perform a numerical
exploration to demonstrate the phenomenon in our system.

Taking an initial point nearby the robust heteroclinic orbit, it will go to
a“one-half” orbit which has a long-period as shown in Figure 12 (i) and (ii)
depending on the sign of o. And Figure 12 (iii) gives a clear illustration of
the forced symmetry breaking phenomenon if we compare it with Figure 7
of the exact resonance case.
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Figure 12: Forced symmetry breaking. (i) a long-periodic orbit for o =
0.01, (ii) a long-periodic orbit for ¢ = —0.01, (iii) the combination of (i) and

(ii).

7 Concluding remarks

The study of stability and bifurcation of the solutions of system (2.1) pro-
duces rich results as we have shown in the previous sections. Our results on
the stability of the semi-trivial solution of such a system plays an important
role in mechanical engineering. The exact resonance analysis gives inter-
esting phenomena, especially the boundedness of the solution shown by the
attracting robust heteroclinic orbit. More interesting and important results
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are obtained from the near resonance analysis. We have shown numerically
what happens with the solutions of our system if we apply the detuning
coeflicient.

A study of self-excited auto-parametric systems of different type (e.g. van
der Pol type) is also of interest. In our future work we will explore that type
of system (see the work of Nabergoj and Tondl in [6] or Tondl et al. in [13])
and we will compare the results to those of this paper. Of course we can
generalize system (2.1), for instance by generalizing the coupling term. The
result of this have to be studied but we expect to recover the fundamental
bifurcations discussed in this paper.
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