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Abstract

Recently Harris (1999), using probabilistic arguments alone, has
given new proofs of the (known) existence, asymptotics and unique-
ness of travelling wave solutions to the K-P-P equation. This paper is
a sequel to Kyprianou (2000b) which provides alternative probabilistic
arguments for supercritical wave speeds. We complete our probabilis-
tic analysis here for the more difficult case of critical wave speeds. The
analysis is centered around the study of additive and multiplicative
martingales and the construction of size-biased measures on a space
of non-homogenous marked trees generated by a truncated branching
Brownian motion. As part of our results, we also obtain a marti-
nale convergence theorem for the derivative of the additive martin-
gale. Some of the main ideas are inspired by the techniques found in
Kyprianou and Biggins (2000) and Lyons (1997). The value of these
new probabilistic proofs is their generic nature which in principle can
be generalized to study other types of spatial branching diffusions and
associated travelling waves.
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1 Introduction

A branching Brownian motion is constructed as follows. An initial ancestor
begins its existence at the origin of one-dimensional Euclidean space and
time. This individual is immortal and moves according to an independent
copy of standard Brownian motion B. The initial ancestor produces a ran-
dom number of offspring, X, at times which form a Poisson process, n, with
rate § > 0. We shall assume that X has distribution (px : & > 0) such
that m := Ekzo kpr < oo. Starting from their point of creation on the
path of their parent, each of these children moves and reproduces accord-
ing to an independent copy of the triple (B,n,X). Let Z; be the point
process describing the number and positions of individuals alive at time ¢,
{Zx (1) : k=1,..., Z; (R)}. In this text we shall use the Ulam-Harris labelling
notation such that an individual u is identified by its line of decent from the
initial ancestor. That is, if u = (¢1,...,2,-1,1,) then she is the i,th child of
the 72,,_1th child of ....of the 7;th child of the initial ancestor. Thus uv refers
to the individual who, from wu’s perspective, has line of descent expressed as
v.

A natural martingale that arises in branching Brownian motion is of the

Wt ()\) = Z e_)‘(EU(t)'FC)\t)

uENc

form

for ¢t and X positive, where N; is the set of individuals alive at time ¢ and
cx = A/2+4 Bm/A. See Chauvin (1991), Kingman (1975), Biggins (1977) and
Neveu (1988) for further details. Recently there has been a lot of interest in
the construction of so called size-biased probability measures on branching
trees. These size-biased measures have been used in conjunction with a
fundamental measure theoretic result by Lyons et al. (1995) and others
to show necessary and sufficient conditions for the convergence of additive
martingales similar to W; (A) within the context of a variety of different
branching processes. For further references, see Lyons (1997), Kurtz et al.
(1997), Olofsson (1998) and Athreya (1999).

In the case of branching Brownian motion, it is known that W (\) :=
limsteo Wi (A) exists almost surely and is non-negative. Further, W ()\) = 0
for A > /28m and when A € [0,4/28m), W (}) is also the L' martingale
limit. In this paper we shall use once again the method of size-biased mea-
sures by applying it to a study of the limit of the negative derivative of W; (X)



with respect to A. More specifically,

oW, (\) :—%Wt(/\)

= Z (Eu (t) + )\t) e_’\(Eu(t)-I-C)\t)

uEN

where ¢ and A are both positive. This martingale we shall refer to from now
as the derivative martingale.

Interest in the limit of the derivative martingale is stimulated by its inti-
mate connection with travelling wave solutions to the Kolmogorov-Petrovski-
Piscounov equation

ou 10%u

5 = 2.2 Tulf(w) =), (1)
where f(s) = £ (SX) , taking solutions u : R x R™ — [0,1]. This reaction-
diffusion equation has been studied by many authors both probabilistically
and analytically[see references Kolmogorov et al.(1937), Fisher (1937), Skoro-
hod (1964) , McKean (1975), Bramson (1978, 1983), Neveu (1988), Uchiyama
(1978), Aronson and Wienburger (1975) Karpelevich et al. (1993) and Kel-
bert and Suhov (1995) to name but a few]. Of particular interest however is
the recent exposition of Harris (1999) which, using probabilistic arguments
alone, gives an excellent derivation of the well known existence, uniqueness
and asymptotics of travelling wave solutions to (1). By a travelling wave
solution it is meant a twice continuously differentiable, monotone increasing
function ®, : R — [0, 1] such that ®.(—oc0) =0 =1— &, (c0) with u(z,t)
= &, (z — ct) a solution to (1); ¢ > 0 is the wave speed. A short calculation
shows that ®, also solves the ordinary differential equation

%(T)'C' + Cq),c + o, (f (®c> o ]) = 0. (2)

We shall now give a brief account of the connection between these trav-
elling waves and the limits of W; (A) and W, (X). For further information,
one should consult Neveu (1988), McKean (1975), Chauvin (1993) and for a
complete account, Harris (1999).

It is known (by both probabilistic and analytical methods) that under
these circumstances, travelling waves exist if and only if the speed ¢ > ¢ :=
V28m. We can parameterize wave speeds such that 0 < ¢ € {cy : A > 0}, in
which case the critical wave speed, ¢, occurs when A = /28m =: A\. When



¢\ > ¢ (supercriticality) such that A € [0, A) there exists a unique (modulo an
additive constant in the argument) travelling wave which can be expressed
as the exponentially rescaled Laplace transform of W (X). That is to say

b, (z)=F (exp{—e_/\xW ()\)}) .

At criticality, when A = X and W (1) = 0, there is again a unique travel-
ling wave (modulo an additive constant in the argument) which this time is
the exponentially rescaled Laplace transform of limgo, OW; () thus implying
that the limit exists and has all its mass in (0, 00). Thus

¢, (z)=F (exp {—e-ian (A)}) .

In dealing with travelling waves at the critical wave speed, Harris (1999)
proves existence and uniqueness using the connection between a Seneta-
Heyde norming result, multiplicative martingales and the known asymptotics
of 1 — ®.(z). As a consequence of his proofs he simultaneously recovers the
existence of the almost sure limit of W, () to a strictly positive variable
as t tends to infinity. Harris also conjectures that the proof of existence and
uniqueness should be possible by first establishing directly the almost sure
convergence of W, (A) to a strictly positive limit. By stopping the martin-
gale OW; (A) + W, (A) appropriately, he is able to show directly the almost
sure convergence of W, (A) to a non-negative limit. However, his method
does not establish that the limit has strictly positive mass. Hence in this
paper we shall expose once again how probabilistic arguments lead to an
analysis of critical travelling waves to the K-P-P equation by following the
path conjectured by Harris.

The reason for pursuing probabilistic proofs of the existence uniqueness
and asymptotics of these travelling waves goes deeper than pure aesthetics.
The method we present here is inspired by techniques used in Kyprianou
and Biggins (2000) which studies a discrete time analogue of the ODE (2).
It is anticipated that the probabilistic view will also shed more light on the
problem of understanding the asymptotic behaviour of the position of right
most particle in a spatial branching diffusions. Bramson (1978, 1983) has
already treated branching Brownian motion in this respect, but the right-
most particle issue remains unresolved for the branching random walk and
other types of spatial branching diffusions.

In the next section we shall discuss the close connection between Brow-
nian motion and Bessel-3 processes which form a fundamental part of the
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analysis presented in later sections. In section 3 we introduce a new positive
martingale, {zV;” (A)}+>0, that approximates {OW; (A) + W (A)}is0. This
new martingale now becomes the focus of our study as its limit can be made
to look like the limit of 9W; (X) as t tends to infinity when A > A. In section 4
we construct a non-homogenous branching diffusion by truncating ancestral
paths that contribute to large negative summands in W, (X) as ¢ tends to
infinity. This procedure is inspired by a similar construction demonstrated
for the branching random walk in Kyprianou and Biggins (2000). The trun-
cation is done in a way that, when A > A, the new martingale, VY (1),
and dW;(X) have the same limit on the part of the event space where the
non-homogenous and homogenous trees are the same. By applying a method
of size-biasing, we are able in section 5 to investigate the positivity of the
limit of V¥ (t) for the cases A > A. By arbritrarily relaxing the severity of
the truncation (which depends on the parameter z), we infer the existence
and location of mass of the limit of OW; () for A > A. In section 6 we ap-
ply our results to establishing the existence, asymptotics and uniqueness of
travelling wave solutions at the critical wave speed. Essentially once we are
in a possession of the limit of W, (1), the existence follows easily. We use a
stopping line argument as in kyprianou (2000b) to establish the asymptotic

1 — . (x) ~ k x e
for some constant k& > 0. This tail behaviour of the travelling wave induces
uniqueness, again with little effort.

As in its companion Kyprianou (2000b), this paper contains more proofs
than Theorems and Lemmas. Whilst the proofs we offer are new, we have
only presented new results in the context of a Lemma or Theorem.

2 Brownian motion and Bessel-3 processes

Let us begin by recalling some results that show the intimate relationship
between Brownian motion and Bessel-3 processes that will be of use later
in this paper. Our main references are McKean (1963), Williams (1974),
Pitman (1975) and Bertoin (1993).

Suppose that with respect to the law P, B = {B;},, is a standard Brow-
nian motion started at 0 and P, is its restriction to o (Bs : s <t). Define
p* (B) = inf{t > 0 : B, + Xt = 0}, the first time that B meets the space-time
line passing through the origin with negative gradient A. Now let Q(®) be



the law of a Bessel-3 process on (—z, 00) started from 0 with negative drift
A. It is known that

d (=,0) B
% gy = 2 B0 (04 B) > 0)
dP; Z
Write B, 4\
Agr»,/\) (B) — MQ_A(BH_%M)[(,O/\ (-I' + B) > t)

x
and note that this expression has the multiplicative decomposition

AT (B) = AP (B) x AL (B) 3)

where s € (0,1) and A and B are an independent copies of A and B respec-
tively. For any A C B(—z,00)

/ I(B, € AAY(B)dP,

ZfﬂMM@+M>u&em3i&iﬁaWM%ﬂ
’ X

= E[[(po(:v+B)>t,Bt—/\t€A)$+Bt}

xr
_ / I(B: = M € A)dQEY) (4)

where the second equality follows by the Cameron-Martin-Girsanov Theorem.

In particular choosing A = (—2,00) we have fAEm’A) (B)dP; = 1 for all

z,t > 0. Therefore, in view of the decomposition (3), {AY’A) (B)} is a
>0
P-martingale. Further, from the computation in (4) one sees that

dQi™
dP,

for all t > 0. The work of Bertoin (1993) or McKean (1963), for example,
shows that Q@9 is also the law of a Brownian motion started at z and
conditioned not to enter the half-line (—oo, 0]. The calculation (4) shows that
QN is thus the law of a Brownian motion started at = and conditioned not
to meet the space-time barrier

(B) = A"V (B)

TeN = {(y, 1) ERXR* 1y + Al + 2 =0}



3 Branching Brownian motion with a barrier

Suppose for each ¢t > 0 in the branching Brownian motion we define a subset
of Ni, say Ny, consisting of all individuals whose ancestral paths on the
branching tree have not met the space-time barrier I'®* by time t. Define

T4+ Z, (1) + M =
= 3 EFEO ) e

X

uENt

Given that the summands associated with each individual u looks like a
version of Agx’k) (B) x e=#™ under P and that N, grows at a rate on average
that should be close to the original growth rate ¢”™, we could intuitively
reason that EV,” (A) =1 for all z,¢ > 0. The following Lemma builds upon

this idea.

Lemma 1 The sequence {VF (A)},5q is a mean 1 martingale with respect to
{Fi}iso (the sigma algebra describing the evolution of the branching Brownian
motion up lo lime t).

Before proceeding to the proof we should make some remarks about why
this is martingale is of particular interest to the problem at hand. Let us tem-
porarily assume that A > A. Note that V,7()) is always positive and therefore
has a limit almost surely. Further, we can identify zV;*()) as contributing
to the positive part of the martingale OW; (X) + W, (A) and thus serves as
an approximation to it. In fact, on the event (which we shall call 7(””)) that
the branching Brownian motion remains entirely to the right of ['®V), the
truncated process and the original process are the same and thus so are the
limits of zV*(A) and OW; (A) +aW; (X). Since for A > A the martingale limit
W (\) = 0 then on v(®") we have

limzV/"(\) = ];iTmawt (A).

ttoo

Denoting by L; the position of the left most particle in the branching Brow-
nian motion, since we know W (A) = 0 it follows that limye, Ly + At = co
and hence inf;5o {L; + M} > —oco almost surely. Consequently

P (7(90,/\)) =P <;15r>118{[4 + At} > —:v) T1as a1 . (5)



Thus we have established an almost sure limit for the derivative martingale
exists almost surely and has all mass in [0, c0).

Let us return then to the proof of the Lemma.

Proof. We break the proof into two parts. The first shows that
EVF(X) = 1 for all ,4 > 0 and the second uses this result to get the
martingale property.

Let 7; be the intensity measure of 7. Watanabe (1964) has studied the
branching Brownian motion with an absorbing barrier. From his work it can

easily be deduced that for y + A + 2z > 0,
7775 (dy) = e[)’mt]}pt (Bt € dy,p/\ (.fC + B) > t) .

Thus,

iy

T + -I_)‘t —A(z+c¢ ~
o) = f T

T

- / AP (B) dP,

- / Q™

— (6)

x Al
_ /we-k(ymf)l(ﬁ (z + B) > 1)e"™dP¢ (B, € dy)

where the last equality follows since the first integral is taken over

{yeR:z+y+ M >0}

which is tantamount to taking the final integral over all possible paths up to

time ¢ of a Bessel-3 process on (—z, c0) started at 0 with negative drift A.
Since any line of descent in branching Brownian motion is itself a Brown-

ian motion, we shall adopt the notation of the previous section and for u € N;

let

ACY (=,) = ( +Zu () + M) _s(zuw+in) g (oM (2 + Z) > 1)

T

so that
Vo) = ey AP (E,)

uENt



For each s > 0, let 0, be the shift operator which renders the individual
u € Ny the initial ancestor. When 0 < s < ¢, u € Ns and uv € N; we have
the decomposition

TA) = r —_ N(z+ZEu(s)+As,A —_
AP (E,,) = AP (Z,) x AT (g o=
where A is an independent copy of A. Hence

EWVE () |F)

— | eBms ZA?,A) () o= (t=3) Z /N\Eaii-iu(s)'i'/\s,/\) (00 2,)| F,

UENS Ueeu,SONt—s

= e STAY (E) B (VEEOR ()| R) (7)

t—s

uENS

where V;(_')s (A, u) are independent copies of V;(_')s (A). Since EV” (X)) =1 for
all x,1 > 0 the proof is complete. [

4 Change of measure on non-homogenous branch-
ing diffusions

Continuing with the same notation as in the previous section we define a non-
homogenous branching diffusion as follows. In branching Brownian motion,
any individual whose path meets the barrier [ is immediately killed.
This process we shall refer to as truncated branching Brownian motion. In
the truncated process, the number alive at time ¢ is described precisely by N,.
Suppose that 7@ is the space of marked trees generated by the branching
process truncated at [, Let x(®*) be the probability measure on 7*)
that corresponds to the truncated branching Brownian motion as defined in
the previous section. We use Mﬁ”’” for its restriction to F;.

For any 7 € T®Y, by following the spatial path of any ancestral line of
decent from the origin of space and time we identify a process ¢ = (& : ¢ > 0)
which we shall refer to as a spine. Essentially any spine is a Brownian motion
that is killed on meeting the barrier T®). Now let 7Y be the space of
marked trees in 7" but with distinguished spines. If £ is a spine that
has survived the truncation by time ¢, then there are n; points of fission
before time ¢ where n = (v; : ¢ = 1,...,n;) is a Poisson process of rate 3.
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Further at the i-th point of fission, there are X; > 0 new trees growing
{Tj € T(éui+Ayi+x”\> 0<y < Xi} where X; is an independent copy of X for

each . We construct the (non-probability) measure ﬁﬁx*” (t > 0) so that for

(7_’ f) € '7'(.70,/\)
ng X; .
G (€)= 1 (€ 4+ 2) > 0P (€) L (n) [T o, [Tl ()

where Lgﬁ) is the law of a Poisson process with rate 3 up to time ¢ and
empty products are understood to be equal to 1. This new measure is a
decomposition of u; over T so that

du™ (1) = Y T(E. (1) = &) dit™Y (7,€) (8)

uelvt

for all ¢ > 0. Consider also the bivariate probability measure m; (¢ > 0) on
T@N) where

A7 (r,6) = AT (r, €)
T+ ft + A %

) ot 1y 4 1y
z

ng

Xi+1 1 ~(z,))

=

= dQ™ (&) x dL" ()

nt

X.
Xz + 1 1 : (éui+Al‘i+va)
><H7m+1PXi X X 11 X Hdﬂt—w (75)(9)

=1 7=1

In the second equality, we have used the fact that if Lg(m-l-l)ﬁ) is the law of a

Poisson process up to time ¢ with rate (m + 1)3 then
d]l;g(m-l_l)ﬁ) ot o

Equality (8) can be used to confirm that 7, has total mass equal to 1. Using

(8) again, we can marginalize the measure 'ﬁfx’A) to 7 so that we have

10



probability measure Wt(x’A) (t > 0) which satisfies

dﬂ_fac,/\)

— =V (A 10
e =) (10)

for all ¢ > 0.
The definition of 7 with its decomposition in (9) corresponds to a branch-
ing Brownian motion truncated at T'®) having distinguished spine ¢ such

that:

1) the process + At : t > 0) moves according to a Bessel-3 process on
( ) p Gt 2z g P
(—z,00) started at 0 (that is to say the spine moves away from the

(z,A)

barrier I' as a Bessel-3 processes and therefore never meets it),

(ii) the points of fission along the spine form a Poisson process with accel-
erated rate (m + 1),

(iii) the distribution of offspring numbers at each point of fission on the
spine has tilted measure (py = (k + 1)py/(m + 1) : k > 0), and finally

(iv) the spine is chosen randomly so that at each fission point, the next
individual to represent the spine is chosen with uniform probability
from the current representative and its offspring.

5 Convergence of OW,()\) for A > )\

Pursuing the same line as Lyons (1997), Kurtz et al. (1995), Olofsson (1998)
and Athreya (1999) we define for any = > 0, V7 () = limsup,,, V" (})
(which is also equal to limse Vi (A) p-a.s.) and check whether this limit has

any p-mass away from zero by using the following fundamental result from
measure theory [see Durrett (1991) or Athreya (1999)]

VE(A) = oo mas = V7(A) =0  pas, (11)
Vi(A) < o0 T-a.8 = /Vx (A dp = 1. (12)

In view of the discussion following Lemma 1, it then follows that the
limit of OW; exists and has all its mass concentrated at zero or in (0, c0)
accordingly as V*(X) does (for any = > 0).
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Theorem 1 For A > X\, OW () := limyeo W3 (N) exists almost surely and
is valued on [0,00). Further, if A = X and E(X(log X)**%) < oo for some
0 > 0 then its limil is strictly positive with probability one and if A > A
or E(X(log X)2_5) = oo for some & > 0 the limit is identically zero with
probabilily one.

Before proceeding to the proof we need to note a few things about the
behaviour of Bessel-3 processes and also the asymptotics of the sequence
(X, : n > 1) of independent copies of X representing the numbers of offspring
of £ at each point of fission.

Firstly, from Theorem 3.2 of Shiga and Watanabe (1973) it is easy to
show that Q*®)-almost surely, the path of a Bessel-3 process eventually (in
the sense of the Borel-Cantelli Lemma) becomes bounded by the curves tate
and 127¢ for any € > 0. Secondly a simple calculation shows that when ¢ > 0

FE(X(log X)?) is (in)finite if and only if

Z P:(log X > cn%)

n>1

is (in)finite for any ¢ > 0. Consequently, by the Borel-Cantelli Lemma,

limsup,,4., n~s log X, is (infinite) zero according whether the given moment
is (in)finite.

Proof.  As previously mentioned, the discussion following Lemma 1
deals with the first part of this Theorem. For the second part, we shall first
consider the case that A > A. By construction we have the lower bounds

V;x ()\) > (:U + "Sf + At) e—/\(§r+c>\t)'

(13)

T
Recall that under 7, {z 4 & + At},,, is a Bessel-3 process on (0,00)

started at zero. As this process eventually grows no faster than 3% for
any € > 0 and since for A > A, ¢, < X it becomes clear from (13) that

limsup V;%(X) = oo 7-a.s.
ttoo

and hence V*(X) and OW () are identically zero py-almost surely.

Now suppose that A > A (so that ¢y < ) and E(X(log X)?7%) = oo for
some ¢ > 0. Without loss of generality we can assume that § is small. We
have the lower bound

12



‘/;i ()\) 2 Xk (CE + gu;‘l‘ )\Vk)e—)\(fyk-l-/\yk). (14)

By the law of large numbers, vp ~ [3(m +1)]"' k. We deduce that

(x + &, + Avi) eventually grows no faster than O(k'%"'ﬁ) for any € > 0. Hence

by choosing € sufficiently large, (14) shows that with the given moment con-
dition, limsup,,,, V;*(A) = oo 7-a.s.. Thus the result follows as before.

Finally suppose that A = A (so that ¢y = ¢ = A) and E(X(log X)2+5) <

oo for some § > 0. Again without loss of generality we may assume that

0 1s small. Let G be the sigma-algebra generated by the diffusion of the

spine &, the Poisson process n representing the times of reproduction and

(Xg :k>1). We have

Ex(VF(M)|G) =) X, (4 &+ 2) a(entam) | (EHEHA)

- T X
=1

Taking advantage of the fact that a Bessel-3 process eventually grows no
slower than ¢=¢ for any € > 0, the law of large numbers applied to n and
the sequence (v; : ¢ > 1) plus the given moment condition implies that

11Tm Bz (VZ(A)]G) < oo T-as.

Fatou’s Lemma implies that liminfy., V" (X) is also finite m-almost surely.
The Radon-Nikodym derivative (10) tells us that V;* (A)_l is m-martingale
and therefore has a limit m-almost surely, which by the previous statement
must be almost surely finite. This result together with the remarks following
Lemma 1 shows that W ()) has at least some of its mass in (0, 00). Harris
(1999) shows through simple probabilistic means that if the derivative mar-
tingale limit exists, then its mass is either all concentrated on (0, 00) or all
at zero with probability one. This concludes the proof. [

Remark 1 In principle finer moment condiltions may be established for the
conclusions of this Theorem to hold. In the above Theorem, the moment
conditions appear as a consequence of working in the proof with the eventual
upper and lower bounds {aEe for the paths of Bessel-3 processes. Referring
back to Theorem 3.2 of Shiga and Watanabe and also the Law of the Iterated
Logarithm for Bessel processes, il is possible to establish a tighter space time
envelope that eventually contains sample paths of Bessel-3 processes. An
improvment on the given moment conditions above should thus follow.
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6 Existence, asymptotics and uniqueness at
criticality

We are now ready to show existence and uniqueness of travelling wave solu-
tions to the K-P-P equation at the critical wave speed. With the exception
of the subsection on asymptotics, most of the arguments used below are not
new. We simply re-employ existing knowledge in a slightly different context;
namely that we are now in possession of the strictly positive limit W ().
To see the (probabilistic) origin of the arguments used below, one should
consult Lalley and Sellke (1987), Neveu (1988), Chauvin (1991), Biggins and
Kyprianou (1997), Harris (1999), Kyprianou (1998, 1999).

6.1 Existence

It is very easy (if not a little messy) to decompose OW; (1) into contributions
derived from the population at time 0 < s < ¢ as was done in (7). We have

OWy () = Y e AEERRGW,_ (A )

uEN,

3 (Eu(s) +49) eXEORNW_ (A w),  (15)

uEN,

where, for each u € N;, OW,;_, (A, u) and W;_; (A, u) are independent copies
of OWi_s (A) and Wi_s (A) respectively. Using obvious notation, as ¢ tends to
infinity we thus recover the smoothing transform

oW (A) = Y e 2ERIGI (A, u) (16)

u€EN,

which holds for all s > 0. The identity (16) can be also expressed in terms
of Laplace transforms. That is to say, if ® (z) := F (exp {—e“ﬁan (A)}) ,

then ® satisfies the functional equation
H O(z+=Z,(s)+As)| . (17)

for all s > 0. Theorem 8 of Kyprianou (1999) concludes that this @ solves
the functional equation (17) if and only if is also solves the ODE (2). Hence
we have shown existence.
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6.2 Asymptotics

For uniqueness we need to use the known asymptotic behaviour of solutions
to (17); namely that a critical travelling wave solution @, satisfies

l—CDQ(m)NkXJ:e_M as ¥ — 00, (18)

where k is a positive constant. Harris (1999) gives a probabilistic derivation
of this asymptotic using martingales built from the travelling waves via the
Feynman-Kac formula. Analytical methods are also available to establish this
result. See Uchyiama (1978) and Bramson (1983). We shall offer here yet
another probabilistic derivation of the required asymptotics using additive
and multiplicative martingales alone. The advantage of the technique we
present is that it is not specific to this type of spatial branching process. In
principle, analogues of the above asymptotic could be achieved using this
method for other types of spatial branching process.

For branching Brownian motion, we can also consider the barrier I'(=>2)
where z > 0. By arresting lines of decent the first time they hit this barrier we
produce a random collection of individuals, namely the stopping line C'.. For
further information on stopping lines, their rigorous definition and properties,
one should consult Chauvin (1991) or Neveu (1988). What is important to
note for our purposes is that {C.} , is a sequence of dissecting stopping
lines tending to infinity on which the branching property holds and whose
cardinality, {|C.|},s, forms a continuous time branching process (z plays the
role of time). [Note that by a sequence of dissecting stopping lines tending
to infinity we mean any line of decent from the initial ancestor will hit T(=>2)
with probability one for all z > 0 and inf |u| : u € C, tends to infinity as z
tends to infinity]. Let {0, (2):u € C.} be the times at which individuals
meet the barrier T'(=*2), From the afore mentioned references, it is known
that

I 0:(x+ Eu(0u(2) + 2o (2) = O (z + ) (2> 0)

ueC

is a martingale with a limit almost surely and in L!.

Suppose we turn our attention to the branching Brownian motion trun-
cated at T'@2) Define €, analogously as the set of individuals in the truncated
process that hit the barrier I'=*2) for z > 0. Recall that on the event v(®2)
the branching Brownian motion and its truncated version are the same. Thus
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we can say that on 7(90&)7

liTm—|éZ| log @, (z + z)

exists almost surely in [0, 00) and is non-trivial in the sense that it has mass
in (0, 00) with positive probability for all z > 0. Now consider the process

o Z (z + Zu (0 (2)) + Aoy (Z))e—A(Eu(Ju(z))-I-Aau(z))
X

ueéz
= (x + Z) e_AZ|C'Z|.

T

Using ideas similar to those in Kyprianou (2000b) we can prove the following
Lemma. From it will follow immediately the predicted asymptotics of ®..

Lemma 2 Lel {F~ tz > 0} be the natural ﬁltmtion describing everything
in the truncated branching tree up to the barrier =52 [f E(X(log X)?*%) <
oo for some & > 0 then sequence V3 is an Fg martmgale thal converges

almost surely and in mean to V* (A )((]F’ﬁnp()] in fhP previous section).

Proof. For it > 0, let A, < ) {u €N, :v ¢ C, Vo < u} and define

PP S G ~u( )£ sy @EHE) —ae

tAC, T
uEAt(6~’2>
where CN’ZJ = {u cC,:a, (2) < t} . By decomposing members of N, in ac-

cordance with their ancestors (if at all) in C., it is an easy calculation, similar
to (7), to show that
E(VZ Q) Fe.) =Vie (19)

tAC,"

Since éz is a dissecting stopping line then lims ‘At (éz) = 0. From the

proof of Theorem 1, V¥ (A) converges in mean to V* (A) as ¢ tends to infinity
we thus have

lim B (V7 ()| Fo.) = B (V7 ()| Fo.) = VE..

The tower property of conditional expectation thus shows that VI is a mar-

tingale. Taking the limit in (19) with respect to z instead gives us similarly
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E(VZ (M| Fe) = VF(A) for all t > 0 where Foo = 0 (|5 Fe.) - This im-
plies that VI" is Foo-measurable and hence VC%”Z has limit V* (A) as z tends to
infinity. O

Since we now know that both —|C.|log P, (v +2)and 27 (z + Z)G_AZ|CYZ|
have limits as z tends to infinity with mass in (0,00) on @A) and that
®, (c0) =1, we thus conclude that

-1 q)c 1-— ‘I)c
ztoo (.73 + Z)e_AZ ztoo Ze_ﬁz

for some positive constant k, depending on x. This result is true for all x > 0
and hence the asymptotic (18) is proved.

6.3 Uniqueness

Solutions to (17) can be used to construct L'-convergent multiplicative mar-
tingales of the form

M, (z) := J] ®c(x+Zu(t) + At) for t > 0.

uEN

Further, using the asymptotic behaviour of ®,, since L, + Al — oo a.s., we
have that

—log My () ~ > —log®,(z+E,(t)+ )

u€N
S B NCESNORPY)
u€E Ny
~ C Z (x 4+ 2, (1) + Al) e~ Ae+Eu(t)+21)
u€ Ny

= Ce™ (OW,(A) + 2 Wi (}))

as ¢ tends to infinity. Thus any solution to (2) at criticality must satisfy

d.(z)=F [lith (x)] = E (exp{—Ce W (\)})

- ttoo

and therefore uniqueness (modulo an additive constant in the argument)
follows.

17



References

1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Aronson, D.G. and Weinberger, H.F. (1975) Nonlinear diffusions in pop-
ulation genetics, combustion and nerve propagation. Partial differential
equations and related topics (J. Goldstein ed.) Lecture notes in Math.
446 Springer-Verlag.

Athreya, K. (1999) Change of Measures for Markov Chains and the
Llogl, Theorem for Branching Processes. Bernoulli (to appear).

Bertoin (1993) Splitting at the infimum and excursions in half-lines for
random walks and Lévy processes. Stoch. Proc. Appl. 47 17-35.

Biggins, J.D. (1977) Martingale convergence in the branching random
walk. J. Appl. Probab. 14, 25-37.

Biggins, J.D. (1991) Uniform convergence of martingales in the one-
dimensional branching random walk. Selected proceedings of the Sheffield
symposium on Applied Probability. (Eds Baswa, R.L. Taylor) IMS lec-
ture notes - monograph series 18 159-173.

Biggins, J.D. and Kyprianou, A.E. (1997) Seneta-Heyde norming in the
branching random walk. Ann. Probab. 25 337-360.

Bramson (1978) Maximal displacement of branching Brownian motion.

Comm. Pure Appl. Math. 31 531-581.

Bramson, M.(1983) Convergence of solutions to the Kolmogorov nonlin-
ear diffusion equation to traveling waves. Mem. Amer. Math. Soc. 44

1-190.

Chauvin, B. (1991) Multiplicative martingales and stopping lines for
branching Brownian motion. Ann. Probab. 30 1195-1205.

Chauvin, B., Rouault, A. and Wakolbinger, A. (1993) Growing condi-
tioned trees. Stoch. proc. Appl. 39 117-130.

Durrett, R. (1991) Probability: Theory and Fzamples. Wadsworth and
Brooks/Cole Statistics/Probability Series.

Fisher, R.A. The advance of advantageous genes. Ann. Fugenics. 7,

(1937) 355-369.

18



[13]

[14]

[18]

[19]

[20]

[21]

[22]

Harris, S.C. (1999) Travelling-waves for the F-K-P-P equation via prob-
abilisitic arguments. Proc. Roy. Soc. Edin. 129A 503-517.

Karpelevich, F.1., Kelbert, M. Ya., Suhov, Yu. M. (1993) The branching
diffusion, stochastic equations and travelling wave solutions to the equa-
tion of Kolmogorov-Petrovskii-Piskounov. In: Cellular Automata and
Cooperative Behaviour (Boccara, N., Goles, E., Martinez, S., Picco, P.

(eds.)) Dordrecht, Kulwer. 343-366.
F.I., Kelbert, M. Ya., Suhov, Yu. M. (1995) The Markov branching

random walk and systems of reaction-diffusion (Kolmogorov-Petrovskii-
Piskunov) equations. Commun. Math. Phys. 167 607-634.

Kingman, J.F.C. (1975) The first birth problem for an age-dependent
branching processes. Ann. Probab. 3, 790-801.

Kolmogorov, A., Petrovskii, I. and Piskounov, N. (1937) Etude de
I’équation de la diffusion avec croissance de la quantité de la matiere
at son application a un problem biologique. Moscow Univ. Bull. Math.
1, 1-25.

Kurtz, T., Lyons, R., Pemantle R., Peres, Y. (1997) A conceptual proof
of the Kesten-Stigum theorem for multi-type branching processes. In
Classical and Modern Branching Processes (K.B. Athreya and P. Jagers,
eds) 84, 181-186. Springer, New York.

Kyprianou, A.E.(1998) Slow variation and uniqueness of solutions to the
functional equation in the branching random walk. J. Appl. Probab. 35
795-802.

Kyprianou, A.E. (1999) A note on branching Lévy processes. Stoch.
Proc. Appl. 82 1-14.

Kyprianou, A.E. (2000a) Martingale Convergence and the Stopped
Branching Random Walk. To appear in Prob. Theor. Rel. Fields.

Kyprianou, A.E: (2000b) Travelling wave solutions to the K-P-P equa-
tion at supercritical wave speeds: a parallel to Simon Harris” probabilis-
tic analysis. University of Ulrecht, Preprint.

19



[23]

[24]

[25]

[30]

31]

32]

33]

[34]

Kyprianou, A.E. and Biggins, J.D. (2000) Unpublished working notes

on martingale convergence at criticality in the branching random walk.

Lalley, S.P. and Sellke, T. (1987) A conditional limit theorem for the
frontier of a branching Brownian motion. Ann. Probab. 15, 1052-1061.

Lyons, R. (1997) A simple path to Biggins’ martingale convergence the-
orem. In Classical and Modern Branching Processes (K.B. Athreya and
P. Jagers, eds) 84, 217-222. Springer, New York.

Lyons, R., Pemantle R. and Peres, Y. (1995) Conceptual proofs of
Llog L criteria for mean behaviour of branching processes. Ann. Probab.

23, 1125-1138.

McKean, H. P. (1963) Excursions of a non-singular diffusion. Z.
Wahrsch. verw. Gebeite. 1, 230-239.

McKean, H. P. (1975) Application of Brownian motion to the equation
of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. XXIX,
323-331

Neveu, J. (1988) Multiplicative martingales for spatial branching pro-
cesses. In Seminar on Stochastic Processes 1987, eds E. Cinlar, K.L.
Chung, R.K. Getoor. Progress in Probability and Statistics, 15, 223—
241. Birkhatiser, Boston.

Olofsson, P. (1998) The z log = condition for general branching processes.
J. Appl. Probab. 35 537-554.

Pitman, J. (1975) One dimensional Brownian motion and the three-

dimensional Bessel process. Adv. Appl. Probab. 7 511-526.

Shiga, T. and Watanabe, S. (1973) Bessel diffusions as a one-parameter
family of diffusion processes. Z. Wahrsch. verw. Gebeite. 46, 37—46.

Skorohod, A.V. (1964) Branching diffusion processes. Th. Prob. Appl. 9
492-497.

Uchiyama, K. (1978) The behaviour of solutions of some non-linear dif-
fusion equations for large time. J. Math. Koyoto Univ. 18, 453-508.

20



[35] Watanabe, S. (1964) On the branching process for Brownian particles
with an absorbing boundary. J. Math. Koyoto Univ. 4-2, 385-398.

[36] Williams, D. (1974) Path decomposition and continuity of local times
for one dimensional diffusions. Proc. London Math. Soc. 28 738-768

21



