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Abstract

A generalization of Biggins’ Martingale Convergence Theorem is proved
for the multi-type branching random walk. The proof appeals to modern
techniques involving the construction of size-biased measures on the space
of marked trees generated by the branching process. As a simple conse-
quence we obtain existence and uniqueness of solutions (within a specified
class) to a system of functional equations .
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1 Introduction

A multi-type branching random walk with p-types is defined as follows. An
initial ancestor, U, of type ¢ € {1, ..., p} resides at the origin of the real line.
This individual gives birth to a random number of offspring scattered on R
according to the point process Z; = (Z;1, ..., Zip) where Z;; is the point process
counting the number of individuals of type j € {1, ..., p} born to the individual of
type 7. These offspring, the first generation, reproduce independently such that
individuals of type j reproduce according to the point process Z; (j = 1,...,p)
and so on.

In this text we shall use a Ulam-Harris labelling notation. By counting
siblings of the same type from left to right we can identify each individual, u
= (k1..., kn) with the understanding that u is the k,-th child born to ..... born
to the ki-th child born to the initial ancestor. With this formulation we write
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|u| for the generation in which u lives, 7 (u) for its type and ¢ (u) for its position
in R (thus 7 (U) = ¢ and ¢ (U) = 0). An individual is identified as uv if it is a
descendent of u and on the tree growing from u, its line of decent looks like v.

Suppose now that p;; is the intensity measure of the point process Z;; such
that for any Borel measurable set A, p;; (A) = E (Z;; (A)) . Define the matrix
M(6) = {m;; (7)} satisfying

mij (6) = / e~ 1 (dz)

where f§ € R. When the entries of M (f) are finite and it is positive regular,
the Perron-Frobenius Theorem tells us that there exists a positive maximum
eigenvalue p () and corresponding positive right and left eigenvectors v (§) =
(v (0),...,v (F)) and w(f) = (uy (f) ..., up (0)) respectively whose entries are
all finite and strictly positive. The following Assumptions will hold throughout
this paper,

1. 6 > 0and M(f) < o0
2. M(#) is positive regular for all 6 € int{¢ : m;; (¢) < oo},
3. first derivatives of M (0), v (), u(f) and p (#) all exist and are finite.

4. M (0) is positive regular and has maximum eigenvalue strictly greater than
one,

5. P(Z;; R)=o00)=0forall i,j € {1,...,p}.

Requiring that > 0 is only a matter of convenience. The fourth condition
implies that the process is supercritical and survives for an infinite number of
generations with positive probability [see Athreya (1972) Chapter V for further
details].

Without loss of generality, we can assume that the left and right eigenvectors
of M (6) are normalised such that

vi (0) = ui (6) =D ui (0) vi (0) = 1.
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Defining for each i € 1,...,p

it can be shown that {W;* (0)},, is a mean one martingale with respect to
{F'},,>0, the sigma algebras generated by the first n (> 0) levels of the multi-
type branching random walk initiated by an individual of type 7. See for example
Rahimzadeh Sani (1997) or Bramson et al. (1992). When there is just one type,
then we have a branching random walk and this martingale is the same as the



one which is the subject of the martingale convergence theorem first proved
by Biggins (1977). Biggins’ theorem gives necessary and sufficient conditions
for the aforementioned martingale to converge in mean (note that almost sure
convergence is automatic since it is positive). Further, it generalizes an older
result of Kesten and Stigum which says that if {a, },+ is a finite mean Galton-

Watson process then the positive martingale £ (ozl)_n ay, converges in mean if
and only if E(aloga;) < co and when this condition fails then it converges
almost surely to zero [see Athreya and Ney (1972) has a full account]. Both
the results of Kesten and Stigum and Biggins were recently re-proved by Lyons
et al. (1995) and Lyons (1997) respectively using a method of changing mea-
sure on the space of marked trees in which realizations of the branching process
exist. The change of measure corresponds to size-biasing the reproduction dis-
tribution on a randomly chosen line of decent. This method improved on the
existing proofs by shortening their length and using probabilistic considerations
alone. The robustness of this method has also proved itself given the number of
other Kesten-Stigum type theorems for other types of branching processes that
have since been re-proved using changes of measures on trees. See Kurtz et al.
(1997), Olofsson (1998), Athreya (1999), Kyprianou (2000a,b,c) and Kyprianou
and Biggins (2000). This presentation now adds to this list with the following
Theorem.

Theorem 1 Let W; () be the almost sure limit of the martingale {W]* (0)},,5, -

Given the Assumptions 1-5, W; (0) is also the limit in mean if and only if the
following two conditions hold,

/
logp (6) — ep(—(:)) >0 and F [VVZ1 @) logt W (0)] <oo fori=1,..,p.
p

Moreover, if either of these two conditions fail, then W; (8) is almost surely zero.

This Theorem has already been proved in Rahimzadeh Sani (1997) using
methods that generalize the techniques that appeared in the original proof of
Biggins’ Martingale Convergence Theorem. The new proof we offer here is
considerably quicker.

The connection between the limit of this martingale and a certain system of
functional equations should not go unmentioned. We include this as a Corollary
to the Theorem. Consider the class of vector functions of the form

D= {(¢1, ey ®p) 1 Ly D¢t RT = [0,1] for all i = 1,..., p and some p > 0}

where £, is the class of Laplace Transforms of positive variables with finite
mean .

Corollary 2 When all the conditions of Theorem 1 are satisfied, then

¢; (x) = E (exp{—2zW; (0)}) fori=1,..,p



is the unique solution in ® (up to a multiplicative constant in the argument) to
the system of functional equations

§) e—0C(u) .
H ¢‘r (u) ( W) fOT‘l: 1,...,p. (1)

lu|=1
Remark 3 If follows from this Corollary that for any (¢1,...,¢,) € ® that

—kiasz 0
where k; is a constant for each i € {1,...,p}.

This system of functional equations can be thought of as a discrete time ana-
logue of the ordinary differential equations giving travelling wave solutions to
a coupled system of K-P-P equations, see Champneys et al. (1995). In princi-
ple the method of size-biasing we use here is equally applicable to constructing
alternitive solutions the problems discussed there.

We conclude this section by giving a brief outline of the paper. In the
next section we consider the multi-type branching random walk as a process
having sample paths on a measurable space of trees with an associated prob-
ability measure. It is shown that there exists a new probability measure on
this space of trees whose Radon-Nikodym derivative (restricted to F}*) with re-
spect to the original measure is precisely W} () . Consequently the problem of
L!-convergence is transformed to studying the martingale under the new prob-
ability measure. As mentioned earlier, the change of measure corresponds to
size-biasing the reproduction distribution along a randomly chosen line of de-
scent. It turns out that under the new measure, the behaviour of the martingale
is dominated by the asymptotic behaviour of the spine. In section 3 we show
that the position and type of individuals on the spine follows a Markov additive
process and further discuss some of its basic asymptotic properties. The final
section is devoted to the proof of the Theorem and its Corollary.

2 Measures on trees with spines

The set of possible realizations of the multi-type branching random walk with
initial ancestor of type i generates a space of trees with nodes marked in R x
{0,1,...,p}. Call this space 7; for i = 1, ..., p and note that if 7, is the subspace
of 7; consisting of all trees truncated at the n-th generation, then 7;* is an
FP-measurable space for all n > 0. The probability measure on this space of
trees, n;, corresponding to the reproduction laws outlined at the beginning of

the previous section, satisfies the decomposition

dnf (1) = dnf (1) T dnfy (8 (w)
Jul=1



where t € T;, 1 is the restriction of n; to F* and {t(u) :|u| =1} are the
independent subtrees of ¢ initiated by individuals in the first generation.

For each t € T;, starting from the initial ancestor, we can distinguish (pos-
sibly finite) ancestral lines of decent & = (U = &g, &y, ...) each of which we shall
call a spine. Let 7; be the space of trees in 7; with a distinguished spine ¢ and
’f;”, the subspace of trees with spines truncated at generation n. Consider the
measure on 7;* such that for (t,€) € T

n—1
di (t,6) = [T dnre,y (&) TT  dnfi' (e (w)
k=0 Jo|=1
U=ERVEE k1
which decomposes the probability measure 5} such that

dnp (t) = Y 1 (& = u) diff (1,€). (2)

|ul=n

For n > 0, let er(§n) (0,&,) be the version of le (#) on the tree growing from

&n when 7 (€,) = j. Construct a new bivariate probability measure on 7; on T:
whose restriction to F satisfies

Vr(en) @) e—0¢(€n)
w (0) p (0)

= TL{p) x Wi, (.60 } i (1.¢) (3

dri (1,€)

dijit (t,€)

where (¢,€) € 7 and

v ~6_9(C(§k+1)_g(§k))
p (&) = 7(Ex+r) for0<k<n-1
Llulmt Vr(geoye o@D T T2 TS
[The decomposition (2) can be used to show that 7; is really a probability
measure] Let 77 be its projection onto 7;”. In view of (2) this is a probability
measure that satisfies
dn}

T (1) =W (0).

The construction (3) suggests that 7 corresponds to a multi-type branching
random walk that evolves generation by generation as in the introduction except
for the following modification: along the spine, given the node &, in generation
n > 0, the law of its reproduction with respect to the law of Z,,) has Radon-
Nikodym derivative er(gn) (6,&,) . Note that this implies the probability of no
offspring is zero and therefore under the measure 7;, spines which are finite form
a null set. This is what is understood in the literature as size-biasing.



The proof of the theorem in Section 4 will follow by considering the following
dichotomy relating the behaviour of W (f) under the measures m; and n;. Let
Wi (8) =limsup, 4, W} (f) (which also equals W;(0) n;-a.s.) then

(2

i (0) = oo mras.=>W;(0)=0 ni-as (4)
W;(0) < oo m-as. = / Wi (0) dn; = 1. (5)

3 Process on the spine
In this section we justify the claim that the process on the spine

S (6) = {6C (€) +nlogm (6) , 7 (€,)} for n >0

is m-Markov additive. This property of the spine will prove to be very important
in proving the Theorem its Corollary. To begin with we shall briefly recall the
definition of a Markov additive process and demonstrate some of its properties.

Suppose we have a family of independent random variables { X7, ..., X, } and
an ergodic Markov process A = {A,, }n>0 on the integers {1, ..., p}. Define the
process S as follows,

So = 0
Sn

ZYi where Y] L X;if A=
i=1

The pair {(Sn, An)}, >0 is called a Markov additive process. The following result
follows from an easy application of the classical properties of random walks and
renewal processes.

Lemma 4 Suppose that E|X;| < oo and let p; = E(X;) forall i = 1,.p
Suppose that (T1y,...,T1,) is the stationary distribution of k and define x =
S b pilly. Then x > 0 implies that

limsup S, = oo
ntoo

and x < 0 implies that

lim inf S,, = —co.
ntoo
Note that this is not the strongest statement we can say about the limiting
behaviour of the spatial part of a Markov additive process, but it will suffice for
our purposes.
Proof. Consider first the ratio

S Es)




The law of large numbers and ergodicity of A implies that

Sn

n

P
— X = Z,Uin’ a.s.

i=1

as n tends to infinity.
Suppose now that {NJTI}T»O are the times that the Markov chain k is in

state j € {1,...,p}. Note that S/ = {SN;L} N is a random walk. Further, by
n>0
the previous observation and the ergodicity of A, we have the following law of
large numbers,
SNr _ Snr NP %
n N n I1;

for all j = 1,...,p. Hence the mean increment of each S’ is x/TI;. Conse-
quently the random walks {Sj j=1, ...,p} are simultaneously transient or
recurrent according to the value of x. Since for any j =1, ..., p, limsup, 4, Sn >
limsupnToo SN;L and liminf,4ee Sn < liminf,pee SN;L the result follows. O

Consider the increments Y, = 0¢ (£,)—0¢ (§n—1)+1og p(#) under the measure
7;. By construction, these increments are independent. Further, given 7 (£,-1) =
j, the mean increment from type j

pi(0) = Fr ()
= 0F ¢ (u) Ur(u)€ ¢ (u) w1 @ + 1080
) Ju|=1 Z|u|—1v7(y)e o¢(v) gp
I iy (0) vk (6)
= —f ]k( o )
Z p(ﬂ)uj(g) + gp()

A similar calculation shows that that under Assupmtion 2, the absolute expec-
tation of the increments are finite. Also if we consider the process of types
along the spine, {7 (£,)}, 5, We see that it is a 7;-Markov chain with transition
probability p;x () which is equal to

vT(u)e_GC(u)

T(u)=k 1
" qulz:ll( W )Z|U|=1 vr(v)e—"C(v)WJ )
p(6)v; ()

Hence it is easy to check that the stationary distribution (ITy (6),...,TI, (#))
satisfies TI; (f) = w; () u; (F) for all j = 1,...,p. Consequently we conclude
that the process {0¢ (n) +nlogp(f), 7 (€n)}, >, is a Markov additive. Tts drift,
x (9), can be written more neatly as logp (6) — 8p’ (8) /p (9) . To see this note

Pr; (7 (&) = k)



that
x(0) = ZHJ (0) 11 (6)

log p (9) — 0

Under Assuption 3 we can differentiate both sides of the equality u (6)T M (6)v(0) =
p (8) andthe result follows.

4 Proofs

4.1 Proof of the Theorem

Suppose that E (W} (8) log™ W} (6)) = oo for some i € {1, ..., p} thus implying
that for all ¢ > 0

ZP;” (1og+ Wi] (0) > cn) = 00. (6)

Using notation from previously, consider the G, y1-measurable events
1
{log" W} (0,67 > en

where Gni1 = Fynsr. In view of (6), an application of the Borel-Cantelli

Lemma to this adapted sequence of events implies that
P, (log+ I/VZ-1 (G,ENl_n) > cn i.o.) =1
for all ¢ > 0 and hence

: log" Wi ) (0,60) _ log" W (0,¢nr)
lim sup > lim sup L= o0

7r;-almost surely where, if 7 (¢,) = j, V[/'l(E ) (6,&,) is the version of VV1 (#) on
the tree growing from §n

Conversely, if we assume that E (W} () logt W} (0)) < oo for all i €
{1,...,p} then a similar argument using again the Borel-Cantelli Lemma im-
plies that

P;, (log+ wi (H,IENin) > en i.o.) =0
for all ¢ > 0 and i = 1, .., p so that

log™ W§)95n

lim sup



7;-almost surely.

Now that the 7;-almost sure asymptotic behaviour of S, (#) and er( ) (8,¢,)
have been established with respect to the conditions of the theorem the proof
follows that of the case p = 1 given in Lyons (1997) (if not for some minor
alterations). We shall include it here for completeness.

From the decomposition of W*! () into contributions from the n-th gen-
eration we have

WP (0) > exp {— (6¢ (€n) +nlogp (6))} %WE(&) (0,8n) (7)

where

v(@) =min{v; (§) :i=1,...,p} > 0and 7(f) = max{v; (§) :i=1,...,p} > 0.

From the previous discussion, if x (#) < 0 then the diverging exponential term
in (7) is sufficient to guarentee that

limsup W;" (§) = co m;-a.s.
ntoo

If however x (f) > 0 and F (V[/Zl @] log™ W (9)) = oo for some i € {1,...,p}
then the limsup of the right hand side of (7) is dominated by the final term and
we conclude again that W (#) = oo m;-almost surely.

Now suppose that both x (#) > 0 and E (VVzl (0) log™ W (9)) < oo for all
i € {1,...,p}. Let G be the sigma field generated by the sequence {ZT(En)}n>o
then -

n—1 , NT —0¢(€x) n—1 . 9 —6¢(€x)
Be (w2 0)19) = 3 DT g, 4 37 e
im0 uil(0)r(0) = e (6)

Referring to the previous discussion, the summands in both terms above decay
at most exponentially and thus Fatou’s Lemma implies that

Fx, (lim i?f Wi (9) |g) < 00 Ti-a.s.

As [W (9)]_1 is a positive m;-martingale we thus have that lim,, 4o, W;* (#) and

hence W () are finite m;-almost surely. O

4.2 Proof of Corollary

The proof we will give uses ideas from Doney (1972) that were also employed
in Biggins (1977) for the one-type branching random walk.



Decomposing W (f) into contributions from individuals in the n-th gener-
ation and taking limits as n tends to infinity gives the distributional identity

| B vr(u)(g)e_GC(U)
Wi (0) = luzlzzl Cw(0)p(0)

where, if 7(u) = j, W) (0,u) is the version of W; (f) on the tree rooted at
u. Taking Laplace transforms of this identity under the Assumptions of the
Theorem gives a solution to the functional equation (1) in ®.

Wiy (0, u)

Suppose now we take two solutions (¢1, ..., ¢) and (#1,.-,p) in @ that
satisfy the functional equation (1). Since we are to prove uniqueness up to a
multiplicative constant in the argument, it suffices to assume that fori =1, ..., p,
¢; and @; are in £4. For all @ > 0, let g; (z) = 1oy () — @i (x) | and

g(x):max{|¢i($)—sﬁi($)| :i:],...,p}

x
so that g is bounded and positive with g (0%) = 0. We have

1 » Ur(u) (0) e—f¢(w) » Vr () (0) e—0¢(u)
2P| 22 o (JEW A NEEAO IO

|lu|=1

v (6) e—0¢(u) Ur () (9)@—94(@)
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for all n > 1. As has already been demonstrated, under the conditions of the
theorem

Voo (6 i
lim Lﬁg) exp {— (6¢ (&,) + nlogp (0))} =0 7;-as.

ntoo i (0] -

and hence since g is bounded 0 < g; (z) < g (07) =0 for all z > 0. O
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