An Axiomatization of

the Euclidean Compromise Solution

Mark Voorneveld?
Department of Mathematics, University of Utrecht, P.O.Box 80010, 3508 TA Utrecht,
The Netherlands. M. Voorneveld@math.uu.nl

Anne van den Nouweland

Department of Economics, University of Oregon, Eugene, OR 97403-1285, USA.

Abstract: The Euclidean compromise solution in multicriteria optimization is a solution
concept that assigns to a feasible set the alternative with minimal Euclidean distance
to the utopia point. The purpose of this paper is to provide a characterization of the

Euclidean compromise solution.

Keywords: Compromise solutions, axiomatization, multicriteria optimization.

!Corresponding author.



1 Introduction

Multicriteria optimization extends optimization theory by permitting several — possibly
conflicting — objective functions, which are to be ‘optimized’ simultaneously. By now
an important branch of Operations Research (see Steuer et al., 1996), it ranges from
highly verbal approaches like Larichev and Moshkovich (1997) to highly mathematical
approaches like Sawaragi et al. (1985), and is known by various other names, includ-
ing Pareto optimization, vector optimization, efficient optimization, and multiobjective
optimization. Formally, a multicriteria optimization problem can be formulated as
Optimize  fi(z),..., fu(z) "
1

subject to x € F|

where F' denotes the feasible set of alternatives and n € N the number of separate objective
functions fr, : F = R (k=1,...,n).

The simultaneous optimization of multiple objective functions suggests the question:
what does it mean to optimize, i.e., what is a good outcome? Different answers to this
question lead to different ways of solving multicriteria optimization problems. For a
detailed description and good introductions to the area, see White (1982), Yu (1985), and
Zeleny (1982).

Yu (1973) introduced compromise solutions, based on the idea of finding a feasible
point that is as close as possible to an ideal outcome. Zeleny (1976) even states this

informally as an axiom of choice:

“Alternatives that are closer to the ideal are preferred to those that are farther
away. To be as close as possible to the perceived ideal is the rationale of human

choice.”

The ideal point, or utopia point, specifies for each objective function separately the op-
timal feasible value. Assume, for instance, that in the optimization problem (1) higher
values of the objective functions correspond with better outcomes. In that case, the utopia

point u € R™ is defined by taking

Vke{l,....n}: u= max fr(x).



Whereas Yu (1973) concentrates on distance functions defined by £,-norms, possible ex-
tensions include the use of different norms (cf. Gearhart, 1979) or penalty functions (cf.
White, 1984).

In a manifesto, Bouyssou et al. (1993) observe that within multicriteria decision mak-
ing ‘[a] systematic axiomatic analysis of decision procedures and algorithms is yet to be
carried out’. Yu (1973, 1985) and Freimer and Yu (1976) already indicate several proper-
ties of compromise solutions. In this paper we concentrate on the Euclidean compromise
solution, selecting the feasible point that minimizes the Euclidean distance to the utopia
point, and provide a list of properties characterizing this solution: the Euclidean compro-
mise solution is shown to be the unique solution concept satisfying these properties on a
domain of multicriteria optimization problems.

Most of the axioms can be found in Yu (1973, 1985) and Freimer and Yu (1976). Two
new axioms are introduced: a projection property and a scaling property. The projection
axiom indicates that if all likely solution candidates, i.e., all Pareto optimal points, have
the same value according to a certain criterion, then attention can be restricted to the
remaining coordinates. The scaling axiom tells how the solution reacts to rescaling the
coordinates of certain symmetric choice sets by a positive constant.

The set-up of the paper is as follows. Section 2 contains preliminary results and defini-
tions. The Euclidean compromise solution and the domain of choice problems are defined
in Section 3. In Section 4, the axioms are stated and it is shown that the Fuclidean com-
promise solution indeed satisfies these properties. Our main result, Theorem 5.4, is given
in Section 5, where the Fuclidean compromise solution is shown to be the unique solution
concept satistying these properties. Section 6 contains remarks on possible modifications

of our characterization and related literature.

2 Preliminaries
Let n € N. For vectors a,b € R”, write

a=b & Vke{l,...,n}:a,=10b
az2b & Vke{l,...,n}:ar 2 b

a>b & az2b, anda#b



a>b & VYke{l,...,n}:a;> b

Relations £, <, < are defined analogously. Denote R} = {z € R" | z 2 0} and R%}, =
{z € R" | z > 0}. For two sets A, B C R", define A+ B={a+b|a€ A,be B}. Let
a € R". With a slight abuse of notation, we sometimes write a + B instead of {a} + B.
Let n € Nand S C R™ A point x € S is Pareto optimal in S if there is no feasible
alternative y € S such that y > z. The set of Pareto optimal points of S is denoted by
PO(S):
Vne NNVSCR™: PO(S)={zeS|Aye S:y >zl

Lemma 2.1 Letn € N and S C R” be nonempty, compact. For each x € S there exists
a vector y € PO(S) such thaty 2 x.

Proof. Consider T'= ({z} + R%}) N S. Let y € arg max.er Y_1_; 2;, which exists by com-
pactness of T" and continuity of the function 2+ 3", z;. Then y € PO(S) and y 2 = by
definition of 7' O

The inner product is denoted by (-, -, ):
Ve NVz,y e R": (z,y) =D iy
=1

The Euclidean norm is denoted by || - ||:

VneNVe eR™: ] =y/ (a,2).
The ball centered at x € R™ with radius r > 0 is denoted B(x,r):
B(z,r)={y e R": |ly —z| = r}.
Remark 2.2 Let y € B(z,r) with ||y — x| = r. We often use the fact that
{zeR":(y—=,2)=(y —z,9)}

is the unique hyperplane supporting the ball B(z,r) at the point y. 4



Let n € N,n 2 2, and consider a coordinate ¢ € {1,...,n}. The function that projects
each € R™ to the point in R"™! obtained by omitting the i-th coordinate is denoted by
p;. Formally,

Vo= (21, 0, Tic1, @iy Tigty ooy &n) € R™ 0 pi(x) = (1,000, @ic1, Tty ooy ).

We say that p;(z) € R"™! is the vector obtained from x € R™ by projecting away the i-th
coordinate. If S C R”, then p;(S) = {pi(s) | s € S}.

For z,y € R”, define x * y = (z1y1,...,2sYn), the vector obtained by coordinatewise
multiplication. For a set S C R", 2% S = {z*s | s € S}. For x € R}, define
7l = (i, ceey i), the vector obtained by taking coordinatewise reciprocals.

For a normal h € R” and a number a € R”, the hyperplane H(h,a) and corresponding
halfspace H™ (h,a) are defined as follows:

H(h,a) = {zeR"|(h,z)=a},
H™(h,a) = {zeR"|(h,z) < a}.
Lemma 2.3 Letn € NJh,b € R%,,a € R. Then bx H™(h,a) = H (h*b7",a).

Proof. Let y € b« H (h,a). Then y = b+ x for some v € H™(h,a), so (hx b7 ,y) =
o }g—:bm =" hix;=(h,z) Sa,soy € H (h+b7' a).

Conversely, let y € H™(h*b7",a). Take x = b~' +y € R™. Then (h,z) = XL, bt =

(hxb ' y)<a,sore€ H (hya) and y=bxx € bx H (h,a). O

3 The Euclidean compromise solution

The Euclidean compromise solution assigns to a feasible set the alternative with minimal
Euclidean distance to the utopia point. Each feasible set is assumed to be a nonempty,
compact, and convex subset of a finite dimensional Euclidean space (endowed with the

standard topology). Let n € N denote the number of criteria or coordinates and define
¥ ={S Cc R"| S is nonempty, convex, compact},

the collection of choice sets in R”™. As usual, for a choice set S € ¥" and a feasible

alternative x € S, the coordinate z; (k = 1,...,n) indicates how alternative x is evaluated
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according to the k-th criterion. It is assumed throughout that larger values are preferred

to smaller values. The collection of all choice sets is denoted X::
Y=u,2, X"

Let n € N,.S € ¥". The utopia point u(S) of S is the point in R” that specifies for each

criterion separately the highest achievable value:

u(S) = (rgggxsl, -, IaX Sn)-

By compactness of S, the utopia point is well-defined. In the proof of Theorem 5.3, we
also use the disagreement point d(S), defined as

d(S) = (13%1%131, o ,rgélglsn).

A solution concept on 3 is a function p on ¥ that assigns to each choice set S € ¥ a
feasible point ¢(S) € S. The Fuclidean compromise solution is the solution concept Y
that assigns to each S € ¥ the feasible point closest to the utopia point u(S):

VSeX: Y(5)= argmeigHu(S) —z||.

Since S is nonempty, compact, and convex and the function | - || is strictly convex, the
function Y is well-defined.

The choice sets with utopia point equal to the zero vector deserve special mention.
VneN: Xp={SeX"|u(S) =0},

S = U2, 50

The following lemma indicates that ¥ is closed under rescaling of its coordinates and
projections and also that utopia vectors and Pareto optima are in a sense robust against

projections. The proofs are trivial exercises; we suffice with proving one of them.

Lemma 3.1 Let n € Nyn 2 2,5 € ¥%,¢ € {1,...,n}, and x € R} . The following

claims hold:

(a) pi(S) € ¥



(b) If PO(S) € {x € R" | z; = 0}, then pi(PO(S)) = PO(pi(5));

() pi(u(9)) = u(pi(9));
(d) z+S € ¥

Proof. We only prove (b). Assume that PO(S) C {z € R" | z; = 0}.

Let v € p;(PO(S)). Then there exists a v € PO(S) such that p;(v) = v. Suppose
v ¢ PO(p;(S)). Then w > v for some w € p;(5). Let @ € S be such that p;(@0) = w.
By Lemma 2.1, there exists a £ € PO(S) such that £ 2 w. Then 0,7 € PO(S) implies
0; =& =0 and p;(T) 2 pi(@) = w > v = pi(V), so T > ¥, contradicting v € PO(S).
Hence v € PO(p;(5)). Conclude that p;,(PO(S)) C PO(p;(5)).

Let v € PO(p;(S)). Then there exists a v € S such that p;(v) = v. By Lemma 2.1,
there exists a @ € PO(S) such that @ 2 0. Then p;(@) 2 p:i(?) = v € PO(pi(5)), so
the weak inequality must be an equality: v € p;(PO(S)). Conclude that p;,(PO(S)) 2
PO(S). o

Let n € N;.S € ¥". The choice set S is closed with respect to cyclical rotation (cf. Yu,
1973, p. 940) if for each # € S and each permutation o : {1,...,n} — {1,...,n} :
(To(1)s- -1 To(m)) € 5, e, if S is symmetric with respect to the line {(¢,...,1) € R™ |t €
R}.

4 Properties of the Euclidean compromise solution

In this section, we list six properties of solution concepts, explain them, and indicate that
the Euclidean compromise solution satisfies each of them. Let ¢ be a solution concept on

Y. Consider the following axioms:
Pareto Optimality (PO): Vn € N,VS € X" : ¢(S5) € PO(S).

Independence of Irrelevant Alternatives (ITA): Vn € N,VS, T € ¥ ¢ if u(S) =
u(T),S CT, and p(T) € S, then ¢(S) = ¢(T).

Symmetry (SYM): Vn € N,VS € ¥ : if S is closed w.r.t. cyclical rotation, then ¢,(S) =
©;(S) for all 4,5 € {1,...,n}.



Translation Invariance (TI): Vn € NVS € ¥ Ve e R": p(z + 5) = = + ¢(S5).

Projection (PR):Vn € Nyn 2 2,VS € X7 : if there exists an 7 € {1,...,n} such that z; =
yi for all z,y € PO(S), then pi(p(5)) = #(pi(5)).

Scaling (SC): Let n € Nyn 2 2,¢t € R4, and a € R be such that the set
B={zeR"|Vie{l,...,n}:z; € [~,0] and zn:xz <a}
i=1
has utopia point u(B) =0¢ B. Let s € R’ .. Then
pils* B) _ sjpi(B)

Vi,g € {l,...,n}: = .
Woent s D0VB) T sy (B)

Pareto optimality requires that ¢ selects a Pareto optimal alternative in each choice set.
Independence of irrelevant alternatives states that if the utopia point remains unaffected
and one only discards irrelevant alternatives (alternatives @ € T' with @ # ¢(T')), then the
solution does not change. If ¢ satisfies symmetry, then it assigns equal value to each of
the coordinates of a symmetric choice set. Translation invariance indicates that the only
effect of translating a choice set is that the solution is translated to the same extent.
The projection axiom indicates that if all likely solution candidates, i.e., all Pareto
optimal points, of a choice set S € Y7 (n 2 2) have the same value according to a
certain criterion, then attention can be restricted to the remaining coordinates. Part
(a) of Lemma 3.1 indicates that the projected problem is indeed a choice problem. Let
n€Nnz=225eXy andi € {1,...,n} such that z; = y; for all z,y € PO(S). Let
v € S be such that v; = u;(S). Since S € X7, u;(S) = 0. By Lemma 2.1, v £ w for some
w € PO(S). Then 0 = v; £ w; £ u;(S) =0, so w; = 0. By assumption, z; = w; = 0 for

all z € PO(S). So the projection axiom can be equivalently stated as follows:

Projection (PR): Vn e Nyn 22,VS € X0 : if PO(S) C {z € R" | z; = 0} for some i €
{1,...,n}, then pi(o(S)) = @(pi(9)).
As opposed to independence of irrelevant alternatives, this axiom is a way to require

independence of irrelevant criteria. Just like the previous axioms, this axiom is satisfied

by many compromise solutions.



The final property, the scaling axiom, is what makes the Euclidean compromise so-
lution stand out from other compromise solutions. It tells how the solution reacts to
rescaling the coordinates of a highly symmetric choice set. If each coordinate ¢ of such a
choice set B is rescaled by a positive factor s;, then the ratio ¢;(s * B)/p;(s * B) in the
new choice set s * B differs from the ratio p;(B)/¢;(B) in the original choice set B by a
factor s;/s; for each pair of coordinates ¢, j. In the game theoretic literature on bargain-
ing (cf. Nash, 1950, Roth, 1985), such proportionality properties, in combination with
translation invariance, are common axioms to describe the effect of affine transformations
on solutions to bargaining problems.

The following theorem indicates that the Euclidean compromise solution satisfies the

six properties.

Theorem 4.1 The Euclidean compromise solution Y satisfies PO, 1IA, SYM, TI, PR,
and SC.

Proof. Yu (1973, pp. 939-940) indicates that the Euclidean compromise solution satisfies
PO, ITA, and SYM. It is easy to see that it also satisfies TI.

To see that Y satisfies PR,letn € N;n 2 2,5 € X¥ and assume that fori € {1,...,n}:
PO(S) C{z € R" | #; = 0}. According to Lemma 3.1, we have that p;(S) € ¥{~" and
pi(PO(S)) = PO(pi(S)). That p;(Y(S)) = Y(pi(S)) follows from the following chain of

equivalent statements:

Y(S) solves min||z|| < Y(S) solves min |z
€S z€PO(S)
& Yi(S) =0 and p;(Y(95)) solves mm H I
& Yi(S) =0 and p;(Y(9)) solves ml(n H H
‘Tepl
& V() = 0 and p(V(S)) = Y ((5).

The first and third equivalence follow from PO of Y, the second from the assumption that

z; = 0 for all z € PO(S), and the fourth by definition of Y (p;(.5)).
To see that Y satisfies SC, let n € N,n 22, € R,4, and a € R be such that the set

B={zeR"|Vie{l,...,n} 2, €[-t,00and > z;<a

=1



has utopia point u(B) =0 ¢ B. Clearly a < 0. SYM and PO of Y on B imply that
(L,...,1) <0. (2)
Let s € R}, and A := s B. Notice that u(A) = s * u(B) = 0(¢ A). By Lemma 2.3,

A={zeR"|Vie{l,...,n}:a; € [~1s;,0] and Zg§a}
s

i=1 %
By definition of Y(A), the ball B(u(A),||Y(A)||) around the origin u(A) = 0 with radius
|IY(A)]| and the choice set A have only the point Y (A) in common. By the separating
hyperplane theorem, there exists a hyperplane separating the ball and A, supporting the
ball at Y(A). By Remark 2.2, this hyperplane is unique. Since PO(A) = {z € R" |
Vie{l,...,n} 1 2; € [~1s;,0] and 37, & = a}, its normal is (a multiple of) the vector
s7h= (4 ,i) € R7,. This means that Y(A) = As™! for some A € R and that Y (A)

817

satisfies S0, ﬂ'sﬁ = a. Solving this yields A = —Hs_al||2 and
Vie{l,...,n}: Yi(A)

Combining this with (2) yields:

Vi,je{l,...,n}: :—::

This proves that Y satisfies SC. O

5 Axiomatization of the Euclidean compromise solu-
tion

In this section, the Euclidean compromise solution is shown to be the unique solution
concept on ¥ satisfying PO, ITA, SYM, TI, PR, and SC. The proof is split up into several
cases. Every solution concept that satisfies PO must select the utopia outcome, if this is

feasible. This applies in particular to all one-dimensional choice problems S € X!,

Proposition 5.1 Let p be a solution concept on ¥ that satisfies PO. Let S € ¥ be such
that u(S) € S. Then ©(S) = u(S).
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Proof. Since u(S) 2 z for each z € 5, u(S) € S implies PO(S) = {u(S)}. By PO:
p(5) = u(S). O

In choice problems with utopia point zero and a Euclidean compromise solution which is
smaller in each coordinate than the utopia point, every solution concept satisfying PO,

ITA, SYM, and SC coincides with the Euclidean compromise solution.

Theorem 5.2 Let p be a solution concept on ¥ that satisfies PO, I[IA, SYM, and SC.
Letn € Nyn 2 2 and S € X7 such that Y(S) < u(S). Then ¢(S) =Y (S).

Proof. Since S € Xf : Y(5) < u(S) = 0. By definition of Y(5), the ball B(0,|Y(5)])
around the utopia point u(S5) = 0 with radius |Y(.5)|| and the choice set S have only the
point Y(S) in common. By the separating hyperplane theorem, there exists a hyperplane
that separates the ball B(0,||Y(S)]|) and S, supporting the ball at Y'(5). By Remark 2.2,
this is the hyperplane H(h,a) with

h=u(S)—Y(S)=—Y(S)>0and a = (~V(S),Y(S)) = —|[V(S)| < 0.

The choice set S lies in the halfspace H™(h,a) = {z € R™ | (h,z) < a}. Choose t € R
sufficiently large, so that the set

! 0] and (h,z) < a}

A::{xE]R”|‘v’i€{1,...,7@}:;1:2-.5[_E7

satisfies

S C Aand u(S) =u(A) =0.

Such a number ¢t € R, exists, since S € H™(h,a),h > 0, and S is bounded. By Lemma
2.3,
B:=h+xA={zeR"|Vie{l,...,n} :z; €[-t,0]and > z; S a}.

=1
Notice that u(B) = h*u(S) =h*0=0¢ B, since a < 0. Since Y and ¢ satisfy SYM
and PO, it follows that
A(B)=Y(B) = “(1,....1) 3

Since A = h™' % B and k™! > 0, (3) and SC of Y and ¢ imply

o CowiA)  Yi(A)  hia/n)  hy
Vg €L ) T V(A) T hy(ajn) By
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So p(A) = Ak and Y(A) = ph for some A\, p € R. PO of Y and ¢ implies that (h, o(A)) =
(b, Y(A)) = a i, (~¥(S), ~AV(S)) = (~¥(S),~p¥ ()} = —[V ()% So A = = —1
and p(A) =Y (A) =Y(9).

Since S C A,u(S) =u(A) =0, and p(A) = Y(S5) € 5, it follows from IIA of ¢ that
o(5) = p(4) = ¥(5). 0

The third result of this section considers choice sets in g for which the Euclidean compro-
mise solution has some, but not all, coordinates equal to the corresponding coordinates
of the utopia point. On such choice sets, solution concepts satisfying PO, SYM, ITA, PR,

and SC coincide with the Euclidean compromise solution.

Theorem 5.3 Let p be a solution concept on ¥ that satisfies PO, I[TA, SYM, SC, and
PR. Let n € Nyn 2 2 and S € X0 such that Y (S) < u(S), but not Y(S5) < u(S). Then
p(S) =Y (5).

Proof. As before, the unique tangent hyperplane H(h,a) separating the sets S and
B(0,]|Y(S)]|) has normal h = —Y(S) and a = —||Y(S)||*. Recall that d(S) is the dis-

agreement point of S. Take
T={zeR"|(h,z) Saand d(S) <z S0} X"

Then
SCTu(S)=u(T)=0, and Y(S5) = Y(T). (4)

The equality Y (S) = Y(T') follows from the fact that by construction the ball B(0, ||Y'(9)])
and 7" have exactly the point Y (S) in common. It suffices to prove that

o(T) =Y (1), (5)
since (4), (5), and TIA of ¢ then imply ¢(S) = o(T') = Y(S), which was to be shown. By
assumption, the set

I = {ie{l,....n}|YiS)
= {iefl,....n} | YiT)
= {ie{l,...,n} | hi=0}

ui(S)}
ui(T)}
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is nonempty. We claim that
Viel: PO(T)C{zeR"|z =0} (6)

To see this, let i € I and x € PO(T). By definition, z; = u;(T') = 0. Suppose that
x; < 0. Take y = & — x;¢; > x, where ¢; € R™ denotes the i-th standard basis vector.
Then (h,y) = (h,z) — (h,z;e;) = (h,z) — hyx; = (h,z) < a. Moreover, d(S) £z <y £ 0.
Hence y € T and y > x, contradicting « € PO(T'). Conclude that (6) holds. By (6) and
PO of p and Y:
Viel:o(T)=Y,(T)=0. (7)
Lemma 3.1 and PR of Y imply that for each 2 € I:
pi(PO(T)) = PO(pi(T)),
pi(u(T)) = u(pi(T)),
pi(Y(T)) = Y(pi(T)).

So even though the set T has |I| coordinates ¢ for which Y;(T') = wu;(T'), the choice set
pi(T) has only |I| — 1 such coordinates. Repeated application of projection reduces this
number to zero: Write I = {i(1),...,¢(m)} and take (with a slight abuse of notation)

V' = pim) 0 -+ 0 piy(T),

I obtained from T by projecting away all coordinates in I. Then

the set of coordinates j for which Y;(V) = u;(V) is empty: Y (V) < u(V). Theorem 5.2
and PR of p and Y imply:

the choice set in X7~

Pitmy © - 0 pi)(Y(T)) = Y(V) = o(V) = pigm) © - -+ 0 piyy (p(T))- (8)

Equality (7) indicates that Y;(T') = o;(T) if ¢ € [ and equality (8) indicates that
Yi(T) = p;(T) if ¢ ¢ I, which proves (5). 0

The results above combine into our main theorem, the axiomatization of the Euclidean

compromise solution.

Theorem 5.4 The Fuclidean compromise solution Y s the unique solution concept on

Y satisfying PO, TI, SYM, SC, IIA, and PR.

13



Proof. Y satisfies the axioms by Theorem 4.1. Let ¢ be a solution concept on ¥ that also
satisfies them. Let S € ¥ and let T'= —u(S) + 5 € ¥y. By Tl of Y and ¢, it suffices to
show that o(T) = Y/(T'). If u(T") € T, this follows from Proposition 5.1. If Y(T') < u(T),

it follows from Theorem 5.2; otherwise, it follows from Theorem 5.3. O

6 Concluding remarks

Bouyssou et al. (1993) promote an axiomatic approach to the study of decision proce-
dures in multicriteria optimization. Theorem 5.4 characterizes the Euclidean compromise
solution by means of six properties. Five of these properties, PO, SYM, ITA, TI, and PR,
are shared by many compromise solutions. The scaling axiom SC is a proportionality
property as encountered in the literature on bargaining and is specific to the Fuclidean
compromise solution.

In a recent article, Rubinstein and Zhou (1999) characterize the solution concept that
assigns to each choice set the point closest to an exogenously given and fixed reference
point e, rather than the utopia point, which varies as a function of the choice set. Their
axiomatization involves a symmetry condition and independence of irrelevant alternatives.
Whereas the symmetry condition in Section 4, taken from Yu (1973), requires symmetry
only in the line through the origin with equal coordinates, the symmetry condition of
Rubinstein and Zhou applies to choice sets that are symmetric with respect to any line
through the reference point e.

The domain of our solution concepts was taken to be the collection of all nonempty,
compact, convex subsets of finite-dimensional Euclidean spaces. The condition that choice
sets are compact was used to guarantee the existence of utopia points. The boundedness
condition inherent in compactness can be weakened: our axiomatization — with minor
modifications in the proofs — also holds on the domain of nonempty, convex, closed, and
upper bounded subsets of finite-dimensional Euclidean spaces.

There is an interesting duality between the multicriteria literature that suggests a
compromise approach by finding a desirable alternative from a feasible set and the game-
theoretic approach to bargaining. The compromise approach entails formulating a de-

sirable, ideal point (the utopia point) and then ‘working your way down’ to a feasible

14



solution as close as possible to the ideal. The bargaining approach entails formulating
a typically undesirable disagreement point and then ‘working your way up’ to a feasible
point dominating the disagreement outcome. Mixtures of the two approaches, like the
Kalai-Smorodinsky (1975) solution, exists as well. Conley, McLean, and Wilkie (1999)
give an interesting discussion of this duality between the bargaining and the multicriteria
optimization approach and also provide an axiom that is related to (but more involved
than) our scaling axiom SC. Unfortunately, their treatment of the multicriteria approach

contains several imprecisions.
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