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Introduction

The notion of Relative Realizability was defined in [2] (see also [1, 4]). The
idea is, that instead of doing realizability with one partial combinatory algebra
A one uses an inclusion of partial combinatory algebras Ay C A (such that
there are combinators k,s € Ay which also serve as combinators for A); the
principal point being that “(Ay-) computable” functions may also act on data
(in A) that need not be computable. Of course this is reminiscent of Turing’s
computability with oracles and Kleene’s definition ([12] and later papers) of a
recursive functional of higher type, which, for example in the case of type 2, has
to act on any (possibly non-recursive) function.

In itself, relative realizability was not new; Kleene’s 1957-realizability ([11]),
a precursor of his later function realizability, was probably of this type (we shall
make this conjecture precise in section 3), and relative realizability also occurs
in Thomas Streicher’s “Topos for Computable Analysis” ([17]). However, in
[2] there is an analysis of the relationships between relative realizability over
Ay C A and the ordinary realizabilities over Ay and A. Let RT(Ay, A) be the
relative realizability topos, and RT(Ay), RT(A) the ordinary (effective topos-
like) realizability toposes; then

e There is a local geometric morphism from RT(Ay, A) to RT(Ay);
e there is a logical functor from RT(Ay, A) to RT(A)

*Most of the work reported here was carried out while the first author was employed by
the School of Computer Science, Carnegie Mellon University, Pittsburgh.
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The motivation for the present paper was the observation that there is a
general pattern underlying relative realizability. Basically, an inclusion Ay C A
is seen as an internal partial combinatory algebra in the topos Set™ (sheaves over
Sierpinski space), and in fact we have three such internal algebras to consider
(also Ay — Ay and A — A). Tt turns out that RT(Ay, A) is a sheaf subtopos
of the ordinary realizability topos constructed over Set™ with the internal pca
Ay — A. In order to retrieve RT(Ay, A) we have to take the ~—-topology into
account.

Therefore, in section 1, we embark on a general theory of triposes on a
topos &, connected to an internal partial combinatory algebra and an internal
topology. One of the key notions appears to be that of an elementary subob-
ject (definition 1.2) in €. We recover, in a very general context, the theorems
highlighted above: if, for internal pca’s A and B in &, we have an embedding
such that A is an elementary subobject of B, then there is a local geometric
morphism from the standard realizability topos (over £) on B to the one on A.
This restricts to a local geometric morphism between those toposes which are
built using only the j-closed subsets of A (and B) as truth-values. Denoting
these by £ffa ;, £ffp,; we have moreover: if A is a j-dense subobject of B, then
Effp; is a filter quotient of £ff4 ;. Recall, that the canonical functor from a
topos to a filter quotient is always logical.

Section 2 explores the relationship with the topos of sheaves for j. We
obtain some pullback results. Moreover, the general situation gives rise to a
very general definition of “modified realizability”: in the case that j is an open
topology, the inclusion Effa ; — £ffa is also open, and it makes sense to look
at its closed complement, which we define as the modified realizability topos on
€ wrt. Aandj.

Finally in section 3 we discuss a number of examples known in the literature.
We find that the general description allows a comparison between several notions
that was not available before; moreover it opens the search for more examples.

1 Triposes over Internal Pca’s

1.1 Internal Partial Combinatory Algebras

In this section we intend to lay down some basic definitions and to fix notation.
We shall work, throughout this chapter, in an arbitrary topos £. We shall
employ the internal language and logic freely, and assume the reader is familiar
with its use.
Let A be an object of £, and f: A x A — A a partial map. We shall write
D4 for its domain, i.e. the object defined by the pullback diagram
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where A8 A is the partial map classifier of A.
We see this as a structure for a language with just a partial binary function
syrabolInwhach pwsi tw rétep rssguoxtsaposition: a, b 1
“iation to the left, i.e. abe is short for (ab)e. In manipulating
nguage we use the symbol “|” (“is defined”). For a term t,
variables z1,...,z, of type A and juxtaposition, we define its
[uy,...,u,] and the formula ¢[@]} by a simultaneous induction
denote generalized elements of type A, i.e. morphisms U — A
ster object U):

z[u]l = u

- tfid) A sl A (1[i), slill) € Da tslid] = folt[d), slil)

e expression t}. we understand this to imply t/| for any subterm
ample, ac(be)l is shorthand for acl A bel A ac(be)l. Given two
e use the expression ¢ ~ s as an abbreviation for

() o sd)A(tL =t =5s)

a) The structure (A, Dy EN A) is called a partial combina-
a in &, if the statements:

k Jk:AVzy: Akzyl Nkzy =2
s Is:AVeyz:A.sxyl A szyz ~ x2(yz)

rue in the internal logic of £.

partial combinatory algebras (A, Dy EN A) and (B, Dp % B)
nic map g : A — B is an embedding if the following conditions

nap Da "2 B x B factors through Dp
liagram

Dy —— Dp

is a pullback in £ (in particular, it commutes!)

iii) the formulas

Jk:AV2zy:B.kxyl A kzy = x
Is:AVaeyz:B.szyl A szyz ~ 2z(yz)

are true in £ (under the identification of elements of A with their
pi-images).



Note the following points in definition 1.1: we do not require that A has global
elements (as we don’t need it), we have formulated the “combinator axioms”
as properties rather than structure; furthermore, we shall, in the case of an
embedding A — B, identify A with its image in B. Note that for two elements
z,y of A: zyl in A if and only if zy] in B.

The standard facts about partial combinatory algebras (see, e.g.,[3]) that we
need, are all constructively valid, and carry over to internal partial combinatory
algebras in a topos £. In particular, we shall use

e Schonfinkel’s Combinatory Completeness: for any term ¢ and any variable
x, there is a term Ax.t such that for any term s, (Az.t)s ~ t[s/x] holds;

e Pairing: the sentence
3p, po, pr:AVzy: A.pryl Apoxd Apizl Apo(pry) = = Api(pry) =y

is true in €. In fact, any choice of k and s in A give p, pg, p1 definable in
k,s.

Given a partial combinatory algebra A we define the two maps
Aa,=a: Q0 x Q4 504
internally by:

XAaY = {z€eA|px€ X and przeY}
X=4Y = {acA|Vbe X(ablANabeY)}

The notations A, = will be extended to morphisms: X — Q4 by composition;
and the subscript will be used only if confusion is possible.

Definition 1.2 A subobject A of an object B of £ is said to be elementary' if
for any subobject C' of B: if C — 1 is an epimorphism, sois ANC — 1.

Note that if the subobject A of B is elementary, the internal logic of £ obeys
the following rule:

£ EJ:B.R(z) = &£ E Je:AR(X)

for any closed formula Jz:R(z) of the internal language, with z a variable of
type B.

1.2 Realizability Triposes on &

Let (A, Da EN A) be a partial combinatory algebra in £. We shall not define
the notion of a tripos (instead, refer the reader to [7]), but just for definiteness
we recall the definition of the standard realizability tripos on £ with respect to

!The term “elementary”, reminiscent of a familiar criterion in Model Theory, was suggested
to us by Tibor Beke.



A, which we shall denote by Pa. Pa(X) is the set of arrows: X — Q4 in &.
P4(X) is preordered by: for ¢, 9 € Pa(X), ¢ < ¢ if and only if the sentence

da:AVz:X.a € p(z) = ¢¥(x)

is true in £.

Pa(X) is a Heyting prealgebra, and the (extensions of) maps A, = serve as
meet and Heyting tmplication, respectively.

For any arrow f:X — Y we have Pa(f):Pa(Y) = Pa(X) by composition.
This map is a morphism of Heyting prealgebras and has both adjoints 3; and
Vi

F(e)y) = {a€A|Te:X f(x)=yANacp(x)}
Vile)y) = {a€AVe:X f(z) =y ac (A= p(z))}

Our first proposition concerns geometric morphisms between realizability tri-
poses (again, the reader is referred to [7] for a definition). Recall from [10],
that a geometric morphism between toposes is called local if it is bounded and
its direct image part has a full and faithful right adjoint. Since any geometric
morphism which arises from a geometric morphism of triposes is automatically
bounded (indeed, localic; see [2] for a proof) we shall say that a geometric mor-
phism between triposes is local if its direct image has a full and faithful right
adjoint. The following proposition is essentially already in [2].

Proposition 1.3 Let i : A — B be an embedding of partial combinatory al-
gebras in €. If A 1s an elementary subobject of B, there is a local geometric
morphism of triposes: Pg — Pj4.

Proof. Define ®* : Pg — P4 by composition with the map Q' : QF — Q4 (i.e.,
intersection with A). To show that this is order-preserving we use that A — B
is elementary: if ¢ < ¢ in Pp(X), then

Ja:BYz:X.a € p(z) =p ¢(z)
hence, by elementariness,
Ja:AVz:X.a € p(x) =p Y(z)
and since ¢ is an embedding we have
da:AVe:X.a € (p(z) NA=4 P(x) NA)

We define ®; : P4 — Pp by composition with the map 3; : Q4 — Q. Clearly, if
v: X = Q4 and ¢ : X — QF then ®®*(¢) <4 and p < ®*®:(p), so &y 4 O*.
Moreover, @, preserves finite meets: since 7 is an embedding, internally a choice
for the pairing combinators exists in A which are also pairing combinators for
B. And since A is inhabited, ®; preserves the top element.

We define, moreover, ®, : P4 — Pp by putting, for ¢ € P4(X),

. (¢)(z) = {a € B] Ja:Pacan ((anA) =g ex)}



(here we assume that the pairing combinators in B are chosen from A). To see
that @, is order-preserving, reason internally. Let a : A testify ¢ < 1), that is,

Ve:X.a € p(x) =>a ¢¥(x)
Suppose a’ € @, (p)(z), so for some a € QB
poa’ € a and pra’ € ((aNA) =5 ¢(z))

Clearly then,
Ay.a((pra’)y) € (aNA) =p P(z)
80
Ad' (pod’, Ay.a((pra’)y)) € @.(p)(w) =5 Pu(¥)(w)
The proof that ®* 4 @, is left to the reader. Note that by elementary category

theory, full and faithfulness of @, follows from full and faithfulness of ®,, which
follows again from elementariness. | |

1.3 Realizability Triposes and Internal Topologies

Let A be a partial combinatory algebra in £. Now suppose that j:QQ — Q is an
internal topology in £, i.e. the following axioms are true in &:

Vp:Q.p — j(p)
Vpg:Q.(p — q) = (j(p) — J(q)
vp:Q.j(i(p)) = ip)

We call the partial combinatory algebra A j-regular if the subobject Dy — Ax A
is j-closed; this means:
Vay:Aj(zyl) — xyl

holds in €. Henceforth we shall always assume that our partial combinatory
algebras are j-regular.

As usual, ©Q; denotes the image of j; Qj‘ is the object of j-closed subsets of A
and j4 : Q4 — Q4 is the internal closure map. In the logic, j4(a) = {z|j(z €
a)}. Note, that if A is a j-regular partial combinatory algebra, we have

Vap € Q*.(j* (@) = j*(8)) = (= j*(B))

for the inclusion from left to right is obvious, and if a € (a = j4(3)), b € j*(a)
then j(abl) hence abl by regularity, and j(ab € j4(3)) so ab € j4(B) since j is
idempotent. Note, that also

Va4 j4(a A B) = 54 (@) Aa 54 (B)

holds in £.

We define the realizability tripos P4 ; by: Pa ;(X) is the set of arrows
X = Qj‘ in £ We regard this as a subset of P4(X), and give P4 ;(X) the
sub-preorder. Using the above remarks, the verification that this is a tripos is
straightforward. The following easy proposition occurs in [18]:



Proposition 1.4 Py ; is a tripos and there is a geometric inclusion of triposes:
PAJ' — Py.

Proposition 1.5 If A — B is an embedding of partial combinatory algebras,
and A C B an elementary subobject, the local geometric morphism Pp — Pa
restricts to a local geometric morphism Pp; — Pa ;. That is, there is a com-
mutative diagram

PB}J’ _ PA’J’

]

Pp Py

of geometric morphisms of triposes.

Proof. Adapt the proof of 1.3 by inserting j’s at the appropriate points, to
obtain j-closed predicates. For example define ®, : P4 ; — Pp ; by

@.(¢)(x) = {:B|j(Fa:00 a € a A (0N A =5 1 (¢(2))))

® : Py; — Ppjsends o : X — Qj\ to its closure in B. To see that ®; is full
and faithful one employs the same reasoning as used in the proof of 1.3 to show
that ®* was order-preserving: if ®(¢) < ®(1) in Pp ;(X), so

Ja:BVz:X.a € jB(QD(Z)) =B ]B(lp(l’))
one deduces by elementariness and the property of an embedding, that
Ja:AVz:X.a € (57 (p(x)) N A =4 57 (4(2)) N A)

But always, j2 (p(2))NA = j4(p(2)) = ¢(x) for ¢ € Pa j(X); hence, ®; reflects
the order.

Finally, it is easy to see that the diagram in the statement of the proposition
commutes.

Recall that a topology j is open if there is a global element u of € such that
Jj(@) = u = z for all z € Q. By analogy we say that a geometric inclusion
®* - @, of triposes: P — @ is open, if there is an element « of Q(1) such that
for every ¢ € Q(X), ®«®*(¢) is isomorphic to Q(!)(a) = ¢ where ! denotes
X — 1, and = is the Heyting implication of Q(X).

It is an easy exercise to show that open inclusions of triposes yield open
inclusions between the corresponding toposes.

Proposition 1.6 If j is an open topology, then the inclusion Py ; — Py is
open.

Proof. Let j(p) = u — pfor some u € Q; let U be the subobject of 1 classified by
u. In P4(1) we have the image A’ of the projection AxU — A, so A" = {a:A| u}.



We calculate, for ¢ € P4(X), the element A’ = ¢:

A = p(x) {a|Vbh:A.u — (abl Aab € p(x))}
{a|Vb:A.abl A (u — ab € p(x)))

A= 4 (p(x))

Now clearly, Az:X.A = ¢(z) is isomorphic to ¢ in Pa(X); so Az:X. A" = ¢(z)
is isomorphic to Az:X.j4(¢(z)). Hence, the inclusion P4 j — P4 is open. N

}

Next, we turn to the situation of an embedding A — B of partial combinatory
algebras in £ where A is a j-dense subobject of B, but not necessarily elemen-
tary. Generally, we don’t have geometric morphisms any more. However, there
is an interesting functor: P4 ; — Pp ;.

By a “functor” between triposes we mean an £-indexed functor; equivalently,
a cartesian functor between fibrations over £.

In order to explain the situation, we recall from Pitts’ thesis ([16]) that for
any tripos P on &£ and any filter ® on the Heyting pre-algebra P(1), one can
consider the filter quotient tripos Pg: Pg(X) is the same set as P(X), but the
order is defined by:

< Y iff Vi(p =) €@
where ! : X — 1 and = is the Heyting implication in P(X).

Every filter ® on P(1) gives a filter ® of subobjects of 1 in the topos E[P],
and the topos &£[Pg] is the filter quotient £[P]g ([16]). The filter quotient
construction (which,by the way, is called “filter power” in [8]) is well explained
in [14]. For us is important, that for any filter quotient there is a logical functor
from the topos to the quotient.

We make the following definition.

Definition 1.7 A functor F': P — @ between E-triposes is called logical if the
following conditions hold:

i) TFor any object X of £ and ¢, € P(X),
Fx(p = ¢) = Fx(p) = Fx(¢)
ii) Foranymap f: X — Y in & and any ¢ € P(X),
Fy (V¢ () = Vi (Fx ()

i) If o € P(X) is a generic element for P, then Fx(o) € Q(X) is a generic
element for Q.

Since, in a tripos, the whole structure is definable from implication, universal
quantification and the generic element, any logical functor between triposes
gives rise to a logical functor between the corresponding toposes. Moreover, the
filter quotient functor: P — Pg is a logical functor of triposes.



Proposition 1.8 Suppose A — B is an embedding of partial combinatory alge-
bras in &, such that the inclusion A — B of objects is j-dense. Then there is a
filter ® on P, ; such that the triposes Pp ; and (P4 ;) are isomorphic; hence,
there is a logical functor of triposes: P4 ; — Pp ;.

Proof. Let ® C P4 ;(1) be the set of those j-closed subobjects a of A such
that
EETIB.jOE )

It is easy to check that this is a filter; we define functors F' : (P4 j)o — Pp
and G : Pg j — (Pa j)o which are each other’s inverse.
Fx : (Paj)o(X)— Pp;(X) sends ¢ : X — Qj‘ to

e X B (p(x)) 1 X = Q}B

F is order preserving: in (P4 j)a, ¢ < ¢ if and only if
& E3b:B.j(Ve:XVa € p(z).bal Aba € (z))

Clearly, this implies
£ k= 3b:BYz:XVa € jP (p()).bal A ba € 55 (1(z))

which is the definition of Fx () < Fx (v).
G : Ppj — (Paj)a is defined by Gx () = Az:X.¢(x) N A. To show that G

is order-preserving, reason internally. ¢ < ¢ in Pg ;(X) means
& = A:BVr:XVYa € ¢(z).bal A ba € ¢(z)
so let b:B satisfy this formula. Clearly, b € A implies
Ve:XVa € o(z) N Abal Aba € Y(z) N A
Since A is dense in B, we have therefore
& E3b:B.j(Ve:XVa € o(x) N Abal Aba € ¢(x) N A)

SO G}((QO) S Gx(lp) in (PA,j)<T>(X)~

Finally, since for a € Qj’ and f € QJ-B we have the identities jB(a) N A =
j4(a) = a, and jB(B N A) = B (the last one because A — B is dense), we see
that F and G are each other’s inverse. [ |

2 Relations between the toposes

In this section we review connections between the toposes &, £[Pa], £[Pa,;], and
Sh;(€) (the topos of j-sheaves in &).

We write ¢* - 2, for the geometric inclusion: Sh; (£) — £. From the theory
of triposes we have, for each tripos P on &, a “constant objects functor” Ap :

&= ELP).



Let us note, that Sh; (&) is of form £[Q] where @ is the tripos corresponding
to the internal locale ©Q; in &, and that i* : £ — Sh;(€) is the constant objects
functor Ag. This functor is a left adjoint, hence preserves epimorphisms, so
Pitts’ iteration theorem ([16], 6.2) applies: for any tripos R on Sh;(£), we have
that P = Ro(7*)°P is a tripos on &, and there is a commutative diagram

Ap

& EP]

Shy (€) —— Sh; (£)[A]
where K is an equivalence of categories.
Now it is easy to see that if we compose P4 ; with the embedding i., we get
a tripos on Sh; (&), because P4 ; has a generic element living in the fibre over
Q}-“, which is a j-sheaf. We see that if R is the Sh;(&)-tripos Py jo(ix)°P, the
topos Sh;(&)[R] is equivalent to

E[Pa,jo(ix)Po(i")P] = E[Pa ]

Hence, £[P4 ;] is also represented by the tripos R on Sh;(&). In particular we
have the constant objects functor Ag : Sh;(£) — E[Pa ;1.

Theorem 2.1 Ag :Sh;(&) = E[Pa ;] is the direct image of a geometric inclu-
ston. There is a commutative diagram

Sh;j(€) ——= &[Pa 4]

o

& E[P4]

which is a pullback in the category of toposes and geometric morphisms.

Proof. We shall denote a general object of E[P4] or £[P4 ;] by (X, Eq) with
Eq a morphism from X x X to Q4 or Qj‘, respectively.

AR sends a sheaf X to the object (X, Eq) where Eq is defined internally by

Eq(z,y) = {a:A|z =y}

(this is a well-defined object of E[P4 ;], since X is a sheaf)

In the other direction, consider an object (X,Eq) of £[Pa;]. Let X' =
{£:X | j(Ja:A.a € Eq(z, z))}, and let ~ be the equivalence relation on X’ defined
by

z~y = j(Ja:A.a € Eq(z,y))
Then X'/ ~ is a j-separated object of £ which we denote by G(X,Eq). Suppose
F:XxY — Qf represents a morphism (X, Eq) — (Y, Eq). Then F determines
a subobject G(F) of G(X,Eq) x G(Y,Eq) defined by

G(F) = {([z],[¥]) | i(Fa:A.a € F(2,y))}

10



Clearly, the composite G(F) — G(X,Eq) x G(Y,Eq) — G(X, Eq) is a j-dense
monic in &, so if we apply i* to it, we obtain a morphism i*G(X,Eq) —
i*G(Y,Eq).

We leave it to the reader to check that this defines a functor T'r:E[P4 ;] —
Sh; (€) whose object part sends (X, Eq) to i*G(X, Eq). Let us show that T'p is
left adjoint to Ap.

Given a morphism (Y, Eq) — Ag(X), represented by F:Y x X — Qj‘, the
totality requirement of ' with respect to the tripos P4 ; means that

EEJa:AVy:YVb:Ab € Eqy,y) — ablA
J(Ax:X.ab € F(y,z))

Writing G(Y, Eq) as Y'/ ~, we see that if we let
V" ={y:Y |3e:XFa:A.a € F(y,z)}

the inclusion Y” — Y’ is j-dense; so (Y"/ ~) = (Y’'/ ~) is a j-dense monic.
Since the quantifier 32:X in the definition of Y is (by single-valuedness of F')
in fact of form 32: X, we have a morphism (Y"/ ~) — X in £ which extends,
since X is a sheaf, uniquely to a morphism I'r(Y, Eq) — X.

Conversely, given a morphism G(Y, Eq) 1 X we define FiY x X — Qf in
& by
Fly,x) = {a:A| f([y]) = =}

Then F represents a morphism (Y, Eq) — Agr(X). The reader can verify that
the two operations on morphisms are inverse to each other, that the corre-
spondence obtained is natural, and that the composite T'groApg is naturally
isomorphic to the identity on Sh;(&).

It is straightforward to check from the explicit description of the geometric
morphisms, that the diagram in the statement of the theorem commutes.

Finally, the mentioned pullback property amounts to the following. Let
Jo, j1,j2 be the topologies in £[P4] whose categories of sheaves are £, £[Py j]
and Sh;(€), respectively. Then we must show that j; is the join of jo and j;
in the lattice of internal topologies in £[P4]. This will be immediate from the
observation that these maps are determined by morphisms kg, k1, ko : Q4 — Q4

in &:

ko(e) = {a:A|Ta":A.d € a}
ki(a) = j%(a)
ko(a) = {a:A|j(Fa":Aj(d € a))}

From theorem 2.1 we draw two inferences: firstly, the implication in Proposi-
tion 1.6 is actually an equivalence, because it is well known (e.g.,[9]) that open
inclusions are stable under pullback along inclusions.

The second inference is more important for our purposes. Suppose now that
J is an open topology, j(z) = u — . Then j has a complement in the lattice of
topologies in &, the closed complement k(z) = uV z (see, e.g.,[8]). By extension

11



one also says Shy (&) is the closed complement of Sh;(£) in £. By 1.6, E[P4 ;] is
an open subtopos of £[P4]. Now it is an easy exercise in internal locale theory
to prove the following: if

G—H K——C
F—¢ F—¢

are pullback squares of inclusions of toposes, H — &£ is open and £ — & its
closed complement, then £ — F is the closed complement of G — F.

Definition 2.2 Let £ a topos, j an open topology in £, A a j-regular internal
partial combinatory algebra in €. The Modified Realizability Topos My ; with
respect to A and j, is defined as the closed complement of £[P4 ;] in E[Pa].

We shall see in the next section that this definition agrees with traditional usage
of the term “modified realizability”. Note that we do not claim that if k& is the
closed complement of j, M4 ; is E[P4x)! In fact this is generally false (and it
would make little sense anyway, since we cannot assume A is k-regular). The
following proposition is now obvious.

Proposition 2.3 Let j be an open topology in £, A j-regular. Let k be j’s
closed complement. Then

Shg (&) —— M4 ;

.

P E[P4]

1s a pullback diagram of toposes.

Let us describe a tripos representing M4 ; explicitly. Suppose j is the open
tepolegy rthen we saw in 1.6 that the inverse image of the inclusion

Pa,j — P4 is given by
e A X A = p(z)

where A" = {a:A|u}. Therefore the tripos ()4 ; representing M, ; can be
defined by
Qai(X) ={p: X = Q[ QeX.A) < g}

where < refers to the order in P4(X). The reflection P4(X) — Q4 ;(X) is
given by ¢ — (Az:X.A")V ¢, where V is the join in the Heyting algebra P4 (X).

Proposition 2.4 Let A — B be an embedding of internal pca’s in £ such that A
1s an elementary subobject of B. Then there is a geometric morphism of triposes

12



@B; — Qa,; which gives rise to a surjective geometric morphism Mp; —
My ; such that the diagram

Mp; —— My ;

]

E[Pp] —— &[Pa4]
commutes.

Proof. The direct image ®* : Pg(X) — P4(X) was given by pointwise inter-
section with A (1.3); now this restricts to a map @Qp ; (X) = Qa ;(X) which is
seen as follows: if, internally in £, ¢ : X = QF is an element of @B,;(X) then

de:BY2: X Vb:B (u — ebl Aeb € p())
By elementariness,

de:AV2: X Vb:B (u — ebl Aeb € p(z))

By the embedding property,
de:AVe: X Va:A(u — eal Aea € (p(x) NA))

In the other direction, the left adjoint ®, of ®* also restricts: if ¢ € Qa4 ;(X)
then
de:AVz: X Va:A(u — eal A ea € p(z))

Given such e, let ¢/ = Az.ek. Then since A — B is an embedding,

Vz: X Vb:B (u — e'bl A e'b € p(z))
so ¢ € QB (X))

Note, that the fact that ® : P4(X) — Pg(X) preserves finite meets implies
that its restriction to Q4 ;(X) also preserves them. The commutation is also
clear. Finally, just as in 1.3 it follows from elementariness that @, reflects the
order, hence is full and faithful; from this it follows easily that Mp ; — My ;
is surjective.

3 Examples

3.1 An almost-example

N. Goodman ([5]) has the following situation: let 7" be a set of partial functions
IN — N, ordered by inclusion. A is the internal pca in Set” where at each partial
function r, A, is the ordinary pca of indices for partial functions recursive in r.

The realizability is defined as follows (we adapt notation to ours): for ¢, :
X = Q4

13



¢ < 9 is forced at r iff for some @ € A,: for all s > r and all
z € X;,b € p(z),, there is t > s such that ab is defined in A; and
an element of ¥(z);.

In our tripos-theoretic context this means the following. Let j be the double-
negation topology, A the given internal pca. P(X) is the set of arrows: X — Q4
in set”, and ¢ <+ holds iff

Ja:AVe: X Vb € p(z) j(abl A ab € Y(z))

is true in Set” .

It is straightforward to prove that this gives a tripos on Set”, and also that
¢ is isomorphic in P(X) to Az:X j4(¢(z)). So P looks very much like our Py ;.
However, Goodman’s pca is not ——-regular, and there is no inclusion in the
tripos P4. This is obviously a variation, and the exact connection with our set-
up remains to be clarified. It is true that Sh-(Set”) is a subtopos of Set” [P]
([18]), but we do not know whether it is equivalent to any of the toposes we
consider.

A very similar example, where the topology is different from —— and the pca
is j-regular, is used in [19].

3.2 Relative Realizability

Given an embedding Ay C A in Set, [2] defines a tripos P on Set: P(X) =
P(A)X but ¢ < ¢ iff there is @ € Ay such that for all € X,b € p(2), ab is
defined and an element of ¥ (z).

Regard Ay — A as an internal pca A in the topos Set™. This topos has
a point 0 : Set — Set™, corresponding to the open point of Sierpinski space:

0(X) = (X q X), 0*(X —- Y) =Y. Moreover, 0, embeds Set as =—-sheaves
into Set™.

In Set™, the power object Q4 is (R 33 P(A)) where
R={(U,V)|U e P(4),V eP(A),UCV}

and w9 1s the second projection.

(Q_,_.)'A is (R 3 P(A)) where
R ={(U, V)|V e P(A),U =V n Ay}

We see that there is a natural 1-1 correspondence between maps X 4 P(A) in
Set, and morphisms 0,(X) 5 (Q55)# in Set™, and we have ¢ < 1 in P(X) iff
Set™ = Ja:AV2:0,(X) Vb € ¢(z) (abl A ab € ()

So in fact, P is PAV_,_,O(O*)OP and we are in the situation described just above
Theorem 2.1.
Quite similarly, the standard realizability tripos over a pca A in Set is equiv-

alent to Py --0(04)°P where now A = (A 4 A).
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Note, that the requirement of Ay — A to be an embedding in Set, makes the
inclusion of (Ay q Ay) into (A — A) an embedding in Set™; and it is trivial
to see that this is also the inclusion of an elementary subobject.

Moreover, there is a —=—-dense inclusion of (4y — A) into (A — A). So our
propositions 1.5 and 1.8 generalize the theorems in [2] on the existence of a local
map of toposes, and a logical functor between toposes.

3.3 Kleene’s 1957-realizability

Our conjecture here is the following: this notion of realizability (formulated in
terms of partial recursive application with oracle functions) is a relative realiz-
ability situation Ay — A, where A is the pca for (Kleene’s) function realizability,
and Ay its sub-pca of total recursive functions.

Kleene later abandoned his 1957 concept in favour of function realizability,
which he said was “equivalent”. Now these realizabilities were, at the time,
looked at from a classical point of view, so for every sentence ¢, either ¢ or its
negation is realizable. In this sense, the equivalence should be a consequence of
the logical functor

RT(4;, A) — RT(A)

3.4 Modified and Relative Modified Realizability

In the special case of the pca A = (IN — IN) in Set ™ and the open ——-topology
there, the fact that M4 - is the closed complement of Set™ [Pa,--]in Set ™ [P4]
(that is, the modified realizability topos Mod 1is the closed complement of the
effective topos Eff in this topos), was demonstrated in [20].

An example of Relative Modified Realizability occurs in [15]. Here one has
Mg -~ where A = (Ay — A) is again the inclusion of total recursive functions
into the pca for function realizability.
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