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LOCALLY SUPPORTED, PIECEWISE POLYNOMIAL BIORTHOGONAL
WAVELETS ON NON-UNIFORM MESHES

ROB STEVENSON

ABSTRACT. In this paper, biorthogonal wavelets are constructed on non-uniform meshes.
Both primal and dual wavelets are explicitly given locally supported, continuous piecewise
polynomials. The wavelets generate Riesz bases for the Sobolev spaces H® for |s| < %
The wavelets at the primal side span standard Lagrange finite element spaces.

1. INTRODUCTION

This paper is concerned with the construction of locally supported biorthogonal wavelets
on non-uniform meshes. We consider meshes that are generated by uniform refinements
starting from an arbitrary initial triangulation of some domain 2. In the wavelet literature
this is also referred to as a semi-regular setting ([DGSS99]).

The wavelets at the primal side will span standard Lagrange (C°) finite element spaces,
with or without essential boundary conditions, of in principal any order. For any |s| < %,
after a proper scaling the infinite union of the wavelets is a Riesz basis for the Sobolev
space H*(Q?) or H3(Q). The wavelet construction directly extends to Lipschitz’ manifolds
consisting of patches, where each patch can be described by a parametrization with a
constant Jacobian determinant.

The wavelets satisfy all conditions to use them as ingredients in various wavelet-based
algorithms for solving operator equations. For an overview of such algorithms, see [Dah97]
and [Coh00]. Key aspects include optimal preconditioning, matrix compression, and adap-
tive schemes.

An alternative approach to construct wavelet bases on domains or manifolds that cannot
be fitted with a uniform grid structure, is to write them as a disjoint union of parametric
images of a unit cube, map wavelets living on the cube to the subdomains using the
parametrizations, and finally stitch them together. Such constructions yielding wavelet
bases suitable for solving operator equations can be found in [DS99a, CTU99, DS99b].

This work can be viewed as a continuation of [DS99¢]. A novel aspect is that in the
present paper also the dual wavelets are locally supported. As a consequence, the field of
applications is extended to all ‘classical” wavelet applications as signal analysis and image
compression.

Another remarkable aspect is that the dual wavelets will be explicitly given, continuous
piecewise polynomials. This allows the application of simple standard quadrature formulae
for computing wavelet coefficients. Wavelet constructions, also of higher regularity, where

2000 Mathematics Subject Classification. 42C40, 65T60, 65N30.
Key words and phrases. Locally supported biorthogonal wavelets, non-uniform meshes, Riesz bases.
1



2 ROB STEVENSON

the dual functions are piecewise polynomials were discussed earlier in [DGH99, DGHO00,
Goo00]. These constructions concern shift-invariant setting in one- or, in [DGHO00], two
dimensions. In [DGH99, DGHO0] extensions are discussed to uniform meshes on bounded
domains €. Yet, there the property of polynomial reproduction is lost, which means that
the wavelets can only be shown to generate a Riesz basis for Ly(Q), and wavelets near the
boundary do not have cancellation properties.

Our construction distinguishes from other wavelet constructions on non-uniform meshes
(‘second generation wavelets’) in the sense that, as in the shift-invariant case (‘first gen-
eration wavelets’), the wavelets are proven to generate Riesz bases for a scale of Sobolev
spaces. In this respect, note that any compression algorithm based on deleting small
wavelet coeflicients can only be meaningful when there is some notion of stability.

This paper is organized as follows: In §2, we recall theory concerning stability of biorthog-
onal space decompositions, which originates from [Dah96]. To construct bases of the sub-
spaces that make up these space decompositions, that is, the wavelets, we follow the
construction known as that of the ‘stable completions’ ([CDP96]), which is related to the
‘lifting scheme’ ([Swe97]). We give a new and short proof of stability of these bases, which
is not based on matrix arguments, and therefore is fully separated from issues related to
implementation.

In §3.1, we reduce the construction of biorthogonal bases on non-uniform meshes to a
construction on a reference element. We give general criteria for locally biorthogonal bases
so that they give rise continuous globally biorthogonal scaling functions and wavelets, all
with supports that are restricted to a uniform bounded number of mesh-cells. Necessarily,
these global functions depend on the (local) topology of the mesh. Yet, this dependence
will be given explicitly.

In §3.2-3.5, we give four concrete realizations of biorthogonal bases on non-uniform
meshes. With n denoting the space dimension and d — 1, d—1 being the degrees of poly-
nomial exactness at primal and dual side, these examples are characterized by (n,d, J) =
(1,2,4), (1,5,4), (2,2,4) and (2,5,4). Although in two dimensions, the constructions are
rather complex, we show how the wavelet and inverse wavelets transform can be imple-
mented at relatively low costs.

2. GENERAL MECHANISM TO CONSTRUCT STABLE WAVELET BASES

Let H be a separable Hilbert space with scalar product (, ) and norm ||||. Let ® be
some countable collection of functions in H.

We start by recalling some convenient compact notations that for example can be found
in [Dah97]. Let us formally view ® as a column vector. Then for a column vector ¢ =
(c4)gea of scalars, cT® := 24)6@ cy¢ 1s a natural notation. We always consider the spaces
of scalar vectors as being equipped with the f;-norm, and consequently, the spaces of
possibly infinite matrices as being equipped with the corresponding operator norm. For
x € H, with (®,z) and (z, ®) we will mean the column- and row-vectors with coefficients
(¢, ) and (z,¢), ¢ € ®. More generally, when ® is another countable collection in H,

with (®, ®) is meant the matrix ((¢, ¢>>¢E<I>,$E<T>'
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With these notations, a collection @ is called a Riesz system when
T =
(2.1) le” @l = lell,

%nd ® is called a Riesz basis yvhen it 1s in addition a basis for H. Two collections ® and
& are called biorthogonal, or ® is dual to ® or vice versa, when

(2.2) (®,®) = 1.

Part (a) of the following lemma will be used in the forthcoming Theorem 2.3 concerning
stability of biorthogonal space decompositions, whereas part (b) will be applied to construct
Riesz bases for the subspaces that make up these space decompositions.

Lemma 2.1. Let V and V be closed subspaces of H.
(a). The following statements are equivalent:

(1). There exist Riesz bases ® and ® for V and V such that (®,®) is bounded invertible.
(ii).
(2.3) inf  sup |<U o)l > 0,

oxie? ozvev [[7]][[0]]

1@v)|

and for any v € V, lhere holds supg_;cy T 0.

(ii1). There exists a (unique) bounded projector @ : H — H withIm@Q =V and Im (I-Q) =
VL.

(iv). To any Riesz basis for V there corresponds a unique dual collection in V. Moreover,
this collection is a Riesz basis for V.

(b). Let any of the equivalent condilions (i)-(iv) from (a) be salisfied. Let X, W be sub-
spaces of H be such that X =W +V and

(2.4) cos Z(W, V) := sup |<w U>|
O¢wEPKO¢UEV|hU““ |

Then (I = Q)| : W — XN VL is bounded invertible, see Figure 1.

Proof. (a). (i) — (ii): This follows easily by expressing v and ¢ in terms of the Riesz bases
from (i).

(ii) — (iii): For this part we refer to [DS99¢c, Theorem 2.1(a)].

(iii) — (iv): Let ® be a Riesz basis for V. Let V' be the dual space of V equipped with
the operator norm. In [Dah91] it was proved that there exists a Riesz basis &’ for V' which
is dual to ®, here in the sense that @’ (®) := (¢'( ))¢’E<I>’,¢E<I> I.

Let R: V' — V be the Riesz map, i.e., <U,Rf> f( v) for all feV, v5eV,andlet Q

be the projector onto V from (iii). From

(B, QR = (B, hb') = $(D),
we see that @ anNdNQfNi&)' are biorthogonal systems. Since R is an isomorphism, we may
conclude that Q R®’ is a Riesz basis for V when Q| : V' — V' is a homeomorphism.
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FIGURE 1. Illustration for Lemma 2.1(b). H and X are represented by IR’
and the plane = = 0 respectively. V' is contained in the plane z = 0.

x

For & € V., there holds |Qv|| > |(c|gg|,|a)| = ||?]]. Since V is closed, this property of Q and

|
its boundedness show that Im (Q];,) is closed. Now suppose that Im (Q|;;) # V, then there
would be a 0 # v € V, such that

(2.5) 0=(Qd,v)=(5,Q*v) (peV).

One easily verifies that ImQ* = V and Im (7 — Q*) = VL. The first property together

with (2.5) shows that @*v = 0, whereas the second property gives ||Q*v|| > |<Q||*:|iy>| = |lv]],

which contradicts v # 0. We conclude that indeed Q| : V — V is a homeomorphism.

There remains to show that there is only one collection in V that is dual to ®. Suppose
this is wrong. Then there would be a 0 # v € V such that (v, CT)> = 0, and thus (v,0) =0
for all & € V. Since Qly : V — V is a homeomorphism, there exists a 0 # § € V with
@Yy =v. From Im (I — Q) = V5 we get (g,0) =0 for all © € V, contradicting § # 0.

(iv) — (i): Any separable Hilbert space has an orthonormal basis. Starting with such a
basis for V and applying (iv) shows (i), where (®, &)> is even the identity matrix.

(b). Write v € X as v = w + v where w € W, v € V. Formula (2.4) shows that this
decomposition is unique, and that ||z||* < ||w]|* + ||v||*. Taking z € X N VL, we have

Qzr =0,and sov = Qv = —Qu, i.e,z = ([ —Q)wand ||z|]* Z ||w|*+]||Qu|]* = ||w|*. O

Remarks 2.2. (a). Since (i) is symmetric in V' and V, so are (ii)-(iv), i.e., the roles of V
and V may everywhere be interchanged. As was already mentioned in the proof, the
projector from (iii) obtained in that way is nothing else than Q*. Pairs of spaces V,

V' that satisfy any, and thus all of (i)-(iv) will be said to satisfy the mazimum angle
condition.
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(b). Estimate (2.4) is known as the strengthened Cauchy-Schwarz inequality. Pairs of
spaces W, V that satisfy (2.4) will be said to satisfy the minimum angle condition.

(c). If @, ® are Riesz bases for V and V such that (0, Ci>> is bounded invertible, then the
projector () from (iii) can be computed by

Qz = (z,0)(®, )" ®,
and similarly Q*y = (y, ‘I>><CI>, (I)>_1CI>

(d). Below we will apply Lemma 2.1 to an infinite sequence of pairs of closed subspaces
V, V of some Hilbert space H, together with corresponding sequences of spaces X
and W. We will be interested in results that hold wuniformly over these sequences.
The proof of the lemma shows that if we replace in (i), (iii) and (b) ‘bounded’ by
‘uniformly bounded’, and the conditions for being a Riesz system or satisfying (2.3)
or (2.4) by corresponding conditions that hold uniformly over the sequences, then the
resulting lemma remains valid. In this respect, we will speak about uniform Riesz
systems, uniform Riesz bases and untform mazimum or mintmum angle conditions.

In the following, let ‘H?® for s € IR or |s| < ¢, denote a scale of Sobolev spaces, possibly
incorporating essential boundary conditions, on an n-dimensional domain or sufficiently
smooth manifold. We will denote H* also as Ly, and when s < 0 the space H?® is understood
to be the dual of H™*. From now on, the role of the general Hilbert space H will be played
by Lg, and so ( )* will mean an adjoint with respect to the Ly-scalar product, and L denotes
orthogonality with respect to this scalar product.

Theorem 2.3 (‘Biorthogonal space decompositions’). Let Vo C Vi C V3 C --- and Vi C
Vi C Vy C - be sequences of nested closed subspaces of Ly, and let p > 1 be some constant,
that in applications will be the refinement factor.

Assume that (V}, f/j)] salisfies the uniform mazimum Ly-angle condition. Let (Q);) be the
sequence of uniformly bounded projectors Q; : Ly — Ly with ImQ; = V; and Im (I — Q) =
‘N/jJ' Jrom Lemma 2.1(a) (iii).

Assume that there exist 0 < v < d such thal

(@) inf flv—wvjll, S p7 ol (v E€H,0< s < d)
VeV
(direct or Jackson estimate), and

(B) lvillas < p¥|villn, (v; €V;, 0< s <) (inverse or Bernstein estimate),

and that analogous assumplions (§) and (@) with constants 0 < 5 < d hold for (‘N/j)
Then, with QQ_y := 0, one has

(2.6) 1> willde S lwilli,  (w; € n(Q; = Qjna), s € (=d, 7))
7=0 7=0
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and

(2.7) ZP“JH — Qj-1)vllz, =

(veH, s €(—7,d)).

Fors € (—:y,’y), the mappings (w;) Zj’io wj and v — ((Q;—Qj—1)v), which are bounded
in the sense of (2.6) and (2.7), are each others inverse.
Analogous resulls are valid with (Q;) replaced by (Q;‘) and with interchanged roles of

(v, d) and (7, d).

Remark 2.4. An earlier theorem demonstrating stability of biorthogonal space decomposi-
tions in an even more general context can be found in [Dah96]. See also [Dah97, Coh00]
and the references cited there, for example for generalizations to Besov norms. A proof of
the theorem in its present form can be found in [DS99¢, Theorem 2.1].

The essential point of the present formulation is that explicit knowledge of some biorthog-
onal bases for V; and f/J is not assumed. In [DS99¢| the conditions of Theorem 2.3 were

verified for both (V}) and (‘7) being sequences of standard finite element spaces.

In the remainder of this section, we will assume that we are in the situation as indicated
in Theorem 2.3. The nesting V C V}+1 gives Q7 = Q7,,QF or Q; = Q;Q 41, from which
we deduce that

Im(Qj41 — Q) = Viga N V

A direct consequence of Theorem 2.3 1s that ¢f we have uniform L,-Riesz bases ¥; for the
spaces Viyq N V;-J‘, and an L,-Riesz basis @, for Vg, then for s € (—=7,7),

Oy U UZyp™ T,
is a Riesz basis for H*. The elements of the U; are called wavelets.

Remark 2.5. Since in particular \I/ = ®y U U;V; is a Riesz basis for Ly, an application
of Lemma 2. 1( ) with ‘V'’= ‘V'=‘H’= L, shows that there exists a unique dual collection
= ¢y U U; \I/ in Ly, which moreover is a Riesz basis for Ly. Exploiting blorthogondhty
shows that the \I/ are uniform Ly-Riesz bases for the spaces V N VJ‘I, and that @y is an
Ly-Riesz basis for Vy. From Theorem 2.3, we conclude that for s € (—7,7), dy U Ujp~* \I/]

is a Riesz basis for H®. The elements of the \ilj are called dual wavelets.
For s € (—74,7) and v € H®, the unique expansion of v in terms of ¥ is given by

(2.8) v = <'U,\i/>\1/.

Remark 2.6. The fact that the dual sequence (‘N/j) satisfies a Jackson estimate is closely
related to the fact that integration of a resulting biorthogonal wavelet against a smooth
function produces something small. Indeed, for simplicity restricting ourselves to the do-
main case (for the manifold case, see e.g. [DS99¢, Prop. 4.7]), the Jackson estimate (?J)
is usually enforced by demanding that ‘N/J contains all piecewise polynomials up to degree
d—1 satisfying some global smoothness conditions with respect to a quasi-uniform mesh
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with mesh-size ~ p~™7. Now the fact that 1); € U, satisfies 1; 1p, ‘N/J shows that for smooth
v, there holds (v, ¥;)r, = (v — p,¥;)1,, where p is a Taylor polynomial of v of order d—1
around some point in suppt;. Assuming that the wavelets are uniformly local, meaning
that diam(suppv;) =< p~7, by estimating the remainder term we find that

|< ¢J>L2| ~(d+n/2)j HU“Wmv‘i(supplb.;)’

which property of the wavelets is referred to as the cancellation property of order d.
Obviously, assuming that the dual wavelets are also uniformly local, they will satisfy the
cancellation property of order d.
The cancellation property of the wavelets (or dual wavelets) is essential for finding sparse
approximate wavelet representations of operators (or functions).

Usually, it is not a problem to equip Vg with some Lgo-Riesz basis ®¢. Below we discuss
the construction of the wavelets. Suppose that we can identify some spaces W;, V; C V)41,
where uniform L,-Riesz bases \11]- are available for the spaces W;, such that

(2.9) Vigr = W, +V,

(2.10) (‘A/], ‘7])] satisfies the uniform maximum Ls-angle condition,
(2.11) (W;, V;); satisfies the uniform minimum L,-angle condition.

Then Lemma 2.1 shows that there exist unique uniformly Ly-bounded projectors QJ- with
Im@; =V and Im (I — Q;) = VjJ‘, where moreover (I — Qj)|,, : W; — Vi 0 V;-J‘ is
J
invertible, with a uniformly Lo-bounded inverse. We conclude that these (I —@Q;)|,, map
J

uniform Ls-Riesz bases to uniform Lo-Riesz bases, and thus that
(21 W, = (1 0))1;
are uniform Ly-Riesz bases for the spaces Vi1 N ‘N/jJ‘.
For computing these collections of wavelets U;, Remarks 2.2(¢) shows that if (i)j, Ci)j are
biorthogonal Ly-Riesz bases of Vj, ‘N/j, then

(2.13) U, =0, — (0, 8,),,0,.

Remarks 2.7. (a). Note that U; depends on W¥; and ‘A/J and ‘~/j, but not on the choice of
‘i)]- and Ci)j.

(b). For most applications, one is interested in having wavelets that are uniformly local.
In (2 13) each ¢b € U is corrected by a number of terms of the form (i, qb>L2q§, where
= CD], qD € <I> with <¢, >L2 = 1. Since <¢ ¢>L2 £ 0 only if supp ¢ Nsupp ¢ # (, and
furthermore supp qb N supp qb # (), we conclude that the ¥; are uniformly local when
the \I/j, ‘I) and CI) are uniformly local.

(¢). An important spemal case of the wavelet construction (2.12)/(2.13) is given by ‘A/J =
V;, since, as we will discuss later on, it may lead to dual wavelets which are also
uniformly local. Note that in this case, (2.10) was already assumed in Theorem 2.3.
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For VJ =V}, the wavelet construction (2.12)/(2.13) is known as the construction
via ‘stable completions’ ([CDP96]), which is related to the so-called ‘lifting scheme’
([Swe97]). Our derivation of the fact that the ¥; are uniform Ly-Riesz systems is
new in the sense that is not based on matrix arguments, which means that it is fully
separated from issues related to the implementation.

With ‘A/J =V, Ci)j is a basis for Vj, and so the conditions for getting uniformly
local wavelets we derived in above Part (b), now read as assuming that we have
uniformly local, biorthogonal Ly-Riesz bases for the spaces V; and f/] at our disposal.
In practice, this condition is much more restrictive than (2.10), which lead us in
[DS99¢]| to consider the generalization ‘A/] # V;, which suflices for all applications for
which uniformly local dual wavelets are not needed. Examples of such applications are
wavelet-based algorithms for solving operator equations (see [Dah97]). On the other
hand, for ‘classical” wavelet applications like signal analysis and image compression,
having uniformly local dual wavelets is essential.

In many applications, one needs to switch from a representation of a function v € V;
with respect to the ‘multi-scale basis” &4 U U‘j]:_o1 U;, to a representation with respect to
some ‘single-scale’ basis @ .

Since Viz1 = V; & (Vi N f/L) there exist matrices M,y and M;; such that ‘D; =

CDJ_HMJO and \IJ = CDJ_HM]l, and

M.

J

= [Mj,O Mj,l]

is invertible. Writing v € V7 in both forms chI)O + ZJ ! dT\IIT and CJCDJ, the basis

transformation T ; mapping the ‘multi-scale coeflicients’ (CO , dOT, .. ,d¥_ )T to the ‘single-
scale coefficients’ ¢, satisfies

T;_; O
(2.14) T, = [Mjy_10Tym1 Myoa] =My, [ 6 ! I] )

and Ty = I. So, assuming a geometrical increase of dimV; as function of .J, we see that
T; can be performed in O(dlmVJ) operatlons when the M; are uniformly sparse.

ertlng <I> = <I>J+1M]0, \II = <I>]+1M]1, o7 = CDJ_HM]O for some matrices MJO, M,

J
and M],o, we infer that (2.13) is equivalent to

M1 = (T M; oM (@11, ®,10)7, )M 1.

We conclude that the M; are uniformly sparse, whenever this holds for M; 4, M, I\N/ILO,
(®j41,@j41)r, and My,

Formula (2.14) shows if one also needs an implementation of optimal complexity of T7",
mapping the ‘single-scale coefficients” to the ‘multi-scale coefficients’, then it is necessary
that also the Mj_1 are uniformly sparse. Only under special circumstances, the inverse of
a sparse matrix is again sparse, and with the construction (2.13), M]-_1 will generally be a
densely populated matrix.
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We now focus on the special case \7] = V. In this case, Ci)j is a basis for V;, and we take

o, = ‘i)j. With l\A/Ij,O =M, and (P4, ‘i)j+1>L2 =1, we now get

. I —M*. M.
(2.15) M; = [Mjo M;,] [O T ]7]] ,

and we conclude that the M;l are uniformly sparse under the additional condition that

the initial supplements U; are selected such that the [Mj’o Mj’l} ~are uniformly sparse.

In the wavelet literature, T7' and T are called wavelet transform and inverse wavelel
transform respectively.

A closely related advantage of having M]-_1 that are uniformly sparse is that uniformly

local dual wavelets become available: In Remark 2.5 the set of dual wavelets \i/j was defined
as the unique collection in V11 N VjL that is dual to ¥;. From [CI)JT \IIJT] = @f+1Mj and
<MJ-T<I>]-+1, (Mj)_léj_l_lﬁ? = I, we infer that

[q)jT q’ﬂ - q)jT+1(M;>_1'
We conclude that the \i/]- are uniformly local when the 'i)j+1 are uniformly local, and the
1\/[;1 are uniformly sparse.

3. BIORTHOGONAL SCALING FUNCTIONS ON NON-UNIFORM MESHES

In the remainder of this paper, we will construct biorthogonal, uniformly local, uniform

L;-Riesz bases ®;, ®; for spaces Vj, V;, that are nested as function of 7, and that satisfy

3

Bernstein estimates with v = 4 = 2 and Jackson estimates for certain values d,d > 3

The fact that such biorthogonal bases are available implies that (V], ‘N/j)J also satisfies the
uniform maximum Ls-angle condition, and thus that all the conditions of Theorem 2.3 are
satisfied. By applying the wavelet construction from the previous section with ‘7] =V,
we are able to construct wavelets and dual wavelets that both exhibit all possibly desired
properties concerning locality and optimal transforms discussed in the previous section.
That is, in contrast to our earlier joint paper with W. Dahmen ([DS99c¢]), here we obtain
also uniformly local dual wavelets, at the cost of getting wavelets with larger supports.
Properly scaled, the wavelets and dual wavelets generate Riesz bases for H® for |s| < %
The primal spaces V; will be standard Lagrange finile elemenl spaces with respect to
meshes that are generated by uniform dyadic refinements starting with an arbitrary initial

mesh. Both ®; and CT)]-, and so U; and ¥, will be defined explicitly.

Remark 3.1. Usually, at least the Ci)j are only given as solution of some refinement equation
(cf. [CDF92]). Exceptions are given by [DGH99, DGH00, Goo00] dealing with uniform
mesh cases. An advantage of knowing \ilj explicitly is that there is much more freedom in
making efficient and accurate numerical approximations of expansions like (2.8).
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3.1. Reduction to a reference element. We will explain the general mechanism to
reduce the construction of @, &)j to a construction on a reference (macro-)element.

Let 79 be a fixed collection of closed n-simplices, or elements, such that Ure,, T is a
partition, also called triangulation, of the closure of some open domain @ C R". We
assume that the triangulation is conforming, i.e., the intersection of any two elements is
either empty or a common face. Here with a face of T', we mean any k-simplex spanned
by k + 1 vertices of T', where 0 < k < n.

For 3 > 0, let 7; be the collection of n-simplices generated from 7;_; by uniform, regular,
dyadic refinement, i.e., each T' € 7;_; 1s subdivided into 2" congruent n-simplices. In this
paper, we consider only examples with n < 2, which means that above refinement rule
determines the 7; uniquely.

For any n-simplex T, Ar(z) € IR™" will denote the barycentric coordinates of = € IR"
with respect to the vertices of T ordered in some way. There holds z € T' if and only if
Ar(z) € T, where

n+1
T={\eR":> N=1X\2>0}
i=1

Let I C T be some finite set that is closed under permutations of the coordinates. We
will consider collections of functions ® = {¢, : A € I'} that satisfy

(€)@, eC(T),

(8) NS gbr(/\)(ﬂ(,u)) for any permutation 7 : R"*" — R"'

(V) ¢, vanishes on faces that do not include A,

(J) For e = T, or for e being a face of T',{¢,|_: A € INe} is independent.

These ‘local” functions from such collections can be assembled to collections of ‘global’
functions in a way known from finite element methods: For 7 > 0 and with

I, = {z € Q: Ap(z) €I for some T € 7;},
we define the collection ®; = {¢;. : « € I, } of functions on 2 by

- _ /’L(w;Tj)(Z)/\ (x)(/\T(y)> lf'Lay eTc Tis
(3.1) Pialy) = { (T) elsewhere,
with scaling factor p(z;7;) 1= (Z{Terjoax} %)_% The condition (8) ensures that ¢; .

is well-defined also on faces that include z and are shared by elements, and by (V) and
(€) it is continuous on §. Clearly, the ®; are sets of independent functions, and they are
uniformly local. Below, we will collect some more properties of such (®;) constructed in
this way.

Suppose that we have two such sets T and I®, and collections ®™1) and ®?). Then
for the resulting (CDE-I)) and (CDE-Z)), there holds Spanégl) C span@ﬁ-z) ( € IN), if and only if

span<I>(1) C spanq)@).
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To show the if-statement, let Q = (ql,’M)yE[(z)’MeI(l) be such that (<I>(1))T = (Q(Z))TQ, or

(3.2) o) = @l
)

I./EI(2

Then, there holds that for = € ]ijl),

or ot
(3.3) J7> = >, Dr()rrle) 7

nlyim)
{yEI_I(_?):EITETJ,z‘,yET} ( ’ j>

Indeed, it is not difficult to verify that both sides (3.3) agree on supqug-}g. Note that by
(2)
3y
included on a face shared by elements in 7;. Furthermore, the conditions (V) on &) and
(J) on & ensure that the right-hand side of (3.3) vanishes outside supqug-z.

(M 2
J J
with respect to CT)E-]) and (T)E-Q) are uniformly sparse, and how they can be constructed from

the representation Q of Incl : span®) — span®? with respect to &) and &3,
M _ ()

;= span®;

span®@, we conclude that the basis transformations in both directions are uniformly

(8), the coefficient gy, (y),an(x) 0 front of ¢°7 is uniquely defined, also when z and y are

Formula (3.3) shows that the representations of the inclusions Incl : span®;’ — span®

In particular, when span® (j € IN), or equivalently when span®!!) =

sparse.

The question whether for given ®, there holds span®; C span®;;; (j € IN) can be
reduced to a special case of the foregoing analysis. Indeed, let {T'; : 1 <1 < 27} be the
subdivision of T' corresponding to dyadic refinement, and let B; : IR™™" — IR"*' be linear
operators mapping T'; onto T'. With

I .= u;B7Y(I),
which is a set that is closed under permutations of the barycentric coordinates, we define

&) = (o) X € TMY, satisfying (@), (8), (V) and (), by
(3.4) (1) = { b0 (Bi(n)) if A p € T,

A 0 elsewhere on T'.
The resulting (CI);T)) satisfies CDE-T) =27"2®;,,, and so span®; C span®;y; (j € IV) if and
only if
(R) span® C span® (),
Such a collection ® will be called refinable, and ®") the refinement of ®. Formulas (3.2)

and (3.3) show how the representation of Incl : span®; — span®;,; can be constructed
from the representation of the local inclusion.
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We note the trivial equality
(3.5) @%vﬁﬂm::E:Zgg%qu}uvoA;>huy
Tery

From (3.5), and the fact that ® is an independent set and thus an Ly(T')-Riesz system, we
obtain that

vol(T
HCJ'TCI)J'H%Q(Q) = ZW(T%H Z Cj,xN(JU;Tj)%T(x)H%Q(T)

Tery zel;NT
= (T
= >EE Y el utasn)
Ter; z€Il;NT
(T
= Ylealuln)? Y En
z€l; {Ter;:T3z}
= el

i.e., the ®; are uniform L,(€Q)-Riesz systems.
Having two collections <I>(1), <I>(2), with index sets I(l), I(2), there holds for = € [g),
y € [g), that
1 2 vol(T 1 2
(36) () e = pmmuim) Y ) ) .

{Ter;:Tozy}

where, when {T" € 7, : T'3 z,y} # (), the factors <¢(A]T)(w)’¢f\2T)(y)>L2(T) in the sum on the
right-hand side are independent of T'. We see that the matrix <(I)§-1), @;2)>L2(Q) can easily
be constructed from <CI>(1), CI>(2)>L2(T) using some information about the geometry of 7;.

In view of our aim to make biorthogonal scaling functions, we will construct examples
of pairs of collections of functions on T', which we will denote by ® and ®.

At the primal side, the collection ® will always be selected such that it satisfies (C), (8)
and (V), and such that for some fized d and m,

span® = P;_q ,,(T),

being defined as the space of continuous piecewise polynomials on T of degree d — 1 with
respect to an m-times repeated dyadic partition of T'.

We define
I,={)\eT:)\/qe N},
which is sometimes called the principal lattice of order ¢. It is well-known that
Card(I(d_1)2m> = dim(Py_1 . (T)).
We will always assume that the index set of ® is given by
(3.7) I'=Tg-1)zm,
which, as will turn out, guarantees that @® satisfies (J) and (R) as well.
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Indeed, for e = T, or for e being a face of T', by (V) there holds
span{(bﬂe tA € Tgqyem N e} = spaan>|e = Pd_17m(T)|e = Pi_1,m(e),
and so Card(I(d_])Qm Ne) = dim(P;_y ,.(e)) shows (J).
Furthermore, it is clear that spanq)(r) C Pi—im+1(T). Now from IE;) 1yom = I(g_1ypmr,

we conclude that span@m = Pi—1,m+1(T), and thus that (R) is valid.

For the resulting sequence of collections (®;) of functions on € defined by (3.1) corre-
sponding to ®, there holds cly,q)span®; = V;, being the space of continuous piecewise
polynomials of order d — 1 with respect to Tj4, having finite Ly(2)-norm. In view of this,
the elements of 7; will also be called macro-elements in case m > 0. The sequence (V})
satisfies the Bernstein estimate (B) with v = 2 and the Jackson estimate (g) for this value
of d, where p, being the refinement factor, is equal to 2.

A particular collection ® satisfying above conditions is the nodal one ® = Al

{5(;5_1’7”) A € Ig1)om} C Prao1,a(T) defined by

(d=1m), v _ ] 1T A=p,
5/\ (ILL)_ { 0 )\#MEI(d_])Qm.

Note that (A(d_l*m))(r) — Ald-1m+1)

d—1,m) __

Remark 3.2. We included the possibility of m > 0 to introduce some freedom in the choice
of ®. Indeed, note that for d = 2 and m = 0, the only possibility is & = A1) (or a scalar
multiple of A(l’o)).

At the dual side, we will select ® satisfying (€), (8), (V), (J) and (R). Aiming at
biorthogonality, for the resulting (Ci)]) defined by (3.1) corresponding to ®, there should
hold card(&)j) = card(®,), independent of 75. This means that the index set I of & should
satisfy C&I‘d(j) = card(I (4-1)2) and Card(j Ne) = card(I(4-1)2m N e) for any face e of T,
which means that it is no restriction to take I = I'z_1)om.

Because of (R), the sequence (V}), defined by V; := clLQ(Q)span(i)j, is nested. Since the
ch'j,x are continuous, standard arguments (see [Osw94, §2.4]) show that (V]) satisfies the

Bernstein estimate (@) with 5 = 2. The set ® will selected such that for some d, its

span includes P;_, ,(T'), so that (f/j) satisfies the Jackson estimate ((FJ) for this value of d.
In view of the cancellation property, we are aiming at making d as large as possible. A
dimension argument shows that d — 1 < (d —1)2™, where in practice the upper-bound can
not be attained because of the other requirements.

In some cases (§3.2, 3.3), we will be able to construct biorthogonal ®, &. From (3.6), we
conclude that then ®;, CT)]- are biorthogonal, uniformly local, uniform L,(§)-Riesz systems.
In the other cases (§3.4, 3.5), with respect to some partitioning of the index set I into
IW .. 19 where each I is closed under permutations of the coordinates, (P, <i>>L2(T)
will be a block lower triangular matrix, with diagonal blocks equal to identity matrices.

)

Then, with respect to a corresponding partitioning of I into I’,... I}, (®;, &)j>L2(Q)
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is also a block lower triangular matrix, with diagonal blocks equal to identity matrices.
We infer that both the (®;,®;);,q) and their inverses are uniformly sparse and uniformly
bounded matrices. So, we conclude that

o, (;,0,);!

@i

are biorthogonal, uniformly local, uniform L;(€)-Riesz systems. We will refer to this step
as the a posteriori biorthogonalization.

Remark 3.3. The reason why we apply the a posteriori biorthogonalization, instead of
biorthogonalizing ®, ® bhefore constructing the global scaling functions, is that in the
cases in question such a ‘local’ biorthogonalization would violate (V).

We have translated all conditions of Theorem 2.3 on (V}), (‘7]), as well as those for equip-
ping these sequences with biorthogonal bases, in terms of conditions on ® and &. What is
left is to specify uniform La(2)-Riesz systems U; such that with W; := CILZ(Q)span\T/j, there
holds Vj41 = W; + V; ((2.9)), (W;,V;); satisfies the uniform minimum Ly-angle condition
((2.11)), and such that both the basis transformations from ®; U ¥; to ®;,,, denoted by
[M]"O Mj,l] in §2, as their inverses are uniformly sparse.

With

< (d—1,m)

v

it is well-known that

= {d(kd_l’m-}-l) . )\ E I(d—1)27"+1\I(d—l)Zm}y

« (d—1,m)

Pict 1 (T) = span¥ @ Py, (T).

As a consequence, taking U; as being the ‘global’ collection defined by (3.1) corresponding
fo W™
conditions. Note that ¥ is nothing else than the ‘hierarchical surplus’, that is, the collec-
tion of all ‘global” nodal basis functions corresponding to the ‘new nodes’.

. . . . . < (d—1,m .
With the canonical application of I(4_1)ym+1 as an index set for ® U ‘Il( ! ), this col-

lection satisfies (C), (8) and (V) and, since it spans Py_q ,41(T), also (J) (and (R)). The
collection 2728 (") has the same properties, which means that the basis transformations in
both directions between the corresponding global bases, which are ®; U ¥; and ®,,,, are
uniformly sparse, and that they can be easily constructed from the local basis transforma-
tions.

, using (3.5) we may conclude that W; = clL2(Q)Span\I/j satisfies aforementioned

Remark 3./. To compute the wavelet and inverse wavelet transforms, formula (2.15) shows
that, apart from [Mj,O l\v/IM} ~and [Mj,O Mj,l} , one needs the application of the matri-
ces M;OI\V/I]-J. Taking into account the possibility that an a posteriori biorthogonalization is

needed, meaning that the collections of dual scaling function are given by <<i>j, <I>j>221(9)<i>]-,
we have

M M1 = (U, (D5, 95) 1) 0y @) Ty = (@45 95) 7010y (Vs D) -
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In case (®, fi>>112(T) # I, the last equality in above display indicates an efficient way to apply
M;OI\V/IJ-J in a factorized way. Formula (3.6) shows how (®;, &)j>L2(Q) and <\Ilj, &)j>L2(Q) can
be computed from <<I>,<i>>;12(T) and <‘il(d_1’m),<i>>112(T). Since <q)]‘,é]‘>[12(g) is assumed to

have a block lower triangular structure with diagonal blocks equal to identity matrices,
<(T)]-,(T)]->ZQI(Q) can easily be constructed from (®;, ®;)r,(q), where its application takes as

many operations as applying (®;, 'i)j>L2(Q).

Remark 3.5. For the case that (®, <i>>L2(T) # I, we applied a correction at the dual side,
that is we considered the biorthogonal system @, <CT)]-,CI)]->Z;(Q)&)j. The motivation not

to consider the biorthogonal system (®;, Ci)j>;;(m(1)j, Ci>j is that in that case [Mj,O Mj,l]
should be replaced by

. - ®;,0,);7, 0
(38) <®j+17®j+1>€2(ﬂ) [Mj,O Mj,l] |:< J (.;>L2(Q) I:| ,
being the basis transformation from (®;, CT)]-EQI(Q)(I)]- U, to (B4, &)j+1>221(g)q)j+1- Com-
parison with Remark 3.4 learns that for computing the inverse wavelet transform this
correction at the primal side demands an additional application of (®;44, ¢j+1>€2(9)' A
similar observation holds for the wavelet transform. Note that since the supports of func-
tions from (®;, CT>j>Z;(Q)(T)]- extend to several macro-elements, one cannot expect to obtain
a cheaper implementation by a ‘direct’ computation of above basis transformation, that is,
not using the factorization (3.8).

Remark 3.6. Reversing the last argument from Remark 3.5 leads to the insight that, re-
gardless whether ®, ® are biorthogonal or not, for m > 0 particular efficient imple-

mentations of wavelet and inverse wavelet transforms can be expected, when as scaling
(d—1,m)
J

. Indeed, since the supports of func-

functions at the primal side the collections of nodal basis functions A are applied,

which are defined by (3.1) corresponding to Ald-1m)

(d—1,m)

tions from A} are restricted to elements (i.e. T € Tjy,,) instead of macro-elements,

and \I/j is just a subset of A;-(i—ll’m), the basis transformations between A;d_l’m) U \I/j and
A;i__ll’m) can be implemented very efficiently. Let G; now be the matrices such that

AT =0 ;. Bo ; an ~ " are uniform ounded and uniformly sparse, an
AT — 6T G;. Both G and G formly bounded and uniformly sparse, and
they can easily be constructed from the corresponding local transformations. The pairs
d—1,m) ~—1,% -1
A; )v G <(DJ" (DJ'>L2(
tems. With these systems applied, the matrix M} M, reads as

G7H(D;,®;) 7o) (V5. 95) L, (0)-

Q)CT)]- are biorthogonal, uniformly local, uniformly L,(£)-Riesz sys-

The same arguments that were used in Remark 3.5 show that if the basis transformations
between ®;UW; and @, are most efficiently implemented as a composition of transforma-
tions from ®; to Agd_l’m), A;d_l’m) U \Ilj to A;i__ll’m) and Agi__ll’m) to ® ;4 or vice versa, then
the approach of applying the nodal basis functions as scaling functions is more efficient.
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So far we considered the construction of bases for the ‘full” spaces. Homogeneous Dirich-
let condilions on the boundary, or on a part of the boundary consisting of the union of
(n — 1)-dimensional faces of T' € 79, can be incorporated in the construction by excluding
those ¢; ., qgj,x and ILN from @;, éj and U; for which z is on (that part of) the bound-
ary. The conditions (V) and (J) ensure that the resulting sequences (V}), (‘N/J), defined by
Vi = clp,@span®; and ‘N/J = C1L2(Q)Spa1’l&)]’ are still nested. The space V; is the standard
Lagrange finite element space in which the boundary conditions are incorporated. Basis
transformations between the ‘reduced’ sets ®; U ¥; and ®;;, and vice versa are obtained
by simply deleting those rows and columns with indices corresponding basis functions that
have been removed. By replacing the scale of Sobolev spaces by the scale of subspaces
that incorporate the essential boundary conditions, the Jackson and Bernstein estimates
remain valid, and so the wavelets generate Riesz bases for the same range in the scale. On
the other hand, wavelets from the resulting ¥; or \I/j with supports that intersect interiors
of T € 7; will not have cancellation properties.

Finally, as demonstrated in [DS99¢|, a construction like this carries directly over to fi-
nite element type spaces on certain Lipschitz manifolds. More precisely, those manifolds
are covered that consist of patches, each of them the parametric image of a domain with
triangulations generated by uniform refinements, such that the images of the triangula-
tions match at the interfaces, and on each domain the Jacobian determinant is piecewise
constant with respect to the initial triangulation.

In the next subsections, for a number of examples of (n,d,m,ci), we construct sets ®
and ®. Using these two ingredients, the general theory presented in this subsection shows
how the global scaling and dual scaling functions, and wavelets and dual wavelets can
be constructed, and furthermore how the wavelet and inverse wavelet transforms can be
computed.

3.2. The case (n,d,m,d) = (1,2,2,4). In order to easily formulate conditions (8) and
(V), in §3.1 we used as an index set for ® and ® the subset I4_1)ym of the barycentric
coordinates. Yet, to view ® and ® as vectors, the index set {1,2,... ,#I4_1)2m} would
be more appropriate. Therefore, in Figure 2 we fix a numbering of I(4_1)2m = I4, so that
we can switch between both index sets at our convenience.

1 4 3 5 2

1L0) (&Y GYH Gy (00

FI1GURE 2. Numbering of 1,.

We start with ®© = A1) gee Figure 3. It satisfies (€), (8), (V), (J) and (R), and it
spans P o(T).

Using a numbering of the elements of AP a5 indicated in Figure 4, at the dual side
we start with fi>(0), where g?)l(-o) = 52(-3’0) for 7 € {1,2,4,5}. Later, the missing (z)go) will be
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5(1,2) 5511,2) 5&1,2) 521,2) 6(1,2)

1 1 2

0

FiGURE 3. A1),
1 553,0) 55‘3,0) déa,o) 523,0)
0

)

b

(5:%) (

FIGURE 4. A®O),

W=
~  wiN

selected from Ps1(T')\ Pso(T'), such that it vanishes on 0T, and &Sgo)()\l, A2) = éng)()\27 A1).
We infer that <i>(0) satisfies (C), (8), (V) and (J), and that

P3’0(T> C span‘i(o) C P3’1<T>
showing (R).

Remark 3.7. Note that refinements of the still unknown (,E’)go) are not used to ensure (R).
As a consequence, we will be able to construct the dual scaling functions explicitly.

On the other hand, allowing for implicitly defined dual scaling functions would introduce
additional freedom in the construction, which might mean that smaller macro-elements
can be used, resulting in wavelets with smaller support. However, in that case also d
will be smaller, giving weaker cancellation properties. We will discuss this approach in a
forthcoming paper.

Together, above conditions mean that
(39) (;5:(30) E Span{d’v)iO) + (’2)20)’523511)) + 5(371‘) 5(3,1))}’
see Figure 5.

Apart from fixing (Z)go), in the following we apply some (invertible) basis transforma-

tions to both collections ®© and 'i>(0), which preserve (8) and (V). Obviously, a basis
transformation always preserves (€). Moreover, a basis transformation is represented by
an invertible matrix. The fact that (V) is preserved means that any principal sub-matrix
of this matrix corresponding to all indices associated to some face is necessarily invertible,
which means that (J) is preserved as well. Since the basis transformations do not change
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FIGURE 5

the spans and preserve (8), (V) and (J), we conclude that also (R) is preserved. We will
end up with biorthogonal sets ® and ®.

Now we come to the description of the basis transformations and the selection of (2);0):

(I). We search
¢1 € &) +span{g5” . ", 65"},

such that &, L &7, 3", o). Obviously, ¢, defined by é,(A,\s) = ¢ (Aa,Ay) then
satisfies ¢, L (2)50)’(}5‘(10)’ (2)20). For i € {3,4,5}, we take ¢, = qbZ(O)

(IT). We select ()?)go) by imposing (2)20) 1 ¢, (and thus (2)20) 1 ¢,). Since (2)510) + c}')go) 1 &y,
the span of the resulting ® does not change if, instead of (3.9), we search &5;0) in the
smaller space span{5 : 1 + P ( 5),5(3 1))} .

(0) 5 (0)

. - -1
(II1). With & := (8", ®)7! &,

in the first two columns of <'i>( ) , @)1, (1) only the diagonal element is non-zero, this trans-
formation preserves (V).

we get (P, <i>>L2(T) = L. Since by the previous steps,

By substituting

<{5§1,2)’5 12} {530 30) 530 5230) 5(51 +5 ! 5),5(31))}>L2(T)

2413 167 687 —267 117 17
30720 30720 10240 10240 1280 3840
_ =5 =5 69 69 —27 193
- VOI(T) 512 512 512 512 640 1920 ?
45 7 237 —33 15 1

1024 1024 1024 1024 128 128
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above procedure results in ¢, = 5&1’2), o, = 5511’2),

¢1 — 55172) + ﬁ&g}v?) _ E (172) 3 (172)

150

(,~2'>;(30) _ 5(3;,11) +5E3,1) @5(

(8:8) e 2997 (3,3)
5(370)
~ 50 —299 —64 @ —2 1
¢, 1 3 162 27 81 ~ (0)
(;3 _ 0 —5083 2552 2552 3
T3 2025 2025 2025 (3,0) |
b V01<T) 0 6877 7196 —d84 0,
3 4050 2025 2025 530
5

see Figure 6.

50 ¢1 (»7—’?4 ¢3

3vol(T)

FiGURE 6. Biorthogonal ® and P (¢, s, (,;52, éﬁS by permuting barycentric
coordinates) .

The analysis from §3.1 shows that the resulting global sets ®;, ‘i)j are biorthogonal, uni-
formly local, uniform Ly(€)-Riesz systems. The collection ®; is a basis for the space of con-

tinuous piecewise linears with respect to 7;45. Furthermore, the spaces V; := clp,(q)span®;

are nested, and satisfy (@) and (5) with 4 = % and d = 4.

3.3. The case (n,d,m,ci) = (1,5,0,4). As in §3.2, (d - 1)2™ = 4, and we use the same
numbering from Figure 2 of the index set I, for ® and ®. We now take ®© = A®0),
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As in §3.2, at the dual side we take &Z('o) = 52(-3’0) for v € {1,2,4,5}, and search q%go) €
Span{dgll)) + 553;’15)),5&12)}. To fix (?)éo), and to biorthogonalize ), &J(O), we follow the
same procedure as described in §3.2.

By substituting

({8117, 65", 851y, {81, 657, 8170, 65 513 )

b
51
(Evg) (E*E

151 g 1 -1 29 1

2520 28 56 560 336

_ =13 =13 9 9 =3 23
- VOI(T) 210 210 70 70 14 210 ’

2 2 2 =2 17T 1

21 63 7 35 70 210

this procedure now results in ¢4 = 5&4’0), o, = 5&4’0),

4,0 5 (4,0 ; 4,0
b, = 0 — o500 5 g0

128 128

S0 _ s31) |, s(B1)  eag3l)
T A
3,0
7 90 =20 =56 68 55 )
9?1 1 27 9 27 ~(0)
o — 0 == 4 4 ¢3
r vol(T') 0 E é é 5513’0)
5 16 48 48 530
5

and ¢,, ¢5 and (2)2, (2)5 by permuting barycentric coordinates.

The resulting global sets @, éj are biorthogonal, uniformly local, uniform Ly(€)-Riesz
systems. The collection ®; is a basis for the space of continuous piecewise quartics with
respect to 7;. Note that, in contrast to §3.2, for each x € I, the basis function ¢;, has
the same support as the nodal basis function corresponding to that point.

Y ) Y
® as in Figure 7, and switch between these numbers and the corresponding barycentric

coordinates at our convenience. We take ®© = A2 Tt satisfies (©), (8), (V), (J) and
(R), and it spans Py o(T).
We define &5?.3’7“12 = 59’;)7“12 using a numbering of I3, and with that of the elements of

(0)

AP a5 given in Figure 8. Later, we will define the missing ‘2551(.).)6,13..15 such that & :=

{(%5(.).)15} satisfies (€), (8), (V) and (J), as well as

3.4. The case (n,d,m,ci) =(2,2,2,4). We number the index set I(g_1)om = I4 of ® and

, ~(0)
(3-10) 5%0) S Span{¢13..15}7
(3.11) a’f.)e € P5,(T),

and

~ (0) ~(0) 4 (r
(3-12> ¢13..15 € PS,I(T> U Span{¢4..6}( )7
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1 4 2
F1GURE 7. Numbering of I, and its partitioning into {e} U {<} U {o} U {x}.

FiGurRE 8. Numbering of Is.

where {c}i(.).)(i}(’”) is defined in (3.4) as the refinement of {c}io)(i} From (3.10), we have

Pso(T) C span{(z)g(.).)(gj__m}, and so (3.11) and (3.12) show that (R) is valid, and moreover
that

(3.13) Pso(T) C span‘il’(o) C Ps(T).

Apart from specifying the missing (2)1(1(.).)6,13..15? in the following we describe invertible basis

transformations on both ®© and & that preserve (§) and (V). The same reasoning as
in §3.2 shows that then (C), (J) and (R) are preserved as well. As a consequence of (§),

we only have to specify ¢Z(p) and (,ESZ(-O) for ¢ running over any element of the sets 1..3, 4..6,
7..12,13..15 (corresponding to {e}, {«}, {o}, {x} from Figure 7), since the other functions
then follow by permuting the barycentric coordinates.

We will not be able to end up with biorthogonal ®, &. Instead, we derive ®, ®, such
that with respect to a partitioning of 1..15 into {e}, {<}, {¢}, {x}, the matrix (®, <i>>L2(T)
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is of the form

I1 00O
+ T 0 O
(3']4> + «+ 1T O
* « *x I

With respect to a corresponding partitioning of I;, the matrix (®;, Ci>j>L2(Q) of the global
basis functions @;, &) defined by (3.1) then inherits the same block form. The pairs @,
<‘I> b, > Lo( )‘D will be biorthogonal, uniformly local, uniform L,()-Riesz systems.

The sets ®, & are obtained by performing the steps (I)-(VI):
(I). In view of (8) and (V), ¢, is searched in

¢( ) + span{¢7 + ¢12 a¢4 + ¢’6 7¢8 + ¢11 a¢13 ad)g(z)l) + 4’5%)}
such that

(3.15) by L dL) o 800,

which determines ¢, uniquely. Clearly, (3.15) is equivalent to ¢; L (,2')2 a7 12,5210 Since

553 ) € span{(,z’)m.w} by (3.10), and forthcoming transformations at the dual side have to
preserve (V), condition (3.15) is necessary for obtaining the first row in (3.14). We define

~ (1 ~ (0
o =671, b))
(IT). In view of (V), ¢,, ¢, (and ¢g) are searched in span{qﬁf;,&l&.w}, and, in view of
(8), in particular ¢, € ¢ + span{p{” + ¢{", o\ + ¢}, V7.

To get the zeros in the second row in (3.14), ¢, must satlsfy

~ (0

(3.16) b1 L By, 15
which determines ¢, uniquely, and which is equivalent to ¢, L c}ﬁgolz, o g o),

To get the zero in the third row in (3.14), it is necessary that ¢, L 513 Furthermore, for
obtaining the identity matrlx in this row, ¢, should be orthogonal to ¢ ;5. If span{e, |5}

would be equal to span{d)gulz}, then these conditions on ¢, could only mean that ¢, is a
multiple of ¢,. Yet, since (z)s()(,?o (c});?g, (2)52)712) can be updated by a same multiple of (:z’)éo)
(~io)’ c}g))) that still has to be defined, it might be sufficient when only
10 ~5(0) ~(0)  ~(0)
(3.17) Srs L&y~ b~y 87"
Indeed, in case (2)20) is selected such that
~(0) 5 (0)
<¢77¢9 >L2(T) <¢8?¢9 >L2(T

(3.18) ~0) = 0 ) —. o,
<¢7a¢5 >L2(T) <¢8a¢5 >L2(T)
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then with
~ (1) 5 (0) 5 (0)
Py =Gy — agy
. S 5 () .
(similarly @1q, @75, 1112), (3.17) gives
~ (1) ,
Prs L Py s 55350)-
Together, (3.16) and (3.17), and the fact that {¢,;g} should be an independent set
determine span{¢, ; s} uniquely. We fix ¢, by selecting it from q,’)(70) + Span{qf)f])&_m}.
Defining (,?)&2 € span{c}gg} (and with that (2)(7?_)12) by imposing (¢, s, 627(72>L2(T) =TI now
. ~(2)
yields <¢7..127¢7..12>L2(T) =L

. ~ (0 . .
Remark 3.8. A consequence of above procedure is that cﬁé ) L @5. Since orthogonality
can not be restored by any transformation at the dual side that preserves (V), we conclude

that we cannot end up with biorthogonal ® and ®.

To ensure that (3.15) and (3.16) in which &5(7(.).)12 are replaced by (%S.)lz remain valid,
furthermore it is necessary that

~ (0
(3.19) (f’é : L ¢1,47
~(2)

which is desirable on its own. Finally, since we also want ¢, L g?)(:)(, ¢g ), or equivalently
o L (Z)s(f), the function (,;520) should satisfy

(¢s, q%é°)>L2<T>

(3.20) -
(@5, b5 )10 (T)

= .

(ITI). We take ¢y, = ¢,

At this point, we have fixed ®. Further definitions and transformations take place at
the dual side. First we specify (,;54(1(_)_)6 and &552)__15.
(IV). We search c;ﬁf.)ﬁ € P51(T). A basis for this space is given by

+ (0) , ,
{91702 U{OETT U6 X € T},

To save some space in the expressions, we introduce a numbering of I¢\ I3 given in Figure 9.

Because of (§) and (V), we may search
¢, € span{af"), 5 +00, a1 +o13 ", o oY, 6oy, o+ aly", 8.

In fact, we may also add 5%0) and (,;55(30) + (,Zﬁgz) to this set of generators. However, one may

verify that both these functions satisfy all homogeneous linear conditions on (}520) given
below, and thus that adding these functions will not change the span of the resulting ®. In
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FIGURE 9. 5?;;

(IT), we already imposed on &éo) the conditions (3.18), (3.19) (two conditions) and (3.20).

Here we add the conditions
~(0)
(3.21) ¢ L ¢,

and (3.24) to be discussed below. Together, these six conditions determine span{(?)éo)}
uniquely.

We define g%él) = &520)/<(%20)7¢5>LQ(T)- Note that (3.19) and (3.21) are equivalent to
5 (1)
@5

(V). We search &52{15 satisfying

L @, 46 vesulting in the zero and the identity matrix in the second column of (3.14).

: ~(0) | 20 | ~(0)
(3.22) 5%0) € span{; + &1y + @y5 1,
which is equivalent to (3.10), and
~ (0
(3.23) Grars L Bl

By (8), ¢, L &55(;) implies ¢p5 L (5552), and so ¢, L 9255(215. Since furthermore ¢, L 5%0),
we get
~ (0) ~(0) | 5(0) | ~(0) 5 (0) | ~5(0)
(1,015 >L2(T) = (¢1, P15 + D14 + P15 >L2(T) — (@1, D14 + P15 >L2(T) = 0.
By applying the same argument onto ¢, L &5%),5%0) and @75 | q%i?,J%o), we see that
(3.22) and (3.23) imply that
~(0)
@112 L i34

giving the zeros in the last column of (3.14).

It turns out not to be possible to find (;')gg) € P5(T) satisfying (3.22) and (3.23). There-

. . ~ (0 . . .
fore, we enlarge this space with the span of the refinement of {4551..6}7 which is a collection

of functions defined in (3.4), with index set I4\I,. Since (;’)52) should vanish on 0T, it is
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sufficient to consider only those functions from this collection corresponding to ‘interior
points’ of I,\I,. We will denote these functions by n, ,, according to the numbering given
in Figure 10.

FIGURE 10. I,\I; and n, 5.

In view of (8) and (V), we may search
o1, € span{8(y, ol 48130, 60V +oY, 81 481, 8o,
M Myt 73, 55‘?0)}-
Any choice of (}g) fixes 92’5?1),15 by permuting the barycentric coordinates. Since 5%0) ¢
span({(sgé_’]lg);} U{m,_s}), condition (3.22) can be rewritten as
813 € 265" + span®,
with a scalar A # 0, and with ®@ = {6, 4} being defined by
6 = o+ a1 — 2070
6. = o)+ a1 — o) — a2
b, 8l ool
0s = my+m3—2m,.

Moreover, since 5%0) may not be a multiple of (2)52), since that would mean Q?)E? = C}E? =

&E?, and furthermore ¢, 475 L 5%0), condition (3.23) now means that

~ (0) 3,0

b5 = /\553 "t '@,
where 0 # ¢ € Ker(d, 475, ®)r,(r)- A computation shows that the first three columns of
(P94,78 01.3)L,(1) are independent, and so 84, and thus &5510), should be selected such that

(324) Ker<¢2,4,7,87 ®>L2(T) 7£ {O}a

which condition on (,23‘(10) was already announced in step (II).
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One may verify that Span{(gﬁi(;)“w} does not depend on the choice of A # 0 and ¢ # 0
in the one-dimensional space Ker(¢, .5, ®)r,(r).- We define (2)%)15 € span{(z)g)“w} by

. . ~ (1)
1mposing <¢13,,15a¢13..15>L2(T) =L

By steps (I)-(V), with (2)5?.)6,13..15 = &)S.)G,IB..IS? the matrix (®, ¢i>(2)>L2(T) has the desired

block-lower triangular form (3.14), which we more specifically denote by

I 0 0 O
A1 00O
B C1IUDO
D E F 1

As already was pointed out in Remark 3.8, it is not possible to obtain a biorthogonal

system. Indeed <<i>(2), <I>>Z;(T)(i)(2) will violate (V), since by this transformation some c}ﬁl(-z)

will be updated by (%22) with j corresponding to points on edges that do not include point

i. Yet, as will be shown in step (VI), by performing some ‘partial’ transformations at the
dual side, which do preserve (€), (8), (V), (J) and (R), it is possible to introduce a number
of zeros in the lower block triangular part.

(VI). With
I1 0 0 —D*
3 0TI 0 —E | (2
0 0 0 1
we have
I 0 0O
~ (3) A1 0O
(®.¢ )= B ¢ 1 0
0 0 01

In view of (V), note that each (;')Z(-B) is obtained by adding to (,?)Z(-Q) a linear combination of
&52__15, which functions vanish on 0T

Let A be the matrix obtained from A = (¢, 9?35-3)>L2(T))ie{4..6},j6{1..3} by replacing those
entries by zeros which correspond to pairs of points on different edges. With

I —A* 0 0
) |0 I 0 0| a0
® =19 o 10|%"

0 0 01



LOCALLY SUPPORTED BIORTHOGONAL WAVELETS ON NON-UNIFORM MESHES 27

we get

(®,®

O =0 O
- O O

where G := B — CA.
A oA ~ (4
Finally, with G, C being the matrices obtained from G = ({¢;, qﬁﬁ )>LQ(T))ie{7..12},je{1..3}7

C = ((¢,, (27;4)>L2(T))z‘e{7..12},je{4..6} respectively by replacing those entries by zeros which
correspond to pairs of points on different edges, and

A

I 0 -G* 0
.- |01 -C 0|z
. 00 1 0 ’
00 0 I
we get
I 0 00
; A-A I 00
@ @ - A A
@ = GG c-¢ 1 0
0 0 01
From the definitions of <i>(3), fi>(4) and ®, it follows that the matrix (P, <i>>L2(T) only contains

possibly non-zero off-diagonal entries <¢iv$j>L2(T) on the positions (z,7) = (5,1), (9,1),
(9,4) and (10,4), as well as those that correspond to permuting barycentric coordinates.
All these entries correspond to pairs of points that are included on different edges.

Remark 3.9. The fact that <<I>,<i>>L2(T) # I and thus <<T)]-,CT)]->L2(Q) # I has clearly an
adverse affect on the sizes of the supports of the dual scaling functions from <<i>j, q)j>1;2](9)&)
and thus on that of the wavelets and dual wavelets. Yet, by computing the wavelet and
inverse wavelet transforms in the way as exposed in Remark 3.4, the fact that(®, ‘i’>L2(T) #
I only affects the computation of these transforms in the sense that on each level 7 + 1,

in addition an application of the matrix (®;, &)J>ZQT(Q) has to be performed. Assuming a

uniform square grid, a simple calculation using the fact that <<I>,<i>>L2(T) has only a few
non-zero off-diagonal entries shows that the total number of operations needed for these
computations is less than half the number of degrees of freedom on the highest level.

Together, steps (I)-(VI) fully describe the procedure to find ® and ®. A sufficient
ingredient for the actual calculations is the matrix <A(1’2), A(3’2)>L2(T). These calculations
result in a collection ® defined by
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¢, = o 4 10 (g1 4§12 4 glhay 1)y 512y
(609 4 5012 +5”)+5§§;?>)

1660
_ o(1,2) | 361,5(1,2) 1,2 1219/ 5(1,2) 8 ¢(1,2
¢, = 85 + 22 (80 + 8 )—%(5 +01,7) + 244
_ ¢(1,2) 353029 ¢(1,2) 1033547 131990 ¢(1,2) 342166
¢7 - 57 - 5644995 - 28224955 + 5644995 + 2822495
_ s(1,2)
‘7513 = 513
. ~(2) .
At the dual side, @ is defined by
éS(Q) _ _1_4155(30)
T 7 vol(T) 3 71
~(2) 1 0301424162156 §(3,1) | 111448863524740
¢4 — vol(T) 19129961850275 + 17216965665243 (5 +5 )
120098054733160 (3,1) 791219875405708 / 5(3,1)
+ 5738988555081 (5 + 5 ) 17216965665243 (6 + 5 )
349505115151472/ £(3,1) (3,1) 545882055813164 ¢ §(3,1) (3,1) 29746337340748
+ 17216965665243 (6 +4 ) + 17216965665243 (5 +4 ) 172169656652436
g2)(2) _ 1 162144418'3'34740605 (3,0) + 92695565960611965 (3,00 359961477817185491&/)(2)
7 7 vol(T) | 183117091220847 183117091220847 89252626683938760 T 4
~(2) 512 429691798688 (3,1) _ 5(3,1)
S5 = iy |10 — e (0 o1y — 2635
146540371984 5 (3,1) (3,1) (3,1) (3,1)
+ 5290671573 (5 + 5 - 514 - 517 )
403973483368 (3,1) _ ¢(3,1) 637665395009 o
26453357865 (5 + 5 514 517 ) + 1289356257420(n2 + UE 2171)’

where 1, 5 are the functions that correspond to ‘interior points’ (cf. Figure 10) from the

refinement of above {g%f.)G} defined by (3.4). The transformations described in step (VI)
yield the collection ® given by

v 32 10209 1107721691222002944137, 5.(2) | 7(2)
¢y = ¢y — 21056(¢4 + ‘»b ) - 737201106569595885568( + ¢12)

_ 193438650565173948439(&5 )+ &5(2)) - 269103595837¢ - 140609892845((%(2) + $(2)>
737201106569595885568 \ 7 8 11 10869175296 * 13 5434587648 \* 14 15

b, = éS(Q) L 2496527831240624965 ((2’(2) +(2)(2 ) — 2034877615278695(~(2) +(2)(2))
4= P4 17278150935224903568 \ P 7 8 36035450441065728 \ P13 14

i 16741222248937735&5(2)
36035450441065728 1715

(;3 _ (2)(2) + 4978122426946063(2)(2) 6063260745291823(2)(2) 4163663044298017(2)(2)
T T 651082991007456 * 13 651082991007456 * 14 651082991007456 * 15

5 ~(2)
¢13 - ¢13 :
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The non-zero off-diagonal entries of (®, <i>>[,‘,(T) are given by

y _ T4t _ —769556495
(@5, D1)1.(1) = 3533 (B9, ®1)1.(T) = Figaorsnse
. _ 115709629 7 __ 1601470997
(P9 Pa)Lo(1) = sisssoras (D10, Pa)Lo(T) = Srsssarras
with, as always, equal values for those entries that correspond to permuting barycentric
coordinates.

(3.25)

The resulting collections @, <<i>j, CI)]->Z;(Q)<T> are biorthogonal, uniformly local, uniform

Ly(Q)-Riesz systems. The primal collection is a basis for the space of continuous piecewise
linears with respect to 7;4,. The spans of the dual collections are nested as function of 7,

and satisfy (B) and (J) with 5 = 2 and d=4.

3.5. The case (n,d,m,c]) =(2,5,0,4). Asin §3.4, (d—1)2™ = 4, and to construct ® and
&, we follow exactly the same procedure from that section described in steps (D-(VI),
except that we now start with ®© = A®9 ingtead of AM?. The actual computations
using <A(4’0), A(3’2)>L2(T) now result in a collected ® defined by

¢y = 81" — (80 + 80 4 8117) — (61 + 1))

640

+ 22 (80 4 800 46140 4 610

640
¢y =80+ 3850 +8) - 4877 + 6177)
¢r = 007 — R0 — Sl — 50" + 1ty
b1 = 013"
At the dual side, @ is defined by
& = ol
91 = Gty |"aedt" — (el + ()
S (GTREINDEE - CIFRET
— (Ol + o) — R0 1 01Y) — ety

5 (2) 3, 3, 5(2)
VO&T) {930592085 k) (7% 0) 332552785 ¥ 2(; 0)} _ 152833438 ¢4

~(2) 5 5(3, ; : :
1 = gy |50 — (el + 813V — 265"

vol(T) 12339
N CHETORE AR

G 15 a6 — 81| - B, 4, — 2m,).
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where 1), 5 are the functions that correspond to ‘interior points’ (cf. Figure 10) from the

refinement of above {&522)6} defined by (3.4). Finally, the collection ® is given by

h ~(2) ~(2) | 72 ~(2) | 5
¢1 - ¢1 - m(‘ﬁ + ¢6 ) - 14%2873211(‘?57 + ¢12 ) - 15293133((]58 + ¢11>
~(2) | 5(2)
liiéiocﬁm T (s + &)
g 5 (2) g ~(2) g 5 (2)
bi= 00 + 1257 + 8 — B + b1y + T2
h 52 () 9545 7(2)
br= b — W)+ Hugy) — megl
y 1 (2)
D15 = @3-
Asin §3.4, ®, ® are not biorthogonal. The non-zero off-diagonal entries of (®, &>>L2(T) are
given by

<¢5)¢~)1>L2(T) = % <¢95&)1>L2(T) = _%
<¢9a¢4>L2(T) - % <¢10a¢4>L2(T) = %’

with, as always, equal values for those entries that correspond to permuting barycentric
coordinates.
The resulting collections ®; <<I) ;)7 (Q)CI) are biorthogonal, uniformly local, uniform

Ly(Q)-Riesz systems. The prlmal collection is a basis for the space of continuous piecewise
quartics with respect to 7;. The spans of the dual collections are nested as function of 7,

and satisfy (B) and (J) with 5 = 2 and d=4.
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