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1 Hadamard powers

Let A = (a;;) and B = (b;;) be matrices of the same size. Then their Hadamard product (also
called Schur product) Ao B is defined by entrywise multiplication: AoB = (a;;b;;). The Hadamard
unit matriz is the matrix U all of whose entries are 1 (the size of U being understood). A matrix
A is Hadamard invertible if all its entries are non-zero, and A°(~1) = (ai_-l) is then called the
Hadamard inverse of A. If B is Hadamard invertible, then the Hadamard quotient Ao/ B of A
and B is (aijbl-_jl). The k-fold Hadamard product A®* of A with itself (k > 0) is called the k-th

Hadamard power of A; thus (aij)““ = (afj). In particular, A°® = U (conventionally we set 0° = 1).

If A is Hadamard invertible, then A°* can be defined for negative integers as well, in an obvious
manner. For more information on the Hadamard product, see [7, Chapter 5] and [5].

In this paper we restrict our attention to real matrices. If all entries of A are non-negative,
then we can also consider fractional Hadamard powers of A: if A = (a;;) with a;; > 0 for all ¢, j,
and a € R, a > 0, then A°* = (af}). If a;; > 0 for all 7, j, then A°® can be defined for all a € R.
Note that (A o B)°* = A®® ¢ B®® whenever all these fractional Hadamard powers are defined.

Matrices of size n x 1 (‘column vectors’) will be identified with elements of R”. In this way
the Hadamard product v o w, Hadamard powers v®* (k > 0), and fractional Hadamard powers v®*
(for suitable & € R) are defined for v,w € R”. The Hadamard unit vector is the vector u all of
whose entries are 1. The transpose of a vector v will be denoted by v*.

There is an interesting difference between matrices of rank one and matrices of higher rank: if
a matrix has rank one, then the same holds for all its existing fractional Hadamard powers; but if
the rank is at least two and there are no evident obstructions (such as a row of zeros or two equal
rows), then almost all fractional Hadamard powers will have maximal rank.

2 Positive-definite matrices

A (real or complex) n x n matrix A will be called positive-definite (many authors use, more
accurately, positive semi-definite) if

v*Av >0 forallveC”, ()

where v* is the transpose of the complex-conjugate of v. A real matrix A is positive-definite (in
the above sense) if and only if A is symmetric and satisfies

v*Av >0 forallveR". (2)

It is customary to call such real matrices symmetric positive-definite.
As in [2], we shall write &, for the set of all (real) symmetric positive-definite n x n matrices,
and S} for those matrices in S, for which all entries are non-negative. The following proposition

is a fundamental result of Schur (1911) (cf. [6, 7.5.3]).
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Proposition 2.1 Suppose that A,B € S,. Then also Ao B € S,,. In particular, if A € S, then
A% € 8, for all non-negative integers k. m]

Let A = (ai;) be an m x n matrix. For @ # A C {1,...,m} and @ # pu C {1,...,n}, the
submatrix Ay, is defined as Ay, = (ai5)ier, jep- Hm=nand @ # A C {1,...,n}, then Ay, is
called a principal submatrix of A. The determinant of a square submatrix is called a minor, of a
principal submatrix a principal minor of A (cf. [6, section 0.7.1]). In the next proposition another
fundamental fact from the theory of symmetric positive-definite matrices is given (cf. [6, 7.1.2 and

7.2.5]).

Proposition 2.2 A symmetric real n xn matriz A is positive-definite if and only if all its principal
minors are non-negative. a

Consider the following problem: for a matrix A € S§ and a non-negative real number o, when
will A°® again belong to S} 7 For integer values of « this is always the case, by Proposition 2.1.
We can also make the following observation.

Proposition 2.3 Let A be an n x n mairiz with non-negative entries. If there exist arbitrarily
small o« > 0 such that A°* € S, then A°* € S, for all o > 0.

Proof TLet X be the set of all & > 0 for which A°® € §}. From Proposition 2.2 it follows that X
is closed, while Proposition 2.1 implies that X is dense in [0, 00). Thus X = [0, c0). O

Remark 2.4 Proposition 2.3 is of some interest in connection with the following criterion, men-
tioned in [5, p. 144]. There a matrix A € S} such that A°* € S} for all @ > 0 is called infinitely
divisible. Further, an n x n matrix A is called conditionally positive-definite if relation (2) holds
for all v € C” for which u*v = 0 (i.e. all v whose entries sum to zero). It is then shown that
if A € 8 has strictly positive entries, then A is infinitely divisible if and only if log®(A4) (the
entrywise logarithm of A) is conditionally positive-definite.

It is known that A°* € S will hold for all A € S} if and only if « is an integer or a > n — 2;
cf. [5, p. 144]. The necessity of the condition follows from a more general result proved by Horn
in 1969 [4, Theorem 1.2 and Corollary 1.3]. The sufficiency was proved in 1977, by an inductive
argument, in [3, Theorem 2.2]. In that same paper (p.636) the necessity is proved again: an
explicit example is constructed, for & < n — 2 (and o not an integer, cf. Proposition 2.1) of a
matrix A € §F, of rank 2 and very close to the Hadamard unit matrix U, for which A°* &€ S,,.
This example inspired us to do the research of the present paper; cf. Example 8.4.

In fact, we study the following question: if a matrix T € S;} of rank 1 and with strictly positive
entries is approximated by matrices of the form T+ ¢V, with V € S,,, when will (T' 4+ £V)° have
a negative determinant for sufficiently small € > 0 7 In other words, we approach T' along straight
lines in T'+ &,,, the positive-definite cone at T, and study the behaviour of the determinant of
the a-th power. Some restriction in the choice of the matrices V' will be necessary, though, for
the following reason. As was pointed out in Section 1, if A € S} has rank at least 2, then in
general the rank of A°® will be maximal for most values of @ > 0. However, for matrices A
whose elements are “not in general position” it will happen that no fractional power is of maximal
rank. For instance, if A has a row of zeros, or if two of its rows are equal, then the same will be
the case for A°*. To avoid such exceptional matrices we shall introduce the notion of Hadamard
independent matrices (Definition 5.12; see also Example 5.13). In this connection we introduce
the notion of a cloud to represent a symmetric positive-definite matrix.

Theorems 7.3 and 7.6 provide an answer to the above question. Of course, the answer depends
on the value of «a, but in fact, as we shall see, only on [a], i.e. on the interval between two
consecutive integers to which a belongs. It further turns out that the sign of the determinant (for
¢ > 0 small enough) depends only on the value p of the rank of V in relation to the size n of the
matrix. For instance, if the approximation is done with a matrix V' of rank p, then for 0 < a < 1
the determinant of the a-th power of T + €V will be positive for sufficiently small € > 0 when
p=mnorp=n—1, but negative if p=n — 2.



3 Clouds

Consider an element v € R”. The matrix product vv* is an element of S, (this follows from (2))
of rank 1. Precisely: if v = (z;);, then vv* = (2;2;); ;. In particular, one has uu* = U.

Conversely, each A € §,, of rank 1 can be written as A = vv*. To see this, one can argue
as follows. Let A = (a;;) have rank 1. Then a;; > 0 for all ¢ (Proposition 2.2) and a;; = aj; =
sgn(aij)\/w (because of the rank). Assume, without loss of generality, that a1; # 0 (not all
a;; can be zero, again because of the rank). For arbitrary ¢, j one has a;; = a“aljal_ll (because
of the rank), hence sgn(a;;) = sgn(a;1) - sgn(a;j1). Now take v = %(sgn(a;1)/as); (two possible
choices). Then the i, j-th element of vv* is sgn(ail)sgn(ajl)\/w = sgn(aij)\/aii—ajj = a;j, as
desired. This reasoning corrects an inaccuracy in [2, Section 2.4].

Now let vy,...,v, be linearly independent elements of R”. Then

A=vv] 4+ vy (3)
is a symmetric positive-definite matrix of rank p (cf. [6, Theorem 7.5.2]). Conversely, any matrix
Qi1

Vail/;
(assuming that a1; # 0; otherwise start the procedure with another column of A). Then viv] =
(ailaljal_ll)ij (recall that a1; = a;1 and that a;; > 0), and hence the first row and the first column

A € S, of rank p can be written as in (3). For instance, for A = (a;;) one can take v; =

of A — v1v] are zero. One can therefore continue by choosing vy with its first coordinate equal to
0, etc. Of course, this procedure is not unique, and the question arises when two representations
as in (3) give the same matrix. The answer is given in the following theorem.

Theorem 3.1 Let vi,...,v, and wy,...,wp, be two sets of linearly independent vectors in R”.
Then the matrices V = viv + -+ vpvy and W = wiwi + - - + wpwy will satisfy V=W if and
only if there exists an orthogonal p x p matriz S = (0;;) such that

P
UJZ'ZZO'Z']'UJ' (1§Z§p)
j=1

Proof Write vy, = (245)1<i<n (1 <k < p). Then V = (y;;) with y;; = 22:1 zipxjp. Now define
vectors ¥; = (@i )1<k<p € R? (1 < i < n). Then y;; = ?; - v, the dot denoting the usual inner
product. Moreover, the vectors ¥; span RP, because the row rank of the matrix (z;;) equals its
column rank, which is p. Now an orthogonal transformation of RP transforms the system of the
n vectors v; into a similar system w; with the same values for the inner products w; - @;, so that
the matrix W generated by the w; is equal to V.

Conversely, if the matrices V and W are equal, then the vectors 7; and @; (1 < i < n), defined
as above, are sets of vectors in RP satisfying v; - ¥; = w; - w; for all ¢, j, and both sets span all of
RP. By bilinearity it follows that for arbitrary scalars aq, ..., a, the vectors a1v1 + -+ -+ a,v, and
a1y + - - -+ a, W, have the same length. In particular, if a linear combination of vy, ..., v, equals
zero, then so does the corresponding linear combination of @y, ..., w,. Now choose i1, ..., 1, such
that the vectors w;,,...,v;, form a basis of RP. It follows from the observation above that the
corresponding vectors w;,,...,w;, form a basis of R? as well. It further follows that if a vector
Uk (1 < k < n) is written as a linear combination of the basis vectors v;; (1 < j < p), then wy, is
equal to the same linear combination of the vectors w;;. The linear transformation that maps v;;
to w;; (1 < j < p) therefore maps each v, to the corresponding wy (1 < k < n). Finally, it follows
in the same way that this mapping preserves orthogonality and length, and hence is an orthogonal
transformation. a

If S is a permutation matrix, then the w; are just a permutation of the v;. Furthermore, the
case p = 1 implies that if vo* = ww™*, then v = +w), in accordance with the first paragraph of this
section. For a more intricate case see Example 5.13.

Theorem 3.1 motivates the following definition.



Definition 3.2 Letn > 1 be fired. Consider ordered n-tuples (v1,...,v,) of elements in R". Two

n-tuples (V1,...,0,) and (W1,...,W,) will be called equivalent if there is an orthogonal transfor-
mation S of R™ such that Sv; = w; (1 < i < n). The equivalence class to which (V1,...,v,)
belongs will be denoted by [v1,...,0,]. A class [v1,...,0,] will be called a cloud of size n (or, sim-
ply, a cloud, when n is understood). Fach representing element (V1,...,0,) of a cloud is called

a positioning of the cloud. The dimension of the linear subspace spanned by the vectors of any
positioning of a cloud will be called the dimension of the cloud.

Note that the dimension of a cloud is well-defined. If a cloud of size n has dimension p (with
0 < p < n), then one can in particular consider those positionings (¥1,...,7,) of the cloud for
which all 7; (1 <7 < n) have their last n — p coordinates equal to zero. These positionings may
then be considered, in an evident way, as n-tuples of vectors in R?. And then, clearly, two n-tuples
in R? are equivalent (in the above sense) if and only if there is an orthogonal transformation S of
R?P that transforms one of the n-tuples into the other. We shall occasionally call a cloud of size n
and dimension at most p a cloud of size n in RP.

Definition 3.3 Let C be a cloud of size n, say C = [v1,...,0,]. The matriz Ac € S,,, defined by
Ac = (4 ~€?j)m., will be called the (symmeiric positive-definite) matriz determined by C.

The matrix A¢ is well-defined because it is independent of the chosen positioning of the cloud.
In fact, if C' has size n and dimension p, and (v1,...,7,) is a positioning of C' in RP, then
Ac = UIUT + -4 UPU; with vy = (xik)lgign (1 <k< p) ifv; = (xik)lgkgp € Rp (1 <1< 77,)
The v are the column vectors, the ¥; the row vectors of the n x p matrix X = (z;1); cf. the proof
of Theorem 3.1 above.

Theorem 3.1 together with the computation preceding it can now be reformulated in the
following way.

Theorem 3.4 The mapping C' — Ac establishes a bijective correspondence between the clouds of
size n and the elements of S,,. Moreover, the dimension of C s equal to the rank of Ac. a

As an extension of Definition 3.3 we can now define, for a matrix A € &,,, the cloud of A to

be the cloud C such that Ac = A.

Example 3.5 The zero matrix corresponds to the cloud [0,...,0], and (0,...,0) is the only
positioning of this cloud. If A € §,, has rank 1, then its cloud in R is given by an n-tuple of real
numbers; such a cloud has only two positionings in R. The cloud [1,1,...,1] (with n identical
points in R) corresponds to the Hadamard unit matrix U (of size n). The cloud of size n whose
positionings are the orthonormal bases in R” corresponds to the classical n x n unit matrix. A
matrix A € S, will be close (in some natural sense to be specified) to a matrix in S, of rank p if
the elements of any positioning of its cloud are close to a p-dimensional subspace of R”.

In (3) the vectors vq,...,v, were required to be linearly independent, and this asssumption
was used in Theorem 3.1 and for the definition of clouds. For the representation as such, however,
linear independence is not necessary, and one can even take infinitely many vectors, providing
that the sum (as in (3)) is convergent. Generalizing a result in [2], we prove a theorem about the
determinant of such matrices. We need a definition first.

Definition 3.6 Consider an arbitrary index set K. Let vy, k € K, be vectors in R™, and let A be
a subset of K with n elements (notation: |A| = n). Then the volume of the parallelepiped spanned
by the vectors vy, (k € ) will be denoted by Sx. Fzplicitly: if V) is a matriz whose columns are
the vy with k € A, in any order, then Sy — | det V.

Furthermore, let also scalars cy, k € K, be given. Then cy is defined by cy = er)\ck. (In
fact, X\ might even be infinite, provided the infinite product is convergent.)



Theorem 3.7 Let K be any index set and let for each k € K a column vector vy € R and a
scalar cj, be given such that ZkeK crvrvy 15 entrywise absolutely convergent. Then:

det ( E ck'vka) = g 53 .
keK ACK, [A|=n

Proof For finite K this is Proposition 1 in [2]. The general case follows by continuity. a

We end this section with a notion that will be needed in Sections 7 and 8. The multiplicative
trace mtr(A) of a square matrix A = (a;;) is defined as follows:

mtr(A) = H ag; . 4)

If A € S,, then mtr(A) > 0, and mtr(A) = 0 occurs only if A has a complete row (and corre-
sponding column) of zeros. One also has, for A € St and a > 0:

mtr(A°®) = (mtr(A))®. (5)
Lemma 3.8 Suppose that A € S, has rank 1. Let B be any n x n matriz. Then
det(A ¢ B) = mtr(A) - det(B).

Proof Write A = (a;;) and B = (b;;). There exists a vector ¢ = (a;) such that aa* = A, thus
a;j = a;a;. Then Ao B = (a;a;b;;), and hence, by a standard property of the determinant:
det(Ao B)=1],; a; H]' a;j det(b;;) = [1; aii - det(B) = mtr(A) det(B). m|

4 Polynomial coefficients

In this section we collect some notation, definitions and formulae that will be needed in the sequel.
Let p be a positive integer. For m = (mq,...,m;,) € NP we define:

P p
|m|:Zmi, m':HmZ' (6)
i=1 i=1
For A C NP we define:
Al=Card(X),  [Al= ) Iml. (7)

mex

We shall denote the usual binomial coefficients (’}:) by (m|k); thus:

(m k)= er (0< k< m) (8)

(by convention, an empty product (which occurs when k& = 0) equals 1). Actually, it will be
convenient to use a more symmetric way to denote binomial coefficients, by defining

(m|lk)=(m+kl|k), (9)
or, explicitly:

(m k) —kiHmH (m,k > 0). (10)

Note that (m|| k) = (k||m). The well-known formula (m + 1|k) = (m|k) + (m|k — 1) is trans-
formed into the equality

(m4+1||k)=(m||k)+(m+1|k-1). (11)



The following equalities are easily seen to hold for all integers p > 1 and k& > 0.
Card {m € N7 | Jra| = k} = (p— 1 ][ ), (12)
Card {m €N | Jma| < k) = (p ] k). (13)

Let p and n be positive integers. We define:

Alp,n) ={A | ACN, Al =n}; (14)
A, )={X[X€Apn) AI=1  (120); (15)
L(p,n) = min{||A[| | A € A(p, n)} . (16)

Example 4.1 For n = 1 we have A(p,1) = NP, if {m} and m are identified. Then A(p,1,) =
{m € N? | |m| = [}, in particular A(p,1,0) = {(0,...,0)} and L(p,1) =0. For 2<n < p+ 1 we
have L(p,n) =n—1.

For brevity we shall often write I instead of L(p,n). For instance, the set A(p, n, L(p,n)) of
all A € A(p, n) for which ||A]| is minimal will be denoted by A(p,n, L). We clearly have:

A(p,n) = A(p,n,1). (17)

LCe

For i,j € Z the set {n € Z | i < n < j} will be denoted by [7, j] and will be called a (finite)
interval in Z. We consider finite intervals in N delimited by binomial coefficients (m || k); they will
play an important part later on. Explicitly, we define:

Dan(k) = [(m| k). (m[lk+ D] (m>1,k>0). (18)

For each fixed m > 1 the Dy, (k) (k > 0) are subsequent intervals, two adjacent intervals having
one point in common. For instance, for m = 3 these intervals are: [1,4], [4, 10], [10,20], .. .. Note
that for m = 0 one would get Do(k) = {1} for all k.

The number of elements in Dy, (k) (denoted as | Dy, (k)| ) is 1 more than the difference between
its last and its first element. Applying (11) (with £ and m interchanged) we therefore obtain:

|[Dm(k)| =1+ (m—1|k+1). (19)

Lemma 4.2 Let p and n be positive integers. Let k > 0 be such that n € D,(k). Consider an
element A € A(p,n). Then A € A(p,n, L) if and only if

{meN | m|<k}CAC{meN||m|<k+1}. (20)

Proof Denote the set {m | |m| < k} by M;. From (13), (14) and the definition of & it follows
that

Card My, < Card A < Card My . (21)

If X € A(p,n) and My, ¢ A, then also A ¢ My, by (21). Therefore, one can replace an element of
A\ M}, by an element of M\ and obtain an element A’ with [|A’|| < ||A|]. Thus [|A|| is not minimal
in A(p,n). A similar reasoning shows that [|A|| is not minimal in A(p,n) if A ¢ Mj41. So (20) is
a necessary condition for minimality of ||A||. But it is also sufficient, because for all A satisfying
(20) ||A]| takes the same value. O

Remark 4.3 In the special case where n = (p|| k+1) for some k > 0 one has n € D, (k)ND,(k+1).
In this case, however, A(p,n, L) contains only one element: A = Mj41, so that indeed (20) holds
for both k and k + 1.



Remark 4.4 In general, to obtain a A C N with |A] = n and [|A|| minimal, one has to choose
n— (p|| k) elements (with £ as in Lemma 4.2) from a set of (p — 1|k + 1) elements (cf. (12)).
Hence the number of elements A for which ||A|| is minimal is:

Card (A(p,n, L)) = ((p = L[k + 1) [n—(p | %)) (22)
This agrees with the previous remark for the special values of n considered there.

Now some generalizations of the ‘classical’ binomial coefficients will be defined; see (6) for the
notation. For m € NP (p > 1) we define the p-nomial coefficients

_ [ml! y
(on | m) = 228 (23)

The quantity (|m||m) equals the number of ways in which |m| objects can be divided into p
numbered classes in such a way that the i-th class contains m; objects (1 < i < p). For p = 2
these are the usual binomial coefficients, with a slightly different notation.

The following formula is well known:

(a4 +ap)f = Y (klm)a™, (24)

meNr |mj=k

where for a = (a1,...,a,), m = (my,...,my,) we have used the notation:

p
a™ = H a;"t. (25)
=1

For @ € R and m € N one has the generalized binomial coefficients:

(a|m):a(a—1)~~~r~n~!(a—m+1). (26)
They occur in the Taylor formula
(1+m)a:§:(a|m)mm (e €R, —1l<z<1). (27)
m=0
We now define for m = (mq,...,m,) € NP (p > 1) the generalized p-nomial coefficients:
(a|m):a(a—1) """ (@—|m|+1) (28)

m!
For o = |m| this definition coincides with the earlier definition (23). For p = 1 it coincides with

(26), if (| {m}) and (| m) are identified.

Remark 4.5 The apparent discrepancy with our earlier observation that (23) coincides with the
usual coefficients, not for p = 1 but for p = 2, is understood on observing that for integers k£ and

m with k > m one has (k| {m}) = (k| {m, k —m}).
The following equality follows trivially from (26), (23), and (28):
(a||m[) (jm[|m) = (a|m) (¢€R meN (p=1)). (29)
We finally define,for « € R, p > 1, and A C NP, X finite:
(@[ = ]] («|m). (30)
mex

Lemma 4.6 Let « be a real number and let p and n be positive integers. Let the integer k be such
that n € Dy(k). If A € A(p,n, L), then
k
(a|A) =

J

(a— )"l /T m!. (31)

0 mex



Proof Consider an element m € NP. The numerator of (« |m) as given in (28) contains a factor
a—jif and only if jm| > j. For A € A(p, n, L) there are |A|—Card{m | jm| < j} = n—(j||p) such
elements m in A (cf. Remark 4.4)). Therefore, for such a A the numerator of (a|}) is equal to

k
H(a—j)n —(llp). Finally, the denominator of (a | A), as given in (31), is obtained by combining
j=0

(30) and (28). m|

Corollary 4.7 Let «, p and n be as in Lemma4.6. Then for A € A(p, n, L) the coefficients (o | A)
all have the same sign.

Proof The numerator in (31) is the same for all A € A(p, n, L). O

5 The Hadamard span

Let E be any set. For m = (m,),er € NF we define, analogous to (6):
m|="m,. (32)
veEE

If E is infinite, then |m| can be +o0o. We shall denote by N the set of all m € N for which
|m| < 0o (i.e. the set of all functions from E to N with finite support).

Now let E be a subset of R?. Each m € N} defines a Hadamard product vy of elements of
E, in the following way:

vm — H° v (m = (m,) € NF) (33)

(the diamond attached to the product sign indicates that the product is taken in the Hadamard
sense). If E has p elements, say £ = {v1,...,v,}, then N¥ = NF = NP and (33) becomes

p
vm = [[7of™ =™ o 0u™  (meN?). (34)
=1

The formulae (33) and (34) define mappings m + v from N¥ and NP | respectively, into R”.
Definition 5.1 Let E be a subset of R®. Then the set

H(E) = {om | m e NE)
(the range of the above mapping) will be called the Hadamard span of F.

Note that, conventionally, H(@) = {u}.
The following terminology was introduced in [2].

Definition 5.2 A subset E of a finite-dimensional vector space X is called quasi linearly inde-
pendent if for all linear subspaces Y of X withY # X the set Y N E contains at most dim(Y)
elements. Otherwise E s called quasi linearly dependent.

If, in the above definition, ¥ = X is not excluded, then the definition reduces to ordinary
linear (in)dependence. Some further easy observations are collected in the following proposition.

Proposition 5.3 Let E be a subset of a finite-dimensional vector space X.

(i) E is quasi linearly independent if and only if every subset of E with at most dim X elements
s linearly independent.

(ii) If E has at least dim X elements, then E is quasi linearly independent if and only if every
subset of E with dim X elements is a basis for X.



(iii) Write E = {v,},. If E is quasi linearly independent and C = {¢,}, is a set of non-zero real
numbers, then also Ec = {c,v,}, is quasi linearly independent. a

Example 5.4 If £ C V is quasi linearly independent and dimV > 0, then 0 ¢ F. In R the set
R\{0} is quasi linearly independent. In R? any curve not containing the origin and intersecting
each line through the origin at most once, is quasi linearly independent.

The following definition is a combination of the two previous ones; yet another one in this
chain of definitions will follow at the end of this section.

Definition 5.5 A subset E of R™ will be called Hadamard quasi linearly independent if
(i) the mapping m — vm from NE into R™ is injective;
(ii) the Hadamard span H(E) of E is quast linearly independent.

If a set E is Hadamard quasi linearly independent, then so are all its subsets (including the
empty set). It is therefore of interest to examine the case of a single vector v € R” more closely.
When will the singleton {v} be Hadamard quasi linearly independent? Condition (i) of Definition
5.5 is satisfied unless all coordinates of v are 0 or 1 or —1, in which case all even powers of v are
equal, likewise all odd powers, and even all powers if all non-zero coordinates of v have the same
sign. Condition (ii) is satisfied if the vectors u,v,v°?,v°3 ... form a quasi linearly independent set.
For this latter condition we obtain a characterization via the following straightforward lemma.

Lemma 5.6 Let v € R™ be given. Let v be a positive integer and let my, ..., m, be integers
satisfying 0 < mqy < my < ... < my. Then the vectors v, ... v are linearly dependent if
and only if there is a polynomial P of the form P(z) = c1z™ 4+ ...+ c,2™ with not all ¢; equal
to 0, such that all n coordinates of v are roots of P.

Proof Thisis obvious because ¢1v®™' +. . .4¢,v°” = 0is validif and only if e; 2" 4. . ¢, 2]"" =0
for all coordinates z; of v. O

Proposition 5.7 Let v € R™ be given. Then the vectors u, v, v®%, v°3 ... are quasi lincarly de-

pendent if and only if there exists a non-zero polynomial P with at most n terms such that all
coordinates of v are roots of P.

Proof By (i) of Proposition 5.3 these vectors are quasi linearly dependent if and only if there are

integers m; (1 <i < n) with 0 < m; < ma < ...< my such that the vectors v, ... v are
linearly dependent. An application of Lemma 5.6 now gives the result. a
For the next proposition we need some notation. Let zi,...,xz, be the coordinates of some

n

v € R?. Consider the polynomial @, be defined by @Q,(z) = H(:E — ;). Set

i=1
e; = Z H:Ej (1<i<n),
AC{1,..,n}, |Al=i FEA
the elementary symmetric sums of the z;. Then
n
Qu(z)=2" + Z(—l)l e; "t
i=1
Proposition 5.8 Let v € R™ be given, with coordinates x1,...,x, and elementary symmetric
sums ey, ...,e,. Then the following properties hold.
(i) The vectors u,v,v°?,. .., v?("=1) are linearly dependent if and only if not all coordinates of

v are distinct.



(i) Suppose that all coordinates of v are distinct. Then the vectors u,v,v°?, ... v°" are quasi

linearly dependent if and only if e; = 0 for some i (1 < i < n). More specifically: if e; = 0,
then the v°™ with 0 < m < n and m # n — i are linearly dependent.

(iii) Ifv has at least one coordinate equal to 0, then the vectors v,v®? ... v°" are linearly depen-
dent.
Proof The determinant of the matrix with columns u, v, ..., v°*~1) is a Vandermonde determi-

nant; its value is H1§i<j§n(xi — z;). This proves (1).

Concerning (ii), it follows from Lemma 5.6 that the said vectors are quasi linearly dependent
if and only if there is a polynomial P of degree at most n and with at most n terms such that
all coordinates of v are roots of P. On the other hand, such a polynomial must be divisible by
Q. (notation as before; here we use that all coordinates of v are distinct). Because @, has degree
n, the only possibility is that P is a (non-zero) multiple of @,. By Proposition 5.7 quasi linear
dependence occurs if and only if ), has at most n terms, thus if and only if at least one of the e;
equals 0. This proves the first part of (ii). The specific case follows from Lemma 5.6.

Finally, if v has at least one coordinate equal to 0, then e, = 0, thus (iii) follows from (ii). Of
course, (iii) is also evident without (ii): even all v*™ (m > 1) belong to the (n — 1)-dimensional
subspace of all vectors with that specific coordinate equal to 0. |

It is instructive to verify the correctness of the above proposition, and its proof, when n = 1.

Theorem 5.9 Let a vector v € R™ be given.

(i) If v has a coordinate 0, or if two of its coordinates are equal, then the singleton {v} is not
Hadamard quast linearly independent.

(ii) Suppose that the coordinates of v are non-zero, pairwise different, and of the same sign.
Then {v} is Hadamard quasi linearly independent.

Proof TIn case (i) it follows from (iii) and (i) of Proposition 5.8, respectively, that the vectors
u,v,v°% ... v®" are quasi linearly dependent, and hence that {v} is not Hadamard quasi linearly
independent.

Now suppose that v satisfies the conditions given in (ii). Then either all its coordinates are
strictly positive, or they are strictly negative. Assume the former. Consider any polynomial P with
at most n terms. By Descartes’ rule of signs — the number of positive roots of a real polynomial
is at most equal to the number of changes of sign in its sequence of non-zero coefficients; if it is
less, then by an even number (cf. [8, Part V, Chapter 1]) — such a polynomial can have at most
n — 1 positive roots. The desired result now follows from Proposition 5.7. If all coordinates of
v are negative, the result follows by considering —v (cf. (iii) of Proposition 5.3) or by applying
Descartes’ rule to P(—z). O

Remark 5.10 In [2] we prove the stronger result that for a vector v as in (ii) above even the set
{v°®* | « € R} is quasi linearly independent; see Lemma 1 and the remark which follows it in [2].
The above proof of the more restricted result is simpler and more direct.

Remark 5.11 For a singleton {v} to be Hadamard quasi linearly independent it is not enough
to require only that its entries are non-zero and mutually distinct in absolute value. For instance,
if v* = (1,3, —4), then, by (ii) of Proposition 5.8 (or by direct verification), the vectors u,v,v®3
are linearly dependent (because e; = 0); and if v* = (1,3,—3/4), then u,v°? v®? are linearly
dependent (because e; = 0). As another example, consider the polynomial 2° — 2z + 1. It has
three real roots, say z1, zq, 23, with 21 < —1 and 1/2 < 3 < #3 = 1. Let v be the vector with
coordinates z1, zs, 3. One verifies that the corresponding numbers €1, es, e3 are non-zero: e; is
positive, while es and ez are negative. Thus u, v, v®%, v°% are quasi linearly independent, by (ii)
of Proposition 5.8. But the vectors u, v, v°° are linearly dependent (explicitly: v®® — 2v +u = 0),
thus {v} is not Hadamard quasi linearly independent. This example shows that the last condition
in (ii) of Theorem 5.9 cannot be dropped.
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Now consider the case of an arbitrary finite subset F of R™ with p elements, say £ =
{v1,...,vp}. When will E be Hadamard quasi linearly independent? As we have seen, a necessary
condition is that each singleton {v;} (1 < k < p) is Hadamard quasi linearly independent. The el-
ements of H(F) are the vectors vm with m € NP. Let us write v; = (z1k,...,Znk) (1 < k <p). If

P
m = (my, ..., m,), then the coordinates of vm are H ¥ (1 <i<n). Now H(E) is Hadamard
k=1
quasi linearly independent unless there are n different elements m; € N? (1 < j < n) such that
the vectors vm; are linearly dependent. Writing m; = (mj1,...,m;,) (1 < j < n), this is the

case if and only if

det (H:p’”) =0. (35)

The left hand side of (35) is a polynomial in the np variables z;; (1 < i< n, 1 <k < p), Moreover,

P n

this polynomial is homogeneous of degree szﬂ“ = Z |m;|. Equation (35) determines a
k=1j=1 ji=1

conic manifold in R", call it W, where p = (my,...,m,) = (m;;) € (N*)* = N"?. We observe

that 17, has Lebesgue measure zero, and that hence so has the set W = UHEN”P W,. Representing,
in a natural way, the set £ as an element of R™”, we conclude that F is Hadamard quasi linearly
independent unless F/ € W, a negligible subset of R™P.

Any matrix A € S, of rank p corresponds to a unique cloud of size n in R? (cf. Definition 3.2
and Theorem 3.4). As described after Definition 3.2, each positioning (51, ..., Up) of this cloud in
R? determines a p-tuple {vq,...,v,} of vectors in R” such that A = viv}+---+ vpvy. It may well
happen that some of these p—tuples are Hadamard quasi linearly dependent, Whereas most others
are not. One can try to position the cloud of A in such a way that the corresponding p-tuple is
Hadamard quasi linearly independent.

These considerations motivate the following definition.

Definition 5.12 A matriz A € S,, is called Hadamard independent if it has a representation of
the form A = vivi + -+ vpuy with a set {vy,...,vp} (with p elements) which is Hadamard quasi
linearly independent.

For a matrix A € §,, to be Hadamard independent it is certainly necessary that the n points in
its cloud are all distinct and all different from zero. Indeed, if ¥; = ¥; (notation as in Definitions
3.2 and 3.3), then the i-th and j-th row of A will be equal (the columns as well), and the equality
of the two vectors persists after an orthogonal transformation; likewise if one of the vectors in
the cloud is the zero vector. Now consider a matrix A € 8, of rank p whose cloud consists
of n non-zero and distinct points. If A has rank 1, it can still happen that A is not Hadamard
independent, due to the fact that in R its cloud has only two positionings. For instance, if A = vov*
with v* = (1,3,—4), as in Remark 5.11, then the only positionings of its cloud [1,3,—4] in R are
+(1,3,—4), and in both cases we get Hadamard dependency.

However, if A (as above) has rank at least 2, it seems plausible that a positioning of its cloud can
be found for which the corresponding p-tuple of vectors is Hadamard quasi linearly independent.
The following example will illustrate this.

Example 5.13 We take n = 2. Consider the cloud (of size 2) C' = [(1,1),(a,b)] with @ and b
positive and different from 1 (as explained after Definition 3.2, it makes sense to consider the
vectors in a cloud as row vectors). The matrix Ac determined by C' is the matrix A = v1v] +v2v}
with v = (1,a) and v = (1,b); thus A = < a—zi—b agiiz )

Set E = {v1,v3} C R%. The Hadamard span H(FE) consists of all vectors v$™v$¥ = (1,a™b*)*
with m, k& € N. In this particular case condition (ii) in Definition 5.5 is trivially satlsﬁed because
H(F) is contained in the line {(1,y) | y € R} (cf. the last part of Example 5.4). One finds that
condition (i) is satisfied unless b is a rational power of a. More generally, if v; and vy each have
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positive and different coordinates, say v1 = (21, 22)*, va = (y1,y2)*, then F is Hadamard quasi
linearly independent unless z1 /x5 and y; /y2 are rational powers of one another.
2 6
6 20
but its generating set E' = {v1,v3} is not Hadamard quasi linearly independent, by the criterion
above (we have b = a?). Now apply an orthogonal transformation, say a rotation over §. Then
a generating set F' = {w, w2} is obtained with wy; = cosf vy — sinf vy, wy = sinf vy + cos b vy,
thus w; = (cosfl —sinf, 2cosf — 4sinf), wh = (cosf +sinf, 4cosf + 2sinf) (note that indeed
wiwi + wawh = A). From the criterion above it follows that F' is Hadamard quasi linearly
independent, for instance, for values of € close to 0 for which the quotient

log(cos § —sin ) — log(2 cos § — 4 sin f)
log(cos 8 + sin ) — log(4 cos 6 + 2sin f)

As a specific example, let us take @ = 2 and b = 4. Then A = , its rank is 2,

1s irrational.

For larger values of n and p the computations become rather complicated. One can for in-
stance embed the orthogonal group as a compact manifold O, of dimension p(p + 1)/2 in the
p?-dimensional vector space of all p x p matrices. Each choice M = {my,..., m,} of n elements
in NP determines a polynomial, say Pys, in the p? variables of the vector space. It remains then to
show that the manifold O, is not contained in the union of the countably many manifolds Py; = 0.
However, our computations are not conclusive so far.

6 A Taylor expansion

In this section we obtain an expansion of Taylor type for the determinant of fractional powers of
matrices near the unit matrix U.

Lemma 6.1 Let V be an n x n matriz all of whose entries are less than 1 in absolute value. Let
a be a real number. Then the a-th fractional Hadamard power of U + V 1s given by:

U+ V)™= (alk)VF.

Proof Apply (27) entrywise. a
Lemma 6.2 Let vy, ..., v, be vectors in R™ and let the matriz V be given by

V = viof +~~-+Upv;.
Then the integer Hadamard powers V°F (k > 0) are given by the formula (cf. (34) for the notation):

Vb= 3 (k|m)vmog, -

meNr, |mj=%k

P
Proof Set vy = (zi1); (1 <1 < p); then V = (Z l‘ul‘j[) . Now apply (24) and (25) first, and
=1 ij

then (34). m]

Lemma 6.3 Letvi,...,v, and V be as in Lemma 6.2 above. Let o be an arbitrary real number.
Then for € sufficiently close to zero the a-th fractional Hadamard power of the matriz U + €V is
given by

(U+eV)* = Z (o | m) ™y vf, . (36)

menN?r
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Proof Take ¢ so close to zero that all entries of £V are less than 1 in absolute value. Now combine
the Lemmas 6.1 and 6.2 and apply (29). O

The following key result can now be proved (cf. (34), (30), (15), (16) and Definition 3.6 for the
notation).

Theorem 6.4 Let vi,...,v, be vectors in R" and let the matriz V be given by
V=vv] + -+ v,

Then for e sufficiently close to zero and any o € R the determinant of the matriz (U 4 eV)°% is
given by the formula

det((U +eV)°*) Z Cré (37)

where L = L(p,n) and the C; (I > L) are given by

Ci= Y (a|NS}. (38)

XEA(p,n,l)
Proof Applying Theorem 3.7 to (36) in Lemma 6.3 we obtain:
det((U +eV)°*) = > ( II (a|m)€|ml) 53,
ACN?P, [A]|=n \INEX

Substitution of (14), (30), and (7) into this equality entails

det((U+eV)em) = 3 (a N ellss. (39)
A€A(p,n)
Finally, rearranging this sum according to the partition given in (17), formula (37) follows. a

Remark 6.5 From Theorem 6.4 it is clear why integer values for the exponent a are exceptional
in the sense that integer powers of symmetric positive-definite matrices are again positive-definite
(Schur’s theorem (Proposition 2.1)). Indeed, in this case the factors (a|m) (cf. (28)) don’t take
negative values: they are positive for l[m| < « and zero for |m| > « + 1; consequently, the
coefficients (a| A) (cf. (30)) are O for A sufficiently large, the series (37) is finite, and the sum is
positive.

Example 6.6 Consider the case n = 2. First suppose that p = 1. Take v = < z ); then

2
V=w" = < iy zé” ) We want to compute

(1+e22)* (14 ezy)®

det(U +¢V) :‘ (1 +cezy)® (1+4+ey?)°

[ee]

For |¢| small enough we can write (1 + e2?)* = E(a | r)e"x?", and similarly for the other terms.
r=0
Substituting this into the determinant we obtain

oo 00

det(U +eV)? Z Z a|r)(alrs) grtrs ( Irig2ra :Er1+r2yr1+r2) .

r1=07ro,=0
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The terms with 7y = r5 vanish, and the remaining terms can be combined pairwise. This gives

det(U +eV)* = Z (a|r)(a|ry)emtr (m2r1y2’"2 — g1ty AT :E2’"2y2r1)
0<r1<ra
2
D SRCIDEL]
1 2 )
AEA(1,2) 4 4

which is equality (39).
Next take p = 2, the general case for a 2 x 2 matrix. We have then

2 2
V = vv] 4+ vavl = ( ri+ x5 Z1Yy1 + Tay2 ) ’

T1Y1 + Tay2 v+ y?
and we find, as before, that det(U + £V)* is equal to

3 S (alm)(alr) e (@ + 23) (5 + 13) — (2ays + ways) )

r1=07ry=0

For a fixed pair (71, r2) the long expression in parentheses is equal to

71 2

DD (rils)(ralse) (2 a3 yitaysts — afr oyl eyt

$1=055=0

where we have written t; = r; —s; (i = 1,2). Combining (r1,72) and (rz,71) we find that
det(U +eV)® is equal to

7y ra
S (alr)alr) et ST N (e s1)(ra | s2) (2] 2wy — eyl )
0<r1<ry 51=0s5=0

The terms with 7y = r3 and s; = s vanish. Now write N? = {(s,#) | s > 0, ¢ > 0} and
A(?,?) = {A = {(Sl,tl), (Sg,tg)} | S1,89,%t1,19 Z 0, sy + 11 S So+ 19, 51 =59 =211 < tQ}.

Then (a|7r1)(r1]s1) = (a|(s1,%1)) (cf. (29) and Remark 4.5). Likewise for the index 2, and hence
(cf. (30)) (a|ri)(a|re)(re|s)(re|s2) = (a|(s1,t1))(a | (s2,82)) = (a]A).

Further, 1 4+ 7o = s1 + 1 + 52 + t2 = ||A||. Finally, we have

s1 .11 Sg ta
2 _ | F1 Ty T1" Ty — (pS51,.01,,82, 12 s2_ta 51, t1\2
Sy = gyl yiryle = (331 Ty Y17¥s — 17T y2)

Making all these substitutions we again obtain (39).

7 The main theorem

To state our main theorem, we have to define a certain pattern of plus and minus signs first; cf.(18)
for the notation.

Definition 7.1 For integers p > 1 and a > 0 the function T, 4 : [p,+00) — {1,—1} is defined
according to the following rules:

(1) fp<n<(pllat+l) (ie. if n € {p} UD,(1)U...UD,(a)), then T, o(n) =1;

(i1) fort > 0 the function T, o is constant on D,(a +1t) when t is even, and alternating when ¢
15 odd.

The functions 7, , are well-defined because for each ¢ > 0 the subsequent sets Dy(a + t) and
Dp(a +t + 1) have precisely one element in common, so that n — T, 4(n) (n > p) is defined
successively on the sets Dy(a +1t) (¢t > 0).

14



Example 7.2 The smallest n for which T, ,(n) is negative is the second element of D,(a + 1).
Let us denote this element by N, ,. We have then:

(a+2)(a+3) a+p+1)
p! '

Npa=1+(a+1|p)= (40)
For instance, N1, = a + 3, and Ny, = (a + 5a + 8)/2. Similarly, N,o = p+ 2 and N, 1 =
(p* +3p+ 4)/2 We also note that N pa = Nagip-1.

The following theorem is the main result of the paper.

Theorem 7.3 Let p and n be integers with 1 < p < n. Let V be a Hadamard independent
symmetric positive-definite n x n matriz of rank p. Let « be a positive non-integer real number.
Then

lim(sgn(det((U +£V)°™) = T (). (41)

Proof By Definition 5.12, there is a Hadamard quasi linearly independent set of vectors vy, ..., v,
in R” such that V' = viv] + -+ + vyvp. Write det((U +eV)°®) as in (37) and (38) in Theorem
6.4. The Hadamard span {vm | m € NP} is quasi linearly independent, in view of Definition
5.5. Hence it follows from (ii) of Proposition 5.3 that Sy # 0 for all A € A(p,n). Moreover, for
A € A(p,n, L) all coefficients (| A) have the same sign (Corollary 4.7). This implies that Cr # 0.

When ¢ | 0, the term Cre” in the series (37) becomes dominant. In other words, the limit in
formula (41) will be the sign of Cr. By (38) this is equal to the sign of the (a | A) for A € A(p, n, L).
It remains to show that this sign is equal to 7T}, [4)(n) for all n > p. This will be done by induction.

Let us denote the smallest elements of NP as follows: mg = (0,...,0), m; = (61j,...,6p;)
(1 < j < p), where 6;; is the Kronecker symbol (6;; is 1 if 1 = j, and 0 if ¢ # j). Then |mg| =0
and m;j| =1 (1 < j <p). Set Ag = {mg,m,,...,m,} and A; = Ao\{m;} (1 < j < p). For
instance, if p = 1 then Ag = {(0), (1)} and Ay = {(0)}, and if p = 2, then Aq = {(0,0),(1,0),(0,1)},
A1 = {(0,0),(0,1)} and A = {(0,0),(1,0)}. For 1 < j < p we have |};| = p, thus }; € A(p, p),
and [[A;|| = p— 1. It is also clear (cf. Remark 4.3) that these A; are the only A € A(p,p)
for which [|A|| is minimal. Thus L(p,p) = p — 1 and A(p,p,p— 1) = {Xy,...,A,}. Similarly,
Aol = p+ 1 and ||Ao|] = p, and Ag is the only A € A(p,p + 1) for which [|A|] is minimal. Thus
L(p,p+1) = pand A(p, p+1,p) = {Ac}. In the terminology of the proof of Lemma4.2: My = {mg},
M, = {mo,ml,...,mp}, and My C /\] C Ao = M; (1 <jJ Sp)

For any a € R, we have (cf. (30) and (28)):

(aXo) = H (a|my) =af, (a]X;)=(a|X)/(a|m;)=a?"" (1<j<p).

For o > 0 this implies that Cr,(= Cp—1) > 0 when n = p (and Cr, = C, > 0 when n = p+ 1).
Thus (41) is proved for n = p (and for n = p + 1).

Now suppose that n > p (or, if one prefers, n > p+ 1), and that (41) has been proved already
for n — 1 instead of n. Let ¢ > 0 be the unique integer such that

(le]+tllp) <n—1<n<([a]+t+1]p).

Then both n — 1 and n belong to D,([a] +t). Now apply Lemma 4.6 with k = [a] + ¢ (cf. (16)).
The factor a — j is positive if and only if j < [a]. Therefore the number of negative factors in the
product in the numerator of (31) is equal to

Z (n—(llp) Z (llp),

j=lal+1 =la]+1

(recall that « is not an integer). This number is k& — [@] more than the corresponding number for
n — 1. This shows that the limiting sign in (37) obeys rule (ii) in Definition 7.1. This completes
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the proof. a

It is worth observing that, for a given size n of the matrices and a fixed value of «, the limiting
sign of det((U + eV)®¥) when ¢ | 0 (i.e. the left-hand side in (41)) depends only on the rank of

V', not on its particular shape otherwise.

Example 7.4 The equality Np o = Nag1 -1 (cf. Example 7.2) implies the following fact. The
smallest matrix size for which the limiting sign of det((U + £V)°%) is negative in the case where
rank(V) =p and a < @ < a+ 1 is equal to the smallest size for which the limiting sign is negative
in the case where rank(V) = a+ 1 and p—1 < a < p. To give an example, that smallest size
when V has rank 10 and 5 < a < 6 is the same as when V has rank 6 and 9 < a < 10. This
size is 1 4+ (10| 6) = 8009 (the second element of D1q(6), which is equal to the second element of
Dg(10)). However, the final elements of D1g(6) and Dg(10) are not the same: for the former it is
(10| 7) = 19448, whereas for the latter it is (6 || 11) = 12376. This implies (cf. (ii) of Definition 7.1)
that in the former case the limiting sign is negative for all odd sizes from 8009 up to and including
19447, whereas in the latter case the limiting sign is negative for all odd sizes from 8009 up to and
including 12375 only. After these final values there is again a long stretch of size values n for which
the limiting sign is positive: in the former case from 19448 up to (10(|8) = 12 - (10| 7) = 43758,
in the latter case from 12376 up to (61| 12) = % (6] 11) = 18564.
We shall say a little more about such ‘sign patterns’ in Section 9.

Remark 7.5 In Theorem 7.3 the requirement that V be Hadamard independent was made to
guarantee that for all A C N? with [A| = n the vectors vm (m € A) would be linearly independent,
so that all Sy would be non-zero and Cr # 0 would hold. But in each specific case a much weaker
condition will already suffice. In fact, formula (41) holds as soon as Sy # 0 holds for at least
one A € A(p,n, L). In particular, it does not matter if Hadamard dependency occurs for products
of higher powers of the generating vectors v;. To illustrate this, let us examine the cases n = p
and n = p+ 1, considered in the proof of Theorem 7.3. We saw there that L(p,p) = p— 1 and
L(p,p+1) =p. If n = p, then

P
Co= >, (a[N)SK=ar1> 55,

X€A(p,p,p—1) j=1
where Sy, is the volume of the parallelepiped spanned by the vectors u,v1,...,v, except v;. If
n=p+ 1, then
Cr= Y. (2| =aPs},
XEA(p,p+1,p)
where S, is the volume of the parallelepiped spanned by the vectors u,v;,...,v,. To conclude
that Cr # 0 we don’t need Hadamard quasi linear independence of the vectors vy ..., v,. Indeed,

from the way they are chosen it follows that these vectors are linearly independent. If p = n, then
they form a basis of R”, and hence there is at least one index j, 1 < j < p, such that when v; is
replaced by u we have again a basis, and hence Sy, # 0. If p = n — 1, then the only requirement
is that u does not belong to the space spanned by the vectors v1,...,v,. Observe that this is
implied by Hadamard quasi linear independence. Loosely speaking, the larger n — p is, the more
the Hadamard quasi linear independence of the v; is needed.

Using Lemma 3.8 we can obtain a more general result, where U is replaced by an arbitrary
matrix T' € ST of rank 1 and with strictly positive entries. Let T' be such a matrix, and let
V € S, be a matrix of rank p for some p < n. Consider the matrix A = T+ V (an element of the
positive-definite cone at T, cf. Section 2). Let us say that A is sufficiently close to T with respect
to a real number «, if det(7" 4 £V)°® is of constant sign for 0 < ¢ < 1.

Theorem 7.6 Suppose that T € St is a matriz of rank 1 with strictly positive entries. Let
V € 8, be a matriz of rank p for some p < n. Let a be a non-integer positive real number. If the
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Hadamard quotient V o/ T is Hadamard independent, and A is sufficiently close to T with respect
to a, then the sign of det A°® is equal to T}, [41(n).

Proof Take vectors vg,v1,...,v, such that T'= vovg and V = viv] + - -+ vpv;. All coordinates
of vy are different from 0, therefore we can consider the vectors w; = v; o/ vg (1 < j < p). Set
W =wiwi+--4wpw,. Then V = ToW, thus A = To(U+W). We have A°* = T°%o(U+W)°*,
and hence by Lemma 3.8: det A°®* = (mtr(7))°* - det(U + W)°*. Now (mtr(7))°* > 0, thus
det(A®*) has the same sign as det(U 4+ W)°%, and the latter determinant is equal to 7}, [41(n), by
Theorem 7.3. m]

8 The case of lowest rank

In this section we take p = 1, in other words, we examine the case that the approximation is
done with a matrix V of rank 1, say V = vv* with v € R”, v # 0. We identify NP with N by
identifying m = (m) with m. The set A(1,n) consists of all subsets A of N with n elements,
and A(1,n,[) consists of those A € A(1,n) for which [|A|| (the sum of all elements of A) is equal
to I. Clearly {0,1,2,...,n — 1} is the element X of A(1,n) for which ||A|| is minimal. Tet us
denote this element by Ag (for n = 2 this is the same Xg as in the proof of Theorem 7.3). Thus
L(1,n) = ||Xo]| = n(n —1)/2, and A(1,n,L) = {Ao}. For the case p = 1 we now obtain from
Theorem 7.3 the following result.

Theorem 8.1 Let n > 2 be given and let « be a positive non-integer real number. Let v € R”
have pairwise distinct coordinates. Set V = vv*. Then

lsifg(sgn(det((U +eV)°?)))

s positive if @ >n—2 orn — 2 < a+ 4k < n for some integer k > 1, and negative if n — 4 <
a+4k <n—2 for some k > 0.

Proof As just observed, we have A(l,n,L) = {A¢}. As was pointed out in Remark 7.5, the
conclusion of Theorem 7.3 (formula (41)) is valid if Sy # 0 for at least one element of A(1,n, L),
thus if Sy, # 0. Now Sy, = |det(u,v,...,v**~1D)| and it follows from (i) of Proposition 5.8 that
this 1s the case if and only if the coordinates of v are pairwise different.

Furthermore, we have Di(k) = {k+ 1,k + 2} (k > 0) (cf. (18)). Thus 71 4(n) is positive if
1 <n <a+2, while for n = a + 3 it is negative (thus Ny , = a + 3, cf. Example 7.2). It is again
negative for n = a + 4, for the next two values of n it is positive, then negative for the next two
values, and so on. The theorem follows. a

Remark 8.2 We can verify the above result in a more direct way. If A = {m1,...,m,} € A(1,n)

u —1.. (a—m +1
and a € R\Z, then (a | /\) = H (a | m) = H @ (a ) (?[ m; + ) In particular:
meEA i=1 my:
a" Ha-1""2. (a—n+3)%(a—n+2)
(@] Xo) = 12l (n— D) '

It follows that (« | Ag) is positive if &« — n 4+ 2 > 0, thus for n < [a] + 2. When n = [a] + 3 we get
a minus sign, and we get two more minus signs for the next n. Therefore, (a | Ag) is negative for
n = [a@]+ 3 and also for n = [a] + 4. For the next two values of n it is positive again because we
get three and four extra minus signs, respectively. Continuing this argument, the same pattern as
in the theorem is obtained.

In the next corollary the meaning of ‘sufficiently small’ 1s: so small that the sign of the
determinant considered doesn’t change anymore when the z; are replaced by ez; with 0 < £ < 1;
cf. the terminology in Theorem 7.6.
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Corollary 8.3 Let n > 2 be given, and let « be a positive non-integer real number. Let x1,..., 2,
be parrwise different real numbers such that either all x; are non-negative or all x; are at most one
1+ rixj
. Then
2

(1+23)(1 +z3)
if the x; are sufficiently small, det(A°®) is positive if @ >n —2 orn —2 < a+ 4k < n for some
integer k > 1, and negative if n —4 < a+ 4k < n — 2 for some k > 0.

n absolute value. Let A be the n x n mairiz whose general element is

Proof Set v* = (21,...,2,) and V = vv*. We compute:

U+V =+, = (0 +2)(1+2D)) o i =ToA,

b (1+27)(1+27)

and hence (U 4+V)°* = T°%6 A°* (the ‘Hadamard calculus’ is convenient for such computations!).
Now T has rank 1, hence so has T°*. We have mtr(7°%) = [],(1 + z7)® (cf. (4)), and therefore
Lemma 3.8 implies that det A°® has the same sign as det(U + V)°®. The result now follows from
Theorem 8.1. a

Example 8.4 We prove Horn’s result mentioned in Section 2. Let n > 3 be given and let a be
a positive non-integer real number satisfying &« < n — 2. We can take m € Z with m < n such
that m —3 < a <m—2. Take Ac = U 4+ ¢V as in Theorem 8.1, with ¢ sufficiently small. It then
follows from that theorem that all principal minors of A2 of size m are negative, and hence, by
Proposition 2.2, AY ¢ S, as desired. We note that also the principal minors of the sizes m + 1,
m+4, m+ 5, m+ 8, ... are negative, whereas those with size less than m or with size m + 2,
m+3, m+6, m+7,...are positive.

The reader may find it instructive to compare the above with the concrete example in [3, p.
636]; there V = vv* with v* = (1,2,...,n) (all coordinates distinct!).

We note that it is essential that the matrices A, that produce negative principal minors (when
taken to a fractional power) have rank 2, i.e. are of as low a rank as possible. And the larger «
is, the more essential this low rank is. Indeed, if instead of p = 1 we take p = 2 (so that the A.
have rank 3), then, as No, = (a* + 5a + 8)/2, no principal minor as desired is obtained when
n < (a+2)(a+ 3)/2. For instance, if 10 < a < 11, the size n has to be at least 79 to obtain (by
our technique) negative principal minors of A (and when p = 3 this minimal size is already 365).
One might say: ‘the larger the rank of a symmetric positive-definite matrix, the more stable its
positive-definiteness is under taking fractional powers’.

Example 8.5 Consider the case n = 2. The positive-definite cone at U consists of all matrices A
of the form

1+ 14z 11 x z
A_<1—|—z 1—|—y)_<1 1)+<z y)_U+V’
with z > 0, y > 0 and |z| < \/zy. The rank of A is 2 unless (1 + z)(1+y) = (1 + z)?, and, using
that |z| < ,/zy, one sees that this happens only if x = y = 2.

The rank of V is 1 if |z| = \/zy, and 2 if |z| < /zy. This example illustrates that (also for
general n) the matrices V of rank p = n — 1 give only a minor part of the matrices U + V of rank
n in the positive-definite cone at U. Therefore, it is essential that in Definition 7.1 and Theorem
7.3 also the case p = n is considered. In the same vein, observe that the rank of U + V is p+ 1 if
p < n (and V is Hadamard linearly independent), but it is only p if p = n.

But the case n = 2 is really trivial: if A € S (hence det A > 0), then det(A°¥) > 0 for all
a > 0 because the relation z11295 > 212291 is preserved when a positive power is taken (likewise
if det A > 0). This agrees with the fact that (p|la+1) > (p||1) =p+ 1> 2, hence T7 4(2) = +1
(cf. Definition 7.1) for all a > 0 (and p =1 or p = 2).

Example 8.6 The case n = 3 (and p = 1) is a lot more interesting already. Take v* = (z,y, 2)
with z, y, z pairwise different and either all non-negative or all at most 1 in absolute value. Explicit
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computation of the 3 x 3 determinant, and an application of Corollary 8.3 gives the following
inequality, for 0 < a < 1 and z, y, z sufficiently small:

o (L4 y2) (14 z2)(1 +2y)\*
b2 ((1 +x2><1+y2><1+z2>>

14 yz)? “ 14 z2)? “ 1+ zy)? “
(1+y2)(1+2?) (1+z2)(1+ 2?) (1+2z2)(1+y?)
For @ = 1 we have equality, and for @ > 1 the opposite inequality holds, by the same corollary.
We also remark that, when e.g. x = y, the relation reduces to an equality.

We shall now show, using a technique due to Thiemann [9], that for inequality (42) the unnat-
ural restriction to sufficiently small values of 2, y, z can be avoided (c¢f. Remark 8.13). We start
with a definition.

Definition 8.7 A triple {z,y, z} of real numbers will be called triangular if 2 < y+z andy < z+z
and z < z + y, and strictly triangular if these inequalities are strict.

Remark 8.8 Suppose, without loss of generality, that z < y < z. If z < 0, then z > z + y.
Therefore, triangularity can occur only for non-negative real numbers. If z = 0, then triangularity
holds if and only if y = 2, and in this case two of the inequalities are equalities (or even all three,
if £ = y = z = 0). Finally, if > 0, then triangularity holds if and only if z < z + y, and the
triangularity is strict unless z = z 4+ y (regardless of whether z and y are equal or not).

Lemma 8.9 Letp,q,r € [—1,1] and let z,y,z € [0, 7] be such that p = cosz, g = cosy, r = cos z.
Then 14+2pqr—(p?+4¢>+7?) > 0 if and only if {z,y, 2} is triangular and 1+2pgr—(p*+¢*+r%) > 0
if and only if {z,y, z} is strictly triangular.

Proof We compute: p? +¢%+r? —2pgr — 1 = (r —pq)? — (1 — p?)(1 — ¢*) = (cos z — cos x cos y)* —
sin? zsin?y. We shall write cos(z — y) = C, cos(x 4+ y) = Cy, cosz = D, for short. Then

2 2
P4+t = 2pgr—1 = (D—@) _<@) = D?— D(C) + Cy) + C1Cy =

(D — C1)(D — C3). Thus 1+ 2pgr — (p> + ¢*> +r?) > 0 if and only if C; > D > C3 (note that
Cy > Cq because C; — Cy = 2sinzsiny), thus if and only if |z —y| < z < 2 + y. But this is
equivalent to {z,y, 2z} being triangular. The other statement follows in the same way, using strict
inequalities. a

Lemma 8.10 Let f be defined, non-negative and non-decreasing on [0, A], for some A > 0. Then
the following holds.

4
(i) Ift — %) is non-increasing on (0, A], then f preserves triangularity on [0, A].

(ii) Ift — @ is strictly decreasing on (0, A], then f transforms triangularity into sirict trian-
gularity on (0, A].
Similarly with [0, 00) instead of [0, A].
Proof TFirst of all, we can assume, without loss of generality, that f is defined on all of [0, c0).

Indeed, if f is as in the lemma, then its domain can be extended to [0, c0) by setting f(¢) =
F(A) +ect—A)with0<ec< A (t> A).

Now let z > 0 and y > 0 be given. In case (i) it follows that f(z + y) < f(z) and

[ +y) < ‘”‘;—yﬂy) ,and hence f(2) + f(y) > f(x +y); in case (i) we even get f(z) + f(y) >

f(z + y). Using this and the fact that f is non-decreasing, we get for any z with 0 < z <z 4y
that f(z) < f(z +y) < f(2) + f(y), and in case (ii) even f(z) < f(z) + f(y). Therefore, both

results follow. O

r+y
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Lemma 8.11 Let f be defined (and real-valued) on [0, A], for some A > 0. If f(0) >0 and f is

2
concave, thent — y is non-increasing on (0, A]. Moreover, if there are x,y with0 < z <y < A
f@) _ )

for which = —== then f(t) = ct for some c €R and allt € [0,y].
)

x

Proof Tf0< z <y < A, then, by the concavity of f, we have f(z) > uf(O) + ff(y), thus
Yy Y

@ > & + (l — l)f(O) > M Thus @ is non-increasing on (0, A]. Tt also follows that
fd Y r Y Y
@ = & implies that f(0) = 0 and that @ is constant on [z, y].
z )
: y—z z—z
Secondly, if 0 < z < z < y < A, then f(z) > f(z) + f(y). Thus f(z) <
y—=z y—=z
y—x y—x T Yy z z(y — ) Yy Yy
The opposite inequality also holds (as was proved above), thus @ is constant on (0, y]. O

From Lemma 8.11 it follows that in Lemma 8.10 concavity of f is a sufficient condition to have
f(t)/t non-increasing; moreover, f(t)/t is strictly decreasing, except possibly for an initial interval
[0, B] with 0 < B < A on which f is linear. On the other hand, it is easily seen that concavity
is not a necessary condition. For instance, the function f defined by f(z) = /z (0 < z < 1),
f(z) =z (x > 1) is not concave, but it satisfies the conditions of Lemma 8.10.

Theorem 8.12 Let p,q,r € [0, 1] be such that 1 + 2pqr — (p? + ¢* +r?) > 0. Then the following
holds.

(1) 142(pgr)* — (P + ¢** +r2%) > 0 for all a > 1.
(i) If p,q,r <1, then 1+ 2(pqr)® — (p** + ¢** +r?®) > 0 for all a > 1.

Proof The relation p = cosz establishes a one-to-one correspondence between the elements
p €[0,1] and = € [0,7/2] (cf. Lemma 8.9; this time we take p > 0 because we want to consider
fractional powers). If p corresponds to z, then to p® corresponds arccos((cos z)®). Therefore we
define, for each o > 0, the function f, by fo(t) = arccos((cost)*) (0 <t < w/2).

It follows from Lemma 8.9 that for the proof of (i) it suffices to show that the f, (@ > 1) preserve
triangularity for triples {z,y, z} with z,y, z € [0, #/2], and for the proof of (ii) that the f, (o > 1)
transform triangularity into strict triangularity for triples {z,y, z} with z,y,z € (0, 7/2].

Tt is clear that the f, are non-negative and non-decreasing on [0, 7/2]. Therefore, by Lemma
8.10, it suffices to show that the f, satisfy the assumptions (i) and (i), respectively, of that lemma,
for > 1 and a > 1, respectively. By Lemma 8.11, to do this it suffices to show that on [0, 7/2]
the f, are concave for all @ > 1, and even strictly concave for all @ > 1. This, finally, can be
proved by showing that for 0 < ¢ < /2 one has f//(t) < 0 for all @« > 1, and even f/(¢) < 0 for all
a> 1.

To determine f”/

o, we rewrite the definition of f, in the form

cos(fa(t)) = (cost)®. (43)
Logarithmic differentiation of (43) gives
, tant
t)y=a ————— t 2 44
S =a s 0<t<a/) (14)

(note that indeed f, > 0, even for all & > 0). Differentiating (44) and substituting (43) in the
result we obtain

0o atan?t sin? fo(t) ) .
fa () = tan f,(t)sin? f,(t) < st (O<t<n/2).
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Finally, substituting (43) once again and using a mean value argument, we find that

sin? f, (1) e 1 — (cos?t)*

sin’t 1— cos?t

—a:a(E“‘l—l),

for some ¢ satisfying cost < & < 1. Tt follows that, for all ¢ € (0,7/2), f2(t) is negative for & > 1,
zero for & = 1 and positive for 0 < a < 1. a

Remark 8.13 Part (i) of the above theorem is Thiemann’s result; his proof is a combination
of the proof of Lemma 8.9 and the above proof, starting from relation (43). Part (ii) is a slight
generalization, needed to clarify the link between the requirements ‘z, y, z distinct’ and ‘p, ¢, r < 1’
in Corollary 8.14 below. Definition 8.7 and the Lemmas 8.10 and 8.11 are added to obtain a wider
perspective.

As a corollary we obtain the general validity of the inequality in Example 8.6.

Corollary 8.14 Let z,y, z be pairwise distinct real numbers such that eitherz,y,z > 0 orz,y,z €
[—1,1]. Then inequality (42) holds for all @ with 0 < o < 1; for o = 1 there is equality, and for
a > 1 the opposite inequality holds.

Proof Denote the difference between the left-hand side and the right-hand side of (42) by
Py(z,y,z). We have to show that P,(z,y,z) is negative when 0 < a < 1, zero when a = 1,
and positive when a > 1. First of all, we note that P,(z,y,z) = 0 for all @ > 0 when z,y, z are

not pairwise different. Secondly, an easy calculation shows that Pi(z,y, z) = 0 (or one may observe
1+ yz

VIt +22)

and similarly for ¢ and r. Then P,(z,y,2) = 1+ 2(pgr)® — (p** + ¢?* 4+ r?®). By the assumption

on z,y,z we have p,q,r > 0. We also have p,q,r < 1; for instance, p = 1 occurs if and only if

Y= z.

As Pi(z,y,z) = 0, it now follows from (ii) of Theorem 8.12 that P,(z,y,z) > 0 if @ > 1. But
it also follows that Py(z,y,2) < 0if 0 < a < 1. Indeed, suppose that P,(z,y,z) > 0 for such an
a; it would then follow, by applying (ii) of Theorem 8.12, not with p, ¢, r but with ptle gtle plle
that Pi(z,y,2) > 0. O

that Pi(z,y, z) is the determinant of a 3 x 3 matrix of rank 2). Now set p =

9 Sign patterns

In this final section we say a few words on the patterns of plus and minus signs determined by
the functions T}, ,. From Definition 7.1 we know that for fixed p and a the function n — T, ,(n)
is constant (and positive) for p < n < (pl|la+1) = (a+2)(a+3)...(a + p+ 1)/p!, after which
it is alternating for a while, then constant again, and so on. Let us call an interval D,(a +t) an
‘interval of constancy’ (relative to p and a) when ¢ is even, and an ‘interval of alternation’ when ¢
is odd. Recall that adjacent intervals have one point in common.

Whether the value of T}, , on two subsequent intervals of constancy is the same or opposite,
depends on the parity of the length of the interval of alternation between these two intervals. This
is specified in the next lemma.

Lemma 9.1 Let p > 1 and a > 0 be integers and let t > 1 be an odd integer. The function

n+— T, o(n) will have on Dp(a+t+1) the same (constant) value as on Dy(a+t—1) if (a+t+1| p—1)
1s even, and the opposite value if it is odd.

Proof If an interval of alternation has an odd number of elements, then the value of T, , will
be the same at its two end points, and hence on the two adjacent intervals of constancy; in the
opposite case the value on the two adjacent intervals will be opposite. The result now follows from

(19). ]
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The parity of the binomial coefficients in Lemma 9.1 can be visualized by a Pascal triangle that
gives only the parity (the pattern of this triangle is that of the Sierpinsky gasket; cf. [1, pp. 10-
11]). Binomial coefficients are more often even than odd; for instance, among the AN coefficients
(m || k) with m,k < 2V there are only 3" odd ones. Hence, from N = 3 on the even ones are in
the majority. As a consequence, by Lemma 9.1, for matrices of not too small rank it will be more
common to have subsequent intervals of constancy of equal sign than of opposite sign.

Can it happen that T, , has the same (necessarily positive) sign on all intervals of constancy?
It turns out that this occurs surprisingly often; in fact, in one quarter of all cases. To prove this,
we need a lemma on the parity of binomial coefficients; its (elementary) proof is left to the reader.

Lemma 9.2 Suppose that k and ¢ are integers satisfying 0 < i < k. Then the following properties
hold.

(i) Ifk is even and i is odd, then (k|7) is even.
(ii) For even i there are arbitrarily large even k such that (ki) is odd.

(iii) For arbitrary i there are arbitrarily large odd k such that (k1) is odd. O

Let us call an integer n an isolated element of a set of integers £ if n € F but n— 1 ¢ E and
n+1¢ FE. The following remarkable theorem can then be proved.

Theorem 9.3 Letp > 1 anda > 0 be given. Then the set of integersn > p for which T, 4(n) = —1
has only isolated elements if and only if p is even and a s odd.

Proof Let a>1,p >0, and ¢t > 1 be fixed. If a is odd and p is even, then p — 1 is odd and
a+p+1is even for all odd ¢, and hence, by Lemma 9.1 and (1) of Lemma 9.2, T}, , has the same
value on all intervals of constancy. On D, 4(0), the first interval of constancy, 7, , is positive,
hence T, 4 is positive on all intervals of constancy.

Tt remains to show that (a +¢+4 1|p— 1) can be odd for arbitrarily large odd ¢, whenever a is
even or p is odd. Now, if a is even and p is odd, this follows from (ii) of Lemma 9.2, while for a
and p both even or both odd, it follows from (iii) of the same lemma. a

Example 9.4 Suppose that p = 2V for some positive N. Then (p — 1)! contains relatively few
factors 2, and hence (a+1¢+ 1||p — 1) ‘has a good chance to be even’. Actually, it is easily seen
that the smallest k for which (k|2 — 1) is odd is £ = 2V — 1. Now take a = 0. By Theorem 9.3,
Ty~ o has intervals of constancy where it takes the value —1. The first such interval is Dyn (2V),
as follows from Lemma 9.1, together with the above-mentioned smallest £.

As an example, consider the case that N = 4, thus p = 16. For 16 < n < 601080389 the
value of Tigo(n) is negative for n = 18, 20,...,152, 970, 972, ..., 4844, 20350, . .., i.e. for all

even n such that (2s — 1| 16) < n < (2s]|16) for an s with 1 < s < 8, altogether (cf. (11))
8

1
for 3 Z(?s [| 15) = 199650082 values of n (all even and all isolated), and positive for the other

s=1

401430292 values. But for the next 565722721 values of n the T, ,(n) are all negative. The
number of negative values hence increases to 765372803, an increase from 33.2 to 65.6 percent.
To state a very concrete case: imagine a (Hadamard independent) matrix of size 10°, of rank 17,
in the positive-definite cone of the unit matrix U and sufficiently close to U: a vast field of 108
numbers, all very close to 1. Then the determinant of the Hadamard square root of that matrix
is negative. The same is the case for sizes n satisfying 601080390 < n < 1166803110; but not so
for the previous, nor for the next n.
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