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Abstract

The Jacobi-Davidson method is suitable for computing solutions of large n-dimensional eigen-
value problems. It needs (approximeate) solutions of specific n-dimensional linear systems. Here we
propose a strategy based on anonoverlappi ng domain decomposition techniquein order to reduce the
wall clock time and local memory requirements. For amodel eigenva ue problem we derive optimal
coupling parameters. Numerica experiments show the effect of this approach on the overal Jacobi-
Davidson process. The implementation of the eventual process on aparalel computer isbeyond the
scope of this paper.

Keywords: Eigenvalue problems, domain decomposition, Jacobi-Davidson, Schwarz method, nonover-
lapping, iterative methods.
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1 Introduction

The Jacobi-Davidson method [17] is a valuable approach for the solution of large (generalized) linear
eigenvalue problems. The method reduces the large problem to a small one by projecting it on an appro-
priate low dimensional subspace. Approximate solutionsfor eigenpairsof the large problem are obtained
from the small problem by means of a Rayleigh-Ritz principle. The heart of the Jacobi-Davidson method
ishow the subspace isexpanded. To keep the dimension of the subspace, and consequently the size of the
small problem, low it isessential that al necessary information of the wanted eigenpair(s) is collected in
the subspace after asmall number of iterations. Therefore, the subspace should be expanded with avector
that contains important information not already present in the subspace. The correction eguation of the
Jacobi-Davidson method aims to prescribe such a vector.

But in itself, the correction equation poses a large linear problem, with size equd to the size of the
originating large eigenvalue problem. Because of this, most of the computational work of the Jacobi-
Davidson method arises from solving the correction equation. In practicethe eigenvalue problemisoften
so large that an accurate sol ution of the correction equation iStoo expensive. However, often approximate
solutionsof the correction equation suffice to obtain sufficiently fast convergence of the Jacobi-Davidson
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method. The speed of this convergence depends on the accuracy of the approximate solution. Jacobi-
Davidson lends itself to be used in combination with a preconditioned iterative solver for the correction
equation. In such acase the quality of the preconditioner is critical.

Nonoverlapping domain decomposition methods for linear systems have been studied well in liter-
ature. Because of the absence of overlapping regions they have computationa advantages compared to
domain decomposition methods with overlap. But much depends on the coupling that should be chosen
carefully.

In this paper we will show how a nonoverlapping domain decomposition technique can be incorpo-
rated in the correction equation of Jacobi-Davidson, when applied to PDE type of eigenvalue problems.
The techniqueis based on work by Tang and by Tan and Borsboom for linear systems.

For alinear system Tang [20] proposed to enhance the system with duplicatesin order to enable an
additive Schwarz method with minimal overlap (for more recent publications, see for example [7], [12]
and [10]). Tan and Borsboom [19, 18] refined thisidea by introducing more flexibility for the unknowns
near the interfaces between the subdomains. In this way additional degrees of freedom are created, re-
flected by coupling equations for the unknowns near the interfaces and their virtua counterparts. Now,
the key point is to tune these interface conditionsfor the given problem in order to improve the speed of
convergence of theiterative solution method. Thisapproachisvery effective for classesof linear systems
stemming from advection-diffusion problems[19, 18].

The operator in the correction equation involves the matrix of the large eigenvalue problem shifted
by an approximate eigenvalue. In the computational process, this shift will become arbitrarily close to
the desired eigenvalue. Thisis a situation that requires special attention when applying the domain de-
composition technique.

An eigenva ue problem imposes a mildly nonlinear problem. Therefore, for the computation of so-
lutionsto the eigenval ue problem one needs a nonlinear solver, for instance, a Newton method. In fact,
Jacobi-Davidson can be seen as an accel erated inexact Newton method [16]. Here, we shall, asexplained
above, combine the Jacobi-Davidson method with aKrylov solver for the correction equation. A precon-
ditioner for the Krylov solver is constructed with domain decomposition. A similar type of nesting, but
for genera nonlinear systems, can be found in the Newton-Krylov-Schwarz agorithms by Cai, Gropp,
Keyeset a. in[4] and [5]. In these two papers the subdomains have overlap, therefore thereis no analy-
sisfor the tuning of the coupling between subdomains. Furthermore, the eigenvalue problemisnonlinear
but with a specific structure; we will exploit this structure.

Our paper is organized as follows. First, we recall the enhancement technique for domain decom-
positionin §2. Then, in §3 we discuss the Jacobi-Davidson method. We outline how the technique can
be applied to the correction equation and how the projections in the correction equation should be han-
dled. For amodel eigenvalue problem we investigate, in §4, in detail how the coupling equations should
be chosen for optimal performance. It will turn out that the shift plays a critical role. Section §5 givesa
number of illustrative numerical examples.

2 Domain decomposition

2.1 Canonical enhancement of alinear system

Tang [20] has proposed the concept of matrix enhancement, which gives elegant possibilitiesfor the for-
mulation of effective domain decomposition of the underlying PDE problem. Theideaisto decompose
thegrid into nonoverl apping subgridsand to expand the subgrids by introducing additional gridpointsand
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additiona unknows along the interfaces of the decomposition. This approach artificially creates some
overlap on gridpoint level and the overlap is minimal. For hyperbolic systems of PDEs, this approach
was further refined by Tan in[18] and by Tan and Borsboomin [19]. Discretization of the PDE leadsto a
linear system of equations. Tang duplicates and adjusts those equationsin the system that couple across
the interfaces. Tan and Borsboom introduce a double set of additional gridpointsaong the interfacesin
order to keep each equation confined to one expanded subgrid. As a consequence, none of the equations
has to be adjusted. Then they enhanced the linear system by ‘new’ equationsthat can be viewed as dis-
cretized boundary conditionsfor the internal boundaries (along the interfaces). Since the last approach
offers more flexibility, thisis the one we follow.

We start with the linear nonsingular system
By =d, 1)

that results from discretization of a given PDE over some domain. Now, we partition the matrix B, and
the vectorsy and d correspondingly,

Bii By By, B Y1 d;
B B d
n Bu By Bp 7 Ye and y
B,1 B By B Yr dr
Byi By By, By Y2 d,

Thelabels are not chosen arbitrarily: we associate with label 1 (and 2, respectively) elements/operations
of thelinear system correspondingto subdomain 1 (2, respectively) and with label 7 (resp. r) elements/op-
erations corresponding to the left (resp. right) of the interface between the two subdomains. The central
blocks By, By, B,y and B,, are square matrices of equal size, say, n; by n;. They correspond to the
unknowns along theinterface. Since the number of unknowns aong the interface will typically be much
smaller than the total number of unknows, n; will be much smaller than », the size of B.

For atypical discretization, thematrix B isbanded and the unknownsareonly locally coupled. There-
foreit is not unreasonable to assume that B,1, Bo1, B12 and By, are zero. For this situation, we define
the ‘canonical enhancement’ By of B, y of y, and d of d, by

Bi1 By By | O 0 0 Y1 d,
Bun By By | 0 0 0 Ye dy
o I o0|-T 0 o o 0
B; = = ,and d= 2
! o 0 —710 1 ol ¥|g =10 @
0 0 0 Brﬁ BTT B7’2 Yr dr
| 0 0 0 |By By By Y2 d2 |
Oneeasily verifiesthat B isalso nonsingular and that y is the unique solution of
B; Yy = d, (3)

Wlth }_’ = (Y1T7 y£T7 yT‘T7 y£T7 yT‘T7 YQT) T'
With thislinear system we can associate a simple iterative scheme for the two coupled subblocks:

)

Bi1 By, By, yﬁ’:“ d;
Bn Bu By y{ ) de |,
0 1 0 yj,(’i+1) g,
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o I o 7+ 70
BTZ BT‘T Br2 y7(’2+1) = d?‘ . (4)
By, B By YQ(H—I) d2

These systems can be solvedin parallel and we can view thisasasimple additive Schwarz iteration (with
no overlap and Dirichlet-Dirichlet coupling). The extra unknowns 7, and ¥, in the enhanced vector y,
will serve for communication between the subdomains during the iterative solution process of the linear
system. After termination of the iterative process, we have to undo the enhancement. We could simply
skip the values of the additional elements, but since these carry aso information one of the alternatives
could be the following one.

With an approximate solution

. iT iT“’i
v = (v g0,

of (3), we may associate the approximate solution Ry of (1) given by

T i NT

gy YTy
)T i), o~ i) o i) "

Ry = (y\" .2 + 7)1 + g7y )7,

that is, we simply average the two sets of unknowns that should have been equa to each other at full
convergence.

2.2 Interface coupling matrix

From (2) we see that the interface unknowns and the additiona interface unknowns are coupled in a

straightforward way by
I 0 v | | I 0 Yo
L L

but, of course, we may replace the coupling matrix by any other nonsingular interface coupling matrix C':

Cu  Cy
C = . 6
l _CTE _CTT ( )
Thisleads to the following block system
Bi1 Bi By, 0 0 ol [ v |
Bn By By 0 0 0 Ye

0 Cu Cu|—-Cu —Cp 0 Ur

Bey = =d. 7
ox 0 - CNZ - CTT CTf CTT 0 y~£ h ( )
0 0 0 Brﬁ Brr BT‘2 Yr
0 0 0| By By By Yo

In a domain decomposition context, we will have for the approximate solution y that 7, =~ y, and
U =~ ys. If we know some analytic properties about the local behavior of the true solution y acrossthe
interface, for instance, smoothness up to some degree, then we may try to identify a convenient coupling
matrix C' that takes advantage of this knowledge. We want preferably a C' so that

—Cuyp — Crryr = —Cuyr—Cry, =0
and - CTfyf - CTT@VT ~ _Crﬁyﬁ - Crryr ~ 0.

In that case (7) is amost decoupled into two independent smaller linear systems (identified by the two
boxes). We may expect fast convergence for the corresponding additive Schwarz iteration.
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2.3 Solution of the coupled subproblems

The goal of the enhancement of the matrix of agiven linear system, together with a convenient coupling
matrix C', isto get two smaller mildly coupled subsystemsthat can be solved in parallel.
Additive Schwarz for the linear system (7) leads to the following iterative scheme

)

[Bi1 B By/] _YY:-H ] d
By By By ygﬁl) = d7? )
| 0 Cu  Cor | @(,H-l) _97(2)_
Cot Crr 0 T[EV] 6T
By By Be| [4V| = a4, ®)
B2 Bz, Baa _ng-H)_ [ d2
and , , .
!]7(=Z) =Cuy 'ﬂ,ﬁ” + C, ’3/7(-2)7 gggl) =Cy yf) + CW@(})- ©)

The additive Schwarz method can be represented as a block Jacobi iteration method. To see this,
consider the matrix splitting B = M — N, where

0 M,

M, 0]

with M, thematrix at thetopin (8) and M, the matrix at the bottom. We assumethat C' is such that M ¢
is nonsingular. The approximate solutiony“*1) of (7) at step i + 1 of the block Jacobi method,

X(i‘H) _ X(l) N Malz(l) with 5(2) =d- ch(i)7 (20)

correspondsto the approximate solutionsat stepz + 1 of the additive Schwarz method. In view of thefact
that onewantsto have ¢! and gy) assmall as possiblein norm, the starting valuey () = 0 isconvenient,
but it is conceivable to construct other starting values for which the two vectors are small in norm (for
instance, after arestart of some acceleration scheme).

Jacobi isa one step method and the updates from previous steps are discarded. The updates can aso
be stored in a space V,,, and be used to obtain more accurate approximations. This leads to a subspace
method that, at step m, searchesfor the approximate solutionin the space V,,,, whichis precisely equal to
the Krylov subspace K,,,(M7'B¢, Mg 'd). For instance, GMRES [14] finds the approximationin V,,,
with the smallest residual, and may be useful if only afew iterationsare to be expected.

Krylov subspace methods can be interpreted as accelerators of the domain decomposition method
(20). Theresulting method can al so be seen as a preconditioned Krylov subspace method where, in this
case, the preconditioner is based on domain decomposition: the matrix M. This preconditioning ap-
proach where a system of the form M;'Bex = r(® issolved, is referred to as left preconditioning.
Herer®) = M7'(d - Boy®) andy = y© + x,

SinceM;'B¢ = I - M;'N, the search subspace V,,, coincides with the Krylov subspace
Km(MZ'N,M'd). Therank of both N and M7 ' N isequal to the dimension of C' which, in thiscase
where C' isnonsingular, is 2n;. Thisshowsthat thedimension of V,,, isat most 2n;. Therefore, the exact
solution y of (7) belongsto V,, for m > 2n; and GMRES finds y in a most 2n; steps. (For further
discussion see, for instance, [3, §3.2], [22, §2], and [2].) -
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2.4 Right preconditioning

We can also use M as aright preconditioner. In that case solution'y of (7) isobtainedasy = y(© +
M 'x wherex is solved from

BcMS'x =@ with ¢ =d - Bey©. (12)
cX=r I Y

Right preconditioning has some advantages for domain decomposition. To seethis, first note that any
vector of the form Nv ‘vanishes outside the artificial boundary’, that is, only the™, and*, component
of this vector are nonzero. Since BcM' = I — NMZ', multiplication by this operator preserves the
property of vanishing outside the artificial boundary. Moreover, if y(® = Mg'd, thenr(® = d -
Bcoy!®) = NM_Z'd vanishes outsidethe artificial boundary.

Therefore, if, for y(®) = M'd, equation (11) issolved with aKrylov subspace method with an initial
guessthat vanishesoutsidethe artificial boundary, for instancex(?) = 0, thenall theintermediate vectors
also vanish outside the artificial boundary. Consequently, only vectors of size 2n; have to be stored and
the vector updates and dot productsare 2n; dimensional operations.

For appropriate y(*), the left preconditioned equation can also be formulated in a 2n; dimensional
subspace. However, with respect to the standard basis, it is hot so easy to identify the corresponding sub-
space. Wewill usethe2n,; dimensional subspace, characterized by right preconditioning as corresponding
to the artificial boundary, for the derivation of properties of the eigensystem of the iteration matrix.

25 Convergenceanalyss

As aconsequence of (10), theerrorse()) = y — y{¥) in the block Jacobi method satisfy:

) = (I-Mz'Be)el’) = Mz'Nel. (12)
Therefore, the convergencerate of Jacobi dependson the spectral propertiesof the‘ error propagationma-
trix M 51N. These properties a so determine the convergence behavior of other Krylov subspace meth-
ods. With right preconditioning, we havetowork with x —x(*), which wouldlead to the error propagation
matrix NM ', but this matrix has the same eigenvalues as the previous one, so we can analyse either of
them with the same result.

For the Jacobi iteration, the spectral radiusof M ;' N (or of NM ' in the right preconditioned situation)
should be strictly less than 1. For other methods, as GMRES, clustering of the eigenvalues of the error
propagation matrix around 0 is a desirable property for fast convergence.

The kernel of N forms the space of eigenvectors of M ;' N that are associated with eigenvalue 0.
Consider an eigenvalue o # 0 of M;'N witheigenvector z = (27, 2/, 7, 7, 27, 2] ) "

M Nz = oz. (13)

Since N mapsall components, except for the™, and ", ones, to zero, we havethat all componentsof M ¢z,
except for the™, and™, components, are zero. The eigenvalue problen oMz = Nz can be decomposed
into two coupled problems:

By By By |z 0 Cw C. O Z qr
o|(Bun Bu By z| =10, o|By By B zZ| = (0], (14)
0 Cu Cul |z gr By, By, Boa |29 0
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with
9 =Cuzi+Copzy go=Crpze+Crrz. (15)

Inthe context of PDES, the systemsin (14) can beinterpreted as representing homogeneouspartial dif-
ferentia equati onswithinhomogeneousboundary conditionsal ongtheartificial boundary: theleft system
for domain 1, the right system for domain 2. The values g, and g, at the artificial boundaries are defined
by (15): thevalue g,. for domain 1 isdetermined by the solution of the PDE at domain 2, whilethe solution
of the PDE at domain 1 determines the value at the interna boundary of domain 2.

We have thefollowing properties, that help to identify the relevant part of the eigensystem:

(i) Nisann + 2n; by n + 2n; matrix. Since C' is nonsingular, we have that rank(IN) = 2n;, and it
followsthat dim(ker(IN)) = n. Hence, o = 0 isan eigenvalue with geometric multiplicity n.

(ii) Sincerank(IN) = 2n,, there are at most 2n,; nonzero eigenvalueso, counted according to algebraic
multiplicity.

(iii) If o isanonzero eigenvaluethen the corresponding componentsg,. and g, are non-zero. To seethis,
take g, = 0. Then from (14) we have that (z{, z,/, 2,")" = 0. Hence, g, = 0, so that z would be
zero.

(iv) If o isan eigenvalue with corresponding nonzero components g, and g, then —o isan eigenvalue
with eigenvector with components g, and —g, (use (14) and (15)).

(v) Thevector Zy = (2/,z7) " islinearly independent of z = (z],27)". Toprovethis, supposethat
oz, = Bz, forsomea, 3 # 0. Then, from (14) it followsthat Bz = 0 where

z=(az{,az/, a0z, Bzy)" = (az{,pZ ,62",8z,)".

AsB isnonsingular, we havez = 0. Hence, z = 0 and z isnot an eigenvector.

Conseguently the value of o cannot be equal to +1. To prove this, supposethat ¢ = 1. Then by
combining the last row of the left part and the first row of the right part of (14) with (15), wefind
that C(%, — %,) = 0. Since C' isnonsingular, thisimpliesthat Z, = Z,, i.e. thevectorsare linearly
dependent. The value —1 for ¢ isthen excluded on account of property (iv).

The magnitude of ¢ dictatesthe error reduction. From (14) and (15) it follows that

0(Cuze+ Co %) = gr = CuuZe 4+ Cop 2y

~ - 16
U(Crﬁzé + CTTZT) =g = Crfzﬁ + CTTZT7 ( )

which leads to ~ -
|G'|2 o (CMZE + CETZT)*(CTZZZ + CTT‘ZT)

B (CMZZ + Cﬁrgr)*(crﬁzﬁ + CTTZT) ‘
From (16) we conclude that multiplying both €'y, and €', by a nonsingular matrix does not affect the

valueof ¢. Likewise, both €', and C'., may be multiplied by (another) singular matrix with no effect to
o. Thiscan be exploited to bring the C' matrices to some convenient form.

(17)

The one-dimensional case. Wefirst study the one-dimensional case, because thiswill not only give some
insight in how to reduce o, but it will also be useful to control local situations in the two-dimensional
case.
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In this situation the problem simplifies: the matrices Cy,, Cy,, C,, and C,, are scalars, and so are the
vector parts z, z,, Zs, and z,.. Because of the freedom to scale the matrices (scalars), we may take C' as

:[ ! O‘f]. (18)

—a, —1

Cu  Cu
C =
[_CTZ _CTT

With uy = z,./ 20, ptr = Z1/ 2, we have from (17) that

Pr + Qi
T+ appr oppr +1

: (19)

o2 = \

The p-vaueswill beinterpreted aslocal growthfactorsat theartificial boundary: 1., showshow z changes
at the artificial boundary of the left domain; 1, shows the same for the right domain.
Note that Z, depends linearly on , if 4,11, = 1. Sincethis situation is excluded on account of property
(v), we have that i,y # 1. The best choice for the minimization of o in (19) isobviously ay = —pu,
and a, = —puy, leadingto o = 0, which gives optimal damping.

The optimal choicefor a, and a, resultsin a coupling that annihilates the ‘outflow’ ¢, and g, of the
two domains. Thisleads effectively to two uncoupled subdomains: an ideal situation.

More dimensions. In the redlistic case of a more dimensiona overlap (n; > 1), thereis no choice
foray and o, (i€, Cow = I, Cp, = ayl, €tc.) that leads to an error reduction matrix with only trivia
eigenvalues. But, the conclusion that the outflow shoul d be minimized in some average sensefor the best
error reduction is here also correct. In our application in §4, we will identify coupling matrices C' that
lead to satisfactory clustering of most of the eigenvalues o, of the error propagation matrix, around 0. We
will do so by selecting the o, and a, as suitable averages of the local growth factors 1, and .

3 Theeigenvalueproblem

3.1 TheJacobhi-Davidson method

For the computation of a solution to an eigenval ue problem the Jacobi-Davidson method [17], is an iter-
ative method that in each iteration:

1. computes an approximation for an eigenpair from a given subspace, using a Rayleigh-Ritz princi-
ple,

2. computes a correction for the eigenvector from a so-called correction eguation,
3. expands the subspace with the computed correction.

The correction equation mentioned in step 2 is characteristic for the Jacobi-Davidson method, for ex-
ample, the Arnoldi method [1, 13] simply expands the subspace with the residua for the approximated
eigenpair, and the Davidson method [6] expandsthe subspacewith apreconditionedresidual. The success
of the Jacobi-Davidson method depends on how fast good approximationsfor the correction equation can
be obtained and it isfor that purpose that we will try to exploit the enhancement techniques discussed in
the previous section.
Therefore, we will consider this correction equation in some more detail. We will do thisfor the stan-
dard eigenvalue problem
Ax =Ax. (20)
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Givenanapproximateeigenpair (6, u ) (withresidua r = #u— A u) thatiscloseto somewanted el genpair
(A,x ), acorrection t for the normalized u is computed from the correction equation:

t L u, (I—uu”)(A-0I)(I—uu")t=r, (21)

or in augmented formulation ([15, §3.4])

] AN} @

In many situationsit is quite expensive to solve this correction equation accurately and fortunately it
is aso not always necessary to do so. A common technique is to compute an approximation for t by a
few steps of a preconditioned iterative method, such as GMRES or Bi-CGSTAB.

When apreconditioner M for A — # I isavailable, then (I — uu*)M(I — uu*) can be used as | eft
preconditioner for (21). Thisleads to the linear system (see, [17, §4])

M~!uu*
wMtu
The operator at the left hand sidein (23) involvestwo (skew) projectors P. However, when we start the
iterative solution process for (23) with initial guess 0, then Pt may be replaced with t at each iteration
of aKrylov iteration method: projection at the right can be skipped in each step of the Krylov subspace
solver.

Right preconditioning, which has advantages in the domain decomposition approach, can be carried
out in asimilar way, with similar reductionsin the application of P, aswe will seein §3.3 below. How-
ever, because the formulaswith right preconditioning ook slightly more complicated, wewill present our
arguments mainly for left preconditioning.

PM'(A-6)Pt=PM 'r whee P=1- (23)

3.2 Enhancement of the correction equation

We use the domain decomposition approach as presented in §2 to solve the correction equation (21).
Again, wewill assumethat we have two subdomainsand wewill use the same notationsfor the enhanced
vectors. WithB = A — 41 thisleadsto the enhanced Jacobi-Davidson correction equation

tlu (I-uu)Be(I-uu’)t=r (24)

withu = (ui,%,/,0",0",%,",uy)", and likewiser = (r{,7,/,07,07, 7", ry)". The dimension of
the zero parts, indicated by 0, is assumed to be the same as the dimension of «, (and u,.).
To see why thisis correct, apply the enhancements of §2 to the augmented formulation (22) of the cor-
rection equation, and use the fact that the augmented and the projected form are equivalent. We assume
u to be normalized. Then u isnormalized as well.
With
(I-uu”)M¢g(I-uu”) (25)

as the left preconditioner, we obtain

M;'uu*

PM;'BcPt=PM;'r with P=1-— i
u"Mgou

(26)

In comparison with the error propagation (12) of the block Jacobi method for ordinary linear systems,
the error propagation matrix MglN is now embedded by the projections P. These projections prevent
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the operator in the correction equation from getting (nearly) singular: asé approximatesthe wanted eigen-
value )\, intheasymptotic case § iseven equal to A, B getscloseto singular in the direction of the wanted
eigenvector x. For ordinary linear systemsthis possibility is excluded by imposing B to be nonsingular
(seeremark (v) in §2.5). Here we haveto alow asingular B. In our analysis of the propagation matrix
of the correction equation, for the model problemin §4.3, in first instance we will ignore the projections.
Afterwards, we will justify this (both analytically (§4.3) aswell as numerically (§5.2)).

Note. We have enhanced the correction egquation. Another option isto start with an enhancement of
theeigenvalue problemitself. However, thisdoes not result in essential differences ([9]). If thecorrection
equationsfor these two different approaches are solved exactly, then the approaches are even equivalent.

3.3 Right preconditioning

In §2.4 we have showed that, without projections, right preconditioning for domain decomposition leads
to an eguation that is defined by its behavior on the artificial boundary only. Although the projections
slightly complicate matters, the computationsfor the projected equation can also be restricted to vectors
corresponding to the artificial boundary, as we will see below. Moreover, similar to the situation for left
preconditioning, right preconditioning requires only one projection per iteration of a Krylov subspace
method. In this section, we will use the underscore notation for vectorsin order to emphasize that they
are defined in the enhanced space.

First we analyze the action of the right preconditioned matrix.
Theinverse on ut of the projected preconditioner in (25) is equal to (cf. [15, §7.1.1] and [8])

M—l * *M—l
PM; = (1- ¢ 22 \Mz' =M (1- 2220 |, 27)

u*Mg u u*Mg u
with P asin (26). This expression represents the Moore—Penrose inverse of the operator in (25), on the
entirespace. Notethat u*P = 0 (by definitionof P) and u*IN = 0 (by definitionof u and N). Therefore,
for the operator that isinvolved in right preconditioning (cf. (11)), we have that

(I-uu*)Bo(I— uu)PMg'
= (I-uu")BcPM;'

(28)

N1
=(I- uu*)Bcl\/Ia1 <I— uu-M ) ,

wMi'u
=I-uu* — (I-uu )NPM,'
=I-uu - NPM_ "
Hence, this operator maps a vector v that is orthogonal to u to the vector
(I-uu")Bo(I-uu*)PMg'y = v - NPM¢'y

that is also orthogonal to u.
Therefore, right preconditioning for (24) can be carried out in the following steps (cf. §2.4):

1. Compute t® =PMz'r and r(® = Nt
2. Compute an (approximate) solution s(™) of
(I- NPMg')s = r(©,
with (m steps of) a Krylov subspace method with initial guess 0.
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3. Update t(®) to the (approximate) solutiont of (24):
t ::9(0) + PME«IE(m).

Asin §2.4, the intermediate vectors in the solution process for the equation in step 2 vanish outside the
artificial boundary. Therefore, for the solution of the right preconditioned enhanced correction equation,
only 2n,-dimensional vectors haveto be stored, and the vector updates and dot products are also for vec-
tors of length 2n;.

4 Tuning of the coupling matrix for amodel problem

Now we will address the problem whether it is possible to reduce the computing time for the Jacobi-
Davidson process, by an appropriate choice of the coupling matrix C'. We have, in §2, introduced the
decomposition of alinear system, into two coupled subsystems, in an algebraic way. In this section we
will demonstrate how knowledge of the physical equations from which the linear system originates can
be used for tuning of the coupling parameters.

4.1 Themode problem

Asamodel problem we will consider the two-dimensional advection-diffusion operator:
2 0? 0 0
PN = A b_ A np_ A "nw_ A PN 2
L@)=agH0+ g P tug etvg, ot (29)
that is defined on the open domain = (0,w,) x (0,w,) in R?, with constantsa > 0,5 > 0, ¢, u and
v. We will further assume Dirichlet boundary conditions: ¢ = 0 on 9 of 2. We are interested in some
eigenvalue A € C and corresponding eigenfunction  of £:

{ L@ =2¢ on Q

p=0 on 09Q. (30)

We will use the insights, obtained with this simple model problem, for the construction of couplings
for more complicated partia differential operators.

Discretization. We discretize £ with central differences with stepsize i = (h:, by) = (225, n:’il)

for thesecond order part and stepsize2h = (2h,;, 2h,,) for thefirst order part, wheren,, and n,, are positive
integers:

Y 3 o. 1
oh. 2y ¢ +c@ (31)

The operator 3

denotes the central difference operator, defined as

and 2—y is defined similar. Thisleadsto the discretized eigenval ue problem
Yy

{ L(g)=Ap on Q, (32)

=20 on 09y,
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where Q;, and 0€2;, is the uniform rectangular grid of points (.., j,hy) in © and in 92, respectively.
We have skippedthe hat = in order to indicatethat the functionsare restricted to the appropriate grid, and
that the operator /. isrestricted to grid functions. The vector ¢ isdefined on Q; U 0Qy,.

We use the boundary conditions ¢ = 0 at 9€2;, for the elimination of these values of ¢ from L(¢) =
Ap.

Identification of grid functions with vectors and of operators on grid functions with matrices leads
to an eigenvalue problem as in (20) of dimensionn = =, - n,: the eigenvector x corresponds to the
eigenfunction ¢ restricted to ©2;,. The matrix A corresponds to the operator I, from which the boundary
conditionshave been eliminated. In our application, we obtain the corresponding vectors by enumeration
of the grid points from bottom to top first (i.e., the y-coordinates first) and then from left to right ([21,
§6.3]). Inour further anaysis, wewill switch from one representation to another (grid function or vector),
sel ecting the representation that is the most convenient at that moment.

4.2 Decomposition of the physical domain

For some 0 < w1 < w, we decompose the domain €2 in two subdomains 2, = (0,w;1] X (0,w,) and
Qg = (Wy1,wy) X (0,wy).

Letn,, bethenumber of grid pointsinthe = directionin ;. ThenQ; NQ;, and QN isan ngy X ny,
and ngo X n, grid respectively with n,; + nge = n,. To number the grid pointsin the z direction, we
useloca indices 71, 1 < je1 < npr, @ Jpo, 1 < Jro < ngo, iNQq and Q, respectively.

Because of the 5 point star discretization, the unknownsat the last row of grid points (j,.1 = ns1) in
the y direction in ©, are coupled with those at the first row of grid points (7,2, = 1) inthe y direction
in gy, and vice versa. The unknownsfor j,; = ny; are denoted by the vector y,, and the unknowns
for 7.2 = 1 are denoted by v, just asin §2. Now we enhance the system with the unknowns 7, and 7,
which, in grid terminology, correspond to avirtual new row of gridpointsto theright of €2, and the left
of Q, respectively. These new virtual gridpoints serve as boundary points for the domains 2, and €2,.
See Fig. 1 for anillustration.

The vectors y,, y,, ¥z, and 4, are n,, dimensional (the »; in §2.1 is now equal to n,). The 2n, by
2n,, matrix C, that couples y,, ., ¥¢, and y, can beinterpreted as discretized boundary conditionsof the
differential operator at the interna newly created boundary between €2, and 2, [19, 18].

Notethat theinternal boundary conditionsare explicitly expressed in thetotal systemmatrix B, through
C', whereasthe external boundary conditionshave been used to eliminatethe values at the external bound-
ary (see§4.1).

4.3 Eigenvectorsof theerror propagation matrix

We will now analyze the eigensystem of the error reduction matrix MalN (see §2.5) and discuss appro-
priate coupling conditions(that is, theinternal boundary conditions) asrepresented by thematrix C'. Here,
the matrices M and N are defined for B = A — 61, asexplained in §§2.2-2.3, for some approximate
eigenvaluef (cf., §§3.1-3.2). Thematrix A correspondsto 7., asexplainedin §4.1.

First, we will discussin section §4.3.1 the case of one spatial dimension (i.e., no y variable). There-
sultsfor the one-dimensional case are easy to interpret. Moreover, since the two-dimensional eigenvalue
problemin (30) isatensor product of two one-dimensiona problems, the resultsfor the one-dimensional
case can conveniently be used for the analysisin §4.3.2 of the two-dimensional problem.
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FIGURE 1. Decomposition of the domain €2 into two subdomains 2, and €25.
Thebullets (o) representthe grid points of the original grid. Thecircles(o) representthe extra grid points at theinternal bound-
ary. Theindices 5, and j, refer to numberingin the z direction and y direction respectively of the grid pointsin the grids: the
pair (7=, 7y) correspondsto point (j. ks, J,ky) in Q. For the numbering of the grid points in the z direction in the two subdo-
mainsalocal indexisused: j,1 = 7, INQ1 (0 < Jz1 < g1+ 1) andjoz = jz — 121 INQ2 (0 < Jo2 < na2 + 2).
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431 Theonedimensional case

In this section, we will discuss the case of one spatial dimension: there is no y variable. To simplify
notations, we will skip theindex z for this case.

Suppose that we have an approximate eigenvalue 4 for some eigenvalue § of B.
To simplify formulas, we shift the approximate eigenvalue by ¢. Thematrix B in §2.5 correspondsto the
three point stencil of thefinite difference operator

LI
ah2 U2h .

For the eigensystem of M ;' N, we have to solve the systemsin (14) for an 7, # 0 and 7, # 0, that is,
we have to compute solutions; and ¢, for the discretized PDE on domain 1 and domain 2, respectively
(cf. §2.5). Thefunctionst, and 2 should satisfy

2
[“%”%‘H]WWIO for 1<j,<n, ad p=1.2 (33

The conditions on the external boundariesimply that
P1(0)=0 and ¢a(noh+h)=0.

For the solutions of (33), wetry functionsof the form (k) = (7. Then ¢ satisfies

(1+%)c—zp+(1—%)c-1:o with Dz1+go. (34)
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Let ¢4 and (_ denotetherootsof thisequation, suchthat |(4| > |(—|. Intheregular casewhere(y # (_,
the solutions ), and v, are, apart from scaling, given by

lfbl(]lh) = Ci—l - gil and ¢2(]2h) = 612_7@_1 _ Cf_n2_1.
We distinguishthree different situations:

(i) Harmonicbehavior: (_ = (; ¢ R.
If (o € Rand T € [0,27)aresuchthat (; = (opexp(ir). Then, up from scaling factors,

P1(jrh) = ¢ sin(rjy)  and  ¥a(jzh) = (22 sin(r(js — ngy — 1)).

(ii) Degenerated harmonic behavior: (; = (_.
In this case we have, apart from scaling factors,

b1(rh) = 71 and  Pa(Gah) = (ng + 1 — 52)C32.

(iii) Dominatingbehavior: |(4| > |(—].
Near the artificial boundary, thatisfor j; ~ nq and j, ~ 1, we have apart from scaling factors that

. n .
P1(gih) = (¢ (1 - (g—;) ) ~ Y

. na+1—j2 .
Pa(jah) = ¢! (1 — (g—;) ! ) ~ e,

so that, apart from a scaling factor again, 15 (j2h) ~ (2.
How accurate the approximation is depends on theratio |(_| /|| and on the size of n, and n,.
The coupling matrix C'is2 by 2 (n; = 1). We consider aC’ asin (18). Then, according to (19), the
absolute value of the eigenvalue o is given by

o + iy
1+ appe

|U|2 _ ‘ ay + Hor 7 (35)

T+ a,pr

where iy = ¥1(n1h + h)/ip1(nah) and . = 2(0)/92(h): 2z, in (14) correspondsto i1 (nih), Z, tO
Yr(n1h + h), etcetera

In the case of dominating behavior (cf. (iii)), we havethat i, ~ (4 and u, ~ 1/(_. Asobserved
in (iii), the accuracy of the approximation depends on theratio |(_|/|(4+| and on the values of n; and n;.
But already for modest (and realistic) values of these quantities, we obtain useful estimates, and we may
expect a good error reduction for the choice ay = —1/(_ and o, = —(;. The parameters (; and (_
would also appear in alocal mode analysis: they do not depend on the external boundary condition nor
on the position of the artificial boundary.

Thevauefor |o| in (35) isequal to onewhen i, = 1/, regardless a, and o, (assuming these are
real). If we would follow the local mode approach for the situations (i) and (ii), that is, if we would esti-
mate p, by (4 and p,. by 1/¢_, then wewould encounter such valuesfor 1, and .. In specific situations,
we may do better by using the expressionsfor ¢»; and v, in (i) and (ii), that is, we may find coupling pa-
rameters o, and «, that lead to an eigenvalue o with |o| < 1. However, then we need information on
the external boundary conditions and the position of the artificial boundary. Certainly in the case of a



Using domain decomposition in the Jacobi-Davidson method 15

higher spatial dimension, thisis undesirable. Moreover, if 6 isan exact eigenvalue of A thenwe arein
thesituationin (i): the functions ¢, and ¢, are multiplesof the components on domain 1 and domain 2,
respectively, of theeigenfunctionand o = 1 (see(v) in §2.5 and theremark in §3.2). In thiscase thereis
no vaue of o, and «, for which |o| < 1.

Wedefiner = (2a + uh)/(2a — uh). In order to simplify the forthcoming discussionfor two spatial
dimensions, observe that, in the case of dominating growth (iii), that is, uy ~ (4 and p,, =~ 1/(_, (35)
impliesthat
ar+¢|la+¢ - ap ~

= ~|, where ay = —, a, = Vra,, ( = v(,. 36
Tva, 0l 14ac ‘=7 Vva,, (=i (36)
Here we have used that (4 - (- = 1/v, which followsfrom (34).

If, for the Laplace operator (where v = 0 and ¢ = 0), we use Ritz values for the approximate eigen-
values 4, then 4 takes values between \(") and A\(9). Hence, 8 € (—4a/h?,0), and theroots ¢, and (_
are aways complex conjugates. We will see in the next subsectionsthat, for two spatial dimensions, the
Ritz valuesthat are of interest lead to a dominant root, aso for the Laplace operator, and we will see that
local mode analysisisthen a convenient tool for the identification of effective coupling parameters.

~

|o]* ~

4.3.2 Two dimensions
Similar to the one-dimensional case we are interested in functions y; and v, such that,
L(ix,)=0 on Q,nNQ,, p=12, (37

and that satisfy the external boundary conditions. But now y; and x are functionsthat depend on both
the z- and y direction whereas the operator 7, (here L isintroduced in §4.1) acts in these two directions.
Sincethefinite difference operator fL—i actsonly inthez direction and % actsonly inthey direction, their

actions are independent of each other. Therefore, in this case of constant coefficients', we can write the
operator I, in equation (37) as a sum of tensor product of one-dimensional operators:

L=L,01+181L, (38)
where ) )
é b oy by
=a—= — =b— +v— - 0.
L, ah% —|—u2hr and L, th —}—thy +c (39)

L, and L, incorporate the action of L inthe z direction and y direction respectively.

Sincethedomain Q2 isrectangular and since on each of the four boundary sidesof €2 we havethe same
boundary conditions, the tensor product decomposition of 7, correspondsto atensor product decomposi-
tion of the matrix A.

We try to construct solutions of (37) by tensor product functions, that is by functions x,, of the form

Xp(Jzphas Jyhy) = p(Jephe) @ ©(Jyhy) = p(Jupha) - (Tyhy)-

For ¢ we select eigenfunctions () of the operator I, that satisfy the boundary conditionsfor the y di-
rection. Then

L0xp) = (Latrp) @ ¢ + 1, @ MU0 = (Lo +20)(wy) @ 10,

tissufficient if « and u are constantsas functionsof y, b and v are constantsasfunction of z, and ¢ isaproduct of afunction
inz andafunctioniny.
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where \(V) isthe eigenvalue of I, that correspondsto ¢(!). Apparently, for each eigensolution of the * y-
operator’ L, the problem of finding solutionsof (37) reducesto a one-dimensional problem as discussed
in the previous subsection: find +,, such that

2

, 61‘ 61‘ /
(Le + AD)(3p) = [ah_Q tug—+ /\(Z)] Pp =0, (40)

and that satisfy the external boundary conditionsin the = direction. To express the dependency of the

solutions+,, on the selected eigenfunction of L,,, we denote the solution as '@b;(gl).
Now, consider matrixpairs (Cy,, Cy;) and (C,, C.,) for which the eéigenfunctions (") of 7, are also
eigenfunctions:

Corolt) = al(zl)Cuap(l) and C) = ag,l)CTTga(l). (41)
Examplesof such matrices are scalar multiplesof theidentity matrix (for instance, C'y, = aff)l andCyy =
1I), but there are others as well, as we will seein §4.4. For such a C' there is a 1-1 correspondence for
each function o) on the two subdomains: acomponent in the direction of 1" @ () on subdomain 1 is
transferred by M 7' N to acomponent in the direction of " @ () on subdomain 2 and vice versa. More
precisely, if C'issuch that (41) holdsand if ) = (¢!, %:{") T for some scalar ¢; then, by construction
of (), M¢ maps () @ ¢ onto a vector that is zero except for the™; and™~, components (cf. (14))

which are equal to
et (90 () + a9 (mashy + b)) Cre® (42)

and

(a90) + 9 (hs) Crre®, (43)

respectively. Initsturn, N maps ¢(!) @ (V) onto avector that is zero except for the; and™, components
(cf. (14) and (15)) which are equal to

(#870) + a9 (ho)) Cure) (44)
and l l
et (D9 (n1ghe) + 0 (s + b)) Crrig?, (45)
respectively. By a combination of (42) and (44), and (43) and (45), respectively, one can check that, for
an appropriate scalar ¢;, 1\ @ ¢! isan eigenvector of M;' N with corresponding eigenvalue s () such
that
NUBINO
14+ al(zl),ul(zl) ’

el
L+ al,0
where (here we assumed that 1" (n1,h) # 0 and v{(h,) # 0)

= 01 (mashe + ho) [0 (mishs) and ) = 00(0) /05 (ke ).
Note that the expression for oY) does not involvethevalue of ¢;. From property (iv) in §2.5 weknow that
P @ o0 where ! = (P, ") 7 is also an eigenvector with eigenvalue —o (.
Asspan{p®, 1 = span{(y",0)7, (0,%{") 7} thefunctions ) @ ¢ and ' © ¢ are linearly
independent and

(46)

span{p) @ oV, @ o), ...,y g ), y) g o)y =

1) (1) (ny) (ny) 0
ey YT e,
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From thisit followsthat the total number of linear independently eigenfunctionsof theform () @ () is
equal to 2 n,,. Note that our approach with tensorproduct functions leads to the required result: once we
know the n,, functions (1), ..., ("), we can, up to scalars, construct al eigenvectors of M ;' N that
correspond to the case (ii) in §2.5, i.e. the eigenvectors with, in general, nonzero eigenval ues.?

Apparently, the problem of finding the two times n,, nontrivial eigensolutionsof M ' N breaks up
into n,, *one’ -dimensional problems. For each /, the matrix M ;' N has two eigenvectors o)) and —o()
with componentsthat, on domain p, correspond to a scalar multipleof %" @ o) (p = 1,2).

Errors will be transferred in the iterative solution process of (7) from one subdomain to the other.
These errors can be decomposed in eigenvectorsof M ;' N, that is, they can be expressed on subdomain
p (p = 1, 2) aslinear combination of the functi ons'gbz(f) @ ¢!). The component of the error on domain p in
the direction of ") @ () istransferred in each step of the iteration process precisely to the component
in the direction of wélﬂp ® ¢Y) ondomain 3 — p. In case of the block Jacobi method, transference damps
this component by afactor [o(!)].

Here, asin the case of one spatial dimension (§4.3.1), the size of the eigenvalues ¢ (V) is determined
by the growth factor 11" of (" and i) of ©{" in (46).

In case of dominated behavior, these factors can adequately be estimated by the dominating root of the
appropriate characteristic equation (cf. (34)). The scalars, that is, the matrices €'y, and (', can be tuned
to minimize the |o(!)|. Thiswill be the subject of our next section.

Asweexplainedin §4.3.1, we see no practical way to tune our coefficientsin case of harmonic behavior.
However, in our applications the number of eigenvalues that can not be controlled is limited as we will
see in our next subsection. Except for a few eigenvalues, the eigenvalues of the error reduction matrix
MglN will be small in absolutevalue: the eigenvalues cluster around 0. If 8 isequal to an eigenvalue A
of A, then 1 isaneigenvalueof M;'N (see(v) in§2.5 and §3.2) and M ;' B issingular. However, the
projections that have been discussed in §3.2, will remove this singularity. An accurate approximation 6
of A (adesirable situation) corresponds to a near singular matrix M ' B¢, and here, the projection will
also improve the conditioning of the matrix.

4.4 Optimizing the coupling
In this section, we will discussthe construction of acoupling matrix ' that leadsto a clustering of eigen-
valueso!) of M;'N round 0. We give detailsfor the L aplace operator. We will concentrate on the error

modes 1" ® () on domain p with dominated growth in the = direction, that is, modes for which 1_"
exhibits the dominated behavior as described in (iii) of §4.3.1. For these modes and for ¢’ asin (18) and
(41), we have that (cf., (36) and (46))

a4 {0
1+aWcw|

a4 v

oD~ | =
14+ &g

(47)

Here, for v = (2a + uh,)/(2a — uh,), the quantities &, & and {0 are defined asin (36): &\ =
oWy, a = wal), (0 = iy ¢, wherehere ¢V isthe dominant root of (34) for A = A(). Note
that, in view of the symmetry in the expression for |o(!)|2, it sufficesto study aC' for which & = &),

Let F bethesetof I’sin{1, .. ., n, } for whichthe (! exhibit dominated growth, or, equivalently, for
which the characteristic equation associated with the operator I, + () in (40) (cf., (34)) has adominant

2For agl) — — u&” or otV — — ug,l) one of the nonzero eigenvalues degeneratesto a defective zero eigenvalue. But then

still this construction yields al nonzero eigenvalues. To avoid atechnical discussion we give no details here.
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root (s = {1=1,....n, | 1] > |¢Y]}. Weareinterestedina® = & = & for which

_ ol +¢ ] SR ()
Uom:maX{m CGE W|th E:{\/;C+ |l€E} (48)

is‘assmall aspossible’.

Smple coupling. For the choice Cy, = /val and C,; = (a/+/v)I, we can easily anadyze the
Situation.
Then alY) = a for dl / and we should find the & = . that minimizes max |(a + ¢)/(1 + a¢)|. We
assume that |uh,| < 2a. Notethat then /v times the dominant characteristic roots are red and > 1.
Therefore, the two extremal values

[ = min E and M =maxFE (49)
determine the size of the maximum. Thisleadsto

VIE=DOr =1 | (p- 1) - 1)
w+ M uw+ M

— gy =14 >1 (50)

and

M?—1— /21
o = v Vi > 0. (51)
M\/p? — 14 pu/M?2 — 1

Laplace operator. To get afeeling for what we can expect, we interpret and discussthe resultsfor the
Laplace operator, that is, we now takew = » = ¢ = 0. Further, we concentrate on the computation of
(one of) the largest eigenvalue of . and we assumethat 6 is closeto the target eigenvalue. Then

2b l
h2 —(1- cos(ﬂny 1

AW = )) — 6. (52)
First we derive alower bound for i and an upper bound for M.

For DO = 1 — %70 (cf., (34)), we havethat | D] > 1, or, equivalently, |¢{"| > [¢V)], if and only if

AD < 0. Hencel, = min E isthe smallest integer [ for which A() < 0 and

\]

b

5

I, i hy |0
l.=1l]+1 where [.=—(ny,+1)arcsin (71’ _) )

-0
b
For an impression on the error reduction that can be achieved with a suitable coupling, we are in-
terested in lower bounds for u — 1 that are as large as possible. With § = D<) — 1 we have that
p—1=386426+ 6% > /26. Therefore, we are interested in positivelower bounds for 6:

(The noninteger value = [, isthe‘solution’ of A() = =0.) For h, < 1, [ 2
™

I. I, S — 1. I
)) > mp’ sin(m
ny, +1 ny, + 1

2
b~ ~ { hy
2n—l.(l. —1.) (—) where p = —\[
a wy

)

v
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The bound for 6 depends on the distance of 7. to theintegers, which can be arbitrarily small. This means
that, even for the optimal coupling parameters, the (absolute value of the) eigenvalue o) can be arbi-
trarily closeto one. Since, for optimal coupling, the damping that we achievefor thesmallest/in F isthe
same as for the largest, it seems to be undesirable to concentrate on damping the error modes associated
with [, asmuch as possible. Therefore, weremove . fromthe set £ and concentrate on damping the error
modes associated with/in £’ = E\{l.}. For the § and i associated with thisslightly reduced set £’ we
have that
pw—1> V26 > 2kh, Where k= S 71'[69. (53)
wy a

The lower bound for ¢z — 1 issharp for » — 0 with p fixed, i.e,, for given p, h = (h,, h,) issuch that
hs = hyp\/afb.

An upper bound for M follows from the observationsthat § < 0 and that the cosine takes values
between —1 and 1: we havethat DY) < 1 4 2p? and

M — 1< 2p% 4 1/4p? + 4p4.

= ML et
VM4 T Y1+ p2

Then, for h — (0,0) such that p isfixed, we have that

Put

Khy
M’

—o = 1 +2M'\/khy + O(h;) and 1 — og =2 + O(hy).

Here we used that

—o =1+ /2 — 1M +O(p—1) and 1—0pq =1/2(u—1)/M'+ O — 1)

for u — 1 (see(50) and (51)).
So, for small stepsizes h, the *best’ ‘asymptotic error reduction factor’ o, is less than one with a
difference from one that is proportiona to the square root of #,,.

Wetried to cluster the eigenvaluesof M ;' B around one asmuch as possible. With a: = ., a most
l. eigenvaluesmay be located outsidethe disk with radius o,,, and center one. After aninitial /. stepswe
may expect the convergence of GMRES to be determinated by o, (provided that the basisof eigenvectors
isnot too skew). Therefore, aslong as /. isamodest integer, we expect GMRES to convergewell in this
situation. We will now argue that, in reglistic situations, /. will be modest as compared to the index of
the eigenvalue of A where we are interested in. For clearness of arguments, we assume the stepsizesto
besmall: A — (0,0) with p fixed: A(e) ~ —br2(l./w,)? - 6.

Supposethat, for somer > 0, we are interested in the smallest eigenvalue A of A that islarger than
—7. Since, in the Jacobi-Davidson process, § convergesto A, § will eventualy be larger than —7. We
concentrate on this‘asymptotic’ situation.®

#The Jacobi-Davidson process can often be started in practice with an approximate eigenvector that is already close to the
wanted eigenvector. Then 8 will be closeto A. For instance, if oneisinterested in anumber of eigenvaluescloseto some target
value, then the search for the second and following eigenvectorswill be started with a search subspacethat hasbeen constructed
for the first eigenvector. This search subspacewill be ‘rich’ with componentsin the direction of the eigenvectorsthat are wanted
next (see[8, §3.4]).
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Then, I, < Ci(7') + 1, where

2
Ci(tY=#{leN|I*<7'} and 7= r;d—yQ.
s
The number of eigenvalues A= ™) ~ —ar?(m, [w,)? — br?(m, /w,)? of A that are larger than —7 is
approximately equal to

2
Co(7) = #{(mymy) € N2| m2 + 22 < 2/}

——4m?
b w?

Since C4(7)? < 2‘;’—2\/% Cy(7"), the number . 4+ 1 of error modes that we do not try to control with
appropriate coupling coefficients is proportional to the square root of the index number of the wanted
eigenvalue (if the eigenvalues have been increasingly ordered). For instance, if ¢ = b, w, = w,, and
' = 15, theneight eigenvaluesof A arelarger than —7, and wedo not ‘ control’ four modes. Oneof these
modes corresponds with the wanted eigenvalue and is ‘controlled’ by the projectionsin the correction
equation of the Jacobi-Davidson process.

In practice, deflation will be used for the computation of the, say, eight eigenvalue of A. The first
seven eigenvalues will be computed first and will be deflated from A. In such an approach, the three
modes that we did not try to control in our coupling, will be controlled by the projection on the space
orthogonal to the detected eigenvectors. See §5.2.2 for anumerical example.

We analyzed the situation where the domain has been decomposed into two subdomains. Of course,
in practice, we will interested in a decomposition of more subdomains. In these situations, the number
of modes that we did not try to control by the coupling, will be proportional to the number of artificial
boundaries. For numerical results, see §5.4. Deflation will be more important if the number subdomains
islarger. Note that the observationsin the §§4.3.1 and 4.3.2 on the error modes that exhibit dominated
behavior also apply to the situation of more than two subdomains: the essential observation in case of
dominated growthisthat, on one subdomain, the influence of the* dominated” component (as represented
by C(_l)) isnegligible at the artificial boundary regardless the boundary condition at the other end of the
subdomain.

Stronger couplings. In §4.3.2, we considered coupling matrices C' with eigenvectorsrel ated to ones of
L, the y-component of the finite difference operator L. Instances of such matrices can easily be formed
by using L, itself.

For ease of notation we consider the Laplace operator. Inclusion of first order terms only resultsin
extrafactors v (cf. (36) in §4.3.1). Consider the matrices

C@g:CTTzlﬁ-’)/Ly and CgT:CTg:a+ﬁLy, (54)

where «, 3, and v are appropriate scalars. With 5 and v, we introduce interaction parallel to theinterface
in the coupling. Then o) in (41) is equal to

! a+ [
o = ¢,(\D) where ¢()) = T (55)
Note that the dominant root ¢\ (cf. (34) with ' = A() dependson A(: ¢V = w,(AD) for some
function w,. Hence, we areinterested in finding scalars o, 3, and  for which

/ qo(A) + we(A)

T = MAxX T+ g wV) (56)
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TaBLE 1. The table shows the values that can be achieved for the damping oy in (56) for the Laplace equation on the
the unit square by optimizing the coupling in (54) with respect to some of the parameters«, 4 and v. For explanation seethe
examplein §4.4.

1 2 3 4
optimizedw.rt. | « a,fB | a,y | a, B,y
ol | 0.696 | 0.157 | 0.376 | 0.093

opt

isas small as possible. Here \ ranges over the set of eigenvalues A() of 7, that lead to a dominant root
Cﬂf) = wy(A\Y)). For = v = 0 wehavethe‘simple coupling’ asdiscussed above. For the coupling at the
right side of the artificial boundary, we have similar expressions. Finding the minimum of (56) isa non-
linear praoblem (in «, 5 and~y; ¢, isrational and ¢, isinthe denominator) and can not analytically be solved.
But a numerical solution can be obtained with, for instance, a modified Rémes algorithm. We discuss
our results for asimple example in order to illustrate how much can be gained by including interactions
parallel to the artificial boundary in the coupling.

Example. Table 1 shows values for o;, for the Laplace operator on the unit square (¢ = b = 1, u =
v=2c=0,Q=(0,1)x (0,1)),withd = —347? (thenl. = 6 and 24 eigenvalues are larger than 6),
ny = 180, n, = 120 and wy; = % In case 1 inthetable, wetook 5 = v = 0 and we optimized with
respect to a.. This case corresponds to the ‘simple coupling’ as discussed above. We learn from column
2 of Table 1 that an additional parameter 5 allows a considerabl e reduction of the damping factor.

With 3 = v = 0 the explicit coupling isin the = direction only, this corresponds to a two point stencil
for the boundary conditions on the artificial boundary. The parameter 5 introduces a coupling in the y
directions which corresponds to a four point stencil for the artificial boundary conditions. If in addition
v # 0, thecoupling correspondsto asix point stencil. Extensionfrom atwoto afour point stencil appears
to be more effective than the extension from afour to asix point stencil (areduction of o/, from 0.696 to
0.157 as compared to areduction from0.157 t0 0.093 in Table 1). The parameter 5 # 0 givesacoupling
of theinternal boundary conditionson the artificia interface (the o’sin Fig. 1), while~ givesa coupling
of theinternal boundary conditionson pointsof the original domain (the o’sin Fig. 1 closest to the cut).
Note that an optimal 3 (with v = 0) gives better valuesthan an optimal v (with 3 = 0).

Experimentally we verified that the values for o/, obtained with a‘local mode analysis' (where we
neglected ¢ terms) correspond rather well with the actual radiusof the cluster of eigenvaluesof M 7' N:
except for thefirst /. +1 eigenvalues,inall casesall eigenvaluesof MglN areinthediscwith center 0 and
radius o/,,. Since we did not optimize for the first /. eigenvalues, it is no surprise that these eigenvalues

arenot inthedisc. Thel. + 1th eigenvalue correspondsto the situation where |C(+l) | isclosestto|¢ o | and
then the predictions of the local mode analysis may expected to be the least reliable. For an experiment
with larger stepsize see §5.2.3.

5 Numerical experiments

The experiments presented in thissectionillustratethe numerical behavior of the Jacobi-Davidson method
in combination with the domain decomposition method, as described in §3 and §4. We will focus on some
characteristic properties. All experimentsare performed with MATLAB 5.3.0 onaSun Sparc Ultra5 work-
station.

In §5.1 we will discuss the circumstances under which experiments have been performed. Because
Jacobi-Davidson is a nested iterative method, an inexact solution of the correction equation affects the
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TABLE 2. Convergence of Jacobi-Davidson, with accurate solution of the correction equation, towardsthe eigenvalue of
smallest absolutevalue (=largest eigenmode) of the discretized (r = 99, k = 0.01) eigenvalueproblemfor the one-dimensional
Laplace operator.

step | selected Ritz value | residua selected | number of correct digits
Ritz pair selected Ritz value
1 -3992.4322622 9.74e+03 -3.6
2 -1487.8343933 3.99e+03 -3.2
3 -581.73159839 1.62e+03 -2.8
4 -283.84104294 7.22e+02 -24
5 -123.01979659 3.23e+02 2.1
6 -42.762088608 1.15e+02 -15
7 -17.253205686 4.49e+01 -0.87
8 -0.8982441731 7.41e+00 15
9 -9.8687926855 5.15e-04 9.8
10 -9.8687926854 6.26e-12 12

outerloop. Therefore, we will aso check how the exact process behaves and which stage of the process
is most sensitive to inexact solution.

Then, in §5.2, we consider the spectrum of the error propagator for the asymptotic situation § = A.
Thisspectrum containsall information for understanding the convergence behavior of the Jacobi iteration
method. The predictions of §4.4 on the optimized coupling are verified and we investigate the effect of
deflation.

The next question is how the Jacobi-Davidson method behaves when inexact solutionsfor the cor-
rection equation are obtai ned with Jacobi iterations. In §5.3 we compare different types of coupling, and
left and right preconditioning. Furthermore, we consider GMRES as an accel erator of the Jacobi iterative
method.

We conclude, in §5.4, with an experiment that shows what happens when we have more than two
subdomains.

5.1 Reference process

We first consider the standard Jacobi-Davidson method, when applied to the discretized eigenval ue prob-
lem for the Laplace operator. No domain is decomposed and correction vectors are obtained by accurate
solution of the correction equation.

Thefirst experiment givesaglobal impression of the speed of convergence. For that purpose we con-
fine ourselvesto the one-dimensional case, described in §4.3.1. Wetaken = 99, A~ = 0.01. For the start-
ing vector of the Jacobi-Davidson process, we take a random vector generated in MATLAB (with seed
equa to 226). We want to compute the eigenvalue of smallest absolutevalue (\; = — (200 sin fﬁ)z =
—9.86879268536 . . .). The corresponding eigenvector describes the largest eigenmode of the discretized
PDE.

Table 2 and Fig. 2 show what happensin the iteration process. The second column of Table 2 gives
the selected Ritz value # for the correction eguation, the third column gives the 2-norm of the residual
r = Au — fu of the corresponding Ritz pair (4, u), and the fourth column lists the number of correct
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FIGURE 2. Convergence behavior of Jacobi-Davidson with accurate solution of the correction equation, when applied to
thediscretized (n = 99, k = 0.01) eigenvalue problemfor the one-dimensional Laplace operator. The processis started with
one random vector. In each step a correction vector is computed (second column) by which the search subspaceis expanded.
In the third column all Ritz values of the search subspaces before/after expansion are printed. Right below this number the
corresponding Ritz vector is graphically displayed.

step | correction vector Ritz values and Ritz vectors
-4.0e+03
1 N/N\N\/\/\ﬂp -15e+03 -8.6e+03
2 M/\A/\ﬂ/\ -5.8¢+02 -2.9¢+03 ~1.0e+04
3
-2.8e+02 ~1.0e+03 -3.1e+03 ~11e+04
4
-1.2e+02 -4.6e+02 -1.1e+03 -3.3e+03 -1.2e+04
5
-4.3¢+01 _2 3e+ oz -5.0e+02 -13e+03 -3.66+03 WWW
6 M W W\/L W/VWW
1 Te+01 -8.0e+01 -2.4e+02 -5.1e402 -13e+03 MM WW
7 050100 {\/Wv\f\/
9e+ -4.0e+01 9 4e+01 -2.5¢+02 -5.3e+02 M ’\/\3/\9%;\{3“\!\/\ W
-5.6¢+02 ~14e+03 ~4.0e+03 ~1.9¢+04
9 A / w /\AN\W\ \/\/\)\{W\W
9.9e+00 2 26404
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digitsof the Ritz value: — log!'® |\ — 4.

From Table 2 we observe that Jacobi-Davidson needs about 8 steps before the (theoretically cubic)
convergencetothedesired eigenvauesetsin. Thismight have been expected: asthestartvectorisrandom
itislikely that the componentsof all eigenmodes are about equally represented in the startvector. There-
fore, in the beginning the eigenvalues with larger absolute value will dominate for awhile. In Fig. 2 we
display the Ritz vectors after each iteration of the Jacobi-Davidson process. The corresponding eigen-
modes are of high frequency, which explains the order of appearance of Ritz vectors (high frequencies
dominateinitially).

A proper target value in the correction equation (21), instead of the Ritz value, may help to overcome
theinitial phase of slow convergence, but thisis beyond the scope of thispaper. Our concernisthe ques-
tion how much the processisaffected when the correction equationis sol ved approximately by performing
accurate solves on the subdomainsonly and by tuning theinterface conditions. A lessaccurate solution of
the correction equation will, in general, result in more steps of Jacobi-Davidson (outer iterations) for the
same precision for the approximate eigenpair. In particular, we do not want to extend the ‘slow phase’
by destroying the ‘fast phase’ with too inaccurate solution steps. We take the ‘exact’ Jacobi-Davidson
process in Table 2 as our reference. In order to see what happensin the final, potentialy fast phase, we
select a parabola shaped startvector.

In the next subsectionswewill mainly consider the moreinteresting two-dimensional case, with phys-
ical sizesw, = 2andw, = 1. Thenumber of grid pointsin z- and y directionare n,, = 63 and n,, = 31,
S0k, : hy = 1: 1. Theeigenvalue corresponding to the largest eigenmode of the discretized Laplace
operator isequal to —12.328585 . . .. In Table 3 the convergence history for Jacobi-Davidsonto thiseigen-
pair is presented when starting with the parabolic vector

1-— 1-— 1<j, <mg,1<3, < , 57
{(nr—l-l( nr—l—l)’ny+1( ny—l-l)) | 1<j,<mn Gy < my) (57)

and with accurate sol utionsof the correction equation. The second column of thistable showsthe selected

TaBLE 3. Convergencehistory of Jacobi-Davidson applied to the discretized eigenval ue problem of the two-dimensional
Laplace operator (n, = 63, ny, = 31,w, = 2 and w, = 1) with accurate solutions of the correction equation.

sep| 0 0-A [kl [k
1 -12.4896 -1.61e-01 4.19e+00 4.19e+00
2 -12.3286 -9.65e-07 8.55e-03 6.10e-03
3 -12.3286 -155e-13 1.76e-10 1.19e-10
4 -12.3286 -1.33e-13 7.71e-14 3.90e-14

Ritz value for the correction eguation, the third column the error § — A for this Ritz value, and the fourth
column gives the 2-norm of the residual r for the corresponding normalized Ritz pair. Jia and Stewart
[11] have pointed out that for 6, and given the information in the subspace V, a better, in residual sense,
approximate eigenvector can be computed; the norm of the residual of this so-called refined Ritz vector
is given by the quantity

"Il = min ||Au — 6
[[r7[l2 = min |Au — ful],
represented in the fifth columnin Table 3.

These experiments set the stage for the domain decomposition experiments.
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FIGURE 3. Predicted amplification of the error propagator M ' N with simple optimized coupling for the largest eigen-
value X"V of the Laplace operator for . = 2,1. = 4,andl. = 1.2. For explanation, see §5.2.1.
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5.2 Spectrum of theerror propagator

From §2.5 weknow that the convergence propertiesof the Jacobi iterative method depend on the spectrum
of the error propagator MglN. Therefore, we will investigate these spectrafor some typica situations.
We consider the asymptotic case # = A. Although # approximates A in practice, during the iteration
process § becomes very closeto A, and that is the reason we think that the asymptotic case gives a good
indication.

5.2.1 Predicted and computed spectra

First we consider the determination of the parameter a,, (50) for the simple optimized coupling. The
value of a,, depends on the extremal values 1 and M of the collection of dominant roots E (48) for
which oy isoptimized. The value i depends amongst otherson 6, and M only dependson £, h,, and
on the coefficients ¢ and b.

Weillustratethe sensitivity of a., W.r.t. thelower bound u, for 8 equal to thelargest eigenvalue A (1)
of the Laplace operator, withw, = 2,w, = 1,n, = 63,n, = 31 and ny,; = 26. For a dominant

. 4b A .

root ¢, A®) in (52) should be smaller than 0. Then — sin® ( = > 0. Sinced ~ 2r? and
h2 2my +1 4

b . 5 (7 L

— Sin -

hf/ 2n, +1

In order to show that thisis a sharp vaue for /. and thus a sharp lower bound for the  (53), we shall

compare the case [, = 2 with the case for the smaller valuel, = 1.2. We alsoincluded the case /. = 4,

where apart from the mode /, = 1, themodes/, = 2 and/, = 3 are excluded from the optimization

process (i.e. for the computation of an optimal «).

~ I?7%, wehave approximately that /> > g Thesmallest suchinteger /. isl. = 2.
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FIGURE 4. Predicted and computed nonzero eigenvalues of the error propagator M ="' N with simple optimized coupling
for the largest eigenvalue A("") of the Laplace operator for I, = 2, l. = 4, and [, = 1.2. For explanation, see §5.2.1.
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For these three cases (I. = 2,l. = 4, and /. = 1.2) we have computed the corresponding o (o =
—1.6287...,a = —2.1279...,and o = —1.2800. . ., respectively). In Fig. 3 the predicted amplification
of the error propagator M 51 N for these values of « are shown. Here we calculated for each mode (with
wavenumber /,) the expected amplification | (+)| with expression (46). Indeed, we see that (for /. = 2)
the second leftmost circle (I, = 2) inFig. 3representsthe same valueasfor therightmost circle(/,, = 31),
whichwas our goal. If /. iscloseto 1, then because the mode/,, = 1 can not be damped at all, the overall
damping for [, = 1.2 is predicted to be less, whereas /. = 4 should lead to a better damping of the
remaining modes /, = 4,..., 31 that are taken into account, which is confirmed in Fig. 3 for different
vauesof a.

Fig. 4 shows the exact nonzero eigenvalues o of M ;' N sorted by magnitude for different values of
a. We also plotted in thisfigure the predicted nonzero eigenval ues sorted by magnitude. We see that the
predictions are very accurate.

In Fig. 4 we see aso the effect of the value /. on the eigenvalues. Again, we see that it is better to
overestimate /. than underestimate. The point symmetry in Fig. 4 is due to the fact that if o isan eigen-
value of M;'N then —o is aso an eigenvalue (remark (iv) of §2.5). Furthermore, note that for each
process one eigenvalue is equal to 1, independent of «. By a combination of remark (v) of §2.5 and the
discussionat the end of §3.2, we see that the corresponding eigenvector is of the form y that corresponds
to the eigenvector y that we are looking for with our Jacobi-Davidson process. Hence the occurrence of
1 in the spectrum is not a problem: the projectionsin the correction equation take care of this, aswe will
show now.

5.2.2 Dé€flation

Now we show, by means of an example, how deflation improves the condition of the preconditioned cor-
rection equation (26). For the discretized Laplace operator wetakew, = w, = 1,1, = ny = 31,1, =
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FIGURE 5. The effect of deflation on the nonzero eigenvalues of the error propagator with simple optimized coupling. For
explanation, see §5.2.2. The dotted lines indicate the area of Fig. 6.
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15and § = \44). There are 19 eigenvalues larger than A(44), If we determine the aq, for the simple
optimized coupling, then I. ~ 5.6944. So the modes l, = 1,...,6 are not taken into account for the
optimization of «, since they do not show dominant behavior. Hence we do not necessarily damp these
modes with the resulting aqy.

One of them, more precisely themode [, = 4, is connected to the y-component of the eigenvector (44
corresponding to A(+:4): thismode can not be controlled at all with o because the operator A isshifted by
A(4:4) and therefore singular in the direction of (%), In the correction equation (26) the operator stays
well-conditioned due to the projection P that deflates exactly the direction u = ¢(*4). Since the error
propagator originates from the enhanced operator in the correction equation, this projection is actualy
incorporated in the error propagator (§3.2): PM;'NP.

Theother non-dominantmodes!, = 1,2, 3, 5, 6, can not be controlled by a,,. But, asremarked in§4.4,in
practice one starts the computation with the largest eigenval ues and when arrived at A(*%), the 19 largest
eigenvalueswith corresponding eigenvectorsare already computed and will be deflated from the operator
B. Deflation in the enhanced correction equation is performed by the projection

P =1-M;'X ()_(*Mgl)_c)_l X*.

HeeX = (X, X/,07,07, X7, XJ)7, where X = (X7, X/, X7, XJ)" isamatrix of which the
columns form an orthonormal basis for the space spanned by the 19 already computed eigenvectors and
the approximate 20th eigenvector. Thisimpliesthat we are dealingwiththeerror propagator P'M ' NP’

For oy We computed the nonzero eigenvalues of M'N, PM7'NP and P'M;'NP’. InFig. 5
their absolutevalues are plotted. The'+’-s(no deflation) indicatethat the most right 12 elgenvalueshave
not been controlled by a. Thisisin agreement with the fact that themodes/, = 1, ..., 6 have not been
taken into account for the determination of a.,: to each mode!,, there correspond exactly two eigenvalues
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TABLE 4. Values of coupling parametersand predicted amplification ooy for four types of optimized coupling. For expla-
nation, see §5.2.3.

type no. 1 2 3 4
optimized w.r.t. o a, o,y a, 3,y
o —2.138 | —0.4988 -1.373 —0.2080
I 0.001375 0.001959
v 0.0002230 | —0.0001352
predicted o), | 0.3128 | 0.01875 0.1196 0.007686

—ow) and +o(). Two eigenvalues have absolute value 1 (position 57 and 58 on the horizontal axis).
They correspond to the eigenvector (*4) of A.

The ‘T’ -s show that deflation with u makes these absol ute values become lessthan 1. But, with deflation
by u, the other uncontrolled eigenval ues stay where they were without deflation; four absolutevaues are
even larger than 2.5. Fortunately, deflation with the 19 already computed eigenvectorsdrastically reduces
these absolute values, as the ‘o’ -s show.

From this example we learned that deflation may help to cluster the part of the spectrum that we can
not control with the coupling parameters, and therefore improves the conditioning of the preconditioned
correction equation. The remaining part of the spectrum, that is the eigenvaluesthat arein control (indi-
cated by the dotted linesin Fig. 5), may be damped even more. Thiswill be subject of the next section.

5.2.3 Stronger coupling

Attheend of §4.4, itwasillustrated that theinclusion of interactionsparalldl to theartificial boundary pro-
vides more coupling parameters by which a better coupling can berealized. We will apply thisnow to the
examplein §5.2.2 in order to investigate how much we can improve the spectrum of the error propagator
and how accurate the value of the predicted amplification o/, is for the different types of coupling.

Table 4 contains the values of the coupling parameters and the predicted amplification o/, for the
different types of couplingwhen /. = 7, asin §5.2.2. These values are obtained by application of a
Rémes a gorithm to expression (56). Asin thefina example of §4.4, we see that be the best coupling is
predicted to be of type 4, followed by type 2, and then type 3. But, the question remains what the exact
spectrum may be for these types op coupling.

We computed the exact nonzero eigenvalues of the error propagator M ' N for the four types of
coupling from Table 4. From §5.2.2, we know that with the coupling parameters we only control the
2n, —12 = 50 nonzero eigenvaluesof the error propagator with lowest absolutevalue. Therefore, we ex-
cludethe 12 other nonzero eigenval uesfrom our further discussion. InFig. 6 the50 eigenvalueswith low-
est absolute value are plotted. The corresponding predicted values of o, are indicated by dotted linesin
Fig. 6. From inspection of the eigenvectors, we have verified that for the four different types of coupling,
the 12 eigenvalues with highest absolute value that are excluded correspond to themodes/, = 1, ...,6.
(Computation of the eigenvectorsisrather time consuming. Therefore, we restricted ourselves hereto a
grid that is coarser than the one in the example at the end of §4.4.)

Indeed, as predicted, it pays off to include more coupling parameters. For type 1 the predicted value
of o, isalmost exact. Thevauefor type 3 seemsto beaccurate for the eigenvaluesat positionst, . . ., 38.
For types2 and 4, the value becomes | ess accurate after position 34. We believethat thisisbecause of ne-
glectingthe (_ termsin the expressionfor o/, for types2 and 4 the eigenvectors, that correspond to the
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FIGURE 6. The effect of different types of optimized coupling on the nonzero eigenvalues of the error propagator. The
valuesof the coupling parametersaregivenin Table4. The corresponding predicted values of o areindicated by dotted lines.
For explanation, see §5.2.3.
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eigenvalues with position larger than 34, have alow valueof /,.. In our quest for optimizing the spectral
radius of the error propagator, we have now arrived at alevel where we can no longer ignore the contri-
butions of theterms {_. Thisis confirmed by inspecting the eigenvectors. the eigenvalues that deviate
from the predicted o, have eigenvectorsthat correspond to low valuesof /.. But still, the predicted o/,
givesagood indication for the quality of the coupling and will be better for finer grids.

5.3 Effect on the overall process

In §5.2 spectra of the error propagator have been studied. These spectra provideinformation on the con-
vergence behavior of the Jacobi iterativemethod. Now weturn our attentiontotheoverall Jacobi-Davidson
method itself. We are interested in how approximate solutions of the correction equation, obtained with
alinear solver (‘theinnerloop’), affects the Jacobi-Davidson process (‘ the outerloop’).

Here we consider two types of coupling:

1. the simple optimized coupling with one coupling parameter «,
2. the Neumann-Dirichlet coupling.

Althoughwe have seen in §4.4 and §5.2.3, that there exist better choices for the coupling, we believe that
the overall process with the simple optimized coupling gives a good indication of what we may expect
for the stronger optimized couplings. The choicefor the Neumann-Dirichlet coupling is motivated by the
fact that it is commonly used in domain decomposition methods.

Thetestproblem will be the same asthe onein §5.2.1. First we discussthe Jacobi iterative method as
a solver for the correction equation. We do this for both the left and right preconditioned variant. Then
we compare the results with those obtained by the GMRES method.
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TAaBLE 5. Convergencehistory of Jacobi-Davidson applied to the discretized eigenval ue problem of the two-dimensional
Laplace operator for approximate solutions to the correction equation obtained with left (Ieft) and right (right) preconditioned
Jacobi iterations on two subdomainsand simple optimized coupling. For explanation see §5.3.1.

optimized coupling, /. = 2

left DD-preconditioned right DD-preconditioned
step || 62 [lx[]2 [|x’[]2 a f—A [z ]2 [|x’[]2 a

3 Jacobi inner iterations 2 Jacobi inner iterations
1 | -161e01 4.19+00 4.19e+00 -1.6275 | -1.61e-01 4.19e+00 4.19e+00 -1.6275
2 | -498e-03 3.14e+00 255e+00 -1.6287 | -4.98e-03 3.14e+00 2.55e+00 -1.6287
3 | -220e-04 190e01 1.81e01 -1.6287 | -2.20e-04 1.90e-01 1.81e01 -1.6287
4 | -1.62e-07 7.12e-03 6.74e-03 -1.6287 | -1.62e-07 7.12e-03 6.74e-03 -1.6287
5 | -213e12 4.16e05 3.91e05 -1.6287 | -2.09e-12 4.16e-05 3.91e05 -1.6287
6 | -153e-13 136e06 9.37e07 -1.6287 |-147e-13 1.36e-06 9.37e-07 -1.6287
7 | -1.62e-13 843e09 5.78e09 -1.6287 |-1.81e-13 8.43e09 57809 -1.6287
8 | -1.39%13 119e10 8.84ell -144e-13 1.19e-10 8.84e-11

4 Jacobi inner iterations 3 Jacobi inner iterations
1 | -161e01 4.19+00 4.19e+00 -1.6275 | -1.61e-01 4.19e+00 4.19e+00 -1.6275
2 | -4.23e-03 2.89%+00 2.43et00 -1.6287 | -4.23e-03 2.89e+00 2.43e+00 -1.6287
3 | -270e-05 6.42e-02 6.20e-02 -1.6287 | -2.70e-05 6.42e-02 6.20e-02 -1.6287
4 | -595e-09 1.02e-03 7.36e-04 -1.6287 | -5.95e-09 1.02¢-03 7.36e-04 -1.6287
5 | -153e-13 28406 2.61e-06 -1.6287 | -158e-13 2.84e06 261e-06 -1.6287
6 | -1.76e-13 281e-08 154e08 -1.6287 |-9.95e-14 2.81e-08 1.54e-08 -1.6287
7 | -144e-13 833e12 8.30e12 -142e-13 8.34e-12 8.28e12

5.3.1 TheJacobi iterative process

In §5.2.1 we have computed the spectraof the error propagator Mgl N, for a, and two other near optimal
values of a. We further investigate these three cases for the Jacobi iterative process.

Table 5 shows the convergence behavior of Jacobi-Davidson, when the correction equation is solved
with the Jacobi iterative method and with coupling parameter o, obtained for /. = 2. Theleft (on the
left) and right (on the right) preconditioned variant are presented. Moreover, we have varied the number
of Jacobi inner iterations.

When we compare the top part of Table 5 with the bottom part, then we see that more Jacobi inner
iterations lead to less outer iterations for the same precision. More Jacobi iterations yields a better ap-
proximation of the correction vector and a better approximation of the correction vector resultsin fewer
Jacobi-Davidson steps. When we compare the |eft part with the right part in Table 5, then we see that
m steps with right preconditioned Jacobi iterations produces exactly the same results as with m + 1 left
preconditioned Jacobi iterations. Thisis explained by stage 1 in §3.3 of right preconditioning: one extra
preconditioning step is performed.

From §5.2.1 we know that the spectraof the error propagator arelessoptimal for /. = 4 and . = 1.2,
and therefore Jacobi will perform not as good as for [, = 2. How does this affect the Jacobi-Davidson
process? In Table6 dataare presented for threeleft preconditioned Jacobi iterationsin each outer iteration,
forl. = 4 (left) and [. = 1.2 (right). We should compare thiswith the top left part of Table 5. From this
we see, that al so Jacobi-Davidson performs lesswell for less optimal couplings.

Now we consider the Neumann-Dirichlet coupling. In our enhancement terminology (cf. §2.2) this
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TABLE 6. Convergencehistory of Jacobi-Davidson applied to the discretized eigenvalue problemfor the two-dimensional
Laplace operator for approximate solutions to the correction equation obtained with 3 left preconditioned Jacobi iterations on
two subdomains and two almost optimal simple couplings. For explanation see §5.3.1.

(S@] 7-% ol ¥l o [ 63 vk ¥ a
l.=4 l,.=1.2

1 -161e01 4.19et+t00 4.19e+00 -2.1274 | -1.61e-01 4.19e+00 4.19e+00 -1.2729
2 -293e-03 227et00 2.00e+t00 -2.1279 | -1.33e-02 5.03et00 3.31et00 -1.2794
3 -112e-03 592e-01 4.62e-01 -21279 | -1.92e-06 296e-02 294e-02 -1.2800
4 -146e-05 6.50e-02 58302 -21279 | -4.11e10 6.69e-04 557e-04 -1.2800
5 -4.02e-10 5.91e04 571e04 -21279 | -1.18e-12 535e05 3.97e-05 -1.2800
6 -247e-12  6.71e05 4.05e-05 -2.1279 | -1.24e-13 145e06 1.21e06 -1.2800
7 -147e-13  1.82e07 1.14e07 -21279 | -3.13e-13 931e08 5.82e-08 -1.2800
8 -167e-13 28410 2.82e-10 -146e-13 2.83e-09 2.09e-09 -1.2800
9 -1.72e-13 124e-10 1.09e-10

can be interpreted as a Neumann boundary condition ontheleft: Cy, = I and Cy. = —1I, and aDirichlet
boundary conditionontheright: C'., = I and C'., = I. For dominated behavior (cf. §4.3.1(iii), and §4.4
(48)) and for two subdomainsit follows from (16) that

2 (=D 4+

0" R === —1.

(1-0(+1

From thiswe see that for § = A(:1), the error propagator has, besides —1 and +1, only eigenval ues near
—v/=1 and /—1. Hence, the eigenvectors of M ;' N will hardly be damped. Therefore, the Jacobi itera-
tion will not perform well with Neumann-Dirichlet coupling. From Table 7 we see that Jacobi-Davidson
clearly suffers from this effect.

532 GMRES

At the end of §2.3 we noted that Krylov subspace methods can be viewed as accelerators of the Jacobi
iterative method. If we apply GMRES for the solution of the correction equation, instead of Jacobi iter-
ationsasin §5.3.1, then we should expect at |east the same speed of convergence in the inner iteration.
Asaconsequence, the speed of convergence of the Jacobi-Davidson (outer) iteration should be not worse
but presumably better.

Our expectationsare confirmed by theresultsin Table 8, for the simpleoptimized couplingand in Ta-
ble 9 for the Neumann-Dirichlet coupling. For the same type of coupling one should compare the datafor
GMRES(m) with m Jacobi iterations: GMRES optimizes over the Krylov subspace spanned by powers
of the (preconditioned) operator, whereas Jacobi uses only the last iteration vector for the computation of
asolutionto the linear system.

Notethat with left preconditioned GMRES(4) and with Neumann-Dirichlet coupling, we have almost
recovered the exact Jacobi-Davidsonprocessfrom §5.1. Thiscan beexplained asfollows. Theeigenvaue
distribution of the error propagator has besides —1 and +1, all other eigenva ues clustered around 4/~ 1
for two subdomains. However, for four distinct eigenvalues, GMRES needs four steps at most for con-
vergence. So the spectral properties of the error propagator for two subdomainswith Neumann-Dirichlet
coupling are worse for the Jacobi iterative method but ideal for the acceleration part of GMRES. Thisis
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TABLE 7. Convergencehistory of Jacobi-Davidson applied to the discretized eigenvalue problemfor the two-dimensional
Laplace operator for approximate solutions to the correction equation obtained with left (Ieft) and right (right) preconditioned
Jacobi iterations on two subdomainsand Neumann-Dirichlet coupling. For explanation see §5.3.1.

Neumann-Dirichlet coupling

left DD-preconditioned right DD-preconditioned
Step || 60— A ]l (][ o — A ][ [I]]2
4 Jacobi inner iterations 3 Jacobi inner iterations
1 | -161e01 4.19+00 4.19e+00 | -1.61e-01 4.19e+00 4.19e+00
2 | -507e-02 8.72et00 3.98et00 | -5.07e-02 8.72e+00 3.98e+00
3 | -1.79e-02 4.85et00 3.29et+00 | -1.79e-02 4.85e+00 3.29e+00
4 | -1.20e-02 2.40et00 2.03e+00 | -1.20e-02 2.40e+00 2.03e+00
5 | -455e-03 2.69e+00 1.68et00 | -4.55e-03 2.69e+00 1.68e+00
6 | -293e04 6.90e-01 6.13e01 |-293e-04 6.90e01 6.13e-01
7 | -140e-04 3.74e-01 3.29e01 | -1.40e-04 3.74e-01 3.29e-01
8 | -200e-05 210e-01 1.74e01 | -2.00e-05 2.10e01 1.74e01
9 | -411e06 7.32e-02 6.63e02 | -4.11e-06 7.32e-:02 6.63e-02
10 | -8.12e-07 3.88e-02 34902 | -8.12e-07 3.88e-02 3.49e-02
11 | -1.54e-07 141e02 1.12e02 | -1.54e-07 1.41e02 1.12e-02
12 | -1.50e-08 5.84e-03 5.28e-03 | -1.50e-08 5.84e-03 5.28e-03
13 | -3.20e-09 2.62e-03 15903 | -3.19e-09 2.62e-03 1.58e-03
14 | -7.27e-10 1.22e-03 1.01e03 | -3.68e-10 9.02e-04 8.00e-04
15 | -1.31e-10 5.86e04 538e04 | -1.30e-10 5.82e-04 5.35e-04
16 | -234e-11 2.63e04 172604 | -2.35e-11 2.63e04 1.72e-04
17 | -226e-12 5.03e-05 4.78e-05 | -4.16e-13 5.03e05 4.78e-05
18 | -7.46e-13 2.08e-05 1.65e-05 | -5.68e-14 2.08e-05 1.65e-05
19 | -1.63e-13 3.90e-06 3.21e06 | -7.53e-13 3.88e-06 3.19e-06
20 | 412613 14906 1.25e-06 | 1.14e-13 1.27e-06 1.04e-06
21 | 9.95e-13 853e07 7.63e07 | 6.25e-13 3.60e-07 2.54e-07
22 | -6.79e-13 255e-07 1.30e-07 | -391e-13 2.30e-07 1.25e-07
23 | 401e-13 381e08 356e08 | -7.11e-14 3.81e08 3.56e-08
24 | 711e14 118e08 840e-09 | -547e-13 1.18e-08 8.39e-09
25 | 490e-13 14509 141e09 | 2.98e-13 11909 1.16e-09
26 | 6.98e-13 6.58e-10 6.30e-10 | -5.90e-13 5.02e-10 4.80e-10
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TABLE 8. Convergencehistory of Jacobi-Davidson applied to the discretized eigenvalue problemfor the two-dimensional
Laplace operator for approximate solutions to the correction equation obtained with left (Ieft) and right (right) preconditioned

GMRES on two subdomains and simple optimized coupling. For explanation see §5.3.2.

optimized coupling, /. = 2

left DD-preconditioned right DD-preconditioned
step || 62X [l [I]]2 a 6 — A ][ [I]]2 a
GMRES(3) GMRES(2)
1 | -161le01 4.19e+00 4.19et00 -1.6275 | -1.61e-01 4.19et00 4.19e+00 -1.6275
2 | -272e05 167601 167e01 -1.6287 | -3.74e-05 1.16e-01 1.16e-01 -1.6287
3 | -3.05e-08 6.68e-03 6.23e-03 -1.6287 | -5.89e-08 6.63e-03 5.43e-03 -1.6287
4 | -306e-11 27204 271e04 -1.6287 | -146e-11 11904 1.13e04 -1.6287
5 178e-15 1.72e06 1.66e06 -1.6287 | -1.56e-13 1.46e-06 1.26e-06 -1.6287
6 | -259%-13 134e08 1.03e-08 -1.6287 |-1.69e-13 6.81e09 5.71e-09 -1.6287
7 | -126e-13 7.94e-10 6.71e-10 -7.28e-14 438e-11 4.03e11
GMRES(4) GMRES(3)
1 | -161le01 4.19e+00 4.19et00 -1.6275 | -1.61e-01 4.19et00 4.19e+00 -1.6275
2 | -152e-06 3.07e-02 3.02e-02 -16287 | -1.34e-06 2.76e-02 27102 -1.6287
3 | -13%12 335e05 3.32e05 -1.6287 |-4.85e-12 4.30e-05 4.13e05 -1.6287
4 | -142e-13 1.87e07 1.76e07 -1.6287 | -1.42e-13 7.62e-07 7.31e-07 -1.6287
5 |-17913 121e09 117e09 -1.6287 | -1.19e-13 3.20e-09 3.19e09 -1.6287
6 | -1.85e-13 4.64e12 4.09-12 -1.28e-13 1.10e-11 1.05e-11

TAaBLE 9. Convergencehistory of Jacobi-Davidson applied to the discretized eigenvalue problemfor the two-dimensional
Laplace operator for approximate solutions to the correction equation obtained with left (Ieft) and right (right) preconditioned

GMRES on two subdomains and Neumann-Dirichlet coupling. For explanation see §5.3.2.

Neumann-Dirichlet coupling

left DD-preconditioned right DD-preconditioned
Step || 6-A [I]]2 [I']]2 0 — A ][z [I~]]2
GMRES(3) GMRES(2)
1 |-161e01 4.19+00 4.19e+00 | -1.61e-01 4.19e+00 4.19e+00
2 | -120e-04 3.80e-01 3.80e-01 | -5.87e-05 8.67e-02 8.48e-02
3 | -548e05 2.00e-01 196e01 |-7.21e09 21903 218e-03
4 | -113e06 27802 1.73e02 |-1.71e13 15706 1.22e-06
5 |-199e-08 5.95e-03 4.43e03|-149-13 3.25e-08 3.09e-08
6 | -817e12 7.64e-05 7.48e05 |-1.74e-13 310e12 298e-12
7 | -179-13 3.88e-06 3.83e-06
8 | -199%13 141e07 1.32e07
9 | -114e13 1.90e-09 1.61e-09
10 | -1.71e-13 4.80e-11 2.58e-11
GMRES(4) GMRES(3)
1 |-161e01 4.19+00 4.19e+00 | -1.61e-01 4.19e+00 4.19e+00
2 | -9.65e-07 8.55e-03 6.10e-03 | -9.65e-07 8.55e-03 6.10e-03
3 | -144e13 584e10 57910 | -1.55e-13 5.35e-10 5.30e-10
4 | -121e-13 856e14 10lel4 | -149e13 392e14 4.12e14
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not atypical situation. In §5.4 we will see how the picture changes for more subdomains and with less
accurate preconditioners.

5.4 Moresubdomains

We describe an experiment that illustrates what happens when the number of subdomainsis increased.
For each number of subdomainswe keep the preconditioner fixed.

Our model problem is a channel that is made larger by extending new subdomains. We compute the
largest eigenvalue and corresponding eigenvector of the Laplace operator on thischannel. After adding a
subdomain, thisresultsin adifferent eigenval ue problem. For p subdomainsthe physical size and number
of gridpointsin the y direction are taken to be fixed: w, = 1 and n, = 63, whereas in the z direction
they incresse: w, = pandn, =63+ (p—1)-64for1 < p <6.

Now, the ideaisthat the DD-preconditioner consists of block matrices defined on the enhanced sub-
domain grids. For the channel thisresultsin one block matrix of size (63 4+ 1) x (63 + 1) (corresponding
to the first subdomain on the left), p — 2 block matrices of size (64 + 2) x (64 + 2) (corresponding to
the p — 2 intermediate subdomains) and one block matrix of size (64 + 1) x (64 + 1) (corresponding to
the last subdomain on theright). If we select the same coupling between all subdomains, then we need
to know theinverse action of 3 blocks (corresponding to the left, right, and a single intermediate subdo-
main). Furthermore, we construct the preconditioner only for the value of #, of thefirst Jacobi-Davidson
step. Thisfixed preconditioner isused for al iteration steps.

In order to be able to interpret the results properly, we have checked how Jacobi-Davidson with ac-
curate solutionsto the correction equation on the undecomposed domain (the ‘exact’ process) behaves.
InFig. 7 and Fig. 8 thisis represented by the solid line.

We consider simple optimized (type 1), strong optimized (type 4), and Neumann-Dirichlet couplings.
In each Jacobi-Davidson step we solve the correction equation approximately by right preconditioned
GMRES(3). The number of nonzero eigenvalues of the error propagator is proportiona to the number
of subdomains. Because of this, it isreasonabl e that with afixed number of inner iterationsthe accuracy
will deteriorate for more subdomains.

Fig. 7 represents the convergence history of Jacobi-Davidson for the ‘exact process and for the in-
exact processes with different types of coupling, when starting with the vector (57). The ‘exact process
does not change significantly for increasing values of p. For the inexact processes, the number of outer
iterations increases when the number of subdomains increases (as expected). For the simple optimized
coupling one can roughly say that convergence on p subdomains requires 5 + p outer iterations. The
strong optimized coupling needs about 1 — 2 iterationsless. But for the Neumann-Dirichlet coupling the
results do not show such a linear relationship: when increasing from 2 to 3 or from 3 to 4 subdomains,
the number of outer iterations almost doubles.

When we compare theright bottom part of Table 9 with thetwo subdomain casein Fig. 7, then we see
what happenswhen the preconditioner isless accurate for Neumann-Dirichlet coupling: the exact Jacobi-
Davidson process can not longer be reproduced. Because the shift 8, in M« is not equal to the shift 6
in B¢, the eigenval ues of the error propagator that were closeto ++/—1 (cf. §5.3) start to deviate. This
resultsin worse circumstances for GMRES.

From these resultswe concludethat the optimized couplingsoutperform the Neumann-Dirichlet cou-
pling for more than 2 subdomains and a |ess accurate preconditioner

So far we have only considered the eigenvalue problem for the Laplace operator. The analysis of
§4 also accommodates problems with first order operators. To illustrate that this does not give essentia
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FIGURE 7. Convergencehistory of Jacobi-Davidsonapplied to the discretized eigenval ue problemfor the two-dimensional
Laplace operator for accurate solutions to the correction equation and increasing values of w, and n, (solid lines) versusap-
proximate solutions to the correction equation obtained from right preconditioned GMRES(3) with strong optimized (type 4)
coupling (dashed lines with ‘o"), simple optimized (type 1) coupling (dash-dotted lines with ‘") and Neumann-Dirichlet cou-
pling (dotted lineswith ‘") on an increasing number of subdomains. For explanation see §5.4.
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FIGURE 8. Convergencehistory of Jacobi-Davidsonapplied to the discretized eigenval ue problemfor the two-dimensional
advection-diffusion operator (58) for accurate solutions to the correction equation and increasing values of w, and n, (solid
lines) ver susapproximate solutionsto the correction equation obtained from right preconditioned GMRES(3) with simple opti-
mized (type 1) coupling (dash-dotted lines with ‘C1") on an increasing number of subdomains. For explanation see §5.4.
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on adomain with physical sizesw, = 2p andw, = 3. Herep € {2, 3,4} isthe number of subdomains.
With Jacobi-Davidson we compute the largest eigenvalue. In order to be in the convergence region of
interest, Jacobi-Davidson is started with a vector equal to (A — 251) ! timesthe vector (57) (25 isclose
to the largest eigenvalue). All other settingsare the same as in the previous experiment of this section.

Fig. 8 shows the convergence history of Jacobi-Davidson for accurate solutionsand for approximate
solutions of the correction equation. The approximate solutions are obtained from right preconditioned
GMRES(3) with simple optimized (type 1) coupling. Asin the previous experiment, the preconditioner
is constructed only once at thefirst Jacobi-Davidson step. We see that the picturesin Fig. 8 are similar to
thosein Fig. 7.

6 Conclusions

In this paper we have outlined and analyzed how a nonoverlapping domain decomposition technique can
be incorporatedin the Jacobi-Davidson method. For large eigenval ue problems the solution of correction
equations may become too expensivein terms of CPU time or/and memory. Domain decomposition may
be attractive in aparallel computing environment.

For amodel eigenvalue problem with constant coefficients we have analyzed how the coupling equa-
tions should be tuned. By numerical experiments we have verified our analysis. Indeed, further experi-
ments showed that tuning of the coupling resultsin faster convergence of the Jacobi-Davidson process.

Inrealistica problems, the coefficient functionswill not be constant and the domain will have acom-
plicated geometry. For the determination of suitable coupling matrices, we intend to locally apply the
approach that we discussed here. This‘loca’ approach isthe subject of our next study.
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