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Abstract: In a complete metric space (X, d), we define w-distance functions p : X x X — [0,00), of

which the metric d is a special case, and contraction factor functions r : X x X — [0, 00) such that if

p(Tz, Ty) < r(x, y)p(e, y)

for all ,y € X, then T': X — X has a (unique) fixed point.
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1 Introduction

Banach’s Contraction Principle states that if (X, d) is a complete metric space and 7' : X — X is a

contraction, i.e., there exists a number 0 < r < 1 such that for every two points z,y € X:
d(Tz,Ty) < rd(z,y), (1)

then T has a unique fixed point. There exist numerous extensions of this result; Rakotch [1], for instance,
considers the problem of defining contraction factor functions such that the Banach Contraction Principle
remains valid when the constant r in (1) is replaced by a function r(z, y). This allows SUP (5 ) r(z,y) =1,

in which case T is no longer a contraction. The purpose of this note is to define:

e functions p: X x X — [0, 00), of which the distance function d is a special case, and
e contraction factor functions r : X x X — [0, 00), including those of Rakotch [1],

such that if
p(Tz, Ty) < r(z,y)p(z, y)
for all #,y € X, then T': X — X has a (unique) fixed point. The functions p are so-called w-distances,

introduced and studied in a recent sequence of papers by Kada, Suzuki, and Takahashi [2], Suzuki and

Takahashi [3], and Suzuki [4].

2 Preliminaries

Denote by N the set of positive integers and by R the set of real numbers. Let X be a metric space with
metric d. Following [2, p. 381], we call a function p : X x X — [0, 00) a w-distance on X if the following

conditions hold:
o p satisfies the triangle inequality, i.e., V&, y,z € X : p(x, z) < p(x,y) + p(y, 2);

e p(x,-): X — [0,00) is lower semicontinuous for every z € X i.e., if a sequence (yn,) in X converges

to y € X, then p(z,y) < liminfy, o p(2, Ym);

o for every ¢ > 0 there exists a § > 0 such that for each z,y,z € X: if p(z,2) < § and p(z,y) < 6,

then d(z,y) <e.

The metric d is a w-distance. Examples of many other w-distances are found in [2] and [3, Lemma 1].

Kada et al. [2, Lemma 1] prove:



Lemma 2.1 Let (X,d) be a metric space and let p be a w-distance on X. Consider points z,y,z € X,
a sequence (xn) in X, and sequences (an) and (B,) in [0,00) converging to zero. The following claims

hold:
(a) If p(xn, zm) < ap for allm,n € N with m > n, then (z,) is a Cauchy sequence in (X,d).

(b) If p(xn,y) < apn and p(xp, z) < By for alln €N, then y = z. In particular, if p(x,y) = p(z,z) =0,

then y = z.

Generalizing Rakotch [1], we define a family of functions that take over the role of the contraction factors

in the original statement of Banach’s Contraction Principle and its variants.

Definition 2.2 Let (X, d) be a metric space and let p be a w-distance on X. A function r : X x X —
[0,00) is a contraction factor function if there exists a function f: (0,00) — [0,1) such that p(z,y) > ¢

for some z,y € X and ¢ > 0 implies r(z,y) < f(g). The set of all contraction factor functions is denoted

F(p).

Definition 2.2 implies that r(z,y) € [0,1) for all z,y € X with p(z,y) > 0. Rakotch [1, Def. 2] takes
p = d, and considers only functions f on X x X for which there exists a function « : [0,00) — R such

that

(a) Ve, y € X : B(z,y) = a(d(z,y)), i.e., B(z,y) only depends on the distance between z and y;
(b) a(e) €10,1) for all € > 0;
(¢) «is a decreasing function, i.e., if &1 > g2 > 0, then a(e1) < a(eq).

Notice that 8(z,y) = a(d(z,y)) € [0,1) if d(z,y) > 0. If d(z,y) = 0, then for arbitrary ¢ > 0,
decreasingness of « implies that (z,y) = a(d(z,y)) > a(e) > 0. Hence § is a function into [0, c0).
Defining f(¢) = a(e) for all ¢ > 0, it follows that d(z,y) > ¢ for some z,y € X and ¢ > 0 implies
Bz, y) = a(d(z,y)) < a(e) = f(e). Consequently, the functions 8 considered by Rakotch are contained
in F'(d), the class of contraction factor functions for the w-distance p = d.

Apart from the fact that Definition 2.2 allows contraction factor functions to be defined for an arbitrary
w-distance, it extends the functions of Rakotch in two directions: the values do not just depend on the

distance between two points, and the monotonicity assumption is omitted.



3 The contraction theorem
After proving auxiliary results in Proposition 3.1, a contraction result is provided in Theorem 3.2.

Proposition 3.1 Let (X, d) be a metric space, let p be a w-distance on X, and T : X — X a function

from X into itself. Assume there ezists a function r € F(p) such that
Vo,ye X: p(Tz, Ty) < r(z,y)p(z, y)- (2)
Let g € X and z, = T 2z for alln € N. The following claims hold:
(a) The sequence (p(zo,x,)) in [0,00) is bounded.
(b) There ezists a sequence (o) in [0,00) converging to zero, such that
P(zn, 2m) < an (3)
for allm,n € N with m > n.

Proof. Fix a function f as in Definition 2.2. Then r(z,y) € [0,1) for all ,y € X with p(z,y) > 0.

Hence, repeated application of (2) yields that
VneN: p(znt1,2n) < plz1, x0), (4)
and
Vk,n,p e NU{0}: ifn >k, then p(zn, Znyp) < p(2k, Zitp)- (5)

Proof of (a): Let ¢ > 0. Then f(¢) € [0,1) by Definition 2.2, so R := max{g,’%ﬁ)ﬁm} is
well-defined. Let n € N. We prove that p(z,#,) < R. This is clear if p(zo,2,) < €, so assume that
p(zo, ) > €. Then 0 < r(zo,z,) < f(¢) < 1 by Definition 2.2. Using this inequality, the triangle

inequality, (2) and (4), it follows that

p(xo, 2n) < plro,x1) + p(x1, Tng1) + p(Tng1, Tn)

< p(mo, x1) + r(zo, 2n)p(20, 20) + p(21, 20)
< P(Io,;l‘1)+f(€)p(ro,xn) +p(;’l}1’aj0)’
which implies
plao, z,) < PEWEVTPEL20)  py

1-f(e) -



Proof of (b): We prove:
Ve > 0 3N € N such that n > N,p € N implies p(z,, Zn4p) < €. (6)

This implies (3): for each k£ € N, (6) implies the existence of N(k) € N such that

(7)

il

Vn> N(k), VpEN: p(zn, Znyp) <

Without loss of generality, one can take N(k) < N(k+1) for each k € N. Take R such that p(zg,z,) < R

for all n € N. For each n € N, define

| R ifn< N(1),
On = % if N(k) <n < N(k+1) for some k € N.

Then (o) is a sequence in [0, co) converging to zero. To see that p(z,, Zn4p) < @, for all n, p € N, notice:
firstly, if n < N(1), then p(z,, Zn4p) < p(20,2,) < R = a, by (5), and secondly, if N(k) <n < N(k+1)
for some k € N, then p(z,, Zn4p) < % = a, by (7).

Remains to prove (6). Let € > 0. Then f(¢) € [0, 1) by Definition 2.2. Choose N € N such that
Rf(e)N <e. (8)

Let n > N,p € N. We prove that p(z,, 2,4p) < €. Repeated application of (2) yields

P(lnarn+p) <P Io,l‘p H ‘Lk:'rk-HU

Combining this with the assumption that R is a bound for the sequence (p(zo, 2,)), we find

P(Inaxn+p H xkark+p (9)

Discern two cases.

Case 1: If p(zy, 254p) < € forsome k € {0,...,n—1}, then (5) yields that p(z,, Tn4p) < p(Z, Tr4p) < €.
Case 2: If p(zy, xp4p) > € forevery k € {0,...,n—1}, then Definition 2.2 implies that 7(zg, 2x4p) < f(€)
for every k € {0,...,n — 1}. Using (9) and (8) yields

P(a, 2nty) < H ri, 2i4p) < RUFE)" < RUFEY <.

This finishes the proof. a

The preliminary work in Proposition 3.1 paves the road for our contraction result.



Theorem 3.2 Let (X,d) be a complete metric space, let p be a w-distance on X, and T : X — X a

function from X into itself. If there ezists a function r € F(p) such that
Ve,y€ X+ p(Tz,Ty) < r(z,y)p(z,y), (10)
then T has a unique fized point x € X. This fized point satisfies p(x,z) = 0.

Proof. Let zg € X and z, = T"xq for all n € N. Proposition 3.1(b) and Lemma 2.1(a) imply that
(zn) is a Cauchy sequence. Since (X, d) is complete, (z,) has a limit # € X. We show that T = «.
Consider a sequence (ay,) as in Proposition 3.1(b). Since p(x,, -) is lower semicontinuous and z,, — «, it
follows from (3) that

VneN: p(ep,z) <liminfp(z,, zm) < an, (11)
and, using (10) and (11), that
VneN: plen,Te)=p(Ten_1,T2) < p(xn_1,2) < an_1. (12)

From (11), (12), and part (b) of Lemma 2.1, it follows that Tz = z, i.e., that z is a fixed point of 7. To
see that p(z,z) = 0, suppose — to the contrary — that p(z,2) > 0. Then r(z,z) € [0,1) by Definition

2.2; by (10) and the fact that « is a fixed point, it follows that:
p(z,z) = p(Tz,Tz) < r(z,z)p(z,z) < p(z, z),

a contradiction. Finally, to prove that z is the unique fixed point of 7', suppose that y € X satisfies
Ty = y. Analogous to the proof that p(z, z) = 0, it follows that p(z,y) = 0, so part (b) of Lemma 2.1

implies that x = y. a

4 Concluding remarks

Theorem 3.2, replacing the metric d of a metric space (X,d) with w-distances recently introduced in
Kada et al. [2], and the contraction factors by contraction factor functions as in Definition 2.2, provides
generalizations of the classical Banach Contraction Principle, the contraction theorem of Rakotch [1, p.
463], and more recent results by Suzuki and Takahashi [3, Thm. 2].

If T itself does not satisfy (10), but some power 7" (n € N) of T does, the conclusion of Theorem 3.2

still holds: according to Theorem 3.2, 7" has a unique fixed point z, but

Te=T(T"z)=T"(Tx)



indicates that Tz is also a fixed point of T™. Hence Tx = x, i.e., x is a fixed point of T". The fact that =

is the unique fixed point of T" and p(z, z) = 0 follows in the same way as before.
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