Fixed Points in a Group of Isometries

Mark Voorneveld
Department of Mathematics
University of Utrecht
P.O.Box 80010
3508 TA Utrecht
The Netherlands
M.Voorneveld@math.uu.nl

Abstract: The Bruhat-Tits fixed point theorem states that a group of isometries on a complete
metric space with negative curvature possesses a fixed point if it has a bounded orbit. This
theorem is extended by a relaxation of the negative curvature condition in terms of the w-
distance functions introduced by Kada et al. [Non-convex minimization theorems and fixed

point theorems in complete metric spaces, Math. Japon. 44 (1996), 381-391].
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1 Introduction

According to the Bruhat-Tits fixed point theorem, a group of isometries on a complete metric
space with negative curvature — a complete metric space satisfying a relaxation of the parallel-
ogram law — possesses a fixed point if it has a bounded orbit; see [2] for the original statement,
[1] for an extensive overview of the theory on Bruhat-Tits buildings, and [5] for a very accessible
treatment of this fixed point theorem.

The result and some of its special cases have wide applicability, witnessing their use in for
instance the Bruhat-Tits theory of buildings, group theory (cf. Cartan’s fixed point theorem,
[3, Ch. I, Theorem 13.5]), and the theory of trees [6, Section 1.4.3, Proposition 19]. Several
applications are discussed in [1, Ch. VI]. Perhaps surprisingly, it has also been used in the
study of communication to establish that individuals speaking different languages that allow
sufficient freedom to express nuances have a common interpretation of at least some phrases in
their vocabulary; see [9].

The purpose of this note is to extend the Bruhat-Tits fixed point theorem by stating the
negative curvature condition not in terms of distance functions, but using the more general notion
of w-distances, as introduced and studied in a recent sequence of papers by Kada, Suzuki, and
Takahashi [4], Suzuki and Takahashi [8], and Suzuki [7].

Section 2 recalls the definition of w-distances. Generalized Bruhat-Tits spaces are considered

in Section 3. Finally, the fixed point theorem is provided in Section 4.

2 Preliminaries

This section settles some standard matters of notation and defines the w-distance functions
introduced in Kada et al. [4]. Denote by N the set of positive integers. Let X be a metric space
with distance d. Following [4, p. 381], we call a function p: X x X — [0,00) a w-distance on X

if the following conditions hold:
e p satisfies the triangle inequality, i.e., Va,y,z € X : p(z,2z) < p(z,y) + p(y, 2);

e p(z,-): X — [0,00) is lower semicontinuous for every z € X, i.e., if a sequence (¢ )men

in X converges to y € X, then p(z,y) < liminf,,_ p(z, Ym);

o for every ¢ > 0 there exists a § > 0 such that for each z,y,z € X: if p(z,2) < § and
p(z,y) < 8, then d(z,y) < e.



The metric d is a w-distance. Examples of many other w-distances are found in [4] and [8,

Lemma 1]. Kada et al. [4, Lemma 1] prove:

Lemma 2.1 Let (X,d) be a metric space and let p be a w-distance on X. Consider points
z,y,z € X, a sequence (z,)nen in X, and a sequence (o, )nen in [0,00) converging to zero. The

following claims hold:

(a) If p(zn,zm) < ay for all m,n € N with m > n, then (z,)nen is a Cauchy sequence in
(X,d).

(b) pr($7y) = p(a:,z) =0, theny = z.

Balls are defined with respect to the w-distance p. The ball around z € X with radius r > 0 is
the set

B(z,r):={ye X |ply,z)<r}.
A set 5 C X is p-bounded if there exists a ball B(z,r) such that S C B(z,r).
The composition of two functions ¢g,h: X — X is denoted by gh : ¢ — g(h(z)). For S C X,
write g(5) = {g(s) | s € 5}.

3 Generalized Bruhat-Tits spaces

A generalized Bruhat-Tits space (X,d,p)is a complete metric space (X, d) with a w-distance p
satisfying the following property: for any two points z1, 25 € X there is a point z € X such that

for all y € X,

pla1,22)* + 4p(y, 2)* < 2p(y, 21)* + 2p(y, 22)°. (1)
This is a generalization in terms of the w-distance p of the well-known negative curvature
inequality, sometimes referred to as the semi-parallelogram law [cf. 5]. For a brief motivation,
we resort to planar geometry. Consider Figure 1. The parallelogram law states that, using the
Euclidean distance d3, the sum of the squared lengths of the diagonals equals the sum of the

squared lengths of the sides of the parallelogram:
da(21,w2)" + da(y, v3)° = 2da(y, ©1)" + 2da(y, v2)".

Let z be the midpoint between z; and z3. Since 2d(y,z) = d(y, z3), substitution in the paral-

lelogram law yields:

dy(w1,22)* + 4da(y, 2)* = 2da(y, x1)* + 2da(y, z2)*.
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Figure 1: The (semi-)parallelogram law

Generalizing this to an arbitrary metric space (X,d) and allowing for a weak inequality, rather
than equality, (X, d) is said to satisfy the semi-parallelogram law if for any two points z1, 29 € X

there exists a point z € X such that for all y € X,
d(z1,29) + 4d(y, 2)* < 2d(y, z1)* + 2d(y, z2)*.

Replacing the distance function d with the more general notion of a w-distance p, one finds

condition (1).

Theorem 3.1 Let (X,d,p) be a generalized Bruhat-Tits space and let S C X be p-bounded.

There exists a unique ball of minimum radius containing 5.

Proof.

Existence: Since S is p-bounded, the set B = {B(z,r)| S C B(z,r)} of balls containing 5 is
nonempty. Set r = infg(,,nep ' and let B(wn,r,) be a sequence in B such that (r,)ney is a
non-increasing sequence converging to r. We proceed to show that (z,),ey is a Cauchy sequence
in (X,d). Let m,n € N with m > n. Then (1) implies the existence of a point z,,, € X such
that

Vy € X plan,2m)? +4p(Ys 2mn)? < 20(y, 20) + 20(y, wm)*. (2)

By definition of 7, there exists a point y € S with p(y, zpmn) > 7% — L. Substituting this in (2)

n

and using that y € B(zg,7i) for all ¥ € N and (rx)key is a non-increasing sequence, yields:

P(@n,zm)? < 2p(y,20)% 4 20(y, 2m)? — 4p(Y, Zn )
1
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Lemma 2.1(a) with a,, = \/4(r2 — r2) + 2 implies that (z,)nex is a Cauchy sequence in (X, d).

Since (X, d) is a complete metric space, the Cauchy sequence (&,,),ey has alimit z € X. We
proceed to show that the ball B(z, ) is a ball of minimum radius containing 5. The definition
of r implies that the radius is indeed minimal. Let y € S. The triangle inequality and the lower

semicontinuity property of p imply that for each n € N:

ply,z) < ply,an) + p(an, )
< 14 liminf p(z,, 2.,)

< Tn + Oy,

where the last inequality follows from the fact that p(z,,z,.) < a, for each m > n, as shown
earlier in the proof. Taking limits as n — oo yields that p(y,z) < r, i.e., y € B(z,r). Hence
S C B(z,r).

Uniqueness: Suppose there are two balls of minimum radius containing S: B(zy,r) and

B(xg,7). Then (1) implies the existence of a point z € X such that for each y € X:

p(z1,29)* + 4p(y, 2)? < 2p(y,21)* + 2p(y, 22)%. (3)

Since r is the minimum radius of a ball containing 5, it follows that for each ¢ > 0 there exists a
y € 5 such that p(y, z) > r —e. Substituting this in (3) and using the fact that y € S C B(z;,r)
for i = 1,2, yields that Ve € (0,7):

IN

2p(y, 21)* + 2p(y, 22)* — 4p(y, 2)*
21 4 272 — 4(r —¢)?

p($17 ‘TQ)Q

A

= 4r? —4(r —¢)>

Letting ¢ — 0, this implies that p(z1,22)*> < 0. Consequently, p(zq,23) = 0. Similarly,
p(zq,21) = 0. The triangle inequality implies that 0 < p(z1,21) < p(@1,22) + p(z2,21) = 0, so
p(z1,21) = 0. Lemma 2.1(b) and p(z1,21) = p(z1,22) = 0 imply that z; = z5: the two balls

are identical. O

4 Fixed point theorem

Let (X,d,p) be a generalized Bruhat-Tits space. A p-isometry of X is a bijection g : X — X

such that ¢ preserves p-distances:

Vo, 0 € X 0 plg(z1),9(z2)) = p(a1, z2).



Note that if g and h are p-isometries, so is their composition gh and the inverse g—'. Moreover,
the identity function id : z — z is a p-isometry. The straightforward proofs of these claims are

left to the reader. A group G of p-isometries is a set of p-isometries such that
(a) the identity function id : z — & is an element of G;

(b) G is closed under inversion: if g € G, then g~! € G;

(¢) G is closed under composition: if g1, g2 € G, then g1g92 € G.

Let G be a group of isometries and 2 € X. The orbit O(z) of z is defined to be the collection
of images g(z) with g € G:
O(z):= {g(z) | g € G}.

Lemma 4.1 Let 2z € X,g € G. Then g(O(z)) = O(z).

Proof.

(C): Let y € g(O(z)), i.e., there is a h € G such that y = gh(z). Since G is closed under
composition: gh € G, so y € O(z).

(D): Let y € O(x), i.e., thereis a h € G such that y = h(z). Since g € G, it follows that ¢™! € G
and ¢g7'h € G. Consequently, y = h(z) = (gg~1)h(z) = g(¢7h(z)) € g(O(z)). ]

Let G be a group of p-isometries in a generalized Bruhat-Tits space (X, d,p). A fized point of G
is a point € X such that g(z) = « for all ¢ € G, or equivalently, an z € X with O(z) = {z}.
If there is a point with a p-bounded orbit, then G has a fixed point.

Theorem 4.2 Let (X,d,p) be a generalized Bruhat-Tits space, G a group of p-isomeltries, and
y € X such that O(y) is p-bounded. Then G has a fized point.

Proof. By Theorem 3.1 there is a unique ball B(z,r) of minimum radius r containing O(y).
The point # € X is shown to be a fixed point of G. Let g € G. For each z € B(z,r) it holds that
p(g(2),9(z)) = p(z,2) < r,s0 g(z) € B(g(z),r). Hence g(B(z,r)) C B(g(z),r). Conversely,
for every z € B(g(z),r), it holds that p(¢7'(z),2) = p(z,9(z)) < r, so g7'(z) € B(=z,r), so
z € g(B(z,r)). Consequently, B(g(z),r) C g(B(z,r)). Conclude that g(B(z,r)) = B(g(z),r).
But then Lemma 4.1 and the inclusion O(y) C B(z,r)imply that O(y) = ¢(O(y)) C ¢(B(z,r)) =
B(g(z),r),i.e., B(g(z),r)is also a ball of minimum radius containing O(y). By uniqueness (The-

orem 3.1), it follows that g(z) = =. O



The original Bruhat-Tits fixed point theorem is recovered by restricting attention to the space

(X,d,d),i.e., by simply considering the w-distance p = d.
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