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Abstract. Maximum likelihood Nash equilibria were introduced by Borm et al. (1995)
for games with finitely many players and random payoffs. In Voorneveld (1999) random
participation was added to the model. These existence results were extended by Balder
(2000c) to continuum games with random payoffs and participation. However, in that
paper the complicated measurability issue for the central equilibrium likelihood notion
was bypassed by using inner probabilities for the central equilibrium likelihood notion.
Here those measurability questions are shown to have a quite satisfactory resolution;
this makes the maximum likelihood equilibrium notion more natural. Our main results
are not only more general than those found in Borm ef al. (1995) and Voorneveld

(1999), but also improve upon them.
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1 Introduction

Consider the following random game that is a variation of the classical game of
matching pennies. There are two players, each of whom can choose H (heads)
or T (tails) at the start of the game. Only after they have made their choice, a
certain stochastic outcome w € Ry, governed by a probability P, is registered.
Based on this stochastic outcome, the payoffs are as follows: (H, H) gives payoffs
(I —w,—1) [i.e., player 1 receives 1 —w and player 2 gets —1], (H,T) gives
(=1+42w,1—w), (T, H) gives (-1 +w, 1) and (T, T) gives payoffs (1, -1+ 3w).
It is easily verified that the following obtains for the four possible pure action
profiles:

(1) (H,H) and (T, H) are not Nash equilibria, regardless of the outcome,
(i1) (H,T) is a Nash equilibrium if and only if w € [1, 2],

(iii) (7,7T) is a Nash equilibrium if and only if w € [%, 1].
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Thus, the equilibrium likelihood of the action profile (H,T), i.e., the proba-
bility of (H,T) being a Nash equilibrium, is the probability that the stochastic
outcome lies in [1, 2]. Likewise, the equilibrium likelihood of (7', T') is the prob-
ability of that outcome ending up in [%, 1] under P. If the former probability is
larger than the latter, then (H,T) is said to be the mazimum likelihood Nash
equiltbrium, and if the latter exceeds the former then this title goes of course to
the action profile (7, T). Observe that when P places all its probability mass
on the interval [0, %), then all four action profiles are maximum likelihood Nash
equilibria, albeit with equilibrium likelihood zero! Of course, this is indicative
of the situation for the classical game of matching pennies, which has no Nash
equilibrium in pure action profiles. Notice that the game of matching pennies
amounts to choosing P above to be the Dirac probability measure concentrated
at 0.

Maximum likelihood Nash equilibria (MLNE for short) for games with ran-
dom payoffs were first considered by Borm, Cao and Garcia-Jurado in Borm et
al. (1995). Their measurability and existence results were improved by Voorn-
eveld (1999), who added random participation to their model. In these two
references both measurability and existence questions for MLNE are considered
for games with finitely many players. Observe that even for a game with just
one player the existence question is already relevant; cf. Example 2.5. In Balder
(2000c) the existence of MLNE was studied for a quite general continuum game,
i.e., a game with a measure space of players in the spirit of Aumann (1964) and
Schmeidler (1973), that has random payoffs and participation. This is a natural
continuation of the models studied in Balder (1999b, 2001). However, random
participation causes certain measurability questions to surface in connection
with the central equilibrium likelihood notion. To circumvent these, the de-
vice of an inner probability was proposed by Balder (2000c). From a modeling
point of view this seems rather artificial. In the present work it is shown that
under broad measurability conditions, which also improve those for the much
simpler games of Borm et al. (1995) and Voorneveld (1999), these measurability
questions can be addressed adequately. This justifies the equilibrium likelihood
notion and shows that it has a natural form and interpretation.

The setup of this paper is as follows. In section 2 we introduce a random
continuum game T'; define the notion of MLNE and present Theorem 2.3, our
main measurability result. This is followed by Theorem 2.8. Tts proof given
here is quite different from the one in Balder (2000c) and is more in line with
the development of a general approach to equilibrium existence given in Balder

(1995, 1999a, 1999b, 2001).

2 MLNE for a random continuum game

We shall define a random continuum game I' with realizations T',,, w € Q. Here
(Q, F, P) is an abstract probability space, the space of stochastic outcomes. Let
(T, T, p) be a complete and finite measure space; T is the set of all possible play-
ers. This is entirely in the spirit of the work by Aumann (1964) and Schmeidler



(1973), who introduced (nonatomic) measure spaces of players to model perfect
competition. Recall from section 3.5.1 in Dudley (1989) that T can always be
split into a purely atomic part 7P? and a nonatomic part 7"®. Here TP? is an
at most countable union of sets A;, with j in some at most countable index set
J. Each Aj is a non-null atom of the measure space (7,7, u). If there are only
finitely many players in T (as is the case in Borm et al. (1995) and Voorneveld
(1999)), then one can take TP* = T, T"® = () and for T one takes the power
set 27 (i.e., the collection of all subsets of T). For p one then uses simply the
counting measure on T (i.e., u(A) := number of players in A C T'). To every
outcome w € Q there corresponds a set T, C T, which is the set of players
participating in the game ['y,. As the first of several measurability conditions,
we suppose the following:

D:={(w,t) eQxT:teT,}is F®T-measurable. (2.1)

This ensures the proper randomness of the set of participating players. In
particular, by Proposition TT1.1.2 of Neveu (1965) this implies that 7, is 7-
measurable for every w € Q. Observe that by assumption (2.1) the trace o-
algebra D := DN (.7: ® ’T) can alternatively be described as

D={CeFaT:CC D} (2.2)

As the action universe we use a Hausdorff locally convex topological vector
space S that is a Suslin space for its topology (see Dellacherie and Meyer (1975)
or Schwartz (1975)). Asis well known (e.g., see p. 25 of Balder (2000a) or p. 214
of Balder (1999b)), such a space S can be endowed with a weak metric p, which
is not stronger than the original topology. The very general notion of a Suslin
locally convex space includes all separable Fréchet spaces, including all separable
Banach spaces, also when they are considered with their weak topology. Of
course, for many game theoretical purposes it suffices to take S Euclidean, but
even such a drastic simplification does little to reduce the difficulty of the central
measurability and topological questions for the continuum games studied here.

As usual, the Borel o-algebra on S is denoted by B(S). Let X : 7' — 25 be
a multifunction that specifies for each player ¢ € T his/her feasible action set
Y(t). We suppose that ¥ satisfies the following measurability condition:

gph X :={(¢t,s) €T x S :s € X(t)} is T ® B(S)-measurable, (2.3)

Let E be the set of all (w,t,s) € Q@ x T x S such that t € T, and s € X(¢).
By (2.1) and (2.3), E belongs to F ® 7 ® B(S), for it is easy to see that
E = (D x S)N (2 x gph X). Consequently, the analogue of (2.2) also holds for
the trace o-algebra E N (F @ T @ B(S)).

Let Sy be the set of all measurable functions f : T'— S such that f(¢) € X(¢)
for every t in T'. So Sy, consists precisely of all the measurable selections of the
multifunction ¥. These constitute the a prior: action profiles of the game T,
where a priori refers to the fact that players are supposed to choose their actions
before observing the stochastic outcome w, i.e., before knowing which game T,



is to be played. Such profiles can be seen as complete descriptions of how the
players could or should act a priori. For w € Q we also define &, : T, — 2% to
be the restriction X, := X |, of ¥ to T,,. Thus, Ss_ is the set of all measurable
selections of the multifunction ¥,. At the same time, it is the set of all action
profiles for the game T',,, which is only played by the playersin T,,. Equip 7, C T
with the usual trace o-algebra 7 N T, consisting precisely of all 7-measurable
subsets of T;,, and the usual trace measure p(-N7, ). Then by making the obvious
substitutions in Definition 2.7, the set Ss_, can be equipped with its own feeble
topology (and this will be done from now on). Let U, : gph £, x Sz, — R be
the utiity function of the game T'y,. Given the outcome w € Q, player t € T,
faces payoff U, (t,s, f |r,) if he/she takes action s € X, () under the a priori
action profile f € Sx.

Definition 2.1 For w € Q a Nash equilibrium for the game I'y, is an action
profile p € Sy, such that

p(t) € argmax, ey () Uw (t,s,p) for p-ae. tin T,.

Note that when T is finite and p is the counting measure, the above “for p-a.e. ¢
in T,,” amounts to “for all £ in T,,”. Hence, the above definition extends Nash’s
classical notion.

Before stating our principal definition we recapitulate the essence of the game
I'. Recall that all players of T' must make their action in ignorance of the random
outcome w to be realized under the probability P. In turn, this implies that the
players are uncertain about the payoff and even about their participation in the
game ['y, to be realized. After the realization of w only the players in T, C T'
play the game I'y, and they are committed to the actions which they had chosen
a priori. Similar situations occur in real life. For instance, consider the design
and crew formation stage for a sailing-yacht competition, with Q being the set
of all possible weather conditions at the site of the match. More examples of
this kind can be found in Borm et al. (1995) and Voorneveld (1999). Following
these authors, we can now state the definition of MLNE. Shortly we will state
a result which guarantees its sets Ay, f € Sy, to be measurable, so that this
definition makes truly mathematical sense.

Definition 2.2 A mazimum likelihood Nash equilibrium (MLNE) for T is an
a priori action profile f. € Sy such that L(f.) = supscgs, L(f). Here the
equilibrium likelithood L(f) of f € Sx is given by L(f) := P(A;), with

Ap :={w €Q: f|r, is a Nash equilibrium for T, }
being the event that f constitutes a Nash equilibrium profile.

This MLNE-notion agrees with our introductory example, which had Q@ = R,
T={1,2},S={H,T},X(1) = £(2) = S and for instance U, (1, H, (f(1), £(2)))
1—wif f(2) = H and U, (1, H, (f(1), f(2))) = =1 4+ 2w if f(2) =T, and so on.

We now complete our list of measurability assumptions for T

(w,t,s) = Uy(t,s, flr,) is EN(F® T @ B(S))-measurable for every f € Ss.
(2.4)



Define V,, : T, x 8¢, = (—00, +00] by

Vu(t,p) :== sup U,(t,s,p). (2.5)
sEX(t)

Then combining Definitions 2.1, 2.2 and (2.5) obviously gives
Ay ={w e QU (t, f(t), flr.) = Vult, f|1,) for p-ae. tin T, }. (2.6)

We now establish that Definition 2.2 makes mathematical sense. Let F be the
P-completion of F and let D be the completion of D with respect to the trace
measure (P x p)(DN-).

Theorem 2.3 Under (2.1), (2.3) and (2.4) for every f € Ss the function
(w,t) = Vu(t, f |1,) is D-measurable and the set Ay in (2.6) is F-measurable.

Lemma 2.4 Let ¢ : D — [0,+00] be a D-measurable function. Then there
erists F' € F with P(F) = 1 such that the following hold:

(1) For every w € F the function ¥(w,-) : T,, — [0, +00] is T -measurable on
Ty -

(ii) The functionw — [, (w,t)p(dt) from F into [0, +o0] is F-measurable.

ProoOF. Step 1. In this first step we assume that ¢ is the characteristic function
of a ﬁ—measurz}ble subset C' of D. By Proposition 1.4.5 of Neveu (1965), C can
be written as C' = CUN, where C' belongs to P and N C D is P x u-negligible.
So then N is contained in some B € D with (P x u)(B) = 0. This means that
for P-a.e. w in Q the section B, of B at w has p-measure zero by Corollary 1
on p. 76 of Neveu (1965). In other words, for all w in a set F' € F of P-measure
1 one has p(By) = 0. For every w € F the following holds: the inclusions
C., c C, C C, U B,, with u(C,) = u(C,), imply that C, belongs to the
p-completion of 7', which is 7 itself (recall that (7,7, u) is complete). Since
C, C T, is obvious, we have that C,, belongs to T, N 7. Also, the previous
results give u(Cl) = u(Cy) for allw € F, and w — p(C.,) is .T—measurable on
by Corollary 2 on p. 76 of Neveu (1965). It remains to observe that (w, ) = 14
for all w € Q and that fTu P(w,t)p(dt) = p(Cy) for allw € F.

Step 2. Next, suppose that ¥ is of the form ¢ = Y ;- cilai, wither, ... em
nonnegative constants and C',...,C™ in D. By the previous step it is easy to
see that Y(w, ) = ZZ Ciléb is 7-measurable for all w in a set F € F of full

P-measure. So on that same set the function w — fTu P(w,t)p(dt) coincides
with a finite sum of F-measurable functions, that is to say, with a F-measurable
function. i

Step 3. Finally, if ¢ is nonnegative and D-measurable, then 1 is pointwise a
monotone limit of step functions of the type considered in step 2. So by step 2
and an obvious argument involving pointwise limits, ¢(w, -) is 7-measurable for
P-a.e. w. This proves (i), and (i) follows by an application of the monotone
convergence theorem QED



Proor oF THEOREM 2.3. Fix f € Sy arbitrarily. By (2.5) we have For any
a €R

Vo(t, f I1,) > e if and only if there exists s € X(t) with U, (¢, s, f |r,) > o.

Hence, the set Cy of all (w,t) € D with V, (¢, f |r,) > « is the projection
onto D of the set of all (w,t,s) € E for which U,(¢,s, f |7,) > «. By (2.4)
the latter set belongs to the trace o-algebra F N (F ® 7 @ B(S)), whence to
(DN(FRT))@B(S), i.e.,to DRB(S). Since S is a Suslin space, the measurable
projection Theorem II1.23 in Castaing and Valdier (1977) guarantees that C,
is a universally measurable subset of (D, D). This means in particular that C,
is D-measurable. So (w,) — V,,(¢, f |7.) has been shown to be D-measurable.

Define now the D-measurable function 1 : D — [0, 4+00] by

"b(wat) = Vw(taf|Tu)_Uw(taf(t)af |Tu)'

By Lemma 2.4 there exists a set F' in F, P(F') = 1, such that for every w € F
the function ¥(w,:) : T, — [0,400] is T, N T-measurable and the mapping
w i [ ¥(w,t)p(dt) is measurable with respect to F'( F. Since

AsNF={weF: P(w,t)u(dt) = 0},
T,

it follows that A; N F is F-measurable. But then so is Ay, since A; N (Q\F) is
P-negligible. QED

Next, we move to the issue of MLNE existence. The following example
shows that even for one-player games such existence does not hold without
further assumptions.

Example 2.5 Tet @ :=N, S :=N, X = S and let T be the singleton {1}. Then
Sy, = N. Let P be given by P({n}) := 27", n € N. Also, let U, (1,s, f) := -1
if s = w and U,(1,s, f) := 0 otherwise (this means that the player wishes to
guess w ncorrectly). Then L(n) = P(N\{n}) = 1 — 27". Evidently, this game
does not have an MLLNE at all.

We list our topological and geometrical conditions under which existence of
an MLNE holds (cf. Balder (2000c)). For the multifunction X : 7' — 25 we
make the following assumptions:

Y(t) is nonempty and compact for every ¢t € TP?, (2.7

¥ () is nonempty, convex and compact for every ¢ € T"?. (2.8)

Under these assumptions it follows from our earlier remarks about the weak met-
ric p that the p-topology coincides with the original S-topology on the compact
sets (), t € T.



Remark 2.6 Given the above assumptions, we notice that under the following
additional condition

Uy (t, -, p) is lower semicontinuous on X(t) for every (t,w,p) € D x Sg,,

which is amply fulfilled in Borm et al. (1995) and Voorneveld (1999), the fol-
lowing identity holds:

Vw(t,f |Tw) :Slzl,pr(taSi(t)aflTu)'

Here the countable collection (s;) in Sy is such that {s;(t) : i € N} is dense
in X(t) for every t € T i.e., (s;) is a Castaing representation. This follows
from applying Theorem IT1.7 in Castaing and Valadier (1977), which is made
possible by virtue of (2.3) and the above observation about the weak metric p.
Hence, under such additional lower semicontinuity the measurability result in
Theorem 2.3 becomes an immediate consequence of (2.4) that neither requires
the measurable projection theorem nor the Suslin property of S.

From now on, the set of profiles Sy, will be equipped with the feeble topology,
which is defined as follows. Let Gre x be the vector space of all T x B(S)-
measurable g : 7' x .S — R such that g(¢,) is linear and continuous on S for
every t € T, and such that sup,cx ) [g9(t,5)| < ¢4(t) for all £ € T for some
p-integrable function ¢, € L (7,7, pt). Observe that for g € Grc s the integral
expression

Jo(f) = /T o(t, F(0) p(dt)

is well-defined for every f € Sy. The following definition was introduced by
Balder (1999b). See Meyer (1973) for a similar notion of “median limits”, for-
mulated in quite different terms and based on the continuum hypothesis.

Definition 2.7 The feeble topology on Sy, is the coarsest topology for which
the integral functionals J; : S — R are continuous for all g € Gre x.

The versatile nature of this topology is illustrated by the following. Example 2.1
in Balder (1999b), which has (7,7, ) in addition separable, shows that if .S
is a separable Banach space and ¥ is p-integrably bounded, then the feeble
topology on Sy; coincides with the usual weak £'-topology. Also, Example 2.2
in Balder (1999b) shows that if S is the dual of a separable Banach space and if
Y is actually uniformly bounded, then the feeble topology on Sy coincides with
the usual weak star £*-topology. Our remaining assumptions for the payoff
structure are as follows:

Uu(t,-, ) is upper semicontinuous on X(t) x Sy, for every (w,t) € D, (2.9)

argmax, ¢ vy Uw (t,s,p) is convex for every (w,t,p) € D x Sy, with t € T"?,
(2.10)

Vi (t,-) is lower semicontinuous on Sy, for every t € T,,. (2.11)

SEX



Observe that (2.10) holds in particular if U, (¢, -, f) is quasiconcave for every
(w,t) € D, t € T"* and for every f € Sg,. Observe also that (2.9) and (2.11)
hold in particular if U, (¢, -, -) is continuous on X(¢) x Sy, for every (w,t) € D.

Theorem 2.8 Under (2.1), (2.3), (2.4) and (2.7)-(2.11) there exists an a pri-

ori action profile that is an MLNE for the random continuum game I,

The proof of this theorem will now proceed by means of Young measure the-
ory; cf. Balder (2000a, 2000b). Tt is composed of several lemmas. Our approach
is reminiscent of the classical direct method in the calculus of variations, but
it uses generalized limits of the minimizing sequence in the form of transition
probabilities, i.e., Young measures. First, observe that Ss contains at least one
element f by the von Neumann-Aumann measurable selection Theorem TI1.22
in Castaing and Valadier (1977), in view of (2.3), (2.7) and (2.8). Because of
this nonemptiness of Sy, there certainly exists a sequence (f,,) in Sy such that
lim, L(fn) = supses,, L(f). Let Rs stand for the set of all transition probabil-
ities § with respect to (7, 7) and (S, B(S)). Also, let ¢ € R be the canonical
transition probability associated with the function f € Sx.

Lemma 2.9 There exist a subsequence (fm) of (fn) and a dx € Rs for which
(€4,,) converges narrowly in Rg to dy,

d«(t)(A¢) =1 for p-a.e. t in T

and
At = lim fp, (t) exists for p-a.e. t in TP,

Here Ay C X(t) denotes the set of all limit points of (fm(t)).

For the definition of narrow convergence (alias Young measure convergence) we
refer for instance to Balder (1988) or to Definition 4.1 in Balder (2000a).

Proor. On every atom A; constituting 77 every function f,, is constant p-a.e.
Also, X is constant p-a.e. to a compact subset X; of S on such an atom A; (use
Castaing representation as in Theorem III.7 of Castaing and Valadier (1977)).
So by a diagonal extraction argument we obtain a preliminary subsequence (f%)
of (fy,) for which the third property holds (recall that the weak metric p can be
used on the sets ¥;). Thanks to (2.7), the first result now follows directly by an
application to (e, ) of Prohorov’s theorem for Young measures (cf. Theorem 4.10
of Balder (2000a) or Proposition 3.1 of Balder (1999b)). Notice that the third
property continues to hold for the further subsequence (f,,) of (fx) that is
obtained in this way. Also, the second result follows from the first one by the
support theorem for narrow convergence (see Theorem 4.12 of Balder (2000a)).
This second result holds as stated thanks to the fact that the sets X(t), ¢t € T', can
be equipped with the equivalent weak metric p; this was mentioned immediately

following (2.7)-(2.8). QED

Obviously, the second and third property of Lemma 2.9 imply that A; is
the singleton {\;} for p-a.e. ¢ in the purely atomic part TP%. Also, the second



property in Lemma 2.9 implies that d,(t)(3(¢)) = 1 for p-a.e. ¢t in 7. So it
follows by (2.7)—-(2.8) that the barycenter

foo(t) := bar d.(1) := /5 $04(t)(ds) (2.12)

is well-defined for p-a.e. t, i.e., for all ¢ outside a certain p-null set N (apply
Proposition 26.3 of Choquet (1969)). Setting fo,(t) := f(t) on T\N thus creates
an element fo, of Sy (recall that f was obtained above to show that Sy is
nonempty). Observe that we must have

fool(t) = A = liﬂrlnfm (t) for p-a.e. t in TP® (2.13)
by the third part of Lemma 2.9.
Lemma 2.10 The sequence (fm) converges to foo in Sx in the feeble topology.
Proor. A direct application of Proposition 3.2 of Balder (1999b). QED

Lemma 2.11 For every w € Q the mapping f — f |r, from S to Ss, is
continuous for the respective feeble topologies.

Proor. An elementary consequence of Definition 2.7 and (2.1); simply observe
that for every w € Q and g € Gr¢ x, the function §: T' x S — R defined by

- t, ift €T,
g(t;S) ::{ g( S)

otherwise

belongs to Grex. QED

Lemma 2.12 For everyw € Q the function £,, : gph T, x (NU{oco}) — [0, +00],
defined by

Lo(t,s,m) = Vo(t, fm l7.) = Uu(t, s, fn I70),
has the following properties:

Ly (-, -,m) is gph TN (T ® B(S))-measurable for every m € N,

Ly (t,-,-) is lower semicontinuous on X(t) x (NU {oco}) for everyt € T,.

Here the usual Alerandrov topology is used on N U {co}.

ProoF. Similar to the proof of Theorem 2.3, it follows by the measurable pro-
jection Theorem II1.23 of Castaing and Valadier (1977) that ¢t — V., (¢, fm |7.,)
is T-measurable (observe that 7 is yi-complete). In view of (2.4), this proves the
first property. The second property follows from (2.9)—(2.11) and Lemma 2.10
(note that (fy, |7, ) feebly converges to fs |1, by Lemma 2.11). QED

Lemma 2.13 limsup,,_, ., L(fm) < L(fs)-



Proo¥. Recall from Definition 2.2 that L(f) = P(Ay) for every f € Sz. Since
limsup,, P(Ay,.) < P(limsup,, Ay, ), the stated result follows if we can prove

limsup Ay C Ag_. (2.14)

To this end, fix w € limsup,, Af,, = Nmren Um>m/ Ay, arbitrarily. Then
w € Ay, for infinitely many m, so liminf,, fTu Lty fr (t), m)pu(dt) = 0. By the
lower closure Theorem 4.13 in Balder (2000a) (take its D equal to N U {oco},
equipped with the Alexandrov topology, and set its functions d,, identically
equal to m), it follows from Lemmas 2.9 and 2.12 that

i inf [ £t ()l > [

Th/

£y (t,5,00)d04(t)(ds)]p(dt),
], ot 30008 ) st
and this gives
/ L, (t,s,00)04(t)(ds)u(dt) = 0 for p-a.e. tin T,. (2.15)
s

For any non-exceptional ¢ we now claim that
foo(t) € Moo (t) == argmax, ¢y ) Uw (t,s, foo). (2.16)

If t € TP?, then Lemma 2.9 and (2.13) imply that d.(¢) is concentrated at the
point fe (t). Thus, (2.15) amounts to £, (%, fe(t),00) = 0, i.e., to (2.16). On
the other hand, if t € 7%, then (2.15) implies for J, (t)-almost all s € X(¢) that
ly,(t,s,00) = 0, whence s € M (t). This means that f. (t), the barycenter of
s (t), lies in the closed convex hull of M, (t) (apply the Hahn-Banach theorem).
But assumptions (2.9) and (2.10) cause M, (%) to be closed and convex, so (2.16)
holds also in this case. This proves the claim. We thus conclude that (2.16)
holds for p-almost all ¢ € T,,. This implies w € Ay and therefore (2.14) has
been proven. QED

Proor oF THEOREM 2.8. Evidently, our choice of the original sequence (f5,)
implies that the subsequence (fy) satisfies sup;cgs. L(f) = limm L(fs). Hence,
it follows from Lemma 2.13 that fo € Sw, defined in (2.12), is a maximum
likelihood equilibrium profile. QED

Our next remark shows that w-dependence of the feasible action sets can
easily be absorbed by the technically more simple model of this paper.

Remark 2.14 Consider the following extension T of the game I'. We are given
multifunctions 3, from 7., into 25 w € Q, with Y, (t) C 2(t) for all £ € T,.
In T, if the outcome w € Q is realized p-almost every player ¢ € T, is forced
to take his/her action in the subset ¥, (¢) of ©(¢). Thus, in Definition 2.2 the
a priori action profile f € Sy is only deemed to be a Nash equilibrium for T,
the associated realization of T, if

ft) € argmax cs U (t,s,f |r,) for p-a.e. t in T,. (2.17)
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It is easy to absorb this additional feature in the model of this paper by intro-
ducing the following new payoffs:

~ arctan U, (t,s,p) ifs€ b (t)
t = -
Ualt 5p) { ) if s € S(t)\Sw (1)

Indeed, this follows immediately from the obvious identity
argmaXsEE(t)ﬁw (ta S, f |Tu) = argmaxsef}u(t)Uw (tJ S, f |Tu)7 (218)

which holds for all (w,t) € D and all f € Ss. Under the following analogue of
(2.1), (2.3) and (2.4)

E={(wts)€QxTxS:s€X,(t)}is FOT @ B(S)-measurable,

(wW,t,8) = Uu(t,s, flr.) is EN(F@T @ B(S))-measurable for every f € Sy,
and under the following analogues of (2.7)-(2.8)

¥, (t) is nonempty and compact for every w € Q and t € TP* N T,

S (t) is nonempty, convex and compact for every w € Q and t € TP* N T,

together with the obvious analogues of (2.9)-(2.11), obtained by replacing X(t)
by X, (1), it is easy to see that that Theorem 2.8 continues to hold for the game
T. This results in the existence of an MLNE for T (note that it turns out to be
an MLNE in the sense of Definition 2.2 and (2.17), because of (2.18)).

Remark 2.15 Let X; C S be as in the proof of Lemma 2.9. It is easy to
see that the set &' := {f |rea: f € Sg} can be identified with the Cartesian
product TT;X; and that the restriction of the feeble topology to &’ coincides with
the usual product topology on 11;X;. Also, the proof of the third property in
Lemma 2.9 actually requires no linear structure for S. These facts imply that
for the players in every atom A; of TP? we could have worked with an action
space S; that is metrizable and Suslin (or simply metrizable and compact by
setting X; = 5;), but not necessarily linear. On the nonatomic part 7" we
would still keep to the original Suslin locally convex vector space S.

Let us compare Theorem 2.8 with the results of Borm et al. (1995) and
Voorneveld (1999). Both these papers have T77% = @), TP* = T. Their T is a
finite set, so one can use the power set 27 as 7 and the counting measure as
p. As already observed by Voorneveld (1999), the setup of Borm et al. (1995)
is incomplete: the proof of their Lemma 1 contains errors and, in order to go
through, additional upper semicontinuity of the payoff functions seems indis-
pensible. If indeed such upper semicontinuity is added to their conditions, then
our Theorem 2.8 considerably generalizes their main existence result. To see
this, we observe that the payoffs in that paper are supposed to be lower semi-
continuous in the actions (hence Remark 2.6 applies). Together with the upper
semicontinuity required to repair their result, above, this causes their payoffs
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to be continuous in the actions. Hence, product measurability of the payoffs in
Borm et al. (1995) follows from Lemma T11.14 of Castain and Valadier (1977).
In fact, Remark 2.15 then shows that it is enough to work with compact metric
spaces of actions S; for the players in each atom A;. Going now even one step
further, because of the dispensability of the Suslin property (cf. Remark 2.6):
by concentrating on the restrictions to 7P? of the minimizing sequence (f,), as
used in the proof of Theorem 2.8, we can simply require those spaces S; to be
sequentially compact to retain the third property of Lemma 2.9." Voorneveld
(1999) works with preference relations rather than payoffs, but the conditions
on these (see his pp. 219-220) are such that they allow the utility-type repre-
sentation as used in this paper (apply Theorem 3.1 of Jehle and Reny (1998)).
Remark 2.14 applies to his model; see in particular his p. 223. Just as in Borm
et al. (1995), which is simpler by not allowing for random participation, only
a finite set T of players is considered by Voorneveld (1999) (as mentioned be-
fore, this is a purely atomic measure space for the power set o-algebra and the
counting measure). Also, the space S of all possible actions is Euclidean and
the multifunction X is constant (see his pp. 224, 227)

Notice also that the proof of Theorem 2.8 given here is quite different from
the one given in Balder (2000c), which offers a viable alternative that substitutes
new results about the feeble topology for the present paper’s reliance on Young
measure theory. That paper also uses another approach as a whole, which is
based on the abstract scheme given in Proposition 2.1 of Balder (2000c).

It is also interesting to compare Theorem 2.8 to the usual existence results
for Nash equilibria in continuum game theory. The differences are as follows.
Obviously, the existence of a priori action profiles fi. € Sx such that fi. |7, is
a Nash equilibrium of T, for P-almost every w (i.e., L(fi) = 1), or even with
L(f<) > 0, is out of the question in even the simplest cases. For instance, if we
allow mixing in the example given in the introduction, then we can work with
¥(1) = ¥(2) = [0, 1] in an obvious way (i.e., for t = 1,2 we let f(¢) € X(¢) stand
for the probability measure that assigns probability f(¢) to “heads” and 1— f(¢)
to “tails”). This gives

_f 2s2fo —2wfo —14w) ift=1,
Uu(t;s, (fi, f2)) = { 5(—4;1 + 4w;1 +2-3w) ift=2.

For instance, for w € [0, %)U(‘Z, +00) it follows elementarily that the w-dependent
mixed action (s}, s3) = (ﬁ:i, %) constitutes the unique mixed Nash equilibrium
for the game T',,. Thus, for any nonatomic probability measure P that is entirely
concentrated on [0, %) U (2, 400), we have L(fi, f2) = 0 for all a priori action
profiles (fi, f2). To make the comparison more fair, one can restrict onseself for
instance to the situation where w is fized. It then turns out that to guarantee
existence of a Nash equilibrium for the game I',, with w €  fixed, the following
conditions must hold in addition to (2.1)—(2.11) (cf. Balder (1995, 1999b, 2001)):

For every t € TP? N T, two additional convexity conditions must hold: (7) X(¢)

'In the proof of Theorem 1 of Borm et al. (1995) sequential compactness, rather than
compactness itself, has to be used.
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is convex, (ii) the set argmax, ¢ Uu(t, s, p) is convex for every p € Sy,,. This
need for additional convexity forms an essential difference with Theorem 2.8.
For instance, by fixing w = 0 in the original example in the introduction we
get the classical “matching pennies” game, for which no pure Nash equilibrium
exists. But for P equal to the Dirac probability measure at 0 we already noticed
that four MLNE’s in pure action profiles exist vacuously.

Another difference with the usual existence literature is that Theorem 2.8
requires convexity of the sets X(¢) and argmax; e s ) Uu (t,s,f) for t in the
nonatomic part 7"% (see (2.8) and (2.10)). However, consider that not only
a very general utility function is used here, but also that, if one were to in-
troduce more special versions of the utility function, the usual purification by
nonatomicity runs into the obstacle of w-dependence of T;,. However, in case
participation is not random, one could certainly use the usual purification by
nonatomicity; cf. Balder (1995, 2001). The following example illustrates this.

Example 2.16 Let Q be the singleton {0} and let 7" := [0, 1] be equipped with
the Lebesgue o-algebra and the Lebesgue measure A. TLet S :=[-1,1], ¥ = S

and set g := A. Also, let Ug(t, s, f) := —s fol fdA. 1t is easy to see that f, € Ss

constitutes a Nash equilibrium (and an MLNE as well) if and only if fol fedp =20
for p = A. So such fi exist in abundance. In contrast, suppose next that in
the same setting one works with a measure g := XA 4 2¢; (here ¢; is the point
probability at the point 1) and that player 1’s feasible action set is restricted to
be the nonconvex set X(1) := {—1, 1} (all other players continue to have [—1, 1]
as their feasible action space). Just as above, fi € Sy is NE if and only if
f01 fedp = 0. Tt is easy to check that no such f, exists. So there does not exist
a Nash equilibrium for this second version of the game. But of course, in both
cases this game has an MLNE. Observe finally that when the nonatomic player
1 is allowed to take mized actions, Nash equilibria exist once again.

Acknowledgment. A part of this research was done during a stay at the
Department of Economics of the University of Alabama in Tuscaloosa (USA). I
thank the department for its hospitality and support.

References.

Aumann R (1964) Markets with a continuum of traders. Econometrica 32:39-50.
Balder EJ (1988) Generalized equilibrium results for games with incomplete
information. Math Oper Res 13:265-276.

Balder EJ (1995) A unifying approach to existence of Nash equilibria. Intern J
Game Theory 24:79-94.

Balder EJ (1999a) Young measure techniques for existence of Cournot-Nash-
Walras equilibria. In: Wooders, M (ed.) Topics on Mathematical Economics
and Game Theory: Essays in honor of R.J. Aumann. Fields Institute Commu-
nications No. 23, American Mathematical Society, Providence, RI, pp. 31-39.
Balder EJ (1999b) On the existence of Cournot-Nash equilibria in continuum
games. J Math Econ 32, 207-223.

13



Balder EJ (2000a) New fundamentals of Young measure convergence,” in: A. Toffe,
S. Reich and 1. Shafrir (eds.) Calculus of Variations and Related Topics, Re-
search Notes in Mathematics no. 411. Chapman and Hall, Boca Raton, pp. 24-
48.

Balder EJ (2000b) Lectures on Young measure theory and its applications in
economics. Rend Ist Mat Univ Trieste 31, Suppl. 1:1-69.

Balder EJ (2000c) On the existence of maximum likelihood Nash equilibria.
Submitted to Annals Oper Res (special issue), June 2000.

Balder EJ (2001) A unifying pair of Cournot-Nash equilibrium results. J Econ
Theory, to appear.

Borm PEM, Cao R and Garcia-Jurado T (1995) Maximum likelihood equilibria
of random games. Optimization 35:77-84.

Castaing C and Valadier M (1977). Convex Analysis and Measurable Multi-
functions. Lecture Notes in Math. No. 580, Springer-Verlag, Berlin.

Choquet G (1969) Lectures on Analysis. Benjamin, Reading, MS.

Dellacherie C and Meyer P-A (1975) Probabilités et Potentiel. Hermann, Paris.
(English translation: North-Holland, Amsterdam, 1978).

Dudley RM (1989) Real Analysis and Probability. Wadsworth, Pacific Grove,
CA.

Jehle GA and Reny P (1998) Advanced Microeconomic Theory. Addison-
Wesley, New York.

Meyer P-A (1973) Limites médiales, d’aprés Mokobodzki. in: Séminaire de
Probabilités VII, Lecture Notes in Math. No. 321, Springer-Verlag, Berlin,
pp. 198-204.

Neveu J (1965) Mathematical Foundations of the Calculus of Probability. Holden-
Day, San Fransisco.

Schmeidler D (1973) Equilibrium points of non-atomic games. J Statist Phys
7:295-300.

Schwartz L (1975) Radon Measures. Oxford University Press, Oxford.
Voorneveld M (1999) Potential Games and Interactive Decisions with Multiple
Criteria. Dissertation Series No. 61. Center for Economic Research, Tilburg
University, Tilburg.

14



