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Introduction

In harmonic analysis on a reductive symmetric space X an important role is played
by families of generalized eigenfunctions for the algebra ID(X) of invariant differential
operators. Such families arise for instance as matrix coefficients of representations
that come in series, such as the (generalized) principal series. In particular, relations
between such families are of great interest. We recall that a real reductive group G,
equipped with the left times right multiplication action, is a reductive symmetric
space. In the case of the group, examples of the mentioned relations are functional
equations for Eisenstein integrals, see [23] and [25], or Arthur-Campoli relations for
Eisenstein integrals, see [1], [14]. In this paper we develop a general tool to establish
relations of this kind. We show that they can be derived from similar relations
satisfied by the family of functions obtained by taking one particular coefficient
in a certain asymptotic expansion. Since the functions in the family so obtained
are eigenfunctions on symmetric spaces of lower split rank, this yields a powerful
inductive method; we call it induction of relations. In the case of the group, a
closely related lifting theorem by Casselman was used by Arthur in the proof of the
Paley-Wiener theorem, see [1], Thm. I11.4.1. However, no proof seems yet to have
appeared of Casselman’s theorem.

The tools developed in this paper are used in [11], and they will also be applied
in the forthcoming papers [12] and [13]. For example, it is the induction of relations
that allows us to establish symmetry properties of certain integral kernels appearing
in a Fourier inversion formula in [11]. Also in [11], the induction of relations is used
to define generalized Eisenstein integrals corresponding to non-minimal principal
series. In [12], the results of this paper will be applied to identify these ‘formal’
Eisenstein integrals with those defined in Delorme [18]. This is a key step towards
the Plancherel decomposition. The results will also be applied to establish functional
equations for the Eisenstein integrals. Applied in this manner our technique serves
as a replacement for the use of the Maass-Selberg relations as in Harish-Chandra
[25] and [18]. On the other hand, in [13] we apply our tool to show that Arthur-
Campoli relations satisfied by normalized Eisenstein integrals of spaces of lower split
rank induce similar relations for normalized Fisenstein integrals of X. This result is
then used to prove a Paley-Wiener theorem for X that generalizes Arthur’s theorem
for the group. In particular, the missing proof of Casselman’s theorem will then be
circumvented by means of a technique of the present paper.

It should be mentioned that in the case of the group, induction of Arthur-Campoli
relations for unnormalized Eisenstein integrals is easily derived from their integral
representations (see [1], p. 77, proof of Lemma 2.3). For normalized Eisenstein
integrals, which are not representable by integrals, the result seems to be much
deeper, also in the group case.

One of the interesting features of the theory is that it also deals with families of
functions that are not necessarily globally defined on the space X but on a suitable
open dense subset.



Asymptotic behavior of eigenfunctions on a symmetric space has been studied
at many other places in the literature. The following papers hold results that are
related to some of the ideas of the present paper [22], [20], [32], [24], [25], [26], [28],
[30], [17], [33], [1], [29], [6], [15].

The core results of this paper were found and announced in the fall of 1995,
when both authors were guests at the Mittag-Leftler Institute. In the same period
Delorme announced his proof of the Plancherel theorem, which has now appeared
in [19].

We shall now explain the contents of this paper in more detail. The space X is
of the form G/H, with G a real reductive Lie group of Harish-Chandra’s class, and
H an open subgroup of the set of fixed points for an involution ¢ of G.

The group G has a o-stable maximal compact subgroup K, let # be the associ-
ated Cartan involution of G. Let Py = MyAyNy be a fixed minimal o o f-invariant
parabolic subgroup of GG, with the indicated Langlands decomposition. The Lie
algebra ay of Ay is invariant under the infinitesimal involution o; we denote the
associated —1 eigenspace in ay by a4. Its dimension is called the split rank of X.
Let A4 be the vectorial subgroup of G' with Lie algebra a, and let Af® be the set
of regular points relative to the adjoint action of Aq in g. Then X, := KAf*H is a
K-invariant dense open subset of X. Let Aaf be the open chamber in A, determined
by Pp. Then X, is a finite union of disjoint sets of the form K AfvH, with v in the
normalizer of a4 in K. In this introduction we assume, for simplicity of exposition,
that X, = KAY H. This assumption is actually fulfilled in the case that X is a group.

Let (7,V;) be a finite dimensional continuous representation of K. Then by
C*®(X,:7) we denote the space of smooth functions f:X, — V, that are 7-
spherical, i.e., f(kz) = 7(k) f(z), for all zx € X, and k € K.

Let P, denote the (finite) set of o o f-invariant parabolic subgroups of G' contain-
ing Aq. Let Q) = MgAgNg be an element of P,. Then o restricts to an involution
of ag, the Lie algebra of Ag; we denote its —1 eigenspace by agq. In the first part of
the paper we study a family f of the following type (cf. Definition 7.1). The family
is a smooth map of the form

fOQx X, =V,

with § an open subset of af,., the complexified linear dual of agq. It is assumed
that f is holomorphic in its first variable. Moreover, for every A € €2 the function
fri= f(A, ) belongs to C°(X, : 7). It is furthermore assumed that the functions
f allow suitable exponential polynomial expansions along AQ;. More precisely, we
assume, for m € My and a € A, that

fr(ma) = Z a** PP Z a%q,¢()\, loga, m). (0.1)

SEW/WQ §E—8WQY+NE(P0)

Here W is the Weyl group of ¥ = X(g, aq) and Wy is the centralizer of agq in W.
Moreover, ¥(P,) denotes the collection of roots from ¥ occurring in Ny and Y is
a finite subset of *ag,. ., the annihilator of agq in aj.. Finally, the ¢;¢ are smooth
functions, holomorphic in the first and polynomial in the second variable. Thus, we
impose a limitation on the set of exponents and assume that the coefficients depend



holomorphically on the parameter A. The type of convergence that we impose on
the expansion (0.1) is described in general terms in the preliminary Section 1.

We show that the functions f) actually allow exponential polynomial expansions
similar to (0.1) along any (possibly non-minimal) P € P,. These expansions are
investigated in detail in Sections 3 and 7. Their coefficients are families of 7|p,nx-
spherical functions on Xp, the analogue of X, for the lower split rank symmetric
space Xp:= Mp/Mp N H.

The operators from D(X) do also allow expansions along every P € P,. In
Section 4 this is shown by investigating a radial decomposition that reflects the
decomposition G = KMpApy,H. It is of importance that the coefficients in these
expansions are globally defined smooth functions on Mp, see Prop. 4.10 and Cor.
4.9. From the expansions we derive that the algebra D(X) acts on the space of
families of the above type, see Prop. 7.6.

In Section 8 we introduce the notion of asymptotic s-globality of a family along
P. Losely speaking, it means that the coefficients g, ¢(),loga, -) of the expansion
along P extend smoothly from Xp to the full space Xp, for every & € (sWpY —
NX(P))lap,- This notion is proved to be stable under the action of D(X).

In Section 9 we impose three other conditions on the family. The first is that
each member satisfies a system of differential equations of the form

Df,\ =0 (D - I()"A).

Here I is a certain cofinite ideal in the algebra D(X) depending polynomially on
A € ajyc In a suitable way. Accordingly, A is called the spectral parameter of the
family. The second condition imposed is a suitable condition of asymptotic globality
along certain parabolic subgroups P with dim(ay/apq) = 1. Thirdly, it is required
that the domain 2 for the parameter A is unbounded in certain directions (see
Defn. 9.9).

The first main result of the paper is then the following vanishing theorem, see
Theorem 9.10.

The vanishing theorem. Let f be a family as above, and assume that the coeffi-
cient of A\ — pg in the expansion along () vanishes for A\ in a non-empty open subset
of Q). Then the family f is identically zero.

In the proof the globality assumption is needed to link suitably many asymp-
totic coefficients together; the vanishing of one of them then inductively causes the
vanishing of others. In the induction step a key role is played by the observation
that a symmetric space cannot have a continuum of discrete series.

The importance of the vanishing theorem is that it applies to many families
that naturally arise in representation theory. In the present paper we show that
this is so for Eisenstein integrals associated with the minimal principal series for X;
in [12] we will show that Eisenstein integrals obtained by parabolic induction from
discrete series form a family of the above type. The idea is that the latter Eisenstein
integrals can be obtained from those associated with the minimal principal series by
the application of residual operators with respect to the spectral parameter. Such
residual operators occur in our papers [10] and [11].



A suitable class of operators containing the residual operators is formed by the
Laurent operators. In the second half of the paper we study the application of them
to suitable families of eigenfunctions, with respect to the spectral parameter. The
Laurent operators are best described by means of Laurent functionals, see Sections
10 and 11.

In Section 12 we introduce a special type of families g of eigenfunctions. It is of
the above type, with €2 dense in a}., P a minimal parabolic subgroup in P,, and
satisfies some additional requirements, see Definition 12.8. One of these is that the
family and its asymptotic expansions should depend meromorphically on the spec-
tral parameter A € ap . with singularities along translated root hyperplanes. This
allows the application of Laurent functionals with respect to the spectral parameter
More precisely, let () € P, contain P, and let £ be a Laurent functional on CquC
From the family g a new family f = L.g, with a spectral parameter from ag, is
obtained by the application of £ to the *ag -component of the spectral parameter.
In Theorem 13.12 it is shown that the resulting family L, g satisfies the requirements
of the vanishing theorem, provided the special family g satisfies certain holomorphic
asymptotic globality conditions.

In Section 14 we introduce partial Eisenstein integrals associated with a mini-
mal parabolic subgroup P from P,. The partial Eisenstein integrals are spherical
generalized eigenfunctions on X, obtained from the normalized Eisenstein integral
E°(P: )), (A € a;, generic), by splitting it according to its exponential polyno-
mial expansion along P. More precisely, the exponents of E°(P: \) are contained in
WA — pp — NE(P); the partial Eisenstein integrals E, ;(P: A), for s € W, are the
smooth spherical functions on X, determined by the requirements that

=) E.(P: )

seW

and the set of exponents of E ;(P: \) along P should be contained in s\ — pp —
NX(P). It is then shown that the partial Eisenstein integrals yield examples of the
special families mentioned above. Moreover, if Q € P,, Q@ D P, let W be the
collection of minimal length (with respect to X(P)) coset representatives for W/Wq
in W. Then it is shown that for each ¢t € Wy, the family

fi=> Epu(P: ) (0.2)

sEWR

satisfies the additional holomorphic asympotic globality property guaranteeing that
L, f; satisfies the hypothesis of the vanishing theorem, for £ a Laurent functional
on *agc

In Section 15 the asymptotic behavior of L, f; is investigated, and the coefficient
of a*~P@ in the expansion along @ is expressed in terms of partial Eisenstein integrals
of XQ.

The above preparations pave the way for the induction of relations in Section
16. The idea is as follows. Let f; be the family defined by (0.2), and let a Laurent
functional £; on *af,,. be given for each ¢ € Wg. Then by the vanishing theorem
a relation of the form ), £,f; = 0 is valid if a similar relation is valid for the



(A — pg)-coefficients along @); this in turn may be expressed as a similar relation
between partial Eisenstein integrals for the lower split rank space X¢. In this setting,
taking the (A — pg)-coefficient along @) essentially inverts the procedure of parabolic
induction from @) to G. This motivaties our choice of terminology. The precise result
is formulated in Theorem 16.1. An equivalent result, closer to the formulation of
Casselman’s theorem in [1] is stated at the end of the section.

1 Exponential polynomial series

Let A be a vectorial group and a its Lie algebra. The exponential map exp:a — A is
a diffeomorphism; we denote its inverse by log. If £ belongs to af, the complexified
linear dual of a, then we define the function e¢f:a — aé on A by af = e£(°8%) Let
P(a) denote the algebra of polynomial functions a — C. If d € N, let P;(a) denote
the (finite dimensional) subspace of polynomials of degree at most d. Let A be a set
of linearly independent vectors in a (we do not require this set to span a). We put

at =at(A):={X €a]a(X)>0, VaeA}

and AT = AT(A) = exp(a™). We define NA to be the N-span of A; if A = then
NA = {0}. Moreover, if X is a subset of a}, we denote by X —NA the vectorial sum
of X and NA.

Let V' be a complete locally convex space; here and in the following we will always
assume such a space to be Hausdorff. If £ € af, then by a V-valued {-exponential
polynomial function on A we mean a function A — V of the form a — a®q(loga),
with ¢ € P(a) @ V.

Definition 1.1 By a A-exponential polynomial series on A with coefficients in V'
we mean a formal series F' of exponential polynomial functions of the form

3" af ge(log a), (L1)

geag

with £ — q¢ a map a} — P(a) ® V, such that
(a) there exists a finite subset X C af such that g¢ = 0 for £ ¢ X — NA;
(b) there exists a constant d € N such that g¢ € Py(a) ® V for all £ € a.

The smallest d € N with property (b) will be called the polynomial degree of the
series; this number is denoted by deg(F).

The collection of all A-exponential polynomial series with coefficients in V' is
denoted by FP(A,V) = FL(A,V).

If F € F®(A,V) is an expansion of the form (1.1) then, for every ¢ € af,
we write g¢(F') for g¢. Moreover, we write ¢(F') for the map & — ¢¢(F) from a to
Py(a)®V. Then F — q(F) defines a bijection from F*P(A, V') onto a linear subspace
of (Py(a) ® V)%, the space of maps a}. — Py(a) ® V. Via this bijection we equip
FP(A, V) with the structure of a linear space.



If F € F°P(A,V), then

Exp(F):={¢ € ag | ¢¢(F) # 0}

is called the set of exponents of F. If F|, Fy, € F*(A,V), we call F| a subseries of
F, if q¢(Fy) = qe(F) for all € € Exp(FY).
The series (1.1) is said to converge absolutely in a fixed point ay € A if the series

Z agqg (logay)

E€Exp(F)

with coefficients in V' converges absolutely. It is said to converge absolutely on a
subset 2 C A if it converges absolutely in every point ay € €2. In this case pointwise
summation of the series defines a function 2 — V.

We will also need a more special type of convergence for the series (1.1).

Definition 1.2 The series (1.1) is said to converge neatly at a fixed point ay € A
if for every continuous seminorm s on Py(a) ® V, where d = deg(F’), the series

> slge)agt

fEExp(F)

converges.
The series (1.1) is said to converge neatly on a subset ) of A if it converges
neatly at every point of €.

Remark 1.3 If the series (1.1) converges neatly at a point ag € A, then so does
every subseries. Moreover, neat convergence at ay implies absolute convergence in
ag. However, we should warn the reader that neat convergence at ay cannot be seen
from the series with coefficients in V' arising from (1.1) by evaluation of its terms at
a = ayg, since this type of convergence involves the global behavior of the polynomials
¢e. In particular, it is possible that the series (1.1) does not converge neatly at ay,
whereas its evaluation in aq is identically zero.

The motivation for the definition of neat convergence is provided later by Lemmas
1.5 and 1.9, which express that neat convergence of the series (1.1) on an open subset
() C A guarantees that (a) the function f: Q — V defined by (1.1) is real analytic on
€2; (b) its derivatives are given by series obtained by termwise differentiation from

(1.1).
By a A-power series on A, with coefficients in V, we mean a A-exponential
polynomial series F' with deg F' = 0 and Exp(F) C —NA, i.e.,

F = Z alee, (1.2)

ge—NA

with ¢ € V, for £ € —NA. Note that for a A-power series the notion of neat
convergence at a point ag € A coincides with the notion of absolute convergence in
the point ag.



The terminology ‘power series’ is motivated by the following consideration. If
p € NA, we put =Y A o, with p, € N. For z € CA, we write

T Mo
= T ot

acA

Finally, to the series (1.2) we associate the power series

Z e_y (1.3)

BENA

with coefficients in V.

Let z: A — C® be the map defined by z(a), = a~®. Then it is obvious that the
series (1.2) converges with sum S for a = ag if and only if the power series (1.3)
converges with sum S for z = z(ag). If r €] 0, 00 [* we write D(0,r) for the polydisc
in C* consisting of the points z with |z,| < 7, for all & € A. Note that the preimage
of this set in A under the map z is given by

AT(Ar)i={a€Ala®*<r, VaeAl

If R > 0, we also agree to write AT(A, R) for AT(A,r) with r defined by r, = R
for all @ € A. Finally, if ag € A, we write AT(A, ag):= AT(A, z(ap)). Thus,

At (Ayap):={a€ Al a*>af, Yae A} = Atq,. (1.4)

We now note that if (1.2) converges absolutely for a = ag, then the power series
(1.3) converges absolutely for z = z(ag), hence uniformly absolutely on the closure
of the polydisc D(0, z(ag)). It follows that the series (1.2) then converges uniformly
absolutely on the closure of A*(A,ay).

Let ap € A. By O(AT(A, ag), V) we denote the space of functions f: AT(A, ag) —
V' that are given by an absolutely converging series of the form (1.2). For such
a function the associated power series (1.3) converges absolutely on the polydisc
D(0,7), with 7 = z(ao); let f: D(0,7) — V be the holomorphic function defined by
it. Then obviously )

fla) = f(z(a)),  (a€AT(A a)).

We see that the A-power series representing f € O(AT (A, ag) is unique. Moreover,
let O(D(0,7),V) denote the space of holomorphic functions D(0,7) — V, then it
follows that the map

f=f, OAYA, ), V)= OWDO,r),V)

is a linear isomorphism.

In particular it follows that every f € O(A* (A, r),V) isreal analyticon AT(A, r).
Moreover, its A-power series converges uniformly absolutely on every set of the form
A+ (A, p), where p €]0,00 [2, po < T4 for all a € A.

If v is a real linear space, then by S(v) we denote the symmetric algebra of its
complexification ve. Via the right regular action we identify S(a) with the algebra
of invariant differential operators on A. If f € O(AT(A,r),V) and u € S(a), then

8



uf belongs to O(A*(A,r),V) again; its series may be obtained from the series of f
by termwise application of u.

We now return to the more general exponential polynomial series (1.1) with
coefficients in V. Let d > deg(F). Fix a basis A of a. For m € NA we write m =
Y xea MaA and |m| = >, my. For such m we define the polynomial function X ~
X™ on a by

Xm =T Aa@)m™.

AEA

These polynomial functions with |m| < d constitute a basis for P;(a). Accordingly,
we may write:

(X)) = X"cem, (1.5)

lm|<d
with ¢gm € V.

Lemma 1.4 The series (1.1) converges neatly on a set 0 C A if and only if for
every m € NA with |m| < d the series

a§C§ﬂn
£€Exp(F)

with coefficients in V' converges absolutely for all a € €).

Proof: This is a straightforward consequence of the definition of neat convergence
and the finite dimensionality of the space Py(a). O

We define a partial ordering <A on a by
1306 = H— &G eNA (1.6)
Moreover, we define the relation of A-integral equivalence on a by
§1~a & = & — & € ZA.

Let F € F*(A,V) be as in (1.1) and have polynomial degree at most d. In view of
condition (a) of Definition 1.1, the restriction of the relation ~A to the set Exp(F')
induces a finite partition of it. Every class w in this partition has a least <a-upper
bound s(w) in a}. Let S = Sr be the set of these upper bounds. For every s € S
and every m € NA with |m| < d we define the A-power series

fom(@) =) a e ym, (1.7)

HENA

with coefficients determined by (1.5).



Lemma 1.5 Let the series (1.1) be neatly convergent at the point ay € A. Then
the series (1.1) and, for every s € S = Sp and m € NA with |m| < d, the series
(1.7) is neatly convergent on the closure of the set AT(A, ag). The functions fsm,
defined by (1.7), belong to O(AT (A, ap), V). Moreover, let f: AT(A, ag) — V be the
function defined by the summation of (1.1). Then

fla) =Y a*(loga)™fom(a),  (a € AT(A,ap)). (1.8)
jmi<a

In particular, the function f: AT(A, ag) — V is real analytic.

Proof: From the neat convergence of (1.1) at ag it follows by Lemma 1.4 that
for every s and m the series ZueNA a’"Hes_pym converges absolutely for a = aq.
This implies that the A-power series (1.7) converges absolutely for a = ay. Hence
it converges (uniformly) absolutely on the closure of AT(A, aq); in particular it
converges neatly on that set. It follows from this that f;,, € O(AT(A, ap),V), for
s € S and m € NA with |m| < d. Moreover,

a’(log @)™ fsm = Z at(log a)™cem (1.9)
£es—NA

where the A-exponential polynomial series on the right-hand side converges neatly
on the closure of A*(A,ap). The series (1.9), for s € S and m € NA with |m| < d
add up to the series (1.1), which is therefore neatly convergent as well. Moreover,
(1.8) follows. This in turn implies the real analyticity of the function f. O

Remark 1.6 Let an:= Nyea kera and Ax:= exp(aa). Then the functions fsm,
defined by (1.7) satisfy f;m(aaa) = fsm(a) for all @ € A, an € Aa. In particular,
the function f of (1.8) generates a finite dimensional Ax-module with respect to the
right regular action. Thus, if A = (), then f is an exponential polynomial function.

Lemma 1.7 (Uniqueness of asymptotics) Let ag € A, and assume that the A-
exponential polynomial series (1.1) converges neatly on A (A, ag). If the sum of the
series is zero for all a € AY(A, ay), then g¢ = 0 for all £ € a.

Proof: Let f: AT(A,ap) — V be defined by summation of the series (1.1). Then it
follows from Lemma 1.5 that the series (1.1) is an asymptotic expansion for f in the
sense of [6], Sect. 3. Hence, if f = 0, then by uniqueness of asymptotics, see [22], p.
305, Cor. and [6], Prop. 3.1, it follows that the series vanishes identically. O

Definition 1.8 Let ag € A. By C*®P(AT (A, ay), V') we denote the space of functions
f: AT(A,ag) — V that are given by the summation of a (necessarily unique) neatly
converging A-exponential polynomial series of the form (1.1).

If f € C®(A*(A,a9),V), then by ep(f) we denote the unique series from
F*°P(A, V) whose summation gives f. Moreover, the asymptotic degree of f is defined
to be the number

deg,(f): = deg(ep(f))-

10



Note that the map
ep: CP(A* (A, a), V) = F2(A, V),

defined above, is a linear embedding.

Let f € C*(AT(A,ap), V). We briefly write Exp(f) for the set Exp(ep(f)); its
elements are called the exponents of f. We put ¢¢(f, - ):= ge(ep(f), -), for & € a.
Then & € Exp(f) < ¢(f) #0.

The <a-maximal elements in Exp(f) are called the (A-)leading exponents of f
(or of the expansion). The set of these is denoted by Expy (f).

By the formal application of S(a) to F?(A, V) we shall mean the linear map

S(a) @ FP(A, V) = FP(A4,V)

induced by termwise differentiation (recall that S(a) acts on C*°(A) via the right
regular action). The image of an element v ® F' under this map will be denoted by
uf.

Lemma 1.9 Let ay € A and let f € C®(AY(A,ap),V). If u € S(a) then the
function uf:a — R, f(a) belongs to C**(AT (A, ay), V). Moreover,

ep(uf) = uep(f).

Proof: We may assume that u € a. Express f as in (1.8). For each s,m the
function uf,,, belongs to O(AT(A, ap),V); its expansion is obtained from ep(fs )
by termwise application of u, hence by the formal application of u. U

We shall also need a second type of formal application. Suppose that complete
locally convex spaces U and W are given, and a continous bilinear map U XV — W,
denoted by (u,v) — uv. By the formal application of F**(A,U) to F®(A,V) we
mean the linear map

FPAU)QFPAV) = FPAW),

given by
Z a*pe(loga) ® Z a’gy(loga) — Z a” Z pe(log a)g,(log a). (1.10)
g€ag neag veag E+n=v

This map is indeed well defined. To see this, let F' denote the first series and G the
second. Then for every v € aZ, the collection S, of (§,7) € Exp(F) x Exp(G) with
& 4+ n = v is finite. Hence the W-valued polynomial function

riX e Y pe(X)gy(X)
(&m)eSy

has degree at most deg(F') + deg(G). Moreover, let X1, Xy C af be finite subsets
such that Exp(F') C X; — NA and Exp(G) C X3 —NA and put X = X; + X,. Then
for v € af\ [X —NA] the collection S, is empty, hence 7, = 0. Therefore, the formal
series on the right-hand side of (1.10) satisfies the conditions of Definition 1.1.

The image of an element F'® G under the map (1.10) is denoted by F'G. Again
we have a lemma relating the formal application with neat convergence.

11



Lemma 1.10 Let U x V — W, (u,v) — uv be a continuous bilinear map of com-
plete locally convex spaces. Let ag € A and let f € C®°(A(A,a),U) and g €
C°?(A(A, ag), V). Then the function fg:a+— f(a)g(a) belongs to C°*(A(A, ag), W).
Moreover, its A-exponential polynomial expansion is given by

ep(fg) = ep(f)ep(g).

Proof: This follows by a straightforward application of Lemma 1.5. Il

2 Basic notation, spherical functions

In this section we study spherical functions that are defined on a certain open
dense subset X of the symmetric space X, and are (radially) given by exponential
polynomial series. This class of functions will play an important role in the paper.
Later we will see that I(X)-finite spherical funtions belong to this class.

Throughout this paper, we assume that X is a reductive symmetric space of
Harish-Chandra’s class, i.e., X = G/H with G a real reductive group of Harish-
Chandra’s class and H an open subgroup of G, the group of fixed points for an
involution ¢ of G. There exists a Cartan involution # of G, commuting with ¢. The
associated fixed point group K is a o-stable maximal compact subgroup.

We adopt the usual convention to denote Lie groups by Roman capitals and their
Lie algebras by the corresponding Gothic lower cases. The infinitesimal involutions
0 and o of g commute; let

g=top=0baq (2.1)

be the associated decompositions into +1 and —1 eigenspaces for # and o, respec-
tively. We equip g with a positive definite inner product (-, -) that is invariant
under the compact group of automorphisms generated by Ad(K), ¢2d®) 9 and o.
Then the decompositions (2.1) are orthogonal.

Let a, be a maximal abelian subspace of p N q. We equip a, with the restricted

inner product (-, -) and its dual a, with the dual inner product. The latter is
extended to a complex bilinear form, also denoted (-, -), on the complexified dual
ar..

qc

The exponential map is a diffeomorphism from a4 onto a vectorial subgroup A,
of G. We recall that G = KAyH. Let ¥ be the restricted root system of a, in g; we
recall that the associated Weyl group W is naturally isomorphic to N (aq)/Zk(ay),
the normalizer modulo the centralizer of ay in K. Let a;® denote the associated set
of regular elements in ag, i.e., the complement of the union of the root hyperplanes
ker o, as o € ¥. We put A := exp(ay®) and define the dense subset X of X by

X, = KA H.

If @ is a parabolic subgroup of GG, we denote its Langlands decomposition by
Q = MgAqgNg. By a o-parabolic subgroup of G' we mean a parabolic subgroup that
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is invariant under the composition oo 8. It follows from [4], Lemmas 2.5 and 2.6,
that the collection P, of o-parabolic subgroups of G containing A, is finite.

If @ is a o-parabolic subgroup then the Lie algebra ag of its split component
is o-stable, hence decomposes as ag = agn @ agq, the vector sum of the associated
+1 and —1 eigenspaces of o/q,, respectively. We write Ag,: = exp agq and Mg,: =
Mqg(Ag N H); the decomposition

Q = MqsAqgqNg

is called the o-Langlands decomposition of Q. If @ € P,, then Mg = Q N O(Q)
contains A,. Hence agq is contained in p N q and centralizes ay; it follows that
agq C aq- By £(Q) we denote the set of roots of ¥ occurring in ng. Obviously,

Qg = Dacx(Q) Ja-

Let P™™ denote the collection of elements of P, that are minimal with respect
to inclusion. An element P € P, belongs to P2 if and only if ap, = a4, see [4],
Cor. 2.7. This implies that the associated groups Mp and Ap are independent of
P € Pmin, We denote them by M and A, respectively. From the maximality of a,
in pNq it follows that m N p C h. Thus, if Ky:= KN M and Hy:= H N M, then
the inclusion map Ky — M induces a diffeomorphism

Ky/KnNH = M/Hy,. (2.2)

In particular, the symmetric space M/Hy, is compact.

According to [4], Lemma 2.8, the map P +— X(P) induces a bijective map from
Pmin onto the collection of positive systems for Y. If @ is a positive system for 3,
then the associated element P € P™P™ is given by the following characterization of
its Lie algebra: Lie(P) = m 4+ a+ Y ; go- From this we see that Ng(a,) acts
on P™" by conjugation; moreover, the action commutes with the map P — X(P).
Accordingly, the action factors to a free transitive action of W on P™"  see also [4],
Lemma 2.8.

If P € P™" then the collection of simple roots for the positive system ¥(P) is
denoted by A(P); the associated positive chamber in a, is denoted by af (P) and
the corresponding chamber in Ay by AF(P). Thus, we see that Af® is the disjoint
union of the chambers A¥(P), as P € Py,

More generally, if () € P,, we write

G ={X €agqla(X) >0 for ac€X(Q)}. (2.3)

It follows from [4], Lemmas 2.5 and 2.6, that agq # (). Moreover, if X € agq, then
the parabolic subgroup @) is determined by the following characterization of its Lie
algebra

Lie(Q) =m@ad @ G- (2.4)
aéxXE));O

Conversely, if X is any element of a4, then (2.4) defines the Lie algebra of a group
Q@ from P,; moreover, X € agq. From this we readily see that conjugation induces
an action of Nk (a,) on P,, which factors to an action of W.
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By a straightforward calculation involving root spaces, it follows that the multi-
plication map K x AF® — X induces a diffeomorphism

K X Nk (aq)NH Aaeg i) X_|_.

In particular, it follows that X, is an open dense subset of X. Let Wxny denote the
canonical image of Ni(a,) N H in W and let W be a complete set of representatives
for W/Wxng in Ng(ay). If P € P™n then it follows that

X; =Upew KAS(P)wH (disjoint union). (2.5)

Moreover, for each w € W the multiplication map (k, a) — kewH induces a diffeo-
morphism

K X gynwme-1t AT (P) — KA (P)wH. (2.6)

Here we have written K3y = K N M; in (2.6) the set on the right is an open subset
of X.

Let (7,V;) be a smooth representation of K in a complete locally convex space.
For later applications it will be crucial that we allow 7 to be infinite dimensional
(see the proof of Theorem 7.7).

By C*(X4: 7) we denote the space of smooth functions f:X, — V, that are
T-spherical, i.e.,

fkx) = 7(k) f (@), (2.7)

for z € Xy, k € K. The space C*°(X: 7) of smooth 7-spherical functions on X will
be identified with the subspace of functions in C*(X, : 7) that extend smoothly to
all of X.

In the following we assume that P € P™" is fixed. If w € Ng(a,), then by
Cp,(Xy:7) or C* (X, : 7) we denote the space of functions f € C*(X, : 7) with
support contained in K Af(P)wH. From (2.5) we see that

COO(X+: T) == @wew C;.)O(X+ T)

Let w € Nk(a,) be fixed for the moment. For f € C*°(X, : 7) we define the function
Tlg,wf c Coo(A;lk (P), VTKMﬂwHw—l) by

T}, f(a) = f(awH).

Since (2.6) is a diffeomorphism, the restriction of TIJ-;,w to C°(X4 : 7) is an isomor-
phism of complete locally convex spaces onto the space C*(Af(P), VRuOwHw™h)

Taking the direct sum of the maps Tlﬁ’w, as w € W, we therefore obtain an isomor-
phism of complete locally convex spaces

Thy: C®(Xi:7) 5 @uew CF(AF(P), VEuwHL™) (2:8)
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Definition 2.1 We denote by C*?(X, : 7) the space of functions f € C®(Xy: 7)
such that for every w € W the function Tlﬁ,w [ belongs to C*(Af(P), VKunwHw ),
where the latter space is defined as in Definition 1.8, with a, ag and A replaced by
a4, € and A(P), respectively.

If f € C°P(X, : T), we define its asymptotic degree to be the number

. 1
deg, (f): = max deg(Tp,, f)-

It follows from the above definition that restriction of Tzﬁ,w induces a linear isomor-
phism

CP(Xy: 7) = Bueyy CP(AF(P), VumwHv™) (2.9)

a

Using conjugations by elements of N (aq) it is readily seen that the space C*?(X, : 7)
and the map deg,: C*?(X : 7) — N are independent of the particular choices of P
and W. In particular, if P € P™" and w € Ng(a,), then Tlﬁ’wf € CP(AL(P), Y KunwHw™y

and deg(T},,f) < deg,(f). We put
Exp(Pw|f):= Exp(T},f),  and  Expy(P,w]| f):=Expy(T},f).

Moreover, for all £ € a;, we define gg(P,w | f) = q‘g(T]ﬁ’wf). Then, for every a €
AL (P),

flaw) = Z aggs(P,w | f,loga), (2.10)

§€Exp(Pw | f)

where the A(P)-exponential polynomial series on the right-hand side neatly con-
verges on Al (P).
For w € Nk(aq), we will use the notation

Xow:=M/MNwHw™; (2.11)

moreover, we put 7y:= Tk,, and write C*°(Xq,, : 7x) for the space of my-spherical
C® functions from X, to V;, i.e., the space of functions f € C*°(Xq,, V) satisfying
the rule (2.7) for k € Ky and z € Xg,. From (2.2) with wHw™" in place of H we see
that the inclusion Ky — M induces a diffemorphism from Ky/Ky NwH w™" onto
Xo,w- Hence evaluation at the point e(M N wHw™") induces a linear isomorphism
from C%(Xg,: ) onto VEMMwHw™ Thys if f € C(X, : 7), then for every £ €
aqc there exists a unique C*°(Xo,, : Tv)-valued polynomial function g¢(P,w| f) on
aq such that

ge(Pw| f, X, e) =q(Pw|[)(X) (X €ay).

Using sphericality of the function f we obtain from (2.10) that

f(maw) = Z atqe(P,w| f,loga, m), (2.12)

fEEXp(P,’w ‘ f)
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for m € M, a € Af(P). The series on the right-hand side is a A(P)-exponential
polynomial series in the variable a, with coefficients in C*(Xg,, : Tm), relative to
the variable m. As such it converges neatly on A (P).

We shall now discuss a lemma whose main purpose is to enable us to reduce on
the set of exponents in certain proofs, in order to simplify the exposition.

Lemma 2.2 Let P € P™" and let W C Nk/(a,) be a complete set of representatives
of W/Wknpg. Assume that f € CP(X, : 7).

There exists a finite set S C a7, of mutually A(P)-integrally inequivalent ele-
ments such that Exp(P,v | f) C S — NA(P) for every v € W.

If S is a set as above, then there exist unique functions f; € C**(X, : 7), for

s € S, such that
F=Y 1,

seS
and such that Exp(P,v | fs) C s — NA(P), for every v € W.

Proof: There exists a finite set X C aj such that Exp(P,v|f) C X — NA(P) for
all v € W. Obviously there exists a finite set S as required, such that X — NA(P) C
S — NA(P).

If S is such as mentioned, then for s € S and v € W we define the function
Fow: AL (P) = VEuOwH™ 1y

fs,v(a') = Z as_uqsfu(P, v | f, IOg a, 6);

VENA(P)

here the exponential polynomial series is neatly convergent, hence f;, belongs to
the space C*P(A}(P), VEmnwHY) for every v € W. By the isomorphism (2.9) there
exists a unique function f, € C*?(X,: 7) such that fs(av) = fs,(a) forve W, a €
A (P). By the hypothesis on S the sets s — NA(P), for s € S, are disjoint. Hence
[ =2 s fs on AF(P)v, for every v € W. By (2.5) and sphericality this equality
holds on all of X . O

3 Asymptotic behavior along walls

In this section we study the asymptotic behavior along walls of functions from
C®P(X, : 7); here 7 is a smooth representation in a complete locally convex space
V.

Let P € P™1 and let @ be a o-parabolic subgroup with Langlands decomposition
@ = MgAgNg, containing P. In addition to the notation introduced in the beginning
of the previous section, the following notation will also be convenient.

We agree to write Kg:= K N Mg and Hg:= H N Mg. Moreover, Wy denotes
the centralizer of agq in W. Then W ~ Nk, (6q)/Zk,(aq). On the other hand Wy
is also the subgroup of W generated by the reflections in the roots from the set

Ag(P):={a € A(P) | alaqy, = 0}.
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We note that £(Q)) = 3(P) \ NAg (P). Moreover, let £, (Q) denote the collection of
agq-weights in ng. Then

5 (Q) = {ag, | @ € Z(Q)}-

Let A, (Q) be the collection of weights from the set ¥, (@) that cannot be written as
the sum of two weights from that set; then one readily verifies that A, (Q) equals the
set of restrictions of elements from A(P)\ Ag(P) to agq. In particular, the elements
of A,(Q) are linearly independent.

Given ag € Agq we shall briefly write A} (ao) for the set A%, (A,(Q), ao) defined
as in (1.4) with agq and A,(Q) in place of a and A, respectively. Similarly, if
p €]0, 00 [*(?) we briefly write

qu(p): = qu(AT(Q)ap) ={a€ AQq | a7 < po, Ve A(Q)}-

If R > 0, we write A} (R) for A}, (p), where p is defined by p, = R for every
a € A (Q). Note that A} (1) equals the positive chamber Aj := exp(ag,), see
(2.3).

If v € Nk (a,), we define

Xigu: = Mig/MigNvHv . (3.1)
This is a symmetric space for the involution 0¥ of M defined by 6¥(m) = vo (v~ mv)v~'.
Note that this involution commutes with the Cartan involution 6| M- Note also that
aq is a maximal abelian subspace of Ad(v)(pNq) = pN Ad(v)q. Hence it is the ana-
logue of a, for the triple (Mg, Ko, MigNvHv ™). The corresponding group A, may
naturally be identified with a subspace of X;q,.
The image of Mg in X, may be identified with

XQ,U: = MQ/MQ N UHUfl,

the symmetric space for the involution o¥|u,. It follows from the characterization
of P, expressed by (2.4) that

Pg’ = ng (32)

Hence @ is a o”-parabolic subgroup as well. Hence agNAd(v)q = agNag = agq, and
we deduce that the inclusion Agq — Ag induces a diffeomorphism Agq =~ Ag/Ag N
vHv™!'. From this we conclude that the multiplication map Mg x Agq — Mg
induces the decomposition

XIQ,U ~ XQ,v X AQq- (33)

Remark 3.1 In particular, the above definitions cover the two extreme cases that
() is minimal and that it equals G.

In the case that @ € P™", we have Q = M ANy, and X, equals the space X,
defined in (2.11). Moreover, X;g,, ~ Xo» X Aq-

17



In the other extreme case we have X,¢, = G/vH v~ L. This symmetric space will
also be denoted by X,. Note that right multiplication by v induces an isomorphism
of X, onto X. Note also that My equals °G, the intersection of ker x, as x ranges over
the positive characters of G. Hence X¢, = °G/°GNvHv™!. Finally, X, ~ Xg, X Agq,
where Agq is the image under exp of the space agq, which in turn is the intersection
of the root hyperplanes ker o as o € X.

Let fig: = fng be equipped with the restriction of the inner product (-, -) from
g. If @ # G we define the function Rg,: Mig —|0, 0o[ by
Rq,o(m) = [|Ad(ma” (m) ™) |5 lof’

op ?

where || - ||op denotes the operator norm. We define R, to be the constant function
1.

The function Rg, is right Mg N vHv !-invariant. It may therefore also be
viewed as a function on X;q,. We shall describe the function Rg, in more detail
below.

The orthocomplement of ag, in a4 is denoted by *ag,. Note that

fagq = Mg N ag; (3.4)

hence *agq is the analogue of a4 for the triple (Mg, Kq, Hg). We recall from the
text following (3.1) that a, is maximal abelian in p N Ad(v)q hence is the analogue
of aq for the triple (G, K,vHv™"). Accordingly, *ag, is also the analogue of a, for
the triple (Mg, Kg, Mg NvHv™!).

In view of (3.2), the group *P = P N My is readily seen to be a minimal o°-
parabolic subgroup for Mg; the associated positive chamber in *Ag, = exp(*agq) is
denoted by *Aj, (*P).

Let Wg, be an analogue for Xq , of W, that is, Wy, is a complete set of repre-
sentatives in Nk, (aq) for the quotient Wq/Wgk,nvmy-1- Let Xq,, 4 be the analogue
for Xg, of the open dense subset X, of X. According to (2.5) this set may be
expressed as the following disjoint union of open subsets of X, ,

Xgut+:i= U KqQ"AS("P)u (Mg N vHv™) (disjoint union). (3.5)
ueEWg v

Let X1g,+ be the analogue of X, for X;q,; then from (3.3) we see that Xg, 4+ =~
XQw+ X Agq- In terms of this decomposition and (3.5) the function Rg, may be
expressed as follows.

Lemma 3.2 The function Rg,: Mig —10, 0o is continuous, and right M;gNvHv™!-

and left Kg-invariant. Moreover, if Q # G and if a € Aq and u € Nk, (ay), then

Ro,(au) = max a . 3.6
auau) = max (3:5)

Finally, Rg, > 1 on Xg .

Proof: Since R, is the constant function 1, we may as well assume that @) # G.
Continuity of the function R, is obvious from its definition. The group Kg is o”
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invariant and acts unitarily on ng; hence the left Kg-invariance is obvious from the
definition. If a € A, then ac?(a) ! = a®. Hence the operator norm of Ad(ac”(a) )
on fig equals the maximal value of a 2* as « € X(Q). This implies (3.6) for u = 1.

The element u € Nk, (aq) belongs to Mg, hence Ad(u) normalizes ng. Therefore,
Ad(u) leaves the collection %(Q) of a,-roots in ng invariant. Put o’ = v 'au. Then
Rg(au) = Rg,(a') = max.ex(g)(a’)™®. Since Ad(u) leaves 3(()) invariant, (3.6)
follows.

If o € X, let h, be the element of a, determined by a(X) = (ha, X), for X € a,.
Then the closure of *agq(*P) is contained in the closed convex cone generated by
the elements hg, for § € Ag(P). If a € A(P)\ Ag(P), then a(hg) = (a, B) <0, for
B € Ag(P); hence o < 0 on *a/, (*P). But A(P)\ Ag(P) C %(Q), hence it follows
that Rg, > 1 on *Aj, (*P)u, for every u € Wy,. The final assertion follows from
combining this observation with (3.5), the left K-invariance of Ry, and density of
XQ,v,+ in XQ,U. O

If 1 < R < oo we define

XQ,v[R]I = {m € XQ,U

Ro.(m) < R}. (3.7)

Note that Xg,[1] = 0 and Xg,[00] = Xg,; moreover, Ry < Ry = Xg,[Ri] C
Xgw|[R2]- Finally, the union of the sets X¢ ,[R] as 1 < R < 0o equals Xg .

In accordance with (3.7) we define Xg , +[R]: = Xgu+NXgu[R], for 1 < R < oo.
Moreover, we also put

AL P)r:={a € "AL("P) | a™* < R, Ya € ¥(Q)}.
Note that, if & € X(P) \ £(Q), then a=* < 1 < R for all a € *A},(*P). Hence
A (P)ig = "AL("P)N A (P, R).
It follows from (3.5) and Lemma 3.2 that

Xou+[Rl= |J KoAh("P)mu(MgnvHv ™)  (disjoint union).
UEWQ,U

(3.8)

The function R, plays a role in the description of the asymptotic behavior of
a function f € C°(X,: 7) along ‘the wall’ A/, v. This behaviour is described in
terms of an expansion of f(mav) in the variable a € Aj,, for m € Xg,,+. Thus, it
is of interest to know when mavH belongs to X, the domain of f.

Lemma 3.3

(a) Ifb € *A,,(*P) and a € A} (Rq(b)™") then ba € A (P).
(b) Let m € Xqu,4. Then mavH € Xy for all a € A} (Rg.(m)™").
(c) Let R > 1. Then Xq, [R]AS (R~ )vH C X,
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Proof: Let b and « fulfill the hypotheses of (a). If & € Ag(P), then (ba)™®
b~* < 1. On the other hand we have, for « € A(P) \ Ag(P), that o € £(Q), hence
(ba)™ < Rgu(b)a™® < 1, by Lemma 3.2. Hence ba € Af(P), and (a) is proved.
Let m be as in (b), and let a € A}, (Rg(m)~"). In view of (3.5) we may write
m = kbuh with k € Kq, b € *Aj (*P), u € Wy, and h € Mg NvHv™'. Now
mavH = kbuhavH = kbauvH. Thus, it suffices to show that ba € Af(P). This
follows from (a) and the observation that Rg,(b) = Rg,,(m), by Lemma 3.2.
Finally, (c) is a straightforward consequence of (b). O

If Q@ € P, we put 7¢:= 7|k, Then, for v € Ng(ay), the space C?(Xg,+: 70)
is defined as above (2.9) with X, and 7¢ in place of X and 7, respectively.

Theorem 3.4 Let f € C®(X,: 7). Let Q € P, and v € Nk(ay).

(a) There exist a constant k € N, a finite set Y C ag,., and for eachn € Y —
NA, (Q) a C(Xgu,+, Vr)-valued polynomial function ¢, = ¢,(Q,v | f) on agq
of degree at most k, such that for every m € Xg,

f(mav) = Z a"q,(loga, m), (a € qu(RQ,U(m)_l)), (3.9)
n€Y —NA, (Q)

where the A,(Q)-exponential polynomial series with coefficients in V, con-
verges neatly on the indicated subset of Agq.

(b) The set Exp(Q,v|f):={n €Y —NA,(Q) | ¢, # 0} is uniquely determined.
Moreover, the functions g,, where n € Y — NA,(Q), are unique and belong
to Py(agq) ® C®(Xgv,+: Tg), where d: = deg,(f). Finally, if R > 1, then the
the series on the right-hand side of (3.9) converges neatly on A} (R™") as a
A, (Q)-exponential polynomial series with coefficients in C*®(Xgq , +[R]: Tg)-

Proof: We will establish existence. Uniqueness then follows from uniqueness of
asymptotics, see Lemma 1.7.

Fix P € P" with P C Q. Select a complete set Wg,, C Nk, (aq) of representa-
tives for Wo/Wo N Wikapmy-1-

The set Wg ,v maps injectively into the coset space W/Wgng. Hence it may be
extended to a complete set W of representatives in Ng(a,) for W/ Wkng. In view
of Lemma 2.2 we may therefore decompose f, if necessary, so that we arrive in the
situation that there exists a s € a’. such that Exp(P,uv | f) C s — NA(P), for all
u € Wg,,. We put sg = s|agq.

Let u € Wg,,. Then the function f,,: a — f(auv) has a (unique) A(P)-exponential
polynomial expansion on Ajl' (P) of the following type:

fun(a) = flauwv) = Z Que(loga)at. (3.10)

ges—NA(P)

-1

Here g, ¢(-) = ge(P,uv| f, -, e) belongs to Py(aq) @ V,KunuwHv™
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Let 0 € S(ay). Then according to Lemma 1.9, the function 0f,, is given on
A¥(P) by a neatly convergent A(P)-exponential polynomial series that is obtained
from (3.10) by term by term application of 0. That is,

Ofuw(a) = Z qo.u¢(loga)at, (3.11)

£es—NA(P)

where ga , ¢ is the VKM o™ ™ yalyed polynomial function on ay of degree at most
d given by

Goue(X) = * M0, (X) (X € ay).
Let now R > 1 and let K and K’ be compact subsets of *A, (*P)g and A, (R™"),
respectively. Then K'IC is a compact subset of AT (P), by Lemma 3.3 (a). Thus, if

a € K' and b € K, then the series in (3.11) with ba in place of a converges absolutely,
and may be rearranged as follows:

0 fuv(ab) = Z a” Z b g ue(logh + loga). (3.12)
nesQ-NANQ) e NA()
Qq="

In view of Lemma 1.5, the convergence is absolutely uniformly for (a,b) € X' x K.
By a similar reasoning it follows from the neat convergence of the series (3.11)
that, for any continuous seminorm oy on Py(a,) ® V;, the series

Z alen Z %€ 50(goue) (3.13)

n€sg—NA-(Q) £Es—NA(P)
£lagq=n

converges uniformly for a € K" and b € K.

Let now 77 € sq — NA,(Q) and let b € *A}, (*P) and a € A} (Rg(b)~"). Then
there exists a R > 1 such that b € *Aj, (*P)ig) and a € Aj, (R™"). Hence the series
(3.13) converges, and by positivity of all of its terms we infer that the series

Y oo (goue) (3.14)

£€s—NA(P)
Elagq=n

converges for every continuous seminorm g on Py(aq) ® V;, for every b € *A5 (*P).
We now specialize to d = 1 and note that i, ¢ = ¢y ¢. Let X € agq. We define the
linear endomorphism T'x of Py(aq)®@V; by Txp(H) = p(X + H). This endomorphism

is continuous linear by finite dimensionality. Combining this with the convergence
of (3.14) we infer, for every X € ag,, that

GQun(X,b): = Z b* Tx (qu¢)(logb) (3.15)

£es—NA(P)
Elagq=n

is a function of b defined by a neatly convergent Ag(P)-exponential polynomial
series on *A%, (*P). It is polynomial in X of degree at most d, and real analytic in

b € *AS,(*P). Moreover, its values are in the space VMMWwHvv™ Thyg ¢, . €

21



Py(aqq) @CP("Ab, (* P), VEuMuwiv v "H) Ty view of the isomorphism (2.9) for Xq,u,+,
79, Wo,w in place of Xy, 7, W, see also the decomposition (3.5), there exists a unique
polynomial function ¢, = ¢,(Q, v | f) on agq with values in C*?(Xq , + : 7g) such that

¢ (X, bu) = qo.un(X, ), (X € agq,u € W, b € "Ab (*P)). (3.16)

The degree of ¢, as a polynomial function on agq is at most d. Combining this with
(3.15) and (3.12) and using that Rg,(bu) = Rg,(b), we arrive at the expansion
(3.9) for m = bu and a € A, (Rq(m)~"). Using the left Ko-invariance of Rq, and
the sphericality of f and the functions m — ¢, (loga, m), we now obtain (3.9) with
absolute convergence; the first two assertions of (b) follow as well. The assertion of
neat convergence in (a) is a consequence of the final assertion in (b), which we will
now proceed to establish.

Let u € Wy, and R > 1 be fixed. Then in view of the union (3.8) it suffices
to prove the neat convergence of the series (3.9) as a A, (Q)-exponential polynomial
series with coefficients in C*°(Kg*A%, (* P) g u(MgnwHv™") : 7q). The map (k, a) —
kau(MgNvHv™") induces a diffeomorphism from Kq/(KqNvHv™") x *AS, (*P)x)
onto the open subset Ko*Aj (*P)ru(Mg NvHv™") of Xq, .. By sphericality of
the coefficients of the series (3.9) we see that it suffices to prove that

Y a"oi(gqun)

n€sQ—NA(Q)

converges absolutely, for a € qu(R_l) and for o; any continuous seminorm on
* * —ly-1
Pd(aQq) ® C*( qu( P)[R]’ VTKMOWHU v
Fi}'( X € agq, 0 € S(*agq), a € Ajy(R™) and K C *Ab, (*P) () a compact subset.
Then it suffices to prove that

Y, SUp [|9(gQ.u.n (X, -))| (3.17)

nEsq—NA, (Q)

converges absolutely.

From the neat convergence of the series (3.15), for b € *Agq(*P), it follows that
term by term differentiation is allowed. Since 0 € S(*agq), whereas X € agq, we
have

b€0( T (2ue) (108 )) = Gome (X + logh).
Hence, for every n € sg — NA,(Q),
0(goun(X, )0 = > Hgoue(X +logh). (3.18)

£€s—NA(P)
Elagq=n

There exists a continuous seminorm oy on Py(a,) ® V;, such that, for every b € K
and all ¢ € Py(aq) ® V7,
[¢(X +logb)|| < 02(q).

In particular, this implies that

196,u,e(X +10gb)|| < 02(g,u.e); (3.19)
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for every b € K.
Combining (3.18) with (3.19) we now obtain

la”|S%p||3(qQ,u,n)(X7-)||S Y d% T on(gau).

£€s—NA(P)
£lagq=n

Thus, the absolute convergence of (3.17) follows from the uniform convergence of
(3.13), b € K. O

Let f € C®P(X;:7) and let @ € P, and v € Ng(ay). Moreover, let the set
Y C ajy and the polynomials ¢, = ¢,(Q,v|f), for n € ¥ — NA,(Q) be as in
Theorem 3.4. As in that theorem, we define

Exp(Q,v[f) ={neY —NA(Q) | ¢, # 0}

and call the elements of this set the exponents of f along (Q,v). If n € a5qc does
not belong to Exp(Q, v | f), we agree to write ¢,(Q,v | f) = 0.

Let now P € P™n be contained in @ and put *P:= P N Mg. Then, for u €
Ng,(aq), we define

Exp(Q,v | f)pu={n€ agec| @& #0 on agq X KQ*qu(*P)u(MQ NvHv ')},

The elements of this set are called the (Q,v)-exponents of f on *Af (*P)u. Let
Wo.w C Nk, (aq) be a complete set of representatives of Wq/Wo N Wi, go-1. Then
it follows from (3.5) that

Exp(@.v]f)= |J Exp(Q.v]|f)pu (3.20)

ueEWQ v
We now have the following result.
Theorem 3.5 (Transitivity of asymptotics) Let f € C*P(X,: 7). Let P,Q € P,,

assume that P is minimal and P C @) and put*P = PN M. Then for allv € Nk(ay)
and u € Nk, (aq) we have:

EXP(Q7 v | f)P,u = EXp(P, uv | f) |aQq' (321)
Moreover, if n € Exp(P,uv| f)|aq,, then for every b € *Aj (*P), X € agqq, and
mée M,
(@ 0| f,X,mbu) = Y bg(Puv| f, X +loghm), (3.22)
§€IZTP(P,W [f)
aQq=7I

where the Ag(P)-exponential polynomial series (in the variable b) on the right is
neatly convergent on *A}, (*P). Furthermore, the series

Z bqe(P,uv | f, X + logb) (3.23)

§EExp(Puv | f)
§|aQq:"I
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converges neatly as a AQ(P)—eXponentia] polynomial series in the variable b &
*Ab(*P) with coefficients in C*(Xouy : 7).

Proof: Let v € Nk(ay) and u € Nk, (aq) be fixed. Fix a set Wy, such as in the
beginning of the proof of Theorem 3.4, and such that it contains u. Moreover, we
select a set W of representatives for W/Wgnp in Ng(aq) containing Wg,v. As in
the proof of the mentioned theorem we may restrict ourselves to the situation that
Exp(P,u'v| f) C s — NA(P), for some s € a}. and all v’ € Wg,. In the following
we may now use the notation and results of the proof of Theorem 3.4.

Let n € sg — NA,(Q). Then from (3.16) and (3.15) we infer that, for every
X e aQq>

@(@Qv| £, X, bu) = D Wge(Puv|f, X +logbe), (b€ AL, ("P));
£€s—NA(P)
£lagq=n
the series on the left-hand side converges neatly as a Ag(P)-exponential polynomial
series in the variable b € *Azgq(*P). The function m — ¢, (Q,v | f, X, mbu) belongs
to C°(Xg.u: Tv), and so does the function m — g¢(P,uv| f, X + logb,m), for
every £ € s — NA(P). Evaluation at e induces a topological linear isomorphism
C®(Xo: Tv) == VMOWHE™ for every w € Nk (ay), hence in particular for w = uw.
Thus, it follows from the above that (3.22) holds, with the asserted convergence. In
addition, it follows that the series (3.23) converges as asserted.

In the proof of Theorem 3.4 we saw that Exp(Q, v | f) C sq —NA, (Q). It follows
from the derived expansion (3.22) that (3.21) holds with the inclusion ‘C’ in place
of the equality sign. For the converse inclusion, let & € Exp(P,uv|f) and put
N = &olagy- We select X € agq such that the function b+ g¢, (P, uv | f, X +logb,e)
does not vanish identically on *Agq. The equality (3.22) holds for all b € *Af, (*P)
with a Ag(P)-exponential polynomial series that converges neatly on *qu(*P). Any
exponent £ of this series coincides with 7 = &la,, On agq; if it also coincides with
& on *agq, then & = &. Therefore, the function of b defined by the series on the
right-hand side of (3.22) is non-zero. Hence ¢,(Q,v | f) does not vanish identically
on agq X *Ab,(*P)u and we conclude that n € Exp(Q, v | f)pu- O

We proceed by discussing some useful transformation properties for the coeffi-
cients in the expansion (3.9).

If u € Nk(aq) it will sometimes be convenient to write uX: = Ad(u)X for X € aj.
Similarly, we will write u&:= &0 Ad(u)~", for £ € aZ.

If u,v € Nk(aq) and @ € P,, then conjugation by u induces a diffeomorphism 7,
from the space Xg, onto X,g,-1 4,; We note that v, maps Xqg, + onto X,gu-1 4 +-
It is easily seen that R,qu-1u,(7u(m)) = Rg(m), for m € Xg,.

For p € C*®°(Xgu,+: Tq), we define the function p,,¢: Xygu-1 4.+ — Vr by

praup(@) = T(w)p(r, ' (2)). (3.24)
Then p,,, is a topological linear isomorphism from the space C*°(Xq,, 1 : 7o) onto the
space C™(Xyou-1uv,+ : Tugu-1)- Likewise, by similar definitions we obtain a topolog-
ical linear isomorphism from C*(Xigu +: 7g) onto C°(Xy you-1uv,+ : Tugu-1), also
denoted by pr,.
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Lemma 3.6 Let f € C®(X;: 1), let Q € P, and u,v € Nk(aq). Then

Exp(uQu~",uv| f) = uExp(Q,v| f).

Moreover, for every n € Exp(Q,v | f),
Gun(uQu™" v | f) = [Ad(u™)" ® pral 4(@,v | f).
Proof: Put Q' = uQu~"'. Let m € X yo+. Then, by Theorem 3.4,

f(mauv) = Z aq,(Q',uv | f)(loga, m), (3.25)

nE€Exp(Q’,uv | f)

for a € Af (Rquw(m)™"), where the series on the right-hand side is neatly con-
vergent. On the other hand, from f(mauv) = 7(u)f (v, ' (m)u"'auv) we see, using
Theorem 3.4 again, that

fmaw) =7(uw) Y a*q(Q,v] f)(Ad(u) " loga, 7, (m)), (3.26)

CEExp(Q,v | f)

for u'au € A (Rqu(v; ' (m))~"). We now note that the latter condition is equiv-
alent to

@ € Ag(Rau(r, (m) 1) = Alyy(Rarun(m) ).

Hence the series (3.25) and (3.26) both converge neatly for a € Agq(Rg ww(m) ).
All assertions now follow by uniqueness of asymptotics. O

For later purposes, we also need another type of transformation property. Recall
from Remark 3.1 that for u € Nk (a,) we write X, = Xig, = G/uHu *;let X, 4 de-
note the analogue of X, for this symmetric space. We note that right multiplication
by u induces a diffeomorphism r, from X, onto X, mapping X, + onto X . Hence
pull-back by r, the topological linear isomorphism R,:= r} from C* (X, : 7) onto
C>®(Xy4: 7); it is given by R, f(z) = f(zu). We note that the map R, coincides
with the map p,,, introduced in the text above Lemma 3.6, by sphericality of the
functions involved.

The following result is now an immediate consequence of the definitions.

Lemma 3.7 Let f € C®*(X;:7) and v € Nk(ay). Then R, f € C®(X,4: 7).
Moreover, for each () € P, and every v € Ngk(ay), the set Exp(Q,vu| f) equals
Exp(Q,v | R,f). Finally, if ¢ € Exp(Q,vu | f), then
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4 Behavior of differential operators along walls

We assume that () € P, is fixed. The purpose of this section is to study a Q-
radial decomposition of invariant differential operators on X. This leads to a series
expansion of such operators along (Q, e), with coefficients that turn out to be globally
defined on the group Mg,. This will be of crucial importance for the applications
later on (see Proposition 8.3).

The involution fo fixes a, pointwise, hence leaves every root space g,, for o € X,
invariant. We denote the associated eigenspaces of fo|,, for the eigenvalues 41 and
—1 by g} and g, respectively. Moreover, we put m=:= dim g=.

We recall that Ko = KN Mg and Hy = HN Mg. Define Hig: = H N Mg; then
Hyg = Hgo(Ag N H). Note that Kg = K N M,q. The group M;q admits the Cartan
decomposition Mg = KgAqH1g and normalizes the subalgebra ng.

For m € M, we define the endomorphism A(m) = Ag(m) € End(fig) by

A(m):=ocoAd(m ') o0 Ad(m). (4.1)
Moreover, we define the real analytic function = dg: M1g — R by
d(m) = det(I — A(m)). (4.2)
Finally, we define the following subset of Mg
Mig:= Mg\ 6 *(0). (4.3)

Lemma 4.1
(a) Letm € Mg,k € Kg and h € Hyg. Then A(kmh) = Ad(hfl) o A(m) o Ad(h).

(b) The endomorphism A(m) € End(ng) is diagonalizable, for every m € Mq.
The eigenvalues are given as follows. Let m = kah, with k € Kg, a € Ay
and h € Hig. Then the eigenvalues of A(m) are £a™2*, o € %(Q), with
multiplicities m.

(¢) The operator norm of A(m) is given by ||A(m)|lop = Rg1(m)?.

Proof: (a) is an immediate consequence of (4.1). Hence, for (b) we may assume

that m = a € Aq. It is easily seen that A(a)|+ = Fa >*I for o € £(Q).

Finally, (c) is an immediate consequence of (b) and (3.6) with v = 1. O

Corollary 4.2 If k € K, a € Ay, h € Hi then
S(kah) = ] (1—a2)™ (1 +a20)m.
aeX(Q)
The set M{Q is left K- and right Hyg-invariant, and open dense in Mq.

Proof: This follows immediately from Lemma 4.1 combined with (4.2) and (4.3).
(]
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We define the linear subspace ¢(@) of € by £@):= €N (ng + fig). Then the map
(I+6):X — X + 60X is a linear isomorphism from g onto £(Q).

Lemma 4.3
(a) If m € Mg, then Ad(m ')&@)+ b C fig + b.
(b) If m € Mj,, then Ad(m ™ ")&@) @ b =ng + b.
Proof: (a) Since £@) C ng +ng C ng + h, we have, for all m € M,
Ad(m )@ C Ad(m ") (g +ng) = g +ng C g + b.

(b) The dimension of Ad(m™')¢@Q) equals that of £(@), which in turn equals that of
fig. Hence it suffices to prove, for m € M), that Ad(m Yeq@) Nh=0.

Let X € Ad(m™1)8@ Nh. Then fAd(m)X = Ad(m)X and 0 X = X, and we see
that (I — A(m))X = 0. If m € Mj, then det(I — Ad(m)) = 6(m) # 0 and it follows
that X = 0. [l

From Lemma 4.3(b) we see that for m € M, we may define linear maps ¥(m) =
Uo(m) € Hom(ng, @) and R(m) = Rg(m) € Hom(ng, b) by

X = Ad(m ¥ (m)X + R(m)X. (4.4)

Lemma 4.4 Let m € M{,, k € Kg and h € Hyq. Then
\I’(kmh) = Ad(k) o \Il(m) o Ad(h),
R(kmh) = Ad(h™')oR(m)oAd(h).

Proof: This is an immediate consequence of (4.4) combined with Lemma 4.3(b).
U

Lemma 4.5 Let m € Mj,. Then
U(m)o (I - A(m)) = (I+0)oAd(m)
R(m)o (I —A(m)) = —(I+0).A(m).
Proof: From (4.1) it follows that
I+00A(m) =Ad(m ) o (I +6)0Ad(m).
This implies in turn that
I—A(m) =Ad(m ") o (I +0)oAd(m) — (I + 7)o A(m). (4.5)

Since I 4+ 60 and I 4+ o map 11 into €(@) and b, respectively, the lemma follows from
combining (4.5) with (4.4). O
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Corollary 4.6 The functions ¥: M{, — Hom(ng, £@)) and R: M}, — Hom(ng, b)
are real analytic. Moreover, the functions 6 ¥ and § R extend to real analytic func-
tions on Mq.

Proof: From (4.2) and (4.3) we see that I — A(m) is an invertible endomorphism
of ng, for m € Mj,. Since Ad(m) and A(m) depend real analytically on m € My,
all statements now follow from Lemma 4.5. O

If R > 0, then in accordance with (3.7) we define
MlQ[R]: = {m € MlQ | RQ,l(m) < R}

Moreover, we set Mqg,[R]: = Mg, N Mig[R).

Lemma 4.7
(a) Mig[l] € M,
(b) Let Rl, R2 > (0. Then MQJ[RI] qu(RQ) C MlQ[RlRQ].

Proof: Let m € M;g[1]. Then ||A(m)|op < 1 by Lemma 4.1(c), and hence 6(m) # 0.
This establishes (a).

Assume that m € Mq,[Ry] and a € A} (R,). Write m = kbh with k € Kg,
b € *Agq and h € Hyig. Then ma = k(ab)h, hence Rg1(ma) = maxaexg)a *b* <
RQRQJ(TI’L) < R{Rs. It follows that ma € MlQ[RlRQ]. O

Proposition 4.8 There exist unique real analytic functions ¥ ,,, R,,: Mo, — End(ng),
for i1 € NA,(Q), such that for every m € Mg, and every a € A} (Rg.(m)™"),

Uima) = (1460)s > a MW,(m),

HENAL(Q)

Rima) = (1+0)e Y ™ Ry(m)
LENA,(Q)

with absolutely convergent series. For every R > 1 the above series converge neatly
on A (R™") as A,(Q)-power series with coefficients in C*(Mg,[R], End(iig)).

Proof: Let m € Mg, and a € A} (Rg,(m)™"). It follows from Lemma 4.7 that
ma € Mig[1] C Mj,. Hence ¥(ma) and R(ma) are defined.
It follows from Lemma 4.1 that ||A(ma)||sp < 1. Hence the series

(I = A(ma))™" = A(ma)"

converges absolutely. Let oo € 3,(Q). Then A(m) leaves the space g_, invariant,
and A(ma)|y_, = a=?*A(m)|y_,. Hence, in view of Lemma 4.5,

U(ma)ly_, = (I +6)2Ad(m)= 3 a0 A@m)",

n=0
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and
o0

R(ma)lg_, = —(T +0)o Y a " A(m)"|,_,.

It is now easy to complete the proof. O

We denote by Rg the algebra of functions on Mj, generated by the func-
tions £oWq, where & € Hom(ng, 8@))*, and by the functions noRg, where n €
Hom(ng, h)*. By Rg we denote the algebra of functions generated by 1 and 7'\’,5.
Note that R, is an ideal in Ry.

Corollary 4.9 The elements of Rq are left Kg- and right Hyg-finite functions on
M.

Let ¢ € Rq. There exists a k € N such that 6 extends to a real analytic
function on M,yq. Moreover, there exist unique real analytic functions ¢¢ on Mg,,
for £ € NA,(Q), such that for every m € Mg, and every a € Agq(Rg,1(m)™),

pma) =Y a tpg(m). (4.6)

£eNA(Q)

Let R > 1. Then the series (4.6) converges neatly on Agq(R '), as an exponential
polynomial series with coefficients in C*°(Mg,[R)]).
Finally, if ¢ € Rg, then (4.6) holds with o = 0.

Proof: Uniqueness of the functions ¢, is obvious. Therefore it suffices to prove
existence and the remaining assertions. One readily checks that it suffices to prove
the assertions for a collection of generators of the algebra ’Rg Such a collection of
generators is formed by the functions of the form ¢ = £ ¥, with £ € Hom(fg, ¢@))*,
and by the functions of the form ¢ = 7o Rg, where n € Hom(fig, h)*. For both types
of generators all assertions follow immediately from Proposition 4.8. O

As is the previous section we assume that 7 is a smooth representation of K in

a locally convex space V,. The space of continuous linear endomorphisms of V, is
denoted by End(V;).
If an element u of the space

DlQ: = RQ X End(VT) X U(le) (47)

is of the form ¢ ® L ® v, with ¢ € Ry, L € End(V;), and v € U(myg), then we
define the differential operator u, on C*(Mjq,V;) by u.f = @Lo[R,f]; here R
denotes the right regular representation. The map u — u, extends to an injective
linear map from D¢ to the space of smooth End(V;)-valued differential operators

of C*(Mjg,V;). We also define the subspace
Dfy:=R§ ® End(V;) ® U(myg).

Via the map v — 1 ® I @ u we identify U(myg) with a subspace of D;g. Then
u, = Ry, for u € U(myg).
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Let Mg + be the preimage in Mg of the set X;g.1,+ (see below (3.5)). The set
Mg := Mg+ N Mig

is an open dense subset of M;q that is left K- and right H;g-invariant.
In view of the decomposition g = fig® (mig+h), there exists, for every D € Ul(g),
an element Dy € U(m;g) with deg(Dy) < deg(D), such that

D — Dy € nqU(g) + Ul(a)bh. (4.8)

The element Dy is uniquely determined modulo U(myg)hi1o. We recall from [5],
Sect. 2, see also [7], p. 548-549, that the assignment D — D, induces an alge-
bra homomorphism pg = ‘lg:D(X) — D(Myq/Hiq), and that the homomorphism
pg:D(X) — D(Mig/Hig), defined by pg(D) = dgopp(D)ody' with dg(m):=
| det(Ad(m)|s,)|"/? for m € Miq, only depends on @ through the Levi component
Mq.

Proposition 4.10 Let D € D(X). There exists a uy € Dj, of degree deg(u,) <
deg(D) such that, for every f € C*(X, : 1),

Dflny,, = (D) + uw](flag, ,)-

Proof: By induction on the degree we will first establish the following assertion for
an element D of U(g). Let Dy € U(m,q) satisfy (4.8). Then there exist finitely many
@i € Ry, us € U(E), and v; € U(myg), for 1 <4 < n, such that deg(u;) + deg(v;) <
deg(D), and such that

D—Dy =) @i(m)[Ad(m) " u]v;  mod Ul(g)h, (4.9)

1=1

for every m € M.

The assertion is trivially true for D constant. Thus, assume that D is not
constant and that the assertion has been established for D of strictly smaller degree.
Let Dy € U(myg) be as above. Then, modulo U(g)h, D — D, equals a finite sum of
terms of the form X D;, with X € fig and D; € U(ng @ myg) such that deg D; <
deg D.

For m € Mj, , we have X = Ad(m)~'¥(m)X + Rq(m)X; hence

XD, = (Ad(m)™"¥(m)X)D; + [Rg(m)X, D] mod  Ul(g)h.

Now Ad(m)~'¥(m)X is a finite sum of terms of the form ¢(m)[Ad(m)~'u] with
u € €@ and ¢ € ’RZS Applying the induction hypothesis to D; we see that
[Ad(m)'¥(m)X]D; may be expressed as a sum similar to the one on the right-
hand side of (4.9).

On the other hand, [Rg(m)X, D] is a finite sum of elements of the form ) (m)Ds,
with ¢ € ’Rg and Dy € U(g), deg Dy < deg D. Applying the induction hypothesis
to Dy, we see that [Rg(m)X, D;] may also be expressed as a sum of the form (4.9).
This establishes the assertion involving (4.9) of the beginning of the proof.
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Let now D € D(X). By abuse of notation we use the same symbol D for a
representative of D in U(g)", and let Dy be as above. Then pf(D) equals the
canonical image of Dy in U(myg)™1@. Let ¢;, u;,v; be as above and such that (4.9)
holds. Then for every f € C*°(X,: 7) and all m € M|, , we have

Df(m) = ub(D)(flM;Q,+)(m)+Z<Pi(m)RAd<m)fluiwa(m)

= Ho(D) (s, )m) + D slm)r (i) o f (m)

where we have used that Raqum)-1u, Ry, f(m) = Ly, Ry, f(m) = 7(u;) Ry, f(m). Thus,
we obtain the desired expression with uy =>""  ¢; @ 7(u;) ® v;. O

Let U C Mg, be an open subset. It will be convenient to be able to re-
fer to a ‘formal application’ of elements of the space Djq, defined in (4.7), to
FP(Agq, C*(U,V;)), the space of (formal) A,(Q)-exponential polynomial series
with coefficients in C*(U, V), see the definition preceding Lemma 1.9. There is
a natural way to define a formal application that is compatible with the expansions
of Corollary 4.9 and with the map u — u,, defined in the text following (4.7). The
motivation for the following somewhat tedious chain of definitions will become clear
in Lemma 4.11.

The product decomposition Mg ~ Mg, X Agq induces a natural isomorphism
from U(myq) onto U(mg,) ® U(agq), by which we shall identify. Accordingly we
have a natural isomorphism

Dig = "Dig @ U(agq); (4.10)

where °Dig:= Rgo ® End(V;) ® U(mg,). To each element ¢ € Ry we may as-
sociate its A, (Q)-exponential polynomial series of the form (4.6); this induces a
linear embedding Rg — FP(Agq, C*(Mg,)) which by identity on the other tensor
components may be extended to a linear embedding

‘D1 = F*(AQq, Do),

where Dg,:= C*(Mg,) ® End(V;) ® U(mg,). By identity on the second tensor
component in (4.10) this embedding extends to a linear embedding

ep: DlQ — PP(AQq, DQU) X U(aQq). (411)

The image ep(u) of an element u € Dy under this embedding will be called
the A,(Q)-exponential polynomial expansion of u. Via the right regular action
of U(mg,) we may naturally identify Dg, with the space of C'*°-differential op-
erators acting on C*°(Mg,, V;). Accordingly, we have a continuous bilinear pair-
ing Do, x C*(U,V;) — C°°(U,V;). This induces a formal application map from
FP(Agq; Dgo) @ FP(Agq, C=(U,V;)) to FP(Agq, C*(U,V;)) in the fashion de-
scribed above Lemma 1.10. The image of an element of the form v ® f under this
map will be denoted by uf.
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On the other hand, in Lemma 1.9 we described the formal application map
Ulagq) @ FP(Agq, C*(U,V;)) = FP(Agq, C*(U,V;)). The image of an element of
the form v ® f under this map is denoted by v f. Combination of the above formal
application maps leads to the formal application map

[F*(Aga; Poo) ® Ulag)]l © FP(Agq, CF(U, V7)) = F*P(Aqq, C*(U, V7)),

given by (u®v) ® f = (u®v)f:=u(vf), for u € FP(Agq, Dgo), v € Ulag,) and
f e FP(Agq, C*(U,V;)). Composing with the embedding (4.11) we finally obtain
the linear map

Dig ® FP(Aqq, CF(U, V7)) = FP(Aqq, C=(U, V7))

given by u® f — uf:=ep(u)f, for u € Dig and f € FP(Agq, C*(U,V;)). We shall
call this map the formal application of D to F®(Agq, C°(U, V;)).

Let now R > 1 and let U C Mg,|R] be an open subset. We use the obvious
natural isomorphism to identify the space CP(A (R™"),C®(U,V;)) with a sub-
space of C®(UAS(R™),V;). If u € Dy, then the associated differential operator
u, induces a map from the first space into the latter.

Lemma 4.11 Let u € Dig, let R > 1 and let U C Mg,[R] be an open subset. Then
u, maps the space C®P(A} (R™'),C®(U,V;)) into itself. Moreover, if f belongs to
that space, then the A,(Q)-exponential polynomial expansion of u,f is obtained
from the formal application of u to the exponential polynomial expansion of f.

Proof: This follows from retracing the definitions of u, and of the formal application
of u given above and applying Corollary 4.9 and Lemmas 1.9 and 1.10. O
Given v € Ng(a,) we define pg,: D(X) = D(X1g,) = D(M1g/MigNvHv™!) by

HQv = Ad(’l}) o Uy=1Qu,

where Ad(v): D(X1y-10v,e) = D(X1g,) is induced by the restriction to U(my,-1¢g,)
of Ad(v) on U(g). Then g, depends on @ only through M;q. It is easily seen that

HQu = ,U,UQ o Ad(’l}) (412)

where p$:D(X,) = D(G/vHv ') = D(Xig) = D(M1q/Mig NvHv ) is defined
similarly as pg, but with H replaced by vHv !, and where Ad(v): D(X) — D(X,)
is induced by Ad(v) on U(g).

Let MQO’,+ = MQO’ N MlQ,+ and, for R Z 1, MQU,+[R] = MQU[R] N MIQ,+-

Lemma 4.12 Let f € C*®®(X, : 7) and let D € D(X). Then Df € C*®®(X, : 7).
Let Q € P, and let uy € Ry, ® End(V;) ® U(myq) be associated with D as in
Proposition 4.10. Then the following holds.

(a) The A,(Q)-exponential expansion of D f along (Q, e) is obtained by the formal
application of i (D) +uy to the A.(Q)-exponential polynomial expansion of

f along (Q,¢).
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(b) Let v € Nk(aq), then Exp(Q,v|Df) C Exp(Q,v | f) — NA,(Q).
(c) If€ is a leading exponent of f along (Q,v), then

a**"2q¢(Q,v| Df,loga,m) = [pg.(D)pl(ma),  (m € Mooy, a € Azzq), )
4.13

where the function p: Mg — V; is defined by p(ma) = a*™P2q¢(Q, v | f,loga, m),
form € Mg,,+ and a € Agq.

Proof: Let R > 1 and let f be the function A} (R™") — C°(Mgq, +[R],V;) de-
fined by f(a,m) = f(ma). It follows from the hypothesis on f and Theorem 3.4
that f(a,m) belongs to CP(AL (R™"),C®(Mgo,+[R],V;)). Moreover, its A.(Q)-
exponential polynomial expansion coincides with the expansion of f along (Q,e).
Put v = g (D) + uy. Then it follows from the previous lemma that w. f belongs to
CP(AL(R™),C®(Mgo,+[R], V;)); its expansion is obtained from the formal appli-
cation of u to the (@, e)-expansion of f. It follows from Theorem 3.4 that the expan-
sion is independent of R and that its coefficients are functions in C*°(Mgs 4, V).
On the other hand, it follows from Proposition 4.10 that u, f(a,m) = D f(ma). This
implies that Df has a A,(Q)-exponential polynomial expansion along (Q,e) with
coefficients in C* (Mg, .+, V;). Since Df is right H-invariant, the coefficients are ac-
tually functions in C*(Xg ¢+, V). Moreover, the expansion is independent of R and
converges neatly on A}, (R™") as an expansion with coefficients in C*(Xq ¢, [R], V7).
In particular this holds for every minimal parabolic subgroup @; hence Df €
CP (X, : 7).

In the above we have established assertion (a). It follows from this assertion that
(b) holds with v = 1 for every Q € P,. By Lemma 3.6 it also holds for arbitrary
Q@ € P, and v € Nk(ay).

It remains to establish (c). Assume first that v = e. Fix £ € Exp.(Q,e| f).
Then by (a), afq(Q,e|Df,loga,m) is the term with exponent £ in the series
that arises from the formal application of ug(D) + uy to the (Q,e)-expansion
of f. The exponents of the expansion ep(u;) of u, all belong to —[NA,(Q)] \
{0}. The application of u, therefore gives rise to an expansion with exponents
in Exp(Q, e f) — [NA,(Q)] \ {0}. The latter set does not contain &, since ¢ is lead-
ing. Hence a®q¢(Q,e| Df,loga, m) is the term with exponent & in the expansion
that arises from the formal application of ug(D) to the (Q, e)-expansion of f. Now
po(D) € U(mig) ~ U(mg,) ® Ulage) and we see that the formal application of
po(D) to the (@, e) expansion of f is induced by term by term differentiation
in the Ag, and the Mg, variables. This implies that afq(Q,e|Df,loga,m) =
[ (D)¢'](ma), where ¢’ (ma) = afqe(Q, €| f,loga,m). This implies (4.13) for v = e.

Let now v € Nk(a,) be arbitrary, and put f” = R, f. We shall apply the version
of (4.13) just established to the expansion along (Q,e) of the function f¥ on X,.
Let € be a leading exponent of f along (Q,v), then it follows from Lemma 3.7 that
¢ is also a leading exponent of f? along (Q,e). Moreover, let D € D(X), then
(Df)? = D" f* where D': = Ad(v)D € D(X,). Hence

a**"qe(Q, e| (Df)",loga,m) = [ug(D")¢](ma), (4.14)
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for m € Mg, ., a € Agq, where p(ma) = a®7Qq(Q, e | f’,loga, m). It follows
from Lemma 3.7 that ¢(ma) = attP2q(Q,v| f,loga,m), and ¢(Q,e| (Df)?) =
¢e(Q,v| Df). Now (4.13) follows from (4.14) and (4.12). O

Lemma 4.13 Let P € Py"™ and assume that f € C®*(X,: 7). Let S C af be a
finite set as in Lemma 2.2, and let D € D(X). Then Exp(P,v|Df) C S — NA for
every v € Nk(aq) and, with notation as in Lemma 2.2,

(Df)s :D(fs) (415)

Proof: It follows immediately from Lemma 4.12(b) that Exp(P,v|Df) C S — NA
and that Exp(P,v|D(fs)) C s — NA for s € S. Now (4.15) follows from Lemma
2.2. U

5 Spherical eigenfunctions

In this section we assume that (7,V;) is a finite dimensional continuous representa-
tion of K. Let I be a cofinite ideal of the algebra D(X). Then by C*(X: 7: I) we
denote the space of f € C®(X, : 7) satisfying the system of differential equations

Df=0, (Del).

Remark 5.1 Many results of [3] that are formulated for D(X)-finite 7-spherical
functions on X are actually valid for the bigger class of D(X)-finite functions in
C*®(X, : 7) as well, since their proofs only involve behavior of functions and oper-
ators on X . If such extended results are used in the text, we may give a reference
to the present remark.

Remark 5.2 Let v € Nk(ay). We recall from the text preceding Lemma 3.7 that
right translation by v induces a topological linear isomorphism R, from C*®(X, : 7)
onto the space C*°(X, +: 7). It maps the subspace of ID(X)-finite functions onto
the subspace of D(X,)-finite functions. Thus, if f € C®(X,: 7) is a D(X)-finite
function, then the theory of [3] may be applied to the D(X, )-finite function R, f;
the results are then easily reformulated in terms of the function f.

Lemma 5.3 Let I C D(X) be a cofinite ideal. Then C®(X,: 7: 1) C C®(X, : 7).
In particular, the elements of C*®°(X,: 7: 1) are real analytic functions on X.
Moreover, there exists a finite set X; C a7 such that Expy (P,v| f) C X, for all
feC>®Xy:7: 1), PeP™ and v € Ng(ay).

Proof: Let Q € P™". Applying Theorem 2.5 of [3], see Remark 5.1, we obtain that
flAZ(Q) is given by a neatly converging A(Q)-exponential polynomial expansion
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for each f € C*°(X,: 7: I). Moreover, by Theorem 2.4 of [3], there exists a finite

set X7 g.e C ai, such that Expy (f[Af(Q)) C Xrqe Let w € W. Applying the

above argument to R, f, cf. Remark 5.2, we see, more generally, that Téjw f is given
by the same type of expansion with leading exponents in a finite set X7 . C agc
independent of f. This implies that f € C®*(Xy: 1), with Expy (P,v|f) C X;:=
UgwX1,guw, for all P € P™ and v € W. Finally, if v € Ng(a,) is arbitrary,
there exists w € W, m € Ky and h € Ngng(a,) such that v = mwh, and then
Exp, (P,v|f) = Exp (P,w| f) C X]. O

Corollary 5.4 Let P € P™" and let W C Ng(a,) be a complete set of represen-
tatives of W/Wxnu. Let I be a cofinite ideal in D(X). Then there exists a finite set
S = St satisfying the properties of Lemma 2.2 for every f € C*(X, : 7: I). More-
over, if Sy is any such set, then f; € C®(X,: 7:1I) for every f € C®(X,:7:1)
and all s € 5.

Proof: This is an immediate consequence of Lemmas 5.3 and 4.13. U

The set X7 in Lemma 5.3 can be described more explicitly if the ideal I has
codimension 1. Let b be a maximal abelian subspace of q containing a,, let 3(b)
be the restricted root system of b in g¢, and let W (b) be the associated reflection
group.

Let v be the Harish-Chandra isomorphism from D(X) onto the algebra I(b) of
W (b)-invariants in S(b), see [5], Sect. 2. To an element v € b we associate the
character D +— (D : v) of D(X) and denote its kernel by I,,. Then I, is an ideal of
codimension one in D(X); in fact, any codimension one ideal is of this form.

Let Wy(b) be the normalizer of a, in W (b). Then restriction to a, induces an
epimorphism from Wy(b) onto W, cf. [5], Lemma 4.6. We put by:= b N €& Then
b = bx @ a,. Moreover, this decomposition is invariant under Wy (b).

Lemma 5.5 There exists a finite subset L = L, of by, with the following property.
Let v € b} and f € C®°(X,:7:1,). Let P € P™" v € Ng(a,) and assume that
¢ € Expy,(P,v| f). Then

ve W) (L+E+ pp).

The proof is based on the following result, which will be proved first.

Lemma 5.6 There exists a finite subset L = L, of by, with the following property.
Let v € b} and ¢ € C*°(M,/Hy, : 7), and assume that

pp(D)p = y(D: v)p

for all D € D(X), where up:D(X) — D(M,/Hy,) is as defined above Proposition
4.10, with P € P™n. Then | Aq 18 a linear combination of exponential polynomials of
the form a — p(loga)a™”, where p € P(a,) and where w € W (b) satisfies wv|y, € L.

Proof: The algebra D(M/Hy;) acts semisimply on C®°(M/Hy : 7), see [5], Lemma
4.8; let £ be the (finite) set of A € bj, such that the associated character of
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D(M/Hy) occurs. We may assume that ¢ is a joint eigenfunction for D(M/Hy),
with eigenvalue character given by A € L. It follows that

(D@)|aq =, (D: A+ -)(pla,)

for D € D(My/Hw,) ~ D(M/Hy) @ S(aq). Here vy, denotes the Harish-Chandra
isomorphism from D(M;/Hy,) into S(b), defined as in [9], above eq. (2.11), and
My (D: A+ +) € S(ay) is considered as a differential operator on A,. Combining

this identity with the assumption on ¢, the identity vy, o up = 7y, and the surjectivity
of 7:D(X) — S(b)"® it follows that

u(A =+ - )(pla)) = u(@)ela,
for all u € S(b)V®). Let ¢ € C=(b) be defined by G(X +Y) = e*Xyp(expY) for
X € by, Y € ag, then up = u(v)p. This implies that ¢ is a linear combination
of exponential polynomials of the form pe*”, where p € P(b) and w € W (b), see
[27], Thm. I11.3.13. However, from the definition of ¢ it is readily seen that w only
contributes if wy |, = A. O

Proof of Lemma 5.5: We define the my-spherical function ¢: My /MiNvHv ™" ~
M/M NnvHv™ ! x Ay = V; by

p(ma) = a’"*eqe(P,v| f)(log a,m).

Then it follows from the equation Df = v(D: v)f and Lemma 4.12 (c) applied to
D — y(D: v) in place of D, that

ppo(D) =(D: v)e.

Since ¢ is T-spherical and non-zero, its restriction to A4 does not vanish.

Let first v = e, and let £ be as in Lemma 5.6. It then follows immediately from
that lemma that there exists w € W (b) such that wv|y, € £ and wv|o, =& + pp.

For general v € N (a,) we also obtain the result from Lemma 5.6, by applying
it to the function ¢”:= p.,-1¢. Indeed, it follows from the definition of up, that
¢’ satisfies the assumption of the lemma. Hence there exists w € W(b) such that
wvle, € L and wr|q, = v (£ + pp). Let v’ € Wy(b) be such that v'Y = vY for all
Y € a4, then v € (v'w) (V'L + £+ pp). O

We will also need a result on leading coefficients along non-minimal parabolic
subgroups.

Lemma 5.7 Let f € C®(X,: 1) be a D(X)-finite function. Let Q € P,, v €
Nk (aq) and assume that & € Exp(Q,v| f). Then the function ¢:Xig,+ — V7
defined by

go(ma) = a§+qu§(Q’ v | [f;loga, m) (m € XQ7U,+’ a < AQQ)’
is D(Xy ¢,y )-finite.

Proof: Let I be the annihilator of f in the algebra I(X). Then it follows from
Lemma 4.12 (c) that ug,(D)e = 0 for all D € I. The algebra D(X;¢g,) is a finite
module over the image of the homorphism g ,; see [5], p. 342, and apply conjugation

by v. Hence pg,(I) generates a cofinite ideal in (X ¢, ). This establishes the result.
U
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We end this section with a result that limits the asymptotic exponents occurring
in discrete series representations to a countable set. Later we will apply this result
to exclude the possibility of a ‘continuum of discrete series’ (see the proof of Lemma
9.13).

To formulate the result we need to define asymptotic exponents for a K-finite
rather than a 7-spherical function. We denote by K the collection of equivalence
classes of irreducible continuous representations of K. If ¥y C K is a finite subset,
then by C*°(X,)y we denote the space of smooth K-finite functions in C*°(X})
all of whose K-types belong to . By Vy:= C(K)y we denote the space of left K-
finite continuous functions on K all of whose left K-types belong to ©. Moreover,
by 7y we denote the restriction of the right regular representation to Vy. If f €
C*(X,)yg, then the function ¢y(f): X — Vjy, defined by <9(f)(z)(k) = f(kx) for
z € X,k € K belongs to C®(X, : 79). The map ¢:= ¢y is a topological linear
isomorphism from C*(X,)y onto C*°(X, : 7y), intertwining the D(X)-actions on
these spaces. Moreover, ¢ maps the closed subspace C*(X)y of globally defined
smooth functions onto the similar subspace C*(X: 7). We denote by C*(X, )y
the preimage of C*?(X, : 7y) under . It follows from Lemma 5.3 that D(X)-finite
funcitons in C*(X, )y belong to C*?(X, )y. Let f € C°P(X, )y; then for P € P, and
v € Nk(aq) we define the set of exponents of f along (P, v) by

EXp(P,’U | f) = EXp(P,’U ‘ §(f))

Note that this collection is the union for ¥ € K and m € Xp,  of the collec-
tions of exponents occurring in the A(P)-exponential polynomial expansions of
a— f(kamv).

Let C(X) denote the space of Schwartz functions on X, see [9], Section 6, and
let A5(X) gk denote the space of K-finite and ID(X)-finite functions f € C(X). These
functions are real analytic and belong to L?*(X), cf. [3], Thm. 7.3.

Lemma 5.8 Assume that the center of G is compact. Then
{e € Exp(P,v| f) | P € Py v € Ni(aq), f € As(X) i}

is a countable subset of ay..

Proof: Let Xd denote the set of equivalence classes of discrete series representations
of the symmetric space X. This set is countable, since L*(X) is a separable Hilbert
space. Given w € X4 we denote by L*(X),, the collection of functions f € L?*(X)
whose closed G-span in L?(X) is equivalent to a finite direct sum of copies of w. Let
K denote the countable set of equivalence classes of irreducible representations of K.
Given w € X4 and 0 € K, we denote by L*(X), s the collection of K-finite elements
of type ¢ in L*(X),. It follows from [3], Thm. 7.3, that L*(X), s is a subspace of
A2(X) g, and from [2], Lemma 3.9, that this subspace is finite dimensional. On the
other hand, let f € Ay(X)g, and let V' C L?*(X) denote the closed G-span of f. It
follows from [2], Lemma 3.9, that V is admissible. Since V' is finitely generated, it
must then be a finite direct sum of irreducible representations. This implies that f
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belongs to a finite direct sum of spaces L?(X), s. From the above we conclude that
Ay (X) i equals the following countable algebraic direct sum:

Ay(X) g = Buer, 6k LQ(X)W,(;. (5.1)

Let w € id and § € K. Then it follows from Lemma 5.3 and the finite dimensionality
of L*(X),,s that there exists a countable subset &, 5 C af, such that

Exp(P,v[ f) C &uys

for all f € L*(X), 4, P € P™" v € Ng(aq). Combining this observation with (5.1),
we obtain the desired result. O

6 Separation of exponents

Let Q € P,. In the next section we shall consider functions f), € C®(X,: 1),
with parameter A € af),,., whose exponents along P € Pmin Jie in sets of the form
WA+S—NA(P), where S C a7 is a finite set. In general, given { € WA+S—NA(P),
the elements s € W/Wg and n € S—NA(P), such that £ = sA+n), are not unique. In
the present section we define a condition on A that allows this unique determination
for all £. In particular, the condition is valid for generic A € ag, .. We consider also
the case where P is non-minimal.
Let P,Q € P,. We define the equivalence relation ~pg on W by

s~pigt = VYA€ any SAapy = tAlapg- (6.1)

The associated quotient is denoted by W/ ~p|g . We note that the classes in W/~p g
are left Wp- and right Wg-invariant. Thus, W/ ~p|g may also be viewed as a
quotient of Wp\W/W,.

If s,t € W then one readily sees that s ~pgt <= s~ ! ~gp t~'. Hence the
anti-automorphism s — s~ of W factors to a bijection from W/ ~pg onto W/ ~g/p,
which we denote by o +— o7,

If s € W and A € afyy, then the restriction sA|q,, depends on s through its class
[s] in W/~p|q . We therefore agree to write

(51X ag: = 5Marg:

Definition 6.1 For S C a;. a finite subset, we define ag,.(P,S) to be the subset
of ag,. consisting of elements A such that, for all si, s, € W,

(51X = 52)) |apy €[S+ (=)|ap, + ZA(P) = 51 ~p|g S2.

Lemma 6.2 Let S C ag. be finite. Then, for A € ag,

Wlap, + (S =NAP)apy = (J  (0Mapy + (S = NA(P))[a,) -
O'EW/NP‘Q
Moreover, the union is disjoint if and only if A € ag,.(P, S).
Proof: Straightforward. U
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Lemma 6.3 Let Q,P € P,, and let S be a finite subset of a}.. Then ag,.(P,S)
equals the complement of the union of a locally finite collection of proper affine
subspaces in agc.

Proof: Let p:aj, — ap . denote the map induced by restriction to apq. Let II be
the complement of the diagonal in the set W/ ~pg xW/ ~pg . Then for every
o = (01,09) € [T and every 1 € ap . we write Ay, = {\ € ajyc | P(01A — 02)) = n}.
Note that A, is a proper affine subspace of aj.. If A € A,, then A, equals
A+ A, ; hence the set A, is either empty or a proper affine subspace.

Let A be the collection of subsets of the form A, ¢, for o € II and £ € p(S +
(=S)) + ZA,(P). Then agy,.(P, S) equals the complement of UA in ap.. Thus, it
remains to show that the collection A is locally finite.

Let C be a compact subset of af, . and let X be the collection of £ € p(S +
(=S)) + ZA,(P) such that C N A, ¢ # 0 for some o € II. Then it suffices to show
that X is finite.

Let C' C apy be the image of I x C under the map (o, A) = p(o1A —02A). Then
X equals the intersection of C’ with p(S+ (—S))+ZA.(P). The latter set is discrete
since S is finite, whereas the elements of A,(P) are linearly independent. It follows
that X 1is finite. d

Remark 6.4 In particular, it follows from the above lemma that ag, (P, S) is a
full open subset of ag,,; see Appendix B for the notion of full.

Lemma 6.5 Let QQ, P € P,. If either agq or apy has codimension at most 1 in a,,
then the natural projection Wp\W/Wg — W/ ~pq is a bijection.

Proof: It suffices to prove injectivity of the map. Since s — s~! induces a bijection

from W/ ~pjg onto W/ ~qp, it suffices to prove this when apq has codimension at
most 1. We assume the latter to hold.

For s € W, let [s] denote its canonical image in W/ ~p|q . Assume that s,z € W
and that [s] = [t]. Then for every A € af), we have sA = tA on apq. If apq = a4, this
implies that s = t on ag,,, hence sWq = {Wq, and since Wp is trivial in this case, the
proof is finished. Thus, we may as well assume that apy has codimension 1. Then
there exists a root & € ¥ such that apy = ker a. Note that Wp = {1, s,}. For every
A € ap, the Weyl group images sA and ¢A have equal length in af and equal image
under the orthogonal projection to a’. Hence there exists a constant n € {0,1}
such that (sA, a) = (=1)"(tA, ) for all A € ag, . It follows that sA = s]izA for all
A € agy; hence sWq = sltWg, from which it follows in turn that s and ¢ have the
same image in Wp\W/W,. O

In particular, if P is minimal, then the natural map W/Wy — W/ ~p|g is a
bijection; we shall use it to identify the sets involved.

7 Analytic families of spherical functions

In this section we assume that (7,V;) is a finite dimensional continuous representa-
tion of K. Let @ € P, and let Y be a finite subset of *ap,, see (3.4).
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In the following definition we introduce a space of analytic families of 7-spherical
functions that will play a crucial role in the rest of this paper.

Definition 7.1 Let (),Y be as above and let ) C ag,. be an open subset. We
define

Coy(Xy:1:Q) (7.1)

to be the space of C*°-functions f:{2 x X; — V, satisfying the following conditions.
(a) For every A € ) the function fy:x — f(\,z) belongs to C®(X, : 7).

(b) There exists a constant k € N, and, for every P € P™" and v € Nk(ay),
a collection of functions qs¢(P,v| f) € Py(aq) ® O(Q,C®(Xoy: ™)), for s €
W/Wq and € € —sWqY +NA(P), with the following property. For all A € (2,
m € Xo, and a € Af(P),

fAmav)= > a7 > aéq(Pv] f,loga)(A\,m),
seEW/Wq Ee—sWQY+NA(P)
(7.2)

where the A(P)-exponential polynomial series with coefficients in V, is neatly
convergent on A} (P).

(c) For every P € P™" v € Nk(aq) and s € W/Wg, the series

> afq¢(Pv] f,loga)

te—sWoY+NA(P)

converges neatly on Af(P) as a A(P)-exponential polynomial series with co-
efficients in O(Q2, C*(Xo,: Tvm))-

If f € Cqy(Xy: 7: Q), we define the asymptotic degree of f, denoted deg,f, to be
the smallest number k € N for which the above condition (b) is fulfilled.

Remark 7.2 We note that the space (7.1) depends on @) through its o-split compo-
nent Agq. Moreover, from Lemma 3.6 we see that in the above definition it suffices
to require (b) and (c) for a fixed given P € P™® and for each v in a given set
W C Nk(aq) of representatives for W/Winp. Alternatively, by the same lemma it
suffices to require (b) and (c) for a fixed given v € N (aq) and arbitrary P € Pmin,

Lemma 7.3 Let f € C3y(Xy: 7: Q). Then f) € C®(X,: 1) and
EXp(P, v ‘ f)\) C W(/\ + Y) —pPpp — NA(P) (73)

for all A € Q, P € P, and v € Nk(aq). Moreover, let Q': = QN ag, (P, WY) (see
Definition 6.1). Then €' is open dense in Q and

QS,ﬁ(Pav‘faXa/\)ZQS)\—pP—g(P;U|f)\,X) (74)
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for every s € W/Wq, £ € —sWoY +NA(P), X € ay and X € Q'. In particular, the
functions qs¢(P,v| f) are uniquely determined.

Proof: The first statement and (7.3) follow immediately from condition (b) in
the above definition. The set ' is open dense in 2 by Lemma 6.3, and it follows
from Lemmas 6.2 and 6.5 that if A € Q' then the sets s(A + WoY) — pp — NA(P),
s € W/Wg, are mutually disjoint. Then (7.4) holds by uniqueness of asymptotics.
Ol

The following result shows that an element of Cy’y (X, : 7: Q) may be viewed
as an analytic family of spherical functions.

Lemma 7.4 Let f € C3y (X, : 7: Q). Then A+ fy is a holomorphic function on
Q with values in C®(X 4 : 7).

Proof: Let W C Ngk(a,) be a complete set of representatives for W/Wgng. Note
that for v € W the VX H™ valued function Ty, f on A (P) is given by the
series on the right-hand side of (7.2) with m = e. It follows from condition (c) of
Definition 7.1 that a — Tjﬁjv fx(a) defines a smooth function on A (P) with values in

O(Q) @ VEuwHY ™ - According to Appendix A, the function A — Tlﬁ,vf,\( +) is a holo-
morphic function on © with values in C® (A7 (P), Vu™Hv™") Hence \ T}k,w(fx)

is a holomorphic function on 2 with values in C*(AF (P), By VM™HY™) The
conclusion of the lemma now follows by application of the isomorphism (2.8). O

If (¥, €2 are open subsets of a’. with €' C €, then restriction from € x X to
' x X, obviously induces a linear map

P Coy(Xy:7: Q) = Oy (Xp s 7: Q). (7.5)
Accordingly, the assignment
Q= Oy (Xy:7: Q) (7.6)

defines a presheaf of complex linear spaces on ag, .. Here we agree that (7.6) assigns
the trivial space to the empty set.
The following lemma will be useful at a later stage.

Lemma 7.5 Let Q € P, and Y C "ag,. a finite subset.

(a) If Y, Q are open subsets of ag,,. with ' # (0, Q connected and ' C Q, then
the restriction map (7.5) is injective. Moreover, deg,(p% f) = deg,(f) for all
felyyXy:m: Q).

(b) The presheaf (7.6) is a sheaf.

Proof: The injectivity of the restriction map follows by analytic continuation, in
view of Lemma 7.4. Let f' = p%, f. Let P € P™» vy € Nk(ay), s € W/Wg and
¢ € —sWoA + NA(P) then it follows from (7.4) that

QS,ﬁ(Pav‘fla'a)‘):qs,ﬁ(PaU‘f:'a/\) (77)
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for A in a dense open subset of €V, hence for all A € . In particular this implies
that the polynomial degree of the function on the left-hand side of the equation is
bounded by deg,(f); hence deg,(f') < deg,(f). To prove the converse inequality,
we note that the polynomial on the left-hand side of (7.7) is of degree at most
k': = deg,(f'") by the definition of the latter number. Since €2 is connected, it follows
by analytic continuation that deggqs¢(P,v|f, -, A) < k' for all A € €. Since this
holds for all P,v, 0, &, it follows that deg,(f) < k' and we obtain (a).

Assertion (b) is equivalent with the assertion that the presheaf satisfies the lo-
calization property (see [31], p. 9). This is established in a straightforward manner,
by using (a). O

We shall now discuss the action of invariant differential operators on families.
If fis a family in C3y(X;:7:Q), and D € D(X), then we define the family
Df:Qx X, —V, by

(Df)x= D(f»), (A e Q). (7.8)

Proposition 7.6 Let f € C)y (X : 7: Q). Then, for every D € D(X), the family
Df belongs to Cqy (X, @ 7: Q) moreover, deg,(Df) < deg,(f).

Proof: Let D € D(X). Then g = Df is a smooth function 2 x X, — V,; moreover,
for A € Q the function (Dg), = Df, is T-spherical. Thus, g satisfies condition (a) of
Definition 7.1 and it remains to establish properties (b) and (c¢). In view of Remark
7.2 it suffices to do this for v = e and arbitrary P € P™". Let k: = deg, f.

It follows from condition (b) of Definition 7.1 that, for A € €, the function f,
belongs to C*P(X : 7); moreover, its (P, e)-expansion is given by

Z asA=Pp Z a%q,¢(P,e| f,loga)(\, m), (7.9)

SEW/WQ EE—SWQY-i'NA(P)

for a € A7 (P) and m € M. Let u:= pp(D) + uy be the element of D;p associated
with D as in Proposition 4.10 with P in place of ). In view of Corollary 4.9 its
expansion ep(u), defined as in (4.11), is the sum, as i ranges over a finite index set
1, of series of the form

ep(u)z = Z a_UQDi,V 029 S’i,u X Ui, X Vip-
VENA(P)

Here ¢;, € C*(M,), Si, € End(V;), u;, € U(m,) and v;, € U(ay), and deg(u;,)+
deg(vi,) < d:= deg(D) for all i,v. By Lemma 4.12, the function g, belongs to
C®(X,:7), for A € Q, and its (P,e) expansion results from (7.9) by the formal
application of the element ep(u). This gives, for A € Q, m € M and a € Af(P), the
neatly converging exponential polynomial expansion

Z a* PP Z a”"qs ,(log a)(A, m),

SEW/WQ T)E—SWQY+NA(P)
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where ¢, 5, is given by the following finite sum

QS,W(X)()U m): = Z Z (pi,u(m)si,u[ qs,ﬁ(Pa € ‘ fa X, Ts)\—pp—g(vi,u); /\a m; ui,u) ]7
e e,
v+€=n

for A € 1, X € aqg and m € M. Here we have used Harish-Chandra’s convention

to indicate by a semicolon on the left or right-hand side of a Lie group variable the
differentiation on the corresponding side, with respect to that variable, by elements

of the appropriate universal enveloping algebra. Moreover, given v € ag. we have
denoted by T, the automorphism of U(aq) determined by 7,(X) = X + y(X) for

X € aq.

From the above formula it readily follows that §;,(X, A) is a smooth function of
(X, A) with values in C*°(M, V;); moreover, it is polynomial in X of degree at most
k and holomorphic in A € Q. This establishes condition (b) of Definition 7.1 with
v = e, arbitrary P € P™" and with

4sn(Pie| 9) = sy, (s e W/Wq, n € —sWaY + NA(P)).
For condition (c) we note that the series
Z a_n(Js,n(Pa € ‘ 9, lOgCI/) (710)
nE—sWqY +NA(P)
arises from the series
>, o a(Pelfloga) (7.11)
ge—sWQY +NA(P)

by the formal application of ep(u) conjugated with multiplication by a=***#7_ From
this we see that (7.10) arises from (7.11) by the formal application of the series

Z a’ Z Pi,v & Si,l/ 029 Ui,y 02y vi,u()\);
vENA(P) el

with v;, (A) = Tsx_pp (vi,n). We now observe that A +— Tox—p, |vy(ag,) i @ Polynomial
End(Uy(agq))-valued function, of degree at most d. Hence there exists a finite set J
and elements p; € Py(ap,) and T; € End(Ua(agq)), for j € J, such that

Ts)ﬁpP‘Ud(aQq) = Zp](/\)TJ
jeJ
Let B;, ; be the continuous endomorphism of O($2, C*(M,,V;)) defined by
Bi (M) (m) = p;j(N) @i (m) S [1h(N) (m; wi )]
Then the series (7.10) arises from the formal application of the series
>, @) By ®Ti(vi)

VENA(P) il
with coefficients in End(O(2, C*°(M,,V;))) ® U(ag,) to (7.11), viewed as a series
with coefficients in O(Q, C*(M,,V;)). It follows from Lemmas 1.9 and 1.10 that

the resulting series is neatly convergent as a series on Af(P) with coefficients in
O(Q,C*(M,,V,)). This establishes (c) with v = e and arbitrary P € Pmin, O
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We will now describe the asymptotic behavior along walls for a family. If P,Q €
Py, and 0 € W/ ~pjq (see (6.1)), then for every subset Y C af, we put

o-Y:={sN|ap, | s € W,[s] =0, n €Y} (7.12)

Theorem 7.7 (Behavior along the walls). LetQ € P,, 2 C A0qc & on-empty open
subset and Y C *ap. a finite subset. Let f € C3y(Xy: 7: Q) and let k = deg,(f)-

Let P € P, and v € Nk (aq). Then Exp(P,v | fy) C W(A+Y)|ap, — pp —NA, (P)
for every A\ € ). Moreover, there exist unique functions

qa,f(P’ v ‘ f) € Pk(apq) ® O(Qa COO(XP,TJ,—}— : TP))a

for 0 € W/ ~pjg and £ € —o - Y + NA,(P), with the following property. For all
A€, meXp,, and a € A (Rpy(m)™"),

fr(mav) = Z a’r=rr Z a % q,¢(P,v| f,loga)(\,m), (7.13)

O'EW/NP|Q te—o Y+NA, (P)

where the A, (P)-exponential polynomial series with coefficients in V, is neatly con-
vergent on Ap (Rpy(m)™"). In particular, if \ € Q:= QN ag5,.(P, WY') then

q”@(Pﬂ v ‘ f)(Xa /\) = QJA|an—pp—§(P, v ‘ f)\, X), (714)

for X € ap,.
Finally, for each 0 € W/~pq and every R > 1, the series

S a (Pl floga) (7.15)

£€—o Y+NA,(P)

converges neatly on Altq(R_l) as a A, (P)-exponential polynomial series with coef-
ficients in O(Q, C*(Xpy, +[R]: Tp)).

Proof: Let P € P, and let v € Nk(a,). Fix a minimal parabolic subgroup P, €
Poin contained in P. Fix a set Wp, C N, (aq) of representatives for Wp/Wp N
vWinrv™'. Then the natural map Ng(ay) — W induces an embedding We,v <
W/Wknn. Therefore, we may fix a set W C Nk(a,) of representatives for W/Wknn
containing Wp,v.

Fix A € Q for the moment. Then by Lemma 7.3, the function f, belongs to
C®(Xy:7),and Exp(Py,w| fn) C W(A+Y)—pp, —NA(P,), for every w € Ni(ay).
According to Theorem 3.5, for every u € Wp,,, the set Exp(P, v | f1)p, « is contained
in Exp(Pp, uv | fo)|ap,- Hence, by of (3.20) with P and P; in place of @ and P,
respectively, we infer that

Exp(P,v|fy) C [WA+Y)—pp —NA(P)]|ap,
= WA+Y)|ap, — pp — NA(P). (7.16)

Notice that (7.14) is a consequence of (7.13), by Lemma 6.2. Therefore the
functions ¢, ¢(P,v | f) are unique. We will now establish their existence.

44



It follows form (7.16) that the elements of Exp(P,v| f\) are all of the form
0Map, — pp — &, With 0 € W/ ~pjg and { € —0 - Y + NA, (P). Fix such elements o
and £. Then by transitivity of asymptotics, cf. Theorem 3.5, we have, for u € Wp,,
X € apg, m € M and b € *Ap (*P1), that

q,,,\‘an_pP_g(P,v | fr, X, mbu) = Z boqe(Pr,uv | fr, X + logb,m),

CEExp(Py,uv | fy)
Clapq:‘TA‘apq7/’P76

(7.17)

where the Ap(P;)-exponential polynomial series in the variable b converges neatly on
*A}(* P1). Tt follows from condition (b) in Definition 7.1 that, for ¢ € Exp(Py, uv| fy),

gc(Pr,uv | fr, X +1logb,m) = Z gsu(Pr,uv | f, X +1ogb) (A, m).
sEW/WQ
pE—sWQY+NA(P)
sA—pp, —p=¢

(7.18)

Now assume that A is contained in the full (cf. Lemma 6.3) subset €' of Q2. Then,
if s € W and p € —sWqY + NA(Py) satisfy [sA — pp, — pt]|ap, = OA|ap, — P — &,
it follows that [s] = o and pla,, = &, see Lemma 6.2. Hence, combining (7.17) and
(7.18) we infer that for A € ¥, u € Wp,, X € apq, m € M and b € *Ap (*P1),

qo—’\‘uquprg(P7 v | f)\a X; mbu) =
= Z APy Z b g (Pryuv | f, X +logh, A)(m). (7.19)

SEW/WQ uefsWQY+NA(P1)
[s]=0c .U'|upq:§

It will be seen below that each inner sum in (7.19) converges neatly, so that the
separation of terms by the outer sum is justified. This formula will guide us towards
the definition of the functions ¢, ¢(P,v | f).

In the following we assume that s € W/Wj and [s] = 0. For w € W we define
the function Fy,: A (Py) x Q — VEuwHw ™ by

Fyu(a,A) = > a"qsu(Pr,w| f,loga, A)(e),

pE—sWQY +NA(P,)

for a € AZ(P1), A € Q2.

The representation 7: = 1®7 of K on the complete locally convex space O(Q2) ®
V, is smooth. We shall apply the results of Section 3, with 7 in place of 7. The
series defining F;, is a A(P;)-exponential polynomial series with coefficients in
O(Q) ® V;. By condition (c) of Definition 7.1 it converges neatly on Al (P;); hence
F ., may be viewed as an element of C?(Af(P),[0(Q) ® V,[KunwHw™) n view
of the isomorphism (2.9), there exists a unique function Fy € C*?(X, : 7) such that
Tlﬁl,w(Fs)(a) = Fy(aw) = F(a), for w € W and a € A7 (P1). From the definition
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of Fy it follows that Exp(Py, w | Fy) C sWoY —NA(P,), for every w € W. Moreover,
for every w € W and every p € —sWgoY + NA(P,),

C]_H(Pl,w | FsaXa m)(/\) = QS,,u(Plaw ‘ fa X)(/\am): (720)

for X € apq, m € Xy, and A € 2. By transitivity of asymptotics, cf. Theorem
3.5, applied to Fy, we have that Exp(P,v | Fy)p o C 0-Y — NA, (P), for u € Wp,,
Moreover, by the same result it follows that, for £ € —o - Y + NA, (P),

q-¢(P,v| F) (X, mbu) = Z b q_u(Pr,uv | Fg, X +logb,m), (7.21)
WE—sWQY+NA(PY)
#lapy=¢

where the series on the right-hand side converges neatly as a Ap(P;)-exponential
polynomial series in the variable b € *Aﬁq(*Pl), with coefficients in C'*°(Xg 4, : Tn1)-
In particular, the asserted convergence of (7.19) follows.

Substituting (7.20) in the right-hand side of (7.19) and using (7.21) we find, for
A€ Y, that

Gorapy—op—e(Prv | s Xymbu) = Y b PPig ¢(Pv| Fy)(X, mbu)(X).  (7.22)
sEW/WQ
[s]=o
We are now ready to define the functions g, ¢(P,v | f).
Let 1 denote the trivial representation of K in C, and 1p its restriction to Kp.
If s € W/Wyg, we define the function ¢, € O(a5,c, C°(Xpy,+ ¢ 1p)) by

©s(A, kbu) = b PP (7.23)

for A € gy, ¥ € Why, k € Kp and b € *Af (*Py). Moreover, for o € W/ ~p)q and
£ € —0-Y +NA, (P) we define the function ¢, ¢(P,v | f): apq X Q —= C®(Xpy,+: Tp)
by

Goe(Pv] £, X, 0)(m) = Y @\, m)q¢(P,v| Fyy X,m)(N), (7.24)

sEW/WQ
[s]=c

for X € apg, A€ Qand m € Xp, ;.

If 1 < R < o0, then the locally convex space C*°(Xp, [R],O(2) ® V;) is nat-
urally isomorphic with O(2, C*(Xp, +[R],V;)), see Appendix A. The isomorphism
induces in turn a natural isomorphism of locally convex spaces

COO(XP,v,+[R] . 7~—P)) ~ O(Q, COO(XP’U,+[R] . Tp)). (725)

In particular, for R = oo, we obtain that C*(Xp, ;: 7p) is naturally isomorphic
with O(Q, C®(Xpy+: 7p)). Thus, from (7.24) we deduce that ¢, ¢(P,v|f) is an
element of Py(apq) ® O(Q,C®(Xpy+: Tp))-

Combining (7.22), (7.23) and (7.24) we infer that (7.14) holds for X € apq,
A € Q. On the other hand, if A € ', then it follows from (3.9) with P and f, in
place of @ and f, that, for R > 1, m € Xp, [R] and a € A} (R™"),

Fr(mav) = Z a’rrr Z a7§QU’)\|an*pP*€(P’ v| fx, loga)(m),

oEW/~p|q £€E—0-Y+NA, (P)
(7.26)
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where the series converges neatly on Az (R™"), as a A,(P)-exponential polynomial
series with coefficients in V, (use (7.16) and Lemma 6.2). Substituting (7.14) in
(7.26) we obtain the identity (7.13) for A € ', m € Xp,[R] and a € A} (R™),
with the convergence as asserted.
Thus, it remains to show that the identity (7.13) extends to all A € © and that
the final assertion of the theorem holds. We will first establish the final assertion.
It follows from Theorem 3.5 that the series

Z afq_¢(P,v| Fy,loga) (7.27)

£€—sWQY |ap, +NA, (P)

converges neatly on AJISq(R_l) as a A,(P)-exponential polynomial series with co-
efficients in the space (7.25). The series (7.15) arises as the sum over s € W/Wg
with [s] = o of the series in (7.27) multiplied by ¢,. Since multiplication by g
induces a continuous linear endomorphism of the space (7.25), this establishes the
final assertion of the theorem.

From the final assertion it follows that, for every R > 1, the series on the right-
hand side of (7.13) defines a holomorphic function of A € €, for every m € Xp, +[R]
and a € Ap (R™"). For such m, a the function A — fi(mav) is holomorphic in A € Q2
by Lemma 7.4; hence the identity (7.13) extends to all A € €2, by density of Q' in Q.
O

Theorem 7.8 (Transitivity of asymptotics). Let @, 2, Y, f, P and v be as
in Theorem 7.7. Let P, € P™" be contained in P. Let 0 € W/ ~pg and & €
—0-Y +NA,(P). Then for every X € apq, allu € Nk, (aq), b € *A} (*P1), m € M
and \ € €,

Ge(Po £, X) O mbu)y = 30 02 N b g (P f, X + logB)(A,m).

SEW/Wg pE—sWQY+NA(Py)
[s]=c ll»\apq=§
(7.28)
Moreover, for every s € W/Wq with [s]| = o and every X € apq, the series
S b (P f, X +logh) (7.29)
,u,E—sWQY+NA(P1)
,U|an:§

converges neatly on *A} (*P1) as a A(Py)-exponential polynomial series in the vari-
able b with coefficients in O(§2, C*°(Xoup: Tm))-

Proof: Fix u € Ng,(a,). Moreover, we fix a set Wp,, as in the beginning of the
proof of Theorem 7.7 such that it contains the element u. We will also use the
remaining notation of the proof of the mentioned theorem.

Using (7.20) we see that, via the natural isomorphism of O(Q, C*° (X 4y : 7))
with C*°(Xg .y : 7m), the series (7.29) may be identified with the series with coeffi-
cients in C° (X4, : Tv) that arises from the series on the right-hand side of (7.21)
by omitting the evaluation at m. The neat convergence of the latter series was noted
already. Moreover, the identity (7.28) follows by insertion of (7.21) in the definition
(7.24) of ge. O
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The following result is an important consequence of ‘holomorphy of asymptotics.’

Lemma 7.9 Let Q € P,, Y C "ag a finite subset and €2 C af, . a non-empty open
subset. Let f € Cyy (X, :7: Q) and let P € P,, v € Nk(aq), and 0 € W/~pjq .

Let £ € —0 - Y + NA,(P) and assume that there exists a Ay € a5,.(P,WY)NQ
such that

oNolap, — PP — & € Exp(P,v | fx,)- (7.30)

Then there exists a full open subset () of €) such that

U)\|apcl —pp — & € Exp(P,v| f), (VA € Q).

Proof: From (7.30) combined with (7.14) it follows that the Py (apq)®C*>(Xpy +: Tp)-
valued holomorphic function ¢: A — ¢, ¢(P,v| f, -, A) does not vanish at A = .
Hence there exists a full open subset ©; C  such that ¢()\) # 0 for all A € Q. Let
Qo: = Nag,(P,WY), then the conclusion follows by application of (7.14). [

We end this section with a result describing the behavior of the functions g,
under the action of Ng(a,). Let @, P € P, and u € Ng(a,), and put P/ = uPu™".
The left multiplication by u naturally induces a map W/ ~pjg— W/ ~pr g, which
we denote by o — uo. Moreover, the endomorphism Ad(u™!)* of tge Testricts to
a linear map ap,. — prye, Which we denote by n — un. With these notations, if
Y C *aj, is a finite subset and o € W/ ~pq, then

u(o-Y) = (uo)-Y;

see also (7.12). Forv € Nk(ay), let the map p;,: C®(Xpy 4 : 7p) = C°(Xpr o+ 1 Tpr)
be defined by (3.24) with P in place of Q.

If Q C af), is an open subset, let Ad(u™")*®1®p,, denote the naturally induced
map from P(apq) &® O(Q, COO(XP71},_|_ : TP)) to P(aplq) ® O(Q, COO(XPI,UUH_ : Tpl)).
Lemma 7.10 Let Q € P,, Y C *ag,. a finite subset and Q2 C ap,. a non-empty
open subset. Let f € C3y(Xy:7:Q). If P € P, and u,v € Nk(aq), then for all
ogeW/~pgandé€o-Y,

Quoue(WPu  uwv | f) = [Ad(u ) ® 1 ® prulgoe(Piv| f).

Proof: From combining (7.14) and Lemma 3.6 it follows that there exists a full
open subset €2y of {2 such that, for A € (),

qua,u&(upu_la uv ‘ fa ) a)‘) = [Ad(u_l)* 029 pT,u]qa,§(Pa v | fa T )‘)

The result now follows by holomorphy of the above expressions in A and density of
Q. O
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8 Asymptotic globality

In this section we introduce the notion of asymptotic globality of a spherical function
on X, and of an analytic family of such functions. We discuss properties needed in
the statement and proof of the vanishing theorem in the next section.

Definition 8.1 Let P € P, and v € Nk(a,). A function f € C*®(X, : 7) is said to
be asymptotically global along (P,v) at an element £ € ap, if, for every X € apg,
the V,-valued smooth function q¢(P,v | f, X) has a C*-extension from Xp,  to Xp,.

Remark 8.2 Since g¢(P,v| f, X) is polynomial in X, with values in C*°(Xp,, 1 : 7p),
the requirement on g¢ implies that ¢:(P,v | f) is a polynomial C*(Xp, : 7p)-valued
function on apg.

Note that for P minimal the condition of asymptotic globality along (P,v) is
automatically fulfilled, since Xp, ; = Xp,.

Finally, if f € C**(X, : 7), then f is asymptotically global along (G, e) at every
exponent if and only if f extends smoothly to X (use Remark 1.6).

The property of asymptotic globality is preserved under the action of D(X) in
the following fashion. If P € P,, then by <a,(p) we denote the partial ordering on
Opyc; defined as in (1.6), with apq and A, (P) in place of a and A, respectively.

Proposition 8.3 Let f € C®®?(X,:7) and D € D(X). Let P € P,, v € Ng(a,)
and & € apy. If [ is asymptotically global along (P,v) at every exponent & €
Exp(P,v | f) with & =<a,p) &, then Df is asymptotically global along (P, v) at &.

Proof: Let u:= p/(D) + u, be the element of D;p associated with D as in Propo-
sition 4.10, with P in place of ). The key idea in the present proof is that v has a
A, (P)-exponential polynomial expansion with coefficients that are globally defined
smooth functions on Mp,, by Cor. 4.9. More precisely, the expansion ep(u) is a
finite sum, as ¢ ranges over a finite index set I, of terms of the form

ep(u)l = Z a_V(Pi,u b2 Si,u 029 Uz, ® Vip-
vENA, (P)

Here ¢;, € C*(Mp,), Sip € End(V;), u;, € U(mp,) and v;, € U(ap,), and
deg(u;,)+deg(vi,) < deg(D) for all i, v. By Lemma 4.12, D f belongs to C*? (X, : 7)
and its (P, e)-expansion results from the (P, e)-expansion of f by the formal appli-
cation of the element ep(u). Hence the asymptotic coefficient of & is given by the
finite sum

te(Pe| DNX,m) = > Y win(m)Sislae(Pre| )X Te(vin), msuiy) ]

EEExp(Pe| f) €]
vENAp(P)
§—v=¢o

Let now f satisfy the hypothesis of the proposition. The &'s occurring in the above
sum belong to & + NA, (P), hence satisfy & <a,(p) . By hypothesis, the associated
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coefficients g¢(P, e| f) all extend smoothly to apy X Mp,, see Remark 8.2. Therefore,
so does gg, (P, e | D f). This establishes the result for arbitrary P € P, and the special
choice v = e. The result with general v € Nk (a,) now follows by application of
Lemma 3.6 (cf. Lemma 8.7 (a)). O

We shall also introduce a notion of asymptotic globality for families from the
space Cpy (X4 @ 7: Q) introduced in the previous section, with Q C ag,. an open
subset.

Definition 8.4 Let Q) € P,, Y a finite subset of *ag, . and Q C ap . a non-empty
open subset. Let P € P,, v € Ng(aq) and 0 € W/~p|q .

We will say that a family f € Cy (X, : 7: Q) is o-global along (P,v), if there
exists a dense open subset €2y of {2, such that, for every \ € €y, the function f, is
asymptotically global along (P, v) at each exponent & € o)|q,,+0-Y —pp—NA,(P).

Remark 8.5 If Y] and Y, are finite subsets of *00qc with Y; C Y5, then obviously

Ccy

Q7Y1

Xy:7:Q)CCY

Q7Y2

(Xp:7: Q).

If f belongs to the first of these spaces, then the condition of o-globality along (P, v)
relative to Y] is equivalent to the similar condition relative to Y5. This is readily seen
by using Lemmas 6.2 and 6.3. From this we see that the notion of o-globality along
(P,v) extends to the space

Co(Xy:7:Q):= U CoyXy:7:Q)

YC* 4HqC finite

The property of asymptotic globality for families is also stable under the action
of D(X).

Corollary 8.6 Let Q € P,, Y a finite subset of a5, and Q C a, . a non-empty
open subset. Let P € P,, v € Ng(aq) and 0 € W/ ~p|q .

Let f € Cgy(Xy: 7: Q) be g-global along (P,v). Then for every D € D(X) the
family Df € C5y (X, : 7: Q) is o-global along (P, v) as well.

Proof: It follows from Proposition 7.6 that Df belongs to Cgy (X : 7: Q). Ac-
cording to Theorem 7.7, both sets Exp(P,v | f)) and Exp(P,v| Df,) are contained
in the set Ex:= W(A+Y)l|ap, — pp — NA,(P), for every A € 0.

Let €y be as in Definition 8.4. Then the set (5:= Q4 N ag, (P, WY) is open
dense in © by Lemma 6.3. Let A € Qf and let § € oA|a,, +0-Y — pp — NA.(P).
If £ € Exp(P,v| f)) satisfies § < &, then § € oM |ap, +0-Y — pp — NA,(P) by
Lemma 6.2. By hypothesis, f) is asymptotically global along (P, v) at the exponent
&. It now follows by application of Proposition 8.3 that D f) is asymptotically global
along (P,v) at &. O
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The following lemma describes the behavior of asymptotic globality under the
action of Ng(aq).

Lemma 8.7 Let P € P, and u,v € Ng(ay). Put P' =uPu™" and v' = uv.

(a) Let f € C®(X,:7) and § € apy.. If f is asymptotically global along (P, v)
at &, then f is asymptotically global along (P',v') at u€.

(b) Let Q € Py, Q C ap,c a non-empty open subset, Y C *ap. a finite subset,
feCyy(Xy:7:Q) and o € W/ ~pjq . If f is o-global along (P, v), then f is
uo-global along (P',v").

Proof: From (3.24) with P in place of ) it is readily seen that p,, maps C*(Xp,: Tp)
to C®(Xpr : Tpr). Then (a) and (b) follow immediately from Lemmas 3.6 and 7.10,
respectively. O

We end this section with the following result, which shows that the globality
condition is fulfilled for a certain natural class of 7-spherical functions. From the
text preceding Lemma 5.5 we recall that b is a maximal abelian subspace of g
containing a, and that if ;1 € bg, then by I, we denote the kernel of the character
(- : ) of D(X). Thus I, is an ideal in D(X) of codimension one (over C).

Proposition 8.8 Let € b and let f € £(X:7:1,). Then f|x, € CP(X;: 7).
Moreover, this function is asymptotically global along all pairs (P,v) € Py X Nk (a,)
and at all exponents § € ajp .

Proof: The first statement follows immediately from Lemma 5.3. By Lemma 8.7 (a)
it suffices to consider v = e and arbitrary P € P,. Let ¢ € V, be fixed. Then it suf-
fices to prove that the scalar valued function m +— g¢(X, m): = (ge(P, e|f, X,m) | )
on Xp has a C* extension to Xp, for each € ap,, X € apq. It follows from
Theorem 3.4 that

(fma)[¢)=" > ag(loga,m). (8.1)

€EY—NA, (P)

On the other hand, it follows from [5], Lemma 12.3, that [5], Thm. 12.8 can be
applied to the K-finite function F': z — (f(z)|%). By uniqueness of asymptotics
(see Lemma 1.7 and its proof) the expansion (8.1) coincides with that of [5], Thm.
12.8. We conclude that, in the notation of loc. cit., g¢(X,m) = pu|aq,§(P|F, m, X)
for all X € apq, m € Xp. The function z — py, ¢(P|F,z, X) is smooth on G.
From this the smooth extension of g¢(X, m) follows immediately. O

9 A vanishing theorem

In this section we formulate and prove the vanishing theorem. We assume that
is a o-parabolic subgroup containing A,.
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As before, let b be a maximal abelian subspace of q containing a,. By *agq and
*bg we denote the orthocomplements of agq in a4 and b, respectively. Let by: = bN¥E;
then

*bQ =b P *Cqu.
We write Dg for the collection of functions 4: *bg, — N with finite support supp 9.

For 6 € D¢ we put
6= ) ().
VEsupp §
For § € Dg and A € apy. we define the ideal /5, in D(X) as the following product
of ideals

Iy= [] @4)"™. (9.1)

vEsupp §

If § = 0, this ideal is understood to be the full ring D(X). Being a product of cofinite
ideals in the Noetherian ring ID(X), the ideal I is cofinite.

Definition 9.1 Let ) C ag, . be a non-empty open subset and 6 € Dq. For every
finite subset Y C *ag,,. we define

Eov(Xy:T: Q1) (9.2)

to be the space of families f € Ciyy (X4 : 7: Q) (cf. Def. 7.1) such that for every \ €
2 the function fy:x — f(A,x) is annihilated by the cofinite ideal (9.1). Moreover,
we define

EoXp:7:Q:0):= U Eov(Xy:T: Q1 0).

YC*ahc finite

Note that the space (9.2) depends on @) through its o-split component Ag,. If
v € *bjy., we denote by 6, the characteristic function of the set {v'}. Then d, € Dy.
Moreover, if 6 € Dg and v € supp 6, then § — 6, € Dg and |§ —d,| = |§] — 1.

Lemma 9.2 Let f € Egy(Xy:7:Q:6).
(a) If D e D(X) then Df € £gy(X;:7:Q:0).
(b) If D € D(X) and v € suppd then the function g: Q2 x X, — V, defined by

g\ x):=[D—~v(D: v+ N]fr(z), AeQ, zeX,), (9.3)
belongs to Eq v (X4 :7:Q2: 5 —46,).

Proof: Let D € ID(X). By Proposition 7.6, the family D f belongs to C’y (X4 : 7: Q).
Moreover, if A € Q and D' € I, then D'(Df), = D'Df, = DD'f\, = 0 and we see
that assertion (a) holds.

The function A = (D: v + A) is polynomial on ag,., hence holomorphic on
Q and it follows that G: (A, z) = y(D: v + A)f(),z) belongs to Cgy(Xy: 7: Q).
Hence g = Df — G belongs to the latter space as well. Furthermore, if D' € I;_;, 3,
then D":= D'(D — y(D: v+ X)) € I;, and we see that D'gy, = D" f, = 0. Hence
(b) holds. O
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Remark 9.3 It follows from Lemma 9.2 (a) that (7.8) defines a representation of
D(X) in Eg(Xy: 7: Q: 6), leaving the subspaces Eg v (X, : 7: : §) invariant.

Lemma 9.4 Let () € P,, 0 € Dq and 2 a connected non-empty open subset of a5
Assume that f € C’g’(XJr: 7: Q). If f\ is annihilated by I for A in a non-empty
open subset Q' of Q, then f € E(X;:7: Q).

Proof: Fix a finite subset ¥ C *ag,, such that f € CJ'y (X : 7: Q). We proceed
by induction on |4].

First, assume that || = 0. Then I;, = D(X) for all A and hence f|oxx, = 0.
Since {2 is connected, this implies that f = 0, see Lemma 7.4.

Next assume that |§| = & > 1 and assume the result has already been established
for all § € Dg with [§] < k. Fix v € suppé and put ¢’ = § — 9, then |§'| < k. Let
D € D(X) and define g as in (9.3). Then g € C5y (X, : 7: Q), as seen in the proof
of Lemma 9.2. On the other hand, it follows from (b) of that lemma that g|o/xx, €
Eoy(Xy:7m: Q). Hence g € Eo(Xy: 7: Q: d") by the induction hypothesis. Fix
A € Q. Then it follows, for D' € Iy ), that D'(D —y(D: v+ \)) fx = D'gx = 0. Since
D was arbitrary, we conclude that fy is annihilated by the ideal Iy zI, 1y = I5. O

For the formulation of the vanishing theorem we need some more notation. Let
A be a fixed basis for the root system ¥, let ¥ be the associated system of positive
roots and a;’ the associated open positive chamber. Let P, be the unique element
of P™" with A(P) = A. A o-parabolic subgroup @ is said to be standard if it
contains Fy; of course then Q € P,. Given such a @), we write Ag for the subset of
A consisting of the roots vanishing on ag, and A(Q) for its complement.

If v is any root in X, we write n, for the sum of the root spaces gg where 3 ranges
over the set of roots in ¥ that equal a positive scalar times «. Moreover, we put
Ny: = exp(n,) and write M, for the centralizer in G of the root hyperplane ker a.
Then P, = M;,N, is an element of P,. Moreover, if a € A, then P, is standard
with Ap, = {a}. We write P, = M,AyN, and P, = M,,AnqN, for the Langlands
and o-Langlands decompositions of P, respectively. Accordingly, a,q = ker o and
*aq = (ker o).

As a final preparation to the vanishing theorem, we introduce a subspace of the
space Eo(X4: 7: Q: J), consisting of functions with a certain asymptotic globality
property. This property is defined in terms of the concept of asymptotic globality
for families, see Definition 8.4.

Definition 9.5 Let @ € P,, ) C agp, a non-empty open subset and 6 € Dg.
By Eo(Xy:7:Q: é)glob we denote the space of functions f € Eo(Xi:7:8: )
satisfying the following condition.

For every s € W and every o € ¥ with s‘loz|aQq # 0, the family f is [s]-
global along (P,,v), for all v € Nk(a,); here [s| denotes the image of s in
W/~p,jq = Wa\W/Wa.
IfY C *agc is a finite subset, we define
Eqv(Xy:T:Q:6) 0= Ey(X:7: Q:6)NEG(Xy 2 7: Q1 0)

glob”
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Remark 9.6 Note that £o(X4: 7: Q:6),
ponent agq.

The equality W/~p, o = Wo\W/W follows from Lemma 6.5, since a,q = ker o
has codimension one in a,. Note that the condition s~ a/q,, # 0 on s factors to a
condition on its class in W,\W/W,.

1op depends on @ through its o-split com-

The following result reduces the globality condition of Definition 9.5 to a con-
dition involving a smaller set of (s, ). Let ¥y be the set of indivisible roots in
3.

Lemma 9.7 Let Q € Py, Q C agpy a non-empty open subset, 6 € Dg and [ €
Eo(Xy:7:Q:0). Let ¥ C Xy be such that W¥ = X,. Assume that the following
condition is fulfilled.

For every s € W and every o € U with s~ ey, # 0, the family f is [s]-global
along (Py,v), for all v € Nk(aq).

Then f € Eg(Xy: 7:Q: 6)gion-

Proof: Assume the condition to be fulfilled. Let o € ¥, s € W and assume that
57'0qp, # 0. Then « is a positive multiple of ¢=', for some t € W and § € V.
Moreover, (ts)™"f|ay, # 0; hence from the hypothesis it follows that f is [ts]-global
along (Pg,v), for all v € Nk(aq). Now P, =t~ Pst, hence by Lemma 8.7 it follows
that f is [s]-global along (P,, w), for all w € Nk (ay). O

Lemma 9.8 Let Q) € Py, 2 C a5, a non-empty open subset and 0 € Dg. Then
the space Eq(X4: 7: Q: 6),, is D(X)-invariant. Moreover, Eqy (X1 : 7: Q: )

glob
is a D(X)-submodule, for every finite subset ¥ C *a5c-

Proof: This follows from combining the D(X)-invariance of the space £g v (X4 : 7: Q:

with Proposition 8.3. U

Definition 9.9 Let Q € P,. An open subset § of ag, . will be called Q-distinguished
if it is connected and if for every a € ¥(Q)) the function A — (Re\, a) is not
bounded from above on ().

In particular, a connected open dense subset of af),. is @-distinguished. In the
following theorem we assume that W C Ng(a,) is a complete set of representatives
for WQ\W/WKnH

Theorem 9.10 (Vanishing theorem). Let Q € P, and § € Dq. Let Q C ag,. be
a ()-distinguished open subset and let f € Eq(X;: 7: Q: §)gob. Assume that there
exists a non-empty open subset Q' C Q) such that, for each v € W,

A —pg ¢ Exp(Q,v| fr), (A e ). (9.4)

Then f = 0.
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The proof of this theorem will be given after the following lemmas on which it is
based. We may and shall assume that () is standard. Thus, () contains the minimal
standard o-parabolic subgroup F, which will be denoted by P in the rest of this
section.

Lemma 9.11 Let Q2 C af,. be a non-empty connected open subset, 6 € Dg and
assume that [0| = 1. Let Y C *ag, . be a finite subset and let f € Eqy (X : 7: Q: 0).
Moreover, let v € Nk(a,) and assume that there exist t € Wy, n € Y, p € NA and
u € Nk, (aq) such that

A+1tn—p—p€Exp(Puv|fy) (9.5)

for \ in some non-empty open subset of €). Then there exists a full open subset
Qo C ) such that

A —pg € Exp(Q,v | f)), (A € Q).

Proof: Let v € *bf), be the unique element such that supp d = {v}. Fix ¢,7, u and
u with the mentioned property. Replacing p by a <a-smaller element if necessary
we may in addition assume that p is <a-minimal subject to the condition that (9.5)
holds for A in some non-empty open subset of {2. By holomorphy of asymptotics, see
Lemma 7.9, it follows that (9.5) holds for A in a full open subset Q' of Q. Moreover,
using the minimality of y and applying Lemma 6.2 we see that for every A in the
full open subset Qg: = Q' N ag, (P, WY) of Q,

A+1n —p— p € Expy (Puv | fi).

Since f is annihilated by I;» = I, this implies, in view of Lemma 5.5, that there
exists a finite subset £ C by, such that

v+AeW(DB)(L+A+tn—p), (A € Q).
For Ay € L, w € W(b) we define Qy(Ag, w) to be the set of A € Q satisfying
v+ A=w(Ag+ A+1tn— p). (9.6)

The union of these sets, as Ay € £, w € W (b), equals . By finiteness of the
union, we may select Ay and w such that Qy(Ag, w) has a non-empty interior in €.
Since (Ao, w) is also the intersection of €y with an affine linear subspace of by, it
must be all of €y. Hence for all A, Ay € Qy we have w(A; — Ay) = Ay — Ag. Since
2 is a non-empty open subset of ap, . this implies that w belongs to Wq(b), the
centralizer of ag, in W (b). From (9.6) we now deduce that —wy = v — wAy — win.
The expression on the right-hand side of this equality has zero restriction to agq.
Therefore, so has wy, and we conclude that also p[a,, = 0. Combining this fact with
(9.5) and transitivity of asymptotics, see Theorem 3.5, we conclude that

A— pPQ = [)‘+t77 —pP— :u‘”aQq € EXP(Q,’U ‘ f)\)a
for all A € Q. O
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For the formulation of the next lemma, we need the following definition.

Definition 9.12 Let Q2 C ap,. and sy € W be given. The subset W (S, s9) of W is
defined as follows. Let s' € W. Then s' € W(S2, s¢) if and only if there exists a chain
S1,-..,8 = § of elements in W, with sjsj__ll = Sq, a simple reflection, such that
the following condition (9.7) holds for each of the pairs (s, ) = (sj_1, ;) € W X A,
j=1,... k.

If s 'a|qq, # 0 then A — Re (s, a) is not bounded from below on Q.  (9.7)

Notice that if (2 is dense in aj,, then W (€2, s9) = W for all s, € W. Indeed,
(9.7) is then fulfilled by all elements o € A. Hence, in order to verify the conditions
of Definition 9.12 for s’ € W arbitrary, we may choose as s,,, ... , Sq, the elements
in a reduced expression s's;" = 54, * * * Sq; -

Lemma 9.13 Let Q C ag,. be a non-empty connected open subset, Y C *ag. a
finite subset, and 6 € Dg. Let f € £y (X;: 7: Q: 0)gob and s € W. Assume that
there exist t € Wo, n €Y, p € NA and w € Nk(aq) such that

sA+ stn — p — p € Exp(P,w| f), (9.8)

for all \ in some non-empty open subset of ). Then for every s; € W (S, s) there
exist t1 € Wg, m €Y, 1 € NA and wy € Nk(a,), such that

$1A+ sitim — p— w1 € Exp(P,wy | f)), (9.9)

for all A in a full open subset of ). In particular, if §) is dense in ag,., then the
above conclusion holds for every s; € W.

Proof: In the proof we will frequently use the following consequence of Lemma 7.9,
based on holomorphy of asymptotics. If sy € W, t1 € Wy, ;1 € Y, u1 € NA and
wy € Nk (aq), then (9.9) holds for A in a full open subset of 2 as soon as it holds for
a fixed X in the full open subset QN agy, (P, WY) of Q2. We now turn to the proof.

If s; = s, or more generally, if s; € sWg, then the conclusion readily follows
by the previous remark. By Definition 9.12 we now see that it suffices to prove the
lemma for s; = s,8, with @ € A such that (9.7) holds. There are two cases to
consider, namely that s™'a 0 equals zero or not. In the first case, s; = ss4-1, €
sWgq and the conclusion is valid. We may thus assume that we are in the second
case, i.e., s = S,s with

s gy, # 0. (9.10)

We will complete the proof by showing that the following assumption leads to a
contradiction.

Assumption: for all t; € Wy, m € Y, 1 € NA and w; € Ng(aq) there exists
no non-empty open subset ' of Q such that (9.9) holds for A € .

Let Z be the set of elements (stn — u)|a,, With t € Wy, n € Y, u € NA such that
(9.8) holds for A in a non-empty open subset of 2, for some w € Ng(a,). Then Zis a
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non-empty subset of a;, . contained in a set of the form X —NA, (P,), with X C aj,
finite. Hence we may select t € Wy, € Y and p € NA such that (st — p)|a,, is
=A,(pP,)-maximal in =. According to the first paragraph of the proof, there exists
w € Ngk(ay) such that (9.8) is valid for A in a full open subset €y of Q. For A € Qq
we put

E(A) = [sA+ stn — p — 1 [anq-

Then by transitivity of asymptotics, see Theorem 3.5, it follows that

§(A) € Exp(Pa,w| fi)

for A € €. In the following we shall investigate the coefficient of the expansion of
fx along (P,,w), for A € Qq, given by

@A(m): = qﬁ()\)(Pa,w | f/\, 'am)-

Here ¢, is a non-trivial 7p, -spherical function on X, ,, + with values in Pj(a,q), for
k = deg, f, see Thm. 3.4 (b).

It follows from (9.10) and the asymptotic globality assumption on f, see Defini-
tion 9.5, that actually ¢, extends to a smooth function on X, ,, for every A in an
dense open subset f of €2y. This observation will play a crucial role at a later stage
of this proof.

Let

Q1:= Qy N agee(P,WY) N agc(Pa, WY).

The second and third set in this intersection are full open subset of a, ., see Lemma
6.3. Hence 2; is a dense open subset of {2. We claim that for A € §2; the following
holds. If s e W, t' € W, 0’ € Y, i/ € NA and w' € Ni(aq) are such that

{ SA+ sty —p—p' € Exp(P,w'| f,) and (9.11)
E(A) 2a, ) (SA+ 80 — p = 1) o '
then

s'esWqg and (st — p')|aaq = (510 = 1) ]aq- (9.12)

To prove the claim, let s',t', ', i/, w’ satisfy (9.11). Then there exists a v € NA(P,)
such that s’A+ s't'y’ — p— ' — v and s\ + stn — p — u have the same restriction £(\)
t0 aaq- By the definition of €y this implies that s’ and s define the same class in
W/ ~p,|q, see Lemma 6.2. The latter set equals W,\W/Wg, by Lemma 6.5, hence
s’ belongs to sqsWg = 51Wg or to sWy. In the first case it follows that s'A = 51,
hence s1A + s1t"n" — p— ' € Exp(P,w'| fy) for some t” € Wg. This assertion then
holds for A in a full open subset of €2y, contradicting the above assumption.

It follows that we are in the second case s’ € sWy, hence s’ = st” for some
t" € Wgy. The element (s't'n' — p')|a,, = (st"t'n' — p')|a,, therefore belongs to Z;
from (9.11) it follows that it dominates the maximal element (stn — p)|q,,, hence is
equal to that element. This implies (9.12), hence establishes the claim.

It follows from the above claim that, for A € €, the exponent £()) is ac-
tually a leading exponent of f) along (P,,w). To see this, let A € Q; and let
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¢ € Exp(Py,w| fr) be an exponent with £(A) <a,(p,) & Then, in view of Theo-
rem 3.5, there exist s’ € W, t' € Wy, ' € Y and p/ € NA such that the element
s\ + s't'y’ — p — p' restricts to € on a,q and belongs to Exp(P,w'| f)) for some
w' € W. It now follows from the claim established above that £ = ().

Thus, we see that £(A) is a leading exponent indeed. Consequently, by Lemma
5.7 the function ) is I(X,,,, )-finite, for every A € ©;. We proceed by investigating
the exponents of its expansion.

Select a complete set W, ,, of representatives for W,/(Wy N Winywmy-1) in
Nk (aq). We put *P = P N M,. Then by transitivity of asymptotics, cf. Theorem
3.5, we see that for the set of (*P,u)-exponents of ), as u € W, ,, the following
inclusion holds:

Exp("P,u|¢x) C {l-a0q | € € Exp(Puw | f3) &laaq = &£(A)|aaq}-

Hence, for A\ € €, every exponent in Exp(*P,u | ¢,) is of the form (s'\ + s't'n' —
p—u) with s’ e W, t' € Wy, ' € Y and p/ € NA satisfying

*aaq

{ sSA+ sty —p— ' € Exp(P,uw| fy),
[S'A+ 5t — p— 1]|aaq = E(N) |ang-

It follows from the claim established above that (9.12) holds.
We have thus shown that for every A € ©; the exponents in Exp(*P,u | ¢,) are
of the form (sA + st'n' — p — pi')|+q,, With ¢ € Wy, n' €Y, 1’ € NA satisfying

[St,nl - lu’I”ﬂaq = [Stn - /‘L]‘aaq'

From this it follows that the restriction p'|,,, of the y' occurring runs through a
finite subset of NA, (P,) = N[A \ {a}]|a,,; independent of A\. Hence there exists a
finite subset S’ C NA such that y' runs through S’ — Na. We thus see that there
exists a finite subset S C *a} . such that, for every A € €2y,

aqcC

Unewes.o EXp("P,u|@r) C sA

+ S — Na. (9.13)

*Aaq

From (9.7) and (9.10) it now follows that we may select a non-empty open subset
(25 of the dense open subset €2; of {2 such that, for every A € (2, each u € W, ,, and
all £ € Exp("P,u¢y),

(Re&E+7p, a) <0.

Since ¢, is D(X, 4, )-finite this implies that ¢, is square integrable on X, ,,, see [3],
Thm. 6.4 with p = 2; hence ¢, a Schwartz function for A € Qy, see [3], Thm. 7.3.
On the other hand, from (9.10) it follows that the linear map A — sA|+q,, is
surjective from af, . onto *af .. Therefore, the set {sA|-,,, | A € {2} has a non-
empty interior in *aj, .. Combining this observation with (9.13) we infer that there
exists a non-empty open subset 23 C €2y, such that the sets Uyew, , Exp(* P, u | @),
for A € €3, are mutually disjoint. Now these sets are non-empty, since ¢, # 0,
for A € Q3. Therefore, the union of these sets, as A € (13, is uncountable. This

contradicts Lemma 5.8, applied to the space X, . ]
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Lemma 9.14 Assume that Q C ag,. is Q-distinguished. Then e € W (§2, so) for all
So € w.

Proof: Let k£ = [(so) denote the length of sy, and let sg = sq, - - - o, be a reduced
expression for so. Put s; = 84, - 54,50 = Sa;,; """ Sa, for j =1,... ,k, then sy =e.
We claim that (9.7) holds for each pair (s, &) = (s;_1, j). Since I(s;) =I(sj_1) — 1,
the root sj:llaj must be negative. Hence the restriction of this root to agq is zero
or belongs to —%(Q). Now (9.7) follows immediately from Definition 9.9. O

Proof of Theorem 9.10: We prove the result by induction on |§]. If § = 0,
then for A € ap, . the ideal I, equals D(X); hence Eo(Xy: 7: 21 §)gop = 0 and the
result follows.

Let now [6| =1, let f € Eo(Xy: 7: Q¢ 6)gop and let (9.4) be fulfilled for all v €
QW. Assume that f # 0. We will show that this assumption leads to a contradiction.
There exists a finite subset Y C *aj,. such that f € Eqy(X;: 7: Q1 §)gon and a
Ao € QNag (P, WY) such that fi, # 0. Let W be a complete set of representatives
of W/Wgng in Nk(a,) containing ®W. Then Exp(P,w| fy,) # 0 for some w € W.
In view of (7.3) it follows that there exist s € W, t € Wy, n € Y and p € NA, such
that

SA+ stn—p— u € Exp(P,w| f), (9.14)

for A = Ag. From Lemma 7.9 it follows that (9.14) is valid for A in a full open subset
of 2. By Lemmas 9.13 and 9.14 this implies that there exist t;, € Wg, ;1 € Y,
w1 € NA and wy € Nk (aq), such that A+ ¢ym1 — p — g € Exp(P,wq | f,) for Ain a
full open subset of €. Let v € @W be the representative of WowiWknu. By Lemma
9.11 it follows that A — pg € Exp(Q,v| fn) for A in a full open subset €2y of 2. Since
Qo N ' is non-empty, we obtain a contradiction with (9.4).

Now suppose that || = k£ > 1, and assume that the result has already been
established for 6 € Dg with |0| < k. Fix v € supp (4) and put &' = 6 — J,. Then
§' € Dg; moreover, |6, = 1 and |0'| = k — 1. Fix any D € D(X) and define the
family g by (9.3). Then g € E(Xy: 7: Q:¢") by Lemma 9.2. Moreover, it readily
follows from Lemma 9.8 that the family g belongs to £o(Xy: 7: Q1 6")giob.

For A € Q and v € Nk(a,) we have

Exp(Q,v|gx) C Exp(Q,v]fy) — NE(Q), (9-15)

in view of Lemma 4.12 (b). Moreover, by hypothesis we have the following inclusion,
for every A € {0,

Exp(Q,v ] £2) C WO+ V)lagy — po = NE. @\ A= po}.  (9.16)

Combining (9.15) and (9.16) we infer that Exp(Q, w | g») does not contain A — pg for
A € 2 and every w € Nk(aq). Consequently, the family g satisfies the hypotheses
of Theorem 9.10. Since |¢'| = k — 1, it follows from the induction hypothesis that
g = 0. Since D was arbitrary, we see that fy is annihilated by I, 5, for every A € 2.
Hence f belongs to Eq(X4: 7: €2t 6y)gl0b. Since |6,| = 1 < k, it now follows from
the induction hypothesis that f = 0. (I
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The following result is also based on Lemma 9.13.

Corollary 9.15 Let 2 C ag,. be a connected dense open subset, Y C *ag,. a finite
subset, and § € Dg. Let f € Eqy(Xy:7: Q:6)gop and s € W. If

(81)\+WY_p_NA) ﬂEXp(P,U)|f,\) :Q)’

for all A\ in a non-empty open subset of 2 and for all w € Nk(ay), then f = 0.

Proof: Assume that f # 0. Then there exists an element A € QN ag5..(P, WY)
such that f) # 0, and then

sA+ stn — p—p € Exp(P,w| fy) (9.17)

for some s € W, t € Wy, n €Y, p € NA and w € Nk(a,). As remarked in the
beginning of the proof of Lemma 9.13, (9.17) then holds for all A in a full open
subset of (2. Hence Lemma 9.13 applies; its final statement contradicts the present
assumption for s;. O

Finally in this section we will show that for a family in £o(X, : 7: Q: §) that
allows a smooth extension to X, the hypothesis of asymptotic globality can be left
out in the vanishing theorem. Let

EoX:T:Q:0)={fe&qXy:7:Q:0) | fLe C®(X:7), A € Q}.

Corollary 9.16 Let ) € P, and § € Dq. Let Q C a. be a Q)-distinguished open
subset and let f € Eg(X:7:Q:0). Assume that there exists a non-empty open
subset Q) C ) such that, for each v € W,

A—pg ¢ Exp(Q,v]fa), (Ae).

Then f = 0.

Proof: As in the proof of Theorem 9.10 we proceed by induction on |6|. If [6| =0
the result is trivial. If [§| = 1 it follows from Proposition 8.8 that £o(X: 7: Q:J) C
Eo(Xy:7: Q1 6)gon, and then the result follows directly from Theorem 9.10.

Now suppose that || = k& > 1, and assume that the result has already been
established for all § € Dg with 0| < k. Let ¢’ and g be as in the proof of Theorem
9.10. Then it is easily seen that g € Eo(X: 7: Q: ).

For the rest of the proof we can now proceed exactly as in the proof of Theorem
9.10. ]

10 Laurent functionals

In this section we define Laurent functionals and describe their actions on suitable
spaces of meromorphic functions.
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Throughout this section, V' will be a finite dimensional real linear space, equipped
with a (positive definite) inner product (-, -). Its complexification V¢ is equipped
with the complex bilinear extension of this inner product.

Let X be a (possibly empty) finite set of non-zero elements of V. At this stage we
allow proportionality between elements of X. By an X-hyperplane in V¢, we mean
an affine hyperplane of the form H = a + a2, with a € V¢, a € X. The hyperplane
is called real if a can be chosen from V| or, equivalently, if it is the complexification
of a real hyperplane from V. A locally finite collection of X-hyperplanes in V¢ is
called an X-configuration in V. It is called real if all its hyperplanes are real.

If a € V¢, we denote the collection of X-hyperplanes in Vi through a by
H(a, X) = H(Vc,a, X). If E is a complete locally convex space, then by M(a, X, F) =
M(Vg,a, X, E) we denote the ring of germs of E-valued meromorphic functions at
a whose singular locus at a is contained in H(a, X). Here and in the following we
will suppress the space E in the notation if £ = C. Thus, M(a, X) = M(a, X, C).

Let N¥ denote the set of maps X — N. If d € N¥, we define the polynomial
function 7, ¢ = 4 x,4: Vo — C by

maa(z) = [[(€, 2= a)®®,  (z€W). (10.1)

{ex

If X = () then N¥ has one element which we agree to denote by 0. We also agree that
a0 = 1. Let Og(E) = O,(V¢, E) denote the ring of germs of E-valued holomorphic
functions at a. Then

M(a, X, E) = Ugenx 7, 3O (E).

In the following we shall identify S(V') with the algebra of constant coefficient holo-
morphic differential operators on V¢ in the usual way; in particular an element v € V'

corresponds to the operator ¢ — vp(z) = % oz + V).

Definition 10.1 (Laurent functional at a point) An X-Laurent functional at a is
a linear functional £: M(a,X) — C such that for every d € NX there exists an
element ug € S(V') such that

Lo = ug(meqap)(a), (10.2)

* _
laur —

forall p € W;}i(’)a. The space of all Laurent functionals at a is denoted by M(a, X)
M (V(Ca a, X)*

laur*

Remark 10.2 Obviously, the string (uq)genx of elements from S(V) is uniquely
determined by the requirement (10.2). We shall denote it by u,.

If F is a complete locally convex space, then X-Laurent functionals at @ may nat-
urally be viewed as linear maps from M(a, X, F) to E. Indeed, let £ € M(a, X )},
and let uz = (ug)genx be the associated string of elements from S(V). If ¢ €

W;;OG(E) then Ly is given by formula (10.2).

Let T,: z — z+a denote translation by a in V. Then T, maps #(0, X) bijectively
onto H(a, X). Pull-back under T, induces an isomorphism of rings T: ¢ — ¢ o T,
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from O, onto Oqy. Therefore, pull-back under 7, also induces an isomorphism of
rings T: M(a, X) — M(0, X). By transposition we obtain an isomorphism of linear
spaces Ty.: M(0, X)* — M(a, X)*. It is readily seen that T (m,4) = 74 for every
d € N*. From the definition of Laurent functionals it now follows that 7,, maps
M(0, X)f,,, isomorphically onto M (a, X)},,.- Moreover,

laur laur*
UT, L = UL

for all £ € M(0,X)*.
Let X’ be another finite collection of non-zero elements of V. We say that X and
X' are proportional if #(0, X) = H(0, X').

Lemma 10.3 Let X, X' be proportional finite subsets of V' \ {0} and let a € V.
Then M(a, X) = M(a, X') and M(a, X)},,, = M(a, X");

laur laur*
Proof: It is obvious that M(a, X) = M(a, X’). Let £ € M(a, X)* = M(a, X")*,
and assume that £ € M(a, X')},,- Let (u@)gpcnxr be the associated string. Let
d € NX. Then, by proportionality, there exists d € N¥' and ¢ € R\ {0} such
that m, x4 = 7o x',a- Let ug = ¢ lug, then (10.2) follows immediately. This shows
that £ € M(a, X);,,, and establishes the inclusion M(a, X"}, . C M(a, X)}, .- The
converse inclusion is proved similarly. O

Following the method of [10], Sect. 1.3, we shall now give a description of the
space of strings u,, as £ € M(a, X)},-

Put wy: = o4 and equip the space N¥ with the partial ordering < defined by
d < d if and only if d'(§) < d(&) for every £ € X. If d' < d then we define d — d’
componentwise as suggested by the notation. In [10], Sect. 1.3, we defined the linear
space S, (V, X) as follows. Let d,d € NX with d' < d. If u € S(V), then by the

Leibniz rule there exists a unique v’ € S(V') such that

u(@a-a9)(0) = u'(¢)(0), (€ Op).

We denote the element u' by jg 4(u). The map jgq:S(V) — S(V) thus defined is
linear. Note that it only depends on d — d’; note also that, for d,d’, d" € NX with
d" < d < d,

Jardr o Jdd = Ja d-
We now define S, (V, X) as the linear space of strings (ug4)genx in S(V) such that
Ja.a(ug) = ug for all d,d € N* with d’ < d. Thus, this space is the projective limit:

S (V,X) = im(S(V), 7).

The natural map S (V, X) — S(V) that maps a string to its d-component is denoted
by Jja.

Lemma 10.4 The map £ — u, is a linear isomorphism from M(a, X);, . onto
S (V,X).
Proof: See [11], Appendix B, Lemma B.2. O
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Lemma 10.5 Let a € Vo, d € NX and u € S(V). Then there exists a Laurent
functional L € M(a, X)},,, such that (ug)q = u.

Proof: See [10], Lemma 1.7. O

Remark 10.6 In particular, it follows that for each a € V¢ there exists a Laurent
functional £ € M(a, X);, . such that Lo = ¢(a) for all ¢ € O,. Note however, that
this functional is not unique, unless X = (0.

Lemma 10.7 Let M(a, X);C_ denote the annihilator of O, in M(a,X)}, .- Then

all functions ¢ in M(a,X), that are annihilated by M (a, X);S_, belong to O,.

laur>

Proof: We may assume that a = 0. Let ¢ € M(0,X) and assume that ¢ ¢
0. Then there exist elements d,d’ € N¥ and £ € X such that mo,o = Emo,q and
mo,ap € Op but mp a0 ¢ Op. Here we have written £ also for the function z — (£, 2)
on Vg. Since o ¢ is not divisible by &, its restriction to £+ = £71(0) does not
vanish. Hence there exists u € S(£*) such that u(my#¢)(0) # 0. By Lemma 10.5
there exists an element £ € M(a, X);,,, such that the d' term of u, is u. Then
Lo = u(myap)(0) # 0. However, for each ¢ € Oy we have Ly = u(m41)(0) =
[Eu(mo,41)](0) = 0. Hence £ € M(a, X);2 O

laur*

We extend the notion of a Laurent functional as follows. The disjoint union of
the spaces M(a, X)},, as a € V¢ is denoted by M (x, X)} ., = M(Ve, %, X))} .- By a
section of M (%, X)i, . we mean a map L: Vg — M (%, X)f,,, with £, € M(a, X))
for all @ € V. The closure of the set {a € V¢ | £, # 0} is called the support of £
and denoted by supp (£).

laur

Definition 10.8 (Laurent functional) An X-Laurent functional on V¢ is a finitely
supported section of M(x, X) . The set of X-Laurent functionals is denoted by
MV, X))}, and equipped with the obvious structure of a linear space.

Is S is a subset of Vi, we define the space M(S, X);, . = M(Ve, S, X)},. by

laur

M(S; X)taur = {£ € M(V, X)jy | sUPP £ C S}

laur

and call this the space of X -Laurent functionals on V¢ supported in S.

Remark 10.9 Note that, for a € V¢, the map M({a}, X){, — M(a, X))
fined by £ — L,, is a linear isomorphism. Accordingly we shall view M (a, X))},
a linear subspace of M(V¢, X))}, .- In this way M(S, X)},. becomes identified with

the algebraic direct sum of the linear spaces M(a, X)},.., as a € S, for S any subset
of Vi. Accordingly, if £ € M(Vg, X ), then £, € M(a, X)), C M(Ve, X)i,, for

a € V¢, and
> L.

a€supp £

de-

laur &8
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Lemma 10.10 Let X and X' be proportional finite subsets of V '\ {0}. Then
M(VCaX)* = M(VC’X,)*

laur laur*

Proof: This is an immediate consequence of Lemma 10.3 and the above definition.
O

We proceed by discussing the action of a Laurent functional on meromorphic
functions. Let F be a complete locally convex space and €2 C V¢ an open subset.
If a € Q, then by M(€,a,X, F) we denote the space of meromorphic functions
¢: ) — E whose germ ¢, at a belongs to M(a, X, E). If S C Q, we define

M(Q,8, X, E): = NaesM(Q,a, X, E).

Finally, we write M(Q, X, E) for M(Q, 2, X, E). In particular, M(V¢, X, F) denotes
the space of functions ¢ € M(V¢, E) with singular locus sing(y) contained in an
X-configuration.

There is a natural pairing M(S, X)}, .. x M(Q, S, X, E) — E, given by

laur

Lo= Y Laga. (10.3)

a€supp £

Lemma 10.11 Let S C V¢ be arbitrary, and let ) be an open subset of V¢ con-
taining S. Then the pairing given by (10.3) for E = C induces a linear embedding

M(S, X )5 — M(Q, 8, X)*.

laur

Proof: Let L € M(S,X);,,, and assume that £ = 0 on M(, S, X). We may
assume that S = supp L. For every a € S we write u® = (u%)genx for the string
determined by L,.

Select b € S. Then it suffices to prove that £, = 0. Fix d € N and ¢ € O,.
Then it suffices to show that uj(¢)(b) = 0.

For every a € S\ {b} we may select d(a) € N¥ such that 7, ()7, 4 is holomorphic
at a. Moreover, we put d(b) = d. For a € S there exists a unique v, € S(V) such

that for all f € O, we have

va(f)(a) = Uﬁ(a) (m a,d(a) W;,} ().
We note that v, = uf. We may now apply the lemma below, with E, = Cu,, for
a € S, and, finally with £, = 0 if a # b and with &, defined by &,(vy) = vs(0)(D).
Hence there exists a polynomial function % on V¢ such that v,(¢)(a) = 0 for all

a € S\ {b}, and such that vy(¢)(b) = vs(d)(b)-
Define ¢ = W;;?/}. Then ¢ € M(,S, X). Hence Lo = 0. On the other hand,

Lo= Z Lapa = Z La (W;é(a)ﬁa,d(a)ﬂﬁl/])

= Dt (Todwma¥)(@) = Y va(¥)(a) = v(1)(b) = ug(¢)(b).
It follows that uf(¢)(b) = 0. O
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Lemma 10.12 Let S C V¢ be a finite set. Suppose that for every a € S a finite
dimensional complex linear subspace E, C S(V) together with a complex linear
functional §, € E? is given. Then there exists a polynomial function 1 on V¢ such
that uy(a) = &,(u) for every a € S and all u € E,.

Proof: This result is well known. O

We proceed by discussing the push-forward of a Laurent functional by an injective
linear mapping. Let Vj be a real linear space and ¢: V; — V' an injective linear map.
We assume that no element of X is orthogonal to ¢(Vy). We equip Vj with the pull-
back of the inner product of V under ¢+ and denote the corresponding transpose of ¢
by p. Then Xj: = p(X) consists of non-zero elements. We denote the complex linear
extensions of ¢+ and p by the same symbols. Then, if H C V¢ is an X-hyperplane,
its preimage +~'(H) is an Xy-hyperplane of Vjc.

Let ap € Voc and put @ = ¢(ag). Then pull-back by ¢ induces a natural algebra
homomorphism ¢*: O,(Ve) — Oy (Voc). On the other hand, pull-back by p induces
a natural algebra homomorphism p*: Oy, (Voc) = Ou(Ve). From por = Iy, it follows
that t*op* = I on O, (Vic), hence * is surjective.

If d: X — N is a map, then we write p,(d) for the map X, — N defined by

p(d)(&) = D d©).

fGX,P(ﬁ):fo
One readily verifies that for every d: X — N we have
L* (ﬂ—a’Xsd) = ﬂ-aO,XO,p*(d)‘ (10.4)

Let E be a complete locally convex space. Then it follows that pull-back by ¢ induces
a linear map

L M(Veya, X, E) = M(Vie, ag, Xo, E). (10.5)

Lemma 10.13 The linear map ¢* in (10.5) is surjective.

Proof: Let dy: Xg — N be a map. Then one readily checks that there exists a map
d: X — N such that dy = p.(d). From this it follows that

W(;()I,Xo,dooao(%(l’ E) = L*(Wai,;(,d) L*p*(oao(vo(cﬂ E)) - L*(W;}(,doa(v(c’ E))
where the first equality follows from (10.4). O

The pull-back map ¢* in (10.5) with E' = C has a transpose ¢.: M (Vyc, ag, Xo)* —
M(Vg, a, X)* which is injective by Lemma 10.13.

Lemma 10.14 The map ¢, maps M (Vic, ag, Xo)i,, injectively into M (Ve, a, X);

laur laur*

Proof: Let £ € M(Vic, ap, Xo)i,ye- Then it suffices to show that ¢, £ belongs to the
space M(Vg,a, X);

laur*
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We first note that «: Vo — V has a unique extension to an algebra homomorphism
t: S(Vy) — S(V). One readily verifies that u[t*(p)] = ¢*(t(u)g) for every ¢ €
O,(Ve) and all u € S(Vp). Let d be a map X — N. Then there exists a uq €
S(Vy) such that £ = evyg o UqgoTag,Xo,p.(d) O ﬂ—a_ol,Xo,p*(d)an (Voc); here ev,, denotes
evaluation at the point ag. Put vg = t.(ug). Then, for ¢ € O,(V¢),

(D) xaP] = LI (Mo, x,0) 7 7 0)] = Llgy x0p.at™¢) = ¢ (vag) (a0) = vag(a).

Hence 1, (L) = evgo g0 Ta,x,a 00 T, x 4Oa(Vc) and we see that 1, (L) € M(Ve, a, X )iy,
(|

There exists a unique linear map t,.: M(Voc, Xo)four — MV, X) e that re-
stricts to the map ¢, of Lemma 10.14 for every ay € Vic, see Remark 10.9. Clearly,
Supp (11.£) = t(supp (L)), for every £ € M(Voc, Xo)fuur

On the other hand, if E is a complete locally convex space, 2 C V¢ open subset
and S C +~!(Q) a subset, then pull-back by ¢ induces a natural map ¢*: M(Q, «(S), X, E) —
M), S, Xo, E). Moreover, if L € M (Vic, S, Xo)i,r and ¢ € M(Q,:(S), X, E),

laur
then
(L) = L[5 (10.6)

We end this section with a discussion of the multiplication by a meromorphic
function and the application of a differential operator to a Laurent functional.

First, assume that a € V¢ and that ¥ € M(a, X). Then multiplication by
induces a linear endomorphism of M(a, X), which we denote by m,. The transpose
of this linear endomorphism is denoted by my,: M(a, X)* — M(a, X)*. It readily
follows from the definition of X-Laurent functionals at a that m;, leaves the space
M(a, X )}, of those functionals invariant.

Let now S C V¢ be a finite subset, let {2 C V¢ be an open subset containing S
and let v € M(Q,S5,X). If L € M(Vg, S, X);,,r, we define the Laurent functional
my (L) € M(Ve, S, X)jpue by

my (L) = my, (L)

a€S

On the other hand, multiplication by v induces a linear endomorphism of M (€2, S, X),
and it is immediate from the definitions that

my (£)(¢) = L(Py) (10.7)
for p € M(Q, S, X).
Lemma 10.15 Let v € S(V), then vp € M(a,X) for all ¢ € M(a,X), and

the transpose 0; of the endomorphism 8,: ¢ — vy of M(a, X) leaves M(a, X )}, .,
invariant.

Proof: We may assume v € V. Let d € N* and define &’ € N* by d'(§) = d(§) + 1
for all £ € X. Then 7,4 divides v(m, ), and hence

o009 = V(Ta,a ) = V(Taa)p € Oa
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for all ¢ € 71';(1100,. Thus 0,0 = vp € 71';;, O, for p € W;éoa.
Let now £ € M(a, X)},,.» and let v = uz € S (V, X). Then for d,d’" and ¢ as

laur’
above

0,L(p) = L(v9) = ua (Taave)(a) = tav(Tawp)(a) — ua(v(Taa)p)(a).

Each term on the right hand side of this equation has the form u'(pp)(a) with
u’ € S(V) and p a polynomial which is divisible by 7, 4. Hence, by the Leibniz rule,
0:L(f) has the required form u” (7, 4¢)(a), where u" € S(V). O

For £L € M(Vg, X)},,, and v € S(V) we now define 05 L € M(V¢, X)

L= Y 0L

a€supp £

* *
laur laur by

It is immediately seen that 0} L(y) = L(0,¢) for each ¢ € M(£, supp L, X), where
() is an arbitrary open neighborhood of supp L.

11 Laurent operators

In this section we discuss Laurent operators, originally introduced in [10], Section 5,
in the slightly different context of meromorphic functions with values in a complete
locally convex space, whose singular locus is contained in an X-configuration.

Let V and X be as in the previous section, let H be an X-configuration and let
E be a complete locally convex space.

We define M (V¢,H, E) to be the space of meromorphic functions ¢: Ve — F
whose singular locus is contained in UH. If H is real, we put Hy = {HNV | H € H}.
Then MV, H) = M(Ve, H,C) equals the space M(V,Hy,) introduced in [10].

It is convenient to select a minimal subset X° of X that is proportional to X.
Then for every X-hyperplane H C V¢ there exists a unique oy € X° and a unique
first order polynomial Iy of the form z — (ag, z) — ¢, with ¢ € C, such that
H = [,;*(0). Note that a different choice of X° causes only a change of I by a
non-zero factor.

Let N* denote the collection of maps H — N.

Remark 11.1 If d € N, then for convenience we agree to write d(H) = 0 for any
X-hyperplane H not contained in .

If w C V¢ is a bounded subset and d € N* we define the polynomial function
Twd: Ve = C by

moa = [ 147 (1L.1)

HeH
HNw#0

Note that a change of X° only causes this polynomial to be multiplied by a pos-
itive factor. Let M(Vg,H,d, E) be the collection of meromorphic functions ¢ €
M(Vg, E) such that 7,490 € O(w, E) for every bounded open subset w C V. We
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equip the space M (V¢, H,d, E) with the weakest locally convex topology such that
for every bounded open subset w C V¢ the map map ¢ — m, 40 is continuous into
O(w, E). This topology is complete; moreover, it is Fréchet if E is Fréchet.

We now note that

M(VCaHaE) = UdENHM(VC7Hada E) (112)

We equip N with the partial ordering < defined by d' < d if and only if d'(H) <
d(H) for all H € H. If d,d" are elements of N with d' < d then M(V¢,H,d', E) C
M(Ve, H,d, E) and the inclusion map iy 4 is continuous. Thus, the inclusion maps
form a directed family and from (11.2) we see that the space M(V¢,H, F) may
be viewed as the direct limit of the spaces M(Vg, H,d, E). Accordingly we equip
M(Ve, H, E) with the direct limit locally convex topology.

By an X-subspace of V¢ we mean any non-empty intersection of X-hyperplanes;
we agree that V¢ itself is also an X-subspace. We denote the set of such affine
subspaces by A = A(Vg, X). For L € A there exists a unique real linear subspace
Vi, C V such that L = a + V¢ for some a € Vg. The intersection V;z N L consists
of a single point, called the central point of L; it is denoted by ¢(L). The space L
is said to be real if ¢(L) € V; this means precisely that L is the complexification
of an affine subspace of V. Translation by ¢(L) induces an affine isomorphism from
Vic onto L. Via this isomorphism we equip L with the structure of a complex linear
space together with a real form that is equipped with an inner product.

If L € A, the collection of X-hyperplanes containing L is finite; we denote this
collection by H(L, X). Moreover, we put X(L):= X NV~ and X°(L):= X° N V;-.
From the definition of X it follows that the map H +— oy is a bijection from
H(L,X) onto X°(L). Accordingly we shall identify the sets N*(X) and NX"(), If
H is any X-configuration and d € N* | we define the polynomial function ¢z, 4 by

dr.d-= H liI(H)a

HeH(L,X)

see also Remark 11.1. Let X, be the orthogonal projection of X \ X (L) onto V;
then X, is a finite set of non-zero elements. Its image in L under translation by
¢(L) is denoted by X. If H is an X-configuration in V¢, then the collection

Hy:={HNL|HeH, 0GHNLG L}

is an X -configuration in L; here L is viewed as a complex linear space in the way
described above.

We now assume that L € A and that # is an X-configuration in V¢. In ac-
cordance with [10], Sect. 1.3, a linear map R: M(V¢, H) — M(L,H) is called a
Laurent operator if for every d € HY there exists an element ug € S(V;-) such that

Ry = ug(qrap)|r forall e M(Ve,H,d). (11.3)

The space of such Laurent operators is denoted by Laur (Vg, L, H).
Assume now in addition that H contains H (L, X ). Then as in loc. cit. it is seen
that, for R € Laur (Vg,L,H) and d € N*| the element uy € S(V;) such that
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(11.3) holds, is uniquely determined. Moreover, it only depends on the restric-
tion of d to H(L,X), and the associated string up:= (ug | d € N*X)) belongs
to S (Vi, X(L)). As in to [10], Lemma 1.5, the map R + up defines a linear
isomorphism

Laur (Vg, L, ") ~ S (Vi-, X°(L)). (11.4)

If F is a complete locally convex space, and R € Laur (V¢, L, H) a Laurent operator,
we may define a linear operator Rg from M V¢, H, E) to M(L,H, E) by the
formula (11.3), for ¢ € M(V¢, H, d, E) and with u,4 equal to the d-component of up.
We shall often denote Rg by R as well.

Remark 11.2 Here we note that the algebraic tensor product M (Vg, H) ® F nat-
urally embeds onto a subspace of M(V¢,H, E) which is dense. Thus, Rg is the
unique continuous linear extension of R ® Ir. However, we shall not need this.

Lemma 11.3 Let L € A and let H be an X -configuration in V¢ containing H (L, X).
Let R € Laur (Vg, L, H). Then for every d € N* there exists a d' € N*L with the
following property. For every complete locally convex space E the operator R maps
MV, H, d, E) continuously into the space M(L,Hr,d, E).

Proof: This is proved in a similar fashion as [10], Lemma 1.10. O

We shall now relate Laurent operators to the Laurent functionals introduced in
the previous section. Let X? be a minimal subset of X, subject to the condition
that it be proportional to X,.. Let X? be its image in L under translation by ¢(L).
Thus, with respect to the linear structure of L, the set X is an analogue for the
pair (L, X) of the set X for the pair (V, X).

Lemma 11.4 Let L € A and let H be an X -configuration in V¢ containing H (L, X).
Let E be a complete locally convex space.

(a) If p € M(Ve,H,E), then for w € L\ UH,, the function z — p(w + z) is
meromorphic on Vi, with a germ at 0 that belongs to M(V;+,0, X (L), E).

(b) If £L € M(Vie, 0, X(L)),, is an X (L)-Laurent functional in Vi, supported

laur

at the origin, then for ¢ € M(Vg, H, E) the function
L.o:w = L{o(w+ +)) (11.5)

belongs to the space M(L,H, E). The operator L.: M(Vg, H) = M(L, Hp),
defined by (11.5) for E = C, is a Laurent operator.

(¢) The map L — L,, defined by (11.5) for E = C, is an isomorphism from the
space M(Vis,0, X(L));,,. onto the space Laur (Vc, L,H). This isomorphism

corresponds with the identity on S, (V;-, X°(L)), via the isomorphisms of
Lemma 10.4 and eq. (11.4).

Proof: See [11], Appendix B, Lemma B.3. O
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Remark 11.5 In the formulation of (c) we have used that the spaces M (Vi 0, X (L))},
and M (Vi:, 0, XO(L))}, .. are equal, see Lemma 10.3.

laur

We now assume that 7 is an X-configuration, and that L € A. If a € V;g, then
by Hy(a) we denote the collection of hyperplanes H' in L for which there exists a
H € H such that H' = LN [(—a) + H|. Thus, Hy(a) = (T H)r and we see that
Hr(a) is an Xp-configuration. If S C V¢ is a finite subset, then

H1(S) = UsesHi(a) (11.6)

is an Xp-configuration in L as well. The corresponding set of regular points in L
equals

L\UH(S)={weL|VYae SYHeH: a+weH=a+LCH}.

Corollary 11.6 Let L € A and let H be an X-configuration. Let S C V. be a
finite subset and let E be a complete locally convex space.

(a) For every ¢ € M(V¢,H, E) and each w € L\ UHL(S), there exists an open
neighborhood Q) of S in Vz such that the function o(w + - ):z — o(w + 2)
belongs to M (2, X(L), E).

(b) Let £L € M(Vie, X (L)), be a Laurent functional supported at S. For every

laur

v € M(V¢,H, E) the function L.p: L\ UHL(S) — E defined by
Lop(w):=L(p(w+ -)) (11.7)

belongs to M(L,H(S), E). Finally, L, is a continuous linear map from M V¢, H, E)
to M(L,H(S), E). In fact, for every d € N there exists a d' € N*2(9) inde-
pendent of E, such that L, maps M(V¢, H, d, E) continuously into M(L, H,(S),d', E).

Proof: It suffices to prove the result for S consisting of a single point a. Applying
a translation by —a if necessary, we may as well assume that a = 0. Then H(S) =
H(0) = Hp. Let H' be the union of # with H(L,X). Then M(Ve,H,E) C
MV, H',E) and (H')r, = Hr = Hi(S), hence assertions (a) and (b) of Lemma
11.4 with H' in place of H imply assertion (a) and (b), except for the final statement
about the continuity.

For the final statement of (b), we note that by Lemma 11.4(b), L, is a Laurent
operator M(Ve, H') — M(L,H(S)). Let d:'H — N be a map. We extend d
to ‘H' by triviality on H' \ H. Then according to Lemma 11.3 there exists a map
d':Hr(S) — N such that for any complete locally convex space E the map

Lo M(Ve,H',d, E) = M(L,H.(S),d, E)

is continuous linear. Since d is zero on H' \ H, the first of these spaces equals
M(Ve, H,d, F) and the asserted continuity follows. O
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Lemma 11.7 Let L, H, S and L be as in Cor. 11.6, and fix w € L\UH(S). There
exists a Laurent functional (in general not unique) L' € M(Ve, X)},uer Supported in
w + S, such that L'¢ = L(p(w + -)) for all p € M(Ve, H).

Proof: As in the proof of Cor. 11.6 we may assume that S = {0}. Let H =
HUH(w, X). Then L,: ¢ — L(p(w+ -)) is a Laurent operator in Laur (Vg, L, H),
according to Lemma 11.4 (b). On the other hand, it follows from Lemma 10.5 (see
Remark 10.6) that there exists a (in general not unique) Xp-Laurent functional
L" on L such that ¢¥(w) = L"(1hy,) for each ¢p € Oy(L). The functional ¢ —
L"(1h,) is defined for ¥ € M(L,Hy), and it may be viewed as a Laurent operator
in Laur (L, {w}, H.), which we denote by the same symbol £” (see [11] Appendix,
Remark B.4). It now follows from [10], Lemma 1.8 that the composed map L" . L,
belongs to Laur (V¢, {w}, H) and hence by [11] Appendix, Remark B.4 it is given by
an X-Laurent functional £, supported at w. In particular, for ¢ € M(V¢, H) we
have from Lemma 11.4 (b) that w — L(¢(w+ -)) is holomorphic in a neighborhood
of w, hence its evaluation at w is obtained from the application of £” to it. Thus
L(o(w+ -))= L'y for o € M(V¢, H). O

Recall from Section 10 that M(V¢, X, E) is the union of the spaces M(V¢, H, E)
with H an X-configuration.

Lemma 11.8 Let L € A and let £L € M(Vig, X (L))}, be a Laurent functional.
Then for any complete locally convex space E there exists a unique linear operator

Lo M(Ve, X, E) = M(L, X1, E)

that coincides on the subspace M(V¢, H, E) with the operator L, defined in Corol-
lary 11.6, for every X -configuration H in V.

Proof: Let #; and Hs be two X-configurations. Let S = supp (£) and let, for
j = 1,2, the continuous linear operator £i: MV, H;, E) — M(L,H;(S), E) be
defined as in Corollary 11.6 with H; in place of H. Then it suffices to show that
L; and L2 coincide on the intersection of M(Vg, H1, E) and M(Vi, Ha, E). That
intersection equals M (Vg, Hi NHo, E). Let ¢ be a function in the latter space, then
from the defining formula (11.7) it follows that £l = L2y on the intersection of the
sets L\ UH,;.(S), for j = 1,2. This implies that L1y and L2¢ coincide as elements
of M(L). O

We end this section with another useful consequence.

Lemma 11.9 Let £ € M(Vik, X (L)), Let the finite subset X of V x V\{(0,0)}
be defined by X = (X x {0}) U ({0} x X). If ® € M (V¢ x Vi, X), then

v (wl, UJQ) — ,C((b( - t+wy, - + ’wg))
defines a function in M(L x L, X1), where X, = (X, x {¢(L)}) U({c(L)} x X1). In

particular, the pull-back of ¥ under the diagonal embedding j: L. — L x L belongs
to the space M(L, Xy,).
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Proof: Equip V;* x V;* with one half times the direct sum inner product. Then the
diagonal embedding ¢: z > (2, 2) is an isometry of V- into Vit x V4. Tts adjoint is
the map p: (21, 22) — (21 + 22) from V- x V- onto V;-. The intersection X(L):=
X N (Vi x V&) equals (X(L) x {0}) U ({0} x X(L)). Its image under p is given
by X(L)o = 21X (L). Thus, according to Lemma 10.10, the space of X (L)o-Laurent
functionals on V4 is equal to the space of X (L)-Laurent functionals on V. Hence,
according to Lemma 10.14 and the remark following its proof, we have an associated
push-forward map ¢, from M(Vig, X (L))}, t0 M(Vie X Vi, X (L))}

For generic w;,w, € L we define the meromorphic function ®™1%2) on Vi x Vit
by ®®12)(21, 25) = ®(wy + 21, ws + ). The definition of ¥ may now be rewritten
as U(wy, ws) = L[t*(®@w2))]. By (10.6) it follows that W(wy,ws) = 1, (L) (RW1w2)),
or, equivalently, in the notation of Lemma 11.8,

U = [1.(L)]. @.

We now observe that X L= ()? )x1,- Hence it follows by application of Lemma 11.8.
that ¥ € M(L x L, X;). There exists an X -configuration H in L x L such that
v e M(LxL,?—Z). Any hyperplane H € H is of the form H = Hx L or H = Lx H,
with H an X -hyperplane in L. In both cases j~'(H) = H. It now follows that
47 (#H) is an Xp-configuration in L, and that j*¥ € M(L, Xp). O

12 Analytic families of a special type

In this section we introduce a space Sgyp(X+: 7:6) of analytic families of D(X)-
finite 7-spherical functions whose singular locus is a ¥-configuration. The definition
of this space is motivated by the fact that it contains the families obtained from
applying Laurent functionals to Eisenstein integrals related to a minimal o-parabolic
subgroup, as we shall see in the following sections, and by the fact that the vanishing
theorem is applicable, see Theorem 12.10.

In this section we fix a choice Xt of positive roots for ¥ and denote by P, the
associated minimal standard o-parabolic subgroup.

Definition 12.1 Let QQ € P, and let Y C a5, be a finite subset. We define
CoPP(Xy: 7) (12.1)

to be the space of functions f:ag. X X4 — V;, meromorphic in the first variable,
for which there exist a constant k € N, a ¥,(Q)-hyperplane configuration H in ag),.
and a function d: H — N such that the following conditions are fulfilled.

(a) The function X — fy belongs to M(agye, H,d, C*° (X, : 7)).

(b) For every P € P™" and v € Ng(aq) there exist functions qs¢(P,v| f) in
Pi(aq) @ M(agye, H,d, C®(Xoy: Tm)), for s € W/Wq and £ € —sWoY +
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NA(P), with the following property. For all A € aj,. \ UH, m € Xo, and
a € AL (P),

Falmav) = Z a* =P Z a g, ¢(P,v| f,loga)(\,m), (12.2)

SEW/WQ va—sWQY-FNA(P)

where the A(P)-exponential polynomial series of each inner sum converges
neatly on Af(P).

(¢) For every P € P™" v € Nk(a,) and s € W/Wy, the series

Z a'_§QS,§(Pa v ‘ s log CL)

ge—sWqoY+NA(P)

converges neatly on Af(P), as an exponential polynomial series with coeffi-
cients in the space M(agye, H,d, C®(Xop 1 Tn))-

Finally, we define

Cgp,hyp(X+ D7) = C’;’};i{‘gi’(XjL 7). (12.3)

Remark 12.2 Note the analogy between the above definition and Definition 7.1.
In fact, let 2 = ag, \ UH, then it follows immediately from the definitions that
the restriction of f to {2 x X, belongs to Cg‘jY(X+ : 7: §2). Moreover, it follows from
Lemma 7.3 that the functions ¢, ,(P,v | f) introduced above are unique, and that
the notation used here is consistent with the notation in Definition 7.1. The precise
relation between the definitions is given in Lemma 12.5 below.

Remark 12.3 In analogy with Remark 7.2 we note that the space (12.1) depends on
( through its o-split component Ag,. Moreover, it suffices in the above definition
to require conditions (b) and (c) for a fixed P € P™n and all v in a given set
W C Nk(aq) of representatives for W/Wgnpg. Alternatively, it suffices to require
those conditions for a fixed given v € Ng(a,) and each P € P™n.

Finally, we note that ap,q = aq, hence *ap, = {0}. Thus, if Q = P, we only need
to consider the finite set Y = {0}. This explains the limitation in (12.3).

It follows from Remark 12.2 that the following definition of the notion of asymp-
totic degree is in accordance with the definition of the similar notion in Definition
7.1.

Definition 12.4 Let f € C’g:’)l)yp(X+: 7). We define the asymptotic degree of f,
denoted deg,(f), to be the smallest integer k for which there exist H, d such that the
conditions of Definition 12.1 are fulfilled. Moreover, we denote by H; the smallest
¥, (Q)-configuration in af,,. such that the conditions of Definition 12.1 are fulfilled
with k = deg,(f) and for some d:H; — N. These choices being fixed, we denote
by d; the <-minimal map H; — N for which the conditions of the definition are
fulfilled. Finally, we put reg,(f): = a5 \ UH;.
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If @ € P,, we denote by ¥,4(Q) the set of indivisible roots in %,(Q), i.e., the
roots a € ¥,(Q) with ]0,1Ja N %,.(Q) = {a}. Moreover, we put 3§ = ,9(F). Let
H be a %, (Q)-configuration in af,,, and d:H — N a map. If w C af,. is a bounded
subset, we define 7,4 as in (11.1) with V' = a},,, X = %,(Q) and X = ¥,0(Q).

Lemma 12.5 Let Q € P,, Y C *aj a finite subset, H a %, (Q)-configuration in
6Hqe and d € N* . Assume that f € M(ayc, C°(Xy: 7)). Then the following two
conditions are equivalent.
(a) The function f belongs to C’gf?yp(XJr : 7) and satisfies Hy C H and dy < d.
(b) For every non-empty bounded open subset w C ag, the function fr, ,: (A, z) —
Twd(A) f(A, ), w x Xy — V; belongs to Cyy (X : 71 w).

Moreover, if one of the above equivalent conditions is fulfilled, then for every non-
empty bounded open subset w C a7, and all P € P, v € Nk(aq), s € W/Wg and
¢ € —sWyY + NA(P),

qsag(P’ v ‘ f”w,d) = 7Twad qsag(P’ v ‘ f)’ (124)

where on the right-hand side we have identified 7, 4 with the function 1 ® 7,4 ® 1
in P(ag) ® O(w) @ C®(Xg,: 7).

Proof: Assume that (a) holds and that w C a5, is a non-empty bounded open
subset. Put m = m,4 and fr = fr, ,. It follows from Definition 12.1 (a) that
friw x X4 — V; is smooth and that f;) is 7-spherical for every A € w. Thus, it
remains to verify conditions (b) and (c) of Definition 7.1 for f,. Let P € P™n and
v € Nk(aq). For s € W/Wg and € € —sWoY + NA(P) we define

G e(Pv| fr, X, A, m): = T(A)gse(Pov | f, X, A, m).

Then conditions (b) and (c) of Definition 7.1, with k = deg, f and with ¢; . in place
of g, ¢, follow from the similar conditions of Definition 12.1. Thus, it follows that
fr € C3y(Xy: 71 w) and that (12.4) holds for all P € P, v € Nk(aq), s € W
and £ € —sWyY + NA(P).

Now assume that (b) holds, then it suffices to show that (a) holds. Let w be a
bounded non-empty open subset of af .. Then it follows from Definition 7.1 that
the function fr = fr ,:w x Xy — V, is smooth; moreover, from condition (a) of
the mentioned definition it follows that f,  is 7-spherical for every A € w. Hence
the map A — f, belongs to O(w,C*®(X, : 7)). Since w was arbitrary, this implies
that A — f belongs to M(agqc, H,d, C*(X: 7)). Hence f satisfies condition (a)
of Definition 12.1. Let now P € P and v € Nk(a,). Then it remains to establish
conditions (b) and (c) of that definition.

If w is a non-empty bounded open subset of ag,,., then obviously the restriction
to w \ UK of the function f; belongs to )’y (X1: 7: w \ UH). Moreover, since
Ty a 1S nowhere zero on w \ UH, it follows from division by 7, 4 that the restriction
flw\umyxx, belongs to Cy (X4 : 7: w \ UH). Hence, in view of Lemma 7.5, the
function f belongs to Ciy (X, : 7: ), where Q: = aj,. \ UH. Let k = deg, f.
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It follows from the division by 7, 4, that for every s € W and {£ € —sWpY +
NA(P),

Ww,d(/\)QS,ﬁ(Pav ‘ f7 ' a)‘) = qs,g(P,’U | fwa '7/\), (/\ € W\UH)

In particular, the function (X, ) — 7, 4(A)gse(P,v| f, X, A) belongs to the space
Pi(aq) @ O(w, C*®(Xy, : Tm))- Since w is arbitrary, this implies that f satisfies con-
dition (b) of Definition 12.1.

From condition (c) of Definition 7.1 with f; and w in place of f and €2, respec-
tively, it follows that, for s € W, the series

Y (N gue(Pv] floga, \)

ge—sWoY +NA(P)

converges neatly on AF(P) as a A(P)-exponential polynomial series with coefficients
in O(w,C*®(Xpy: 7)). Since w was arbitrary, it follows from the definition of the
topology on M(agye; H,d, C®(Xo, : Tm)) (see Section 11) that f satisfies condition
(c) of Definition 12.1. O

Lemma 12.6 Let f € CgyP(X,: 7) and D € D(X). Then Df € CFy™ (X, 1 7).
Moreover, Hpy C Hy, dpy < dy and deg, D f < deg, f.
Proof: This follows from a straightforward combination of Lemma 12.5 with Propo-

sition 7.6. O

If f e ng’}}}yp (X : 7), then by Remark 12.2 the function f belongs to C3)y (X : 7: ),
with Q = reg,f. Let k = deg,f. For P € P,, v € Nk(aq), 0 € W/ ~p and
£ € —0-Y+NA(P), let ¢oe(P,v|f) € Plapg) @ O(Q,C®°(Xpy,+: 7p)) be the
function defined in Theorem 7.7.

Lemma 12.7 Let Q € P, and Y C "ap, a finite subset. Assume that f €
ng’;lyp(XJr: 7) and put k = deg,f. Let P € P, and v € Nk(aq). Then, for ev-
ery A € reg,f, the set Exp(P,v| f)) is contained in W(A +Y)|ap, — pp — NA,(P).
Moreover, let 0 € W/~pg . Then

(a) for every £ € —o - Y + NA,(P),

qJ,E(Pa v | f) € Pk(an) & M(a*QqcaHfa dfa COO(XP,v,-I— : TP));

(b) for every R > 1, the series

Z aigcﬂr,ﬁ(P: v | fa log CI,)

£eE—o Y+NA, (P)

converges neatly on Ap (R™') as a A,(P)-exponential polynomial series with
coefficients in M(a%., Hy,ds, C°(Xpy,+[R]: Tp))-
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Proof: Let 2 = reg,f. Then f € O3y (X;: 7: Q). It follows from Theorem 7.7
that the assertion about the (P, v)-exponents of fy holds. That (a) and (b) hold
can be seen as in the last part of the proof of Lemma 12.5, with the reference to
Definition 7.1 replaced by reference to Theorem 7.7. U

The following definition is the analogue for C’gj’l}}yp (X, : 7) of Definitions 9.1 and
9.5.

Definition 12.8 Let ) € P, and § € Dq. Then for Y C *aj a finite subset we
define

Sgy;(X+: 7:9)
to be the space of functions f € ng’)},‘yp(XJr: T) (see Definition 12.1) such that, for

all A € reg,(f), the function fy:x — f(A, ) is annihilated by the cofinite ideal I .
Moreover, we define

Sgyp(X+: T:0):= U Sg{’{}(X+: T:0).

YcC* aZ)qC finite

The spaces
85’:{@(X+ T: 5)globa ggyp(X+: T: 5)glob

are defined to be the spaces of functions f in 553,'{}(X+ : 7:0), resp. Egyp(X+: T:0),
for which the condition in Definition 9.5 is satisfied by the restriction to €} = reg, f.
Finally, we define

EP(X T 8):= SIEOVP(X+: 7:0), EFP(Xy:7T: 8) glob: = 81}§g'p(X+: 71 0)glob
for § € Dpo.

Remark 12.9 Combining Lemmas 12.5 and 9.4 we see that, in the above definition
of 553"5(X+ : 7:6), it suffices to require that I5 annihilates fy for A in a non-empty
open subset of reg,(f).

We now come to a special case of the vanishing theorem that will be particularly
useful in the following. Let ®W C Ng(a,) be a complete set of representatives for
Wo\W/Wknn.

Theorem 12.10 (A special case of the vanishing theorem) Let ) € P, be standard
and let § € Dg. Let f € cS'C};yp(XJr : 71 0)glob and let ' be a non-empty open subset
of reg, f. If

A= pq ¢ Exp(Q,ulf))

for each u € YW and all X € V', then f = 0.

Proof: Put Q = reg,(f). It follows immediately from the definitions that the
restriction fo of f to Q is a family in Eo(Xy: 7: Q: 6)g0p. Moreover, being the
complement of a locally finite collection of hyperplanes, €2 is ()-distinguished in
a5qc- 1t follows that fo satisfies all hypothesis of Theorem 9.10; hence fo = 0 and
hence f = 0. O
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13 Action of Laurent functionals on analytic fam-
ilies

Let Q € P, be fixed. We shall discuss the application of a Laurent functional
L € M(*ahye XQ)aurs to families f € CPMP(X, : 7). More precisely, we want to
set up natural conditions on f under which the family obtained from applying £ to
f belongs to Egyp(X+: T : 0)glob, S0 that Theorem 12.10 is applicable.

Given a Y-configuration H in aj. and a finite subset S C *ag,. we define the
2 (Q)-configuration Ho(S) = Ha, (S) as in (11.6), with V' = ag,, X = ¥, and
L = agye- Thus, for v € ag,. we have

v¢UHQ(S) <= [VAeSYVHeH: AtveH=A+ap,CHI

We recall from Lemma 11.8 that a Laurent functional £ € M(*ag)c, Xg)fy,r induces
a linear operator

Lo M(age, 8,U) = M(a5ee 20 (@), U), (13.1)

for any complete locally convex space U.

Lemma 13.1 Let £ € M(*aHqc; XQ)pur and put Y = supp L. Let H be a X-
configuration in &}, and let H' = Ho(Y). Then for every map d:H — N there
exists a map d': H' — N such that, for every complete locally convex space U, the
linear map (13.1) restricts to a continuous linear operator

Lo M@0 H, d, U) = M(ahee M, d,U),

Proof: This follows immediately from Corollary 11.6. U

For the formulation of the next result it will be convenient to introduce a par-
ticular linear map. Let £ € M(*ahyc, @)y and let Ao € Y:=supp L. Let Ly, €
M(* %4> £@)taur De the Laurent functional supported at )g, defined as in Remark
10.9, and let U be a complete locally convex space. If P € P, and s € Wp\W, then
we define the linear operator Lf(’; from M(ai., ¥, U) into C(apq, M(ahye, Xr(Q), U))
by the formula

L p(X,v) = e CotIX L, Lef g )](v), (13.2)

for ¢ € M(aie,H,U), X € apq and v € aj. \ UH(Y).
If f e CP™P(X,:7), then f, viewed as the function A — f,, belongs to the
complete locally convex space M(a%., Hy,ds, C=(X, : 7)). Accordingly,

L.f € M(agqe H,d,C®(X,: 7)), (13.3)

where H' = H;q(Y) and d': H' — N is associated with £, and dy as in Lemma
13.1. We note that by definition

Lif(v,z)=L[f(- +v,2)], (v € ahe \UH', € X}). (13.4)
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Proposition 13.2 Let Q € P, and let L € M(*agq, Xq)f., be a Laurent func-
tional with support contained in the finite subset Y C *ag... Assume that f €

CPMP(X, o 1), and let k = deg, f.

(a) The function L.f, defined as in (13.4), belongs to the space Cg‘j’}l}yp(X+: 7).
Moreover, He,; C H' = Hpo(Y) and deg,L.f < k+k', with k' € N a constant
only depending on L, H; and dy.

(b) Let P € P,,v € Nkg(aq). Then, forc € W/~pjg and §{ € —0 - Y +NA,(P),

Ge(PU LX) =D 3 LR g e (Pl HX, )] (0,0,

AEY seWp\W,[s
sAlapg +§€NAT(P)

(13.5)
for all X € apq and v € ag,,. \ UH'. In particular,

Exp(P,v | (£.f)v)
C{s(v+ANlap, —pp —p|s€W,A€Y, u€ NA(P),qs,(P,v]| f) # 0}.

Remark 13.3 Note that the index set of the inner sum in (13.5) may be empty.
We agree that such a sum should be interpreted as zero.

The following lemma prepares for the proof of the proposition.

Lemma 13.4 Let £ € M(*a{yc; ¥@)far be a Laurent functional with support con-
tained in the finite set Y C *ag, .. Let H be a X-configuration in aj, and d:'H — N a
map. Let H' = Ho(Y') and d': H' — N be as in Lemma 13.1. There exists a natural
number k' € N with the following property.
For every A\g € Y, every P € P,, each s € Wp\W and any complete locally
convex space U, the operator [,f(’)i restricts to a continuous linear map
L35 M(ale, H,d,U) = Py(apq) @ M(ahee, H', d', U).

Gqc
Proof: For afixed X € apq, multiplication by the holomorphic function e*()%): g7 —
C yields a continuous linear endomorphism of the space M(a;., H, d,U); similarly,
multiplication by the holomorphic function e *(o+)(X). agqec — C yields a continu-
ous linear endomorphism of M(aaqc, H',d',U). It now follows from (13.2) that for
a fixed X € apgq, the function ,C)\ 5(X) belongs to the space M(ag,, H',d',U) and
depends continuously on ¢. Thus, it remains to establish the polynomial dependence
on X.
For any Y.-hyperplane H C a;, we denote by ay the root from Y such that H is
a translate of ag. Let X5 p: = EQ NXgy and let do: ¥ ; — N be defined by do(a) =
d(oz + )\0) thus do(a) = 0 if ot + X ¢ H. We deﬁne Mo = Trg,do @S in (10.1) with
"G A0y 2 Q,O and dp in place of V,a, X and d, respectively. If p € M(a;., H,d,U),
then for v € af) . \ UH', the germ of the function ¢”: A — ¢(X +v) at Ay belongs
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to Ty ' O (*agqe> U)- Hence there exists a constant coefficient differential operator
up € S(*ag,,), independent of U, such that

Lyosp(v) = uolmo(-)o(- +1)](X), (v € agy \UH), (13.6)
for any ¢ € M(al., H,d,U). Inserting (13.6) in (13.2) we find that

qC’
Lamp(X,v) = e ComINyq et (p( - +1)](Ao)
= ¢ )y [ OX (ol - 4+ 1)](No).

By application of the Leibniz rule it finally follows that this expression is polynomial
in the variable X of degree at most k": = order(uyg). O

Proof of Proposition 13.2: By linearity we may assume that supp £ consists of
a single point Ay € *aj.. Let H = H; and d = dy, and let d:H' — N and k' € N
be associated as in Lemmas 13.1 and 13.4. We will establish parts (a), (b) and (c)
of Definition 12.1 for £, f with k, H and d replaced by k + k', ‘H' and d'. Note that
part (a) was observed already in (13.3). Put Q:= af,. \ UH'. Then, in particular,
the function L, f: 2 x X, — V. is smooth.

We will establish parts (b) and (c) of Definition 12.1 by obtaining an exponential
polynomial expansion for (L, f),, for v € Q, along P € P™". However, having the
proof of (13.5) in mind, we assume only P € P, at present. Let v € Ng(aq). Then
f€CR 10y(Xy 1 71 a5 \UH) by Remark 12.2. Hence by Lemma 12.7 and (7.13) we
obtain, for A € a’. \ UH,

F(A, mav) Z fs(A,a,m) (meXpys, a € AIJSq(Rp,U(m)_l)), (13.7)
sEWp\W

where the functions f; on the right-hand side are defined by

fsAa,m) =a>"" Y atg,,(Pv| f)(loga, A, m). (13.8)
wENA, (P)

Here the functions g, ,(P, v| f) belong to the space Py(apq) @M (alc, H,d, C°(Xp, 4 :

By Lemma 12.7 (b), for every R > 1 the series in (13.8) converges neatly on
Ap (R™") as a series with coefficients in M(a}c, M, d, C®°(Xpy +[R]: 7p)). By (13.2)
we have, for v € Q, m € Xp, 4[R] and a € A} (R7")

L.(f) (v a,m) = @t PrLn [y 1 a tgu(Pu] f)(loga, -, m)](loga, v).
MENA, (P)

It follows from Lemma 13.4 that Ei’; may be applied term by term to the se-
ries. Moreover, the resulting series is neatly convergent on Aﬁq(R_l) as a A, (P)-

exponential polynomial series with coefficients in M (a5, H', d', C®°(Xpy 1 [R] : 7P)).

The application of £, thus leads to the following identity,

L.(f) (v, a,m) = g*Porv)=rr Z a g5, (Pv| f)(loga,v,m), (13.9)
pENA, (P)
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where the function g5 ,(P,v| f): apq X @ = C®(Xpy 4 : 7p) is given by

qf’u(P,v | f)(loga,v) = ,Cf(’;[qs,u(P,v | f,loga, -)](loga,v). (13.10)
Using Lemma 13.4 we deduce that
qzu(Pa v ‘ f) € Pk+k’(an) b2 M(a*quC’ Hla dl: COO(XP,U,-I— : 7-P))'

Combining (13.9) with (13.7) we obtain an exponential polynomial expansion
along (P,v) for the T-spherical function (L. f), as

(L. f)u(mav) Z asQotv)-p Z a*“qﬁu(P,vH)(loga,V,m). (13.11)

sEWp\W UENA, (P)

If s € Wp\W and v € afy, then sv|q,, = [s]v|ap,, Where [s] denotes the class of s
in W/ ~pjq . It follows that the series in (13.11) may be rewritten as

S e Y ar (] f)logavm)
S

The exponents sAg — u as s € Wp\W, [s] = 0 and p € NA, (P), are all of the form

—¢&, with £ € —o - {A\¢} + NA, (P). Thus, we see that, for v € Q, m € Xp, ,[R] and

a€ Af (R,

(L f)v(mav) = Z a’ rr Z a ¢ gy¢(loga,v,m) (13.12)

cEW/~pig g€—a-{Ao}+NA; (P)
with

e = D Gingane(PlS) (13.13)

sEWpP\W, [s]=c
sXolapg +HEENA(P)

S Pk+k/(apq) ® M(G*Qqc, HI, dl, COO(XP,U,+ : 7_P))'

From what we said earlier about the convergence of the series in (13.9), it follows
that, for every R > 1, the inner series on the right-hand side of (13.12) converges
neatly on Ap (R™') as a A,(P)-exponential polynomial series with coefficients in
the space M (a5, H', d', C®(Xpy 1 [R]: 7p)).

If P is minimal, then Xp, [R] = X,, and we see that L, f satisfies conditions
(b) and (c) of Definition 12.1 with ¢, ¢(P,v | Ly f) = Qo for 0 € W/ ~p o= W/W,.
This establishes part (a) of the proposition.

For general P we now see that the functions ¢, ¢ introduced above coincide with
functions ¢, ¢(P,v | L. f) introduced in Theorem 7.7. Finally, combining (13.13) and
(13.10) we see that we have established part (b) of the proposition as well. O
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Lemma 13.5 Let§ € Dp, and f € £"P(X;: 7: 6). Let Q € Py and £ € M(*ayqc, Lo
and put Y = supp L. There exists a ' € Dg such that

laur»

L.feEFP(XyrT:d).

Proof: It follows from Proposition 13.2 that L.f € Cep’hyp(X+ 7). Moreover,
reg, L.f D Q = ahc \ Hye(Y). Then in view of Deﬁnltlon 12.8 and Remark 12.9
it suffices to establish the existence of a 6’ € Dg such that, for every v € €, the
function (L. f), is annihilated by the cofinite ideal Iy ,.

By linearity we may assume that supp £ consists of a single point Ay € *agc.
Then L = L,,.

Let 7o, ug be as in the proof of Lemma 13.4. Then from (13.6) we see that

(Laf)w(2) = uolmo () f (- + v, 2)](Xo),

for x € X, v € Q. Moreover, since (A, z) — mo(A) fryn(2) is smooth in a neighbor-
hood of {A\} x X, it follows that, for D € D(X), v € Q and = € X,

D(L.f)v(2) = uo[mo (- ) D(f. 1) ()] (Xo)- (13.14)

Put [ = order(ug) and define ¢’ € Dg by suppd’ = {A\g} + suppd and 6'(Ag + A) =
§(A) + 1 for A € suppd. It suffices to prove the following. Let elements D € D(X)
be given for i = 1,...,0(A) + [, for each A € suppd, and define the differential
operator

§(A)+1
= [ I @!-~+D}x+A+v)) eDX) (13.15)

A€suppd =1

for v € ajy. Then D, annihilates (L. f), for each v € Q.
It follows from (13.4) and (13.14) that

Dy(L.f)v(x) = uolmo(-) D f.1(2)](Ao), (13.16)
where the dots indicate a variable in *ag .. We write each factor in D, as
D} — (D} XN+ A+v)
= [D} —y(D}, - + A+ )]+ [y(D}, - + A +v) — (DM Ao + A +v)],

also with variables in *ay) . indicated by dots. Inserting this into (13.15) and (13.16)
we obtain an expression for D, (L, f),(z) as a sum of terms each of the form

) 11 » V()] (0), (13.17)

A€suppd

where
D) = [[ D} = (D} A+ A+ )]

SN
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and
p*N) = [THON A+ A +v) = 7(D Ao + A+ )]
ieS

with Sy a subset of {1,...,d(A)+1} and S§ its complement in this set. On the one
hand, if S has fewer than 6(A) elements for some A, there are at least [ 4+ 1 factors
in the corresponding product p*. Since each of these factors vanish at ), it follows
from the Leibniz rule that then (13.17) vanishes. On the other hand, if for each
A the set Sy has at least §(A) elements, then the differential operator [, D*()\)
annihilates fy.,, again causing (13.17) to vanish. It follows that D,(L.f),(z) = 0.
U

In the following definition we introduce a notion of asymptotic globality that is
somewhat stronger than the one in Definition 8.4. It is motivated by the fact that it

carries over by the application of Laurent functionals, as we shall see in Proposition
13.9

Definition 13.6 Let Q € P, and let Y C *ag,. be finite. Let P € P,, v € Nk(aq)
and o € W/NP‘Q .

(a) Let 2 C apy. be an open subset. A family f € Cy (X, : 7: Q) is called holo-
morphically o-global along (P, v) if there exists a full open subset 0" of ag, .
such that, for every £ € —o-Y +NA, (P), the function A — g, ¢(P,v| f, - )(A)
is a holomorphic Py(apy) ® C*(Xp, : 7p)-valued function on * N2, for some
k e N.

(b) A family f € Cgff}yp(XJr: 7) is called holomorphically o-global along (P,v) if
its restriction to Q) = reg, f is holomorphically o-global along (P, v), according
to (a).

It is easily seen that the property of holomorphic globality according to (a) of
the above definition implies the globality in Definition 8.4. We have the follow-
ing analogue of Lemma 8.7, describing how the property of holomorphic globality
transforms under the action of Nk (ay).

Lemma 13.7 Let Q, Y, P, v and o be as above, and let f € C’eergl;yp(X+: 7).
If f is holomorphically o-global along (P, v), then f is holomorphically uo-global
along (uPu ', uv), for every u € Ni(ay).

Proof: The proof is completely analogous to the proof of Lemma 8.7, involving an
application of Lemma 7.10. O

Proposition 13.8 Let Q € P,, Y C *aj. a finite subset and let P € Py, v €
Nk (aq) and 0 € W/ ~pjg . Let f € ng’;,lyp(XJr: 7) and put H = Hy, d = dy and
k =deg,f.

The family f is holomorphically o-global along (P,v) if and only if, for every
element £ € —o - Y + NA, (P), the function A — ¢, ¢(P,v| f, - )(\) belongs to the
space M(apqe, H, d, Pr(apg) ® C°(Xpy: 7p))-
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Proof: The ‘if’-statement is obvious. Assume that f is holomorphically o-global
along (P,v), and let £ € —o - Y 4+ NA, (P). According to Lemma 12.7, the function

/\'_)qavé(P:,U|fa 7/\) (1318)
belongs to the space
M (6hqer My d, Pr(apg) ® C®(Xpo 42 p)). (13.19)

Let Q = reg,(f) and let Q" be a full open subset of ay,. satisfying the properties
of Definition 13.6 (a) for the restriction of f to 2. Then the function (13.18) not only
belongs to the space (13.19), but also to the space O(Q2*NQ, P(apq)@C®(Xp,: 7p)),
for some [ € N. In particular we see that this is true with [ = k.

Let now X € apq be fixed. Then it suffices to show that the function (13.18),
with X substituted for the dot, belongs to the space M(agc, H,d,C®(Xpy: 7p)).
To prove the latter, we fix an arbitrary bounded non-empty open set w C ag,. and
put m: = m, 4, see above Lemma 12.5. Then the function F': wxXp, , — V;, defined
by

F()‘am) = 7T()‘) qa,f(Pa v | [ X, )‘)(m)

is C*° and holomorphic in its first variable. Moreover, let wy be the full open subset
wNQ*NQ of w. Then by what we said above, the restricted function F|ugxx,, ,
admits a smooth extension to the manifold wy x Xp,. It now follows from Corollary
18.2 that F' has a unique smooth extension to w x Xp,,; this extension is holomorphic
in the first variable. It follows that the function A — 7(A)gse(P,v | f, X, A) belongs
to O(w, C®°(Xpy: Tp)). Since w was arbitrary, this completes the proof. O

Proposition 13.9 Let f € CP™P(X,: 1), let Q € P, and let £ be a Laurent
functional in M(*a%4e, £Q)faur Put Y = supp L. Let P € P,, v € Nk(aq) and
S W/ ~P|Q -

If f is holomorphically s-global along (P,v) for every s € Wp\W with [s] = o,
then L. f € Cg?f}yp(XjL : 7) is holomorphically o-global along (P, v).

Proof: It follows from Proposition 13.2 (a) that L.f € Cg:’;}yp(XjL: 7). Assume
that f satisfies the globality assumptions. Then it remains to establish the assertion
on o-globality for L, f.

Let k = deg, f. Let H = Hy, d = df and H' = Ho(Y). Moreover, let d:H' — N
be associated with these data as in Lemma 13.1 and let &’ € N be associated as in
Proposition 13.2 (a). According to the latter proposition, the set ' = ag, . \UH' is
contained in reg, (L, f).

Let £ € —0 - Y +NA, (P). Moreover, let s € Wp\W be such that [s] = o and let
Ao € Y be such that 7: = sAo|a,, + & belongs to NA, (P). Then by Proposition 13.8,
the function

A= gsn(Polf, -, A)

belongs to M(a5,c; H, d, Pr(apq)®C>*(Xp, : 7p)). Using Lemma 13.4 with C*°(Xp, : 7p)
in place of U, we see that, for X € apg, the function

Yx:= ﬁi’)i[qsm(P,U | [, X, )]
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belongs to M(agye, H',d', Pr(apq) ® C*°(Xp, : 7p)). Moreover, it depends on X €
apq as a polynomial function of degree at most k. It follows that the function
(v, X) = px(v)(X) belongs to the space

M(aaqca Hla dla Plc—Hc’(an) &® Coo(Xpyv . Tp)). (1320)
Each term in the finite sum (13.5) is of this form. Hence the function
(V’X) = qmﬁ(PaU | L.f, X, V)

belongs to the space (13.20) as well. This holds for all{ € —o-Y +NA, (P). Therefore
the restriction of L, f to reg,(L.f) satisfies Definition 13.6 (a) with Q* = Q. O

The following definition is an analogue of the final part of Definition 12.8, re-
placing the globality condition by a condition of holomorphic globality.

Definition 13.10 Let Q € P, and let § € Dg. We define
5gyp(X+: T: 5)hglob

to be the space of functions f € Sgyp(XJr : 7: 0) satisfying the following condition.

For every s € W and every a € . with s‘loz\aQq # 0, the family f is holomor-
phically [s]-global along (P,,v), for allv € N (aq); here [s] denotes the image
of s in W/r~p, 10 = Wo\W/W.

IfY C*agc Is a finite subset, we define

55%5(X+ D T2 0)nglob = 553:5(X+: T:6)N 5gyp(X+ 2 T 1 0)hglob-

It is easily seen that Sgyp(X+ DT 6)hglob C Sgyp(X+ : T 0)glob- As in Lemma 9.7
the above condition allows a reduction to a smaller set of (s, c).

Lemma 13.11 Let Q € P,, ,6 € Dg and f € Egyp(XJr: 7:9). Let ¥ C Xy be such
that WU = X,. Assume that the following condition is fulfilled.

For every s € W and every o € ¥ with s‘loz|aQq # 0, the family f is holomor-
phically [s]-global along (P,,v), for all v € Nk(ag).

Then f € ggyp(X+: T 5)hglob-

Proof: The proof is similar to the proof of Lemma 9.7, involving Lemma 13.7
instead of Lemma 8.7. O

We now come to the main result of this section, which provides a source of
functions to which the vanishing theorem (Theorem 12.10) can be applied.
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Theorem 13.12 Let § € Dp, and f € Sélyp(X+: T 0)nglob, let Q@ € P, be a stan-
dard o-parabolic subgroup and let L € M(*afqc, XQ)jaur- Put Y = supp £. Then
there exists a ' € Dg such that

L.f €EFYXs: T ngion-

Proof: From Lemma 13.5 it follows that L, f is a family in ggfg (Xy:7:4") for some
' € Dg. Let s € W and a € A be such that s™'a/q,, 7# 0. Then every t € W,sWy
also satisfies the condition t’la\aQq # 0. Thus, from the hypothesis it follows that f
is holomorphically W,t-global along (P,, v) for every ¢ in the double coset W,sWj,.
According to Lemma 6.5, see also Remark 9.6, the latter set equals the class [s] of
s for the equivalence relation ~p g in W. It now follows from Proposition 13.9 that
L. f is holomorphically [s]-global along (P,,v). We conclude that L, f satisfies the
conditions of Lemma 13.11, hence belongs to 553"5(X+: 71 ') hglob- O

14 Partial Eisenstein integrals

In this section we will define partial Eisenstein integrals and show that they belong
to the families of eigenfunctions introduced in the previous section.

We start by recalling some properties of Eisenstein integrals. Let P € Pmin
be a minimal o-parabolic subgroup. Let (7,V;) be a finite dimensional unitary
representation of K. Let W C Ni(aq) be a fixed set of representatives for W/Wxnpg.
Following [9], eq. (5.1), we define the complex linear space °C = °C(7) as the following
formal direct sum of finite dimensional linear spaces

°C:= Buyew CP(Xow: Tm)- (14.1)

Every summand in the above sum, as w € W, is a finite dimensional subspace of
the Hilbert space L?(Xg, V;); here the L2-inner product is defined relative to the
normalized M-invariant measure of the compact space X¢, = M/M NwHw™" and
the Hilbert structure of V,. Thus, every summand is a finite dimensional Hilbert
space of its own right. The formal direct sum °C is equipped with the direct sum
inner product, turning (14.1) into an orthogonal direct sum.

For¢ € °C, ) € aj; and & € X, the Eisenstein integral E(y: A: ) = E(P:¢: \: z)
and its normalized version E°(¢: A: ) = E°(P: ¢: A: z) are defined as in [9], § 5.
The Eisenstein integrals are 7-spherical functions of x, depend meromorphically on
A and linearly on t. We view E°(A: z): = E°(- : A: z) (and similarly its unnormal-
ized version) as an element of Hom(°C,V;) ~ V; ® °C*. Thus, for generic A € aZ,
E°()) is a 7 ® 1-spherical function on X. The connection between the unnormalized
and the normalized Eisenstein integral is now given by the identity

E°(A:z)=E\:2).C(1: N7,  (ze€X), (14.2)

for generic A € a.. Here C(1: A\):= Cpjp(1: A) is a meromorphic End(°C)-valued
function of A € a’ ; see [9], p. 283.

qC?
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The Eisenstein integral is D(X)-finite. In fact, we recall from [9], eq. (5.11),
that there exists a homomorphism p from D(X) to the algebra of End(°C)-valued
polynomial functions on aj. such that

DE°*(\) = I @ u(D: NIE°(N), (D e DX)).

It now follows from Lemma 5.3 that, for generic A € aqc, the Eisenstein integral
E°(A) belongs to C°P(X;: 7 @ 1). It therefore has expansions of the form (2.12).
These expansions have been determined explicitly in [8]. We recall some of the
results of that paper.

In [8], eq. (15), we define a function ®p(A: ) on AF(P) by an exponential

polynomial series with coefficients in End (VMK of the form
p(A:a)=a*"" > aTp,(A (a € AL(P)). (14.3)

veEA(P)

Note that here P replaces the @ of [8], Sect. 5; also, in [8] we suppressed the @
in the notation. The coefficients in the expansion (14.3) are defined by recursive
relations (see [8], eq. (18) and Prop. 5.2); it follows from these that the coefficients
depend meromorphically on A, and that the expansion (14.3) converges to a smooth
function on Af (P), depending meromorphically on A. In fact, we have the following
stronger result.

Let IIy; g be the collection of polynomial functions afltC — C that can be written
as finite products of linear factors of the form A — (A, a) — ¢, with « € ¥ and
c € R. For R € R, we define the set

ag(P, R):={X € alc | Re(A, @) < R Va € ¥(P)}.

Lemma 14.1 Let R € R. Then there exists a polynomial function p € Il r such
that the functions pI'p,, for v € NA(P), are all regular on a,(P, R). Moreover, if p
is a polynomial function with the above property, then the series

> ap(-)Tpu(-) (14.4)

vENA(P)

converges neatly on A} (P) as an exponential series with coefficients in O(a}(P, R))®
End(VMOEOH) " In particular, the function (a,)\) — p(A\)®p(A: a) is smooth on
At (P) x af(P, R), and in addition holomorphic in its second variable.

Proof: Let pgr be the polynomial function described in [8], Thm. 9.1. As in the
proof of that theorem, it follows from the estimates in [8], Thm. 7.4, that the power

series
> 2 prR(NTpu(N)

VENA(P)

converges absolutely locally uniformly in the variables z € DA() and \ € af;(P, R).
Here we have used the notation of Sect. 1 of the present paper. Since pgr(A)®p(A: a) =
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a* PPU(X: z(a)), for a € AT (P), this implies all assertions of the lemma with pg in
place of p.

This is not immediately good enough, since pg is a finite product of linear factors
of the form A — (A, v) — ¢, with v € NA(P) and ¢ € R, see [8], the equation
preceding Lemma 7.3. To overcome this, we invoke [8], Prop. 9.4. It follows from
that result and its proof that there exists a p € IIyr such that pI'p, is regular
on aj(P, R), for every v € NA(P). Let p be any polynomial with this property,
and let ‘p be the least common multiple of p and pgr. Then all assertions of the
lemma hold with ‘p in place of p. Let ¢ be the quotient of ‘p by p. Denote the
image of the linear endomorphism mg: ¢ — gy of O(a (P, R)) by F, and equip this
space with the locally convex topology induced from O(a;(P, R)). It follows from
an easy application of the Cauchy integral formula that m, is a topological linear
isomorphism from O(aj(P, R)) onto F; see also [9], Lemma 20.7. As said above,
all assertions of the lemma hold with ‘p in place of p; on the other hand, by the
hypothesis the series (14.4) with ‘p in place of p has coefficients in F. Applying the
continuous linear map mq_1 to that series, we infer that all assertions of the lemma
are true with the polynomial ¢ 'p = p. d

Following [8], Sect. 11, we define the function ®p,,: a%,x A (P) — End(V;FuMwiw ),
for w e W, by

Ppp(N:a) =T(w)oPy-1py(w A wlaw) o (w) ™" (14.5)

Following [9], p. 283, we define normalized C-functions C°(s: A) = Cp p(s: A), for
s € W, by

C°(s: \)=C(s5: N)oC(1: N)7h (14.6)

these are End(°C)-valued meromorphic functions of A € a?.. From (14.2) and [8], eq.
(54), we now obtain the following description of the normalized Eisenstein integral
in terms of the functions ®p,,. Let ¢ € °C and w € W. Then, for a € AT (P),

E°(\: aw)y = Z Qpy(sA: a)[C°(s: N)Ylw(e), (14.7)

seWw

as a meromorphic identity in A € ag.
From (14.5) and (14.3) it follows that, for w € W, the function ®p,, is given by
the series

Qpy(A:a) = = g’ PP Z a "I pwu(A (14.8)
veNA(P
with coeflicients
Lpwy(A) =7(w)e Fw—lpw,w—lu(w_lA) or(w) 7t (14.9)

We now have the following result on the convergence of the series (14.8).
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Corollary 14.2 Let w € W. Then there exists a locally finite real >.-hyperplane
configuration H = H,, in aj, and a map d = dy,:'H — N, such that the functions
T'puw, belong to M(ale, H,d, End(VuwH™ ) for every v € NA(P). Moreover,
the series

Y 0 Truwy, (14.10)

VENA(P)

converges neatly on A} (P) as an exponential polynomial series with coefficients in

the space M(az, H, d, End(VXuMwHw™)) 'In particular, the function X — ®p,(\: -)

belongs to the space /\/l(a;“1<C7 H,d, COO(A;(P)) ® End(VTKM”’”H”’_l)),
Proof: For w = 1 the assertion of the corollary follows immediately from Lemma

14.1. For arbitrary w € W it then follows by application of (14.9). O

For s € W we define the so called partial Eisenstein integral E; s(A\) = E; 4(P: )
as the 7 ® 1-spherical function X, — V, ® °C* determined by

Eis(A:aw))p = Ppy(sh: a)[C°(s: Ay (e), (14.11)

for ¢y € °C, w € W, a € Af(P) and generic A € a}. (use the isomorphism (2.8)).
It follows from Corollary 14.2 that E, ; is a meromorphic C*(X, : 7 ® 1)-valued
function on a.. By sphericality it follows from (14.7) and (14.11) that

E°(A)=> E. ) on X (14.12)

*

It follows from the definitions and the isomorphism (2.9) that, for generic A € O

the function E, ;(\)y belongs to C**(X,: 7 ® 1) for each ¢ € °C. Moreover,
Bxp(P, 0| B4 4(\Y) C 5\ — pp — NA(P), (14.13)

for every v € W and hence also for every v € Ng(aq). Thus, we see that (14.12)
is the splitting of Lemma 2.2 applied to the Eisenstein integral. We abbreviate
E.(A\) = E; 1(A). Then from (14.11) and (14.6) we see that

E-I-()‘)(aw)d} = CI)P,w()‘: a)ww (6)7

for ¢y € °C, w € W, a € A (P) and generic A € a.. Moreover, the following holds
as a meromorphic identity in A € ag.

EisA:z)=E (sA:2)C°(s: N). (14.14)

In the next lemma we will need the following notation. If A € b}, we denote by
°C[A] the subspace of °C consisting of elements 1) satisfying u(D: Ay =~v(D: A+
A for all D € I(X), A € a3, We recall from [9], eq. (5.14), that °C is a finite direct
sum

°C = @, °C[A],

where A ranges over a finite subset L, of bj.. For each A € b}, we denote by

EMP(X,: 7: A) the space £P(X, : 7: 8) (see Definition 12.8) where § € Dp is the
characteristic function of {A}.
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Lemma 14.3 Let P € P™" t € W and v € °C[A], where A € b}.. Define the
family f = fuy:age X Xy = Vi, by

f\z) =E  (P: A x).

Then f € EFP(X,: 7: A) and deg, f = 0.

Proof: According to Definition 12.8 and Remark 12.9, in order to prove that
f € EMP(X,:7:A) we must establish that f € CP™P(X,:7) and that f, is
annihilated by I, for A in a non-empty open subset of reg, f.

We first assume that t = 1. Then f(\, z) = E,(A: ). It follows immediately
from [8] Cor. 9.3 and the hypothesis on ¢ that f) is annihilated by I, for generic
A € at.. We will now show that f € C§?™P(X, : 7). Let H be the union of the hy-
perplane configurations H,,, w € W, of Corollary 14.2, and let d: X — N be defined
by d = maxyew dy (see Remark 11.1). Then for every complete locally convex
space U, the spaces M(a};, Huw,dw,U) are included in the space M(al., H,d,U),
with continuous inclusion maps. Hence for each w € W the series (14.10) con-
verges as a A(P)-exponential polynomial series on A7 (P), with coefficients in the
space M (a%e, H,d, End(V<uHv™))  Moreover, the function A — ®p,,(A: -) is
contained in M (a’e, H, d, C®(A7 (P)) ® End(V;uMwiw),

On the other hand, from (14.11) and (14.6) with s = 1, it follows that

Tho(f)(a) = F( aw) = @pu(A: a)tu(e), (14.15)

forallw € W, a € A (P) and A € aj.\UH. Hence the function A Tlﬁ’w(fA) belongs
to the space M(ai.,H,d, COO(AQIL(P),I/'TKM””H’”_I)). In view of the isomorphism
(2.8), it now follows that the function A — f) belongs to M(a}., H,d,C>® (X, : 7)).

qe?

This establishes condition (a) of Definition 12.1, with = Py and Y = {0}.

The evaluation map ¢ +— (e) is a linear isomorphism from C*(Xq,,: 7m)
onto VEuMwHw™ "Thys for w € W and v € NA(P) we may define a function
Qi (Pyw| f)rat. = C®(Xow: Tv) by

Gro(Pw] f, A ) = Tpwu(Nu(e), (14.16)

for A € a%.. Then ¢, (P,w|f) € M(aj, H,d,C®(Xou: Tv)). Moreover, from what,
we said earlier about the convergence of the series (14.10), it follows that, for w € W,

the series
Z a'_yq~1,V(Pa w | f)
VENA(P)

converges neatly as a A(P)-exponential polynomial series on Af (P), with coefficients
in M(aje, H,d, C®(Xouw: Tm))-

From (14.15), (14.8) and (14.16) it follows by sphericality that, for w € W,
A€ ai. \UH, m € Xo, and a € AT (P),

fr(maw) = a*=rP Z a " (Pyw| f)(A,m),
VENA(P)
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This establishes assertions (b) and (c¢) of Definition 12.1 with a fixed P, arbitrary
v € W, and, for v € NA(P), X € ag,

G (Pl f) for s=1;
Gsp(Pov] f, X) = {01 for seW\{1}.

In view of Remark 12.3 we have shown that f € CSP"P(X, : 7). Moreover, deg, f =
0. This completes the proof for t = 1.

Let now ¢ € W be arbitrary and let ¢ € Wy(b) be such that ¢|,, = ; see the text
preceding Lemma 5.5. From (14.14) we see that

FONz) = By (th: 2)C°(t: M. (14.17)

It follows from [9], Lemma 20.6, that there exists a Y-configuration H' in af, and a
map d': H' — N, such that

Co(t: -) € M(ale, H',d', End(°C)). (14.18)

From [9], eq. (5.13), it follows that C°(¢: A\) maps °C[A] into °C[tA]. Fix a basis

Y1, ..., for °C[tA]. Then there exist unique functions ¢; € M(a ase, H',d') such
that
Co(t: Ay = i ci(A);. (14.19)
j=1
For 1 < j <r we define the family g;: ag. x X+ — V; by
gi(A\,z) = EL(A: x)1;. (14.20)

Then by the first part of the proof, each g; belongs to £YP(X, : 7: A). Moreover,
for every 1 < j < r, the family g, satisfies the conditions of Definition 12.1 with
@ = Py and Y = {0}, with H and d as in the first part of the proof, and with £ = 0.
For 1 < j < r we define the family fj: a5, x Xy — V; by f;(A\,z) = g;(tA, z).
Then we readily see that f; satisfies the conditions of Definition 12.1 with ¢! and
dot in place of # and d, respectively, and with £ = 0. Hence f; € CPMP (X, 2 7).
Since Izy 4 = Inia We see that f; € EYP(X, : 7: A). Moreover, deg, f; = 0.
Combining (14.17) and (14.19) with (14.20) and the definition of f;, we find that

r

FOvz) =) (N i\ ).

Jj=1

Let H" = t"HUH' and define d": H" — N by d"(H) = d(tH) + d'(H) (see Remark
11.1). Then by linearity it readily follows that f satisfies all conditions of Definition
12.1, with £ = 0 and with H"” and d” in place of H and d, respectively. Hence
f e CP™P(X, :7) and deg,f = 0. Moreover, for generic ), fy is annihilated by
Insy, and hence f € EPP(X,: 7: A). O
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Corollary 14.4 Let assumptions be as in Lemma 14.3 and let () be a o-parabolic
subgroup. Let £ € M(*a%qc, £Q)faur- Then L.f € 55{'5(X+: 7:0) for Y = supp £

laur*

and 0 a suitable element in D¢g. Moreover,
Exp(P,v|(L.f),) Ctlv+Y)— pp — NA(P)

for v € Nk(ay) and v € reg, L, f.

Proof: This follows immediately from Lemmas 14.3 and 13.5, and from (14.13)
combined with the final statement in Proposition 13.2 (b). O

Lemma 14.5 Let ¢y € °C[A] where A € bj.. Then the family f:a;, x Xy — V,,
defined by
fA\z)=E°(Py: A: 2)

belongs to £P(X,: 7: A). Moreover, deg,f = 0 and for all P € P,,v € Ng(a)
and every s € Wp\W, the family f is holomorphically s-global along (P, v).

Proof: The function f equals the sum, for ¢ € W, of the functions f;; defined
in Lemma 14.3, with Py in place of P. Hence f € £°(X,: 7: A) and deg, f = 0.
Moreover, for each A € reg, f, the function f, is asymptotically global along all pairs
(P,v) by Proposition 8.8. Thus, it remains to prove the assertion on holomorphic
globality. In view of Lemma 13.7, it suffices to do this for arbitrary P € P, and the
special value v = e.

In the rest of this proof we shall use notation of the paper [7]. According to
[7], Lemma 14, there exists a locally finite collection H of X-hyperplanes such that
A = fy is holomorphic on Qq:= a’. \ UH, with values in C*°(X: 7). According to
the same mentioned lemma it follows that f € &,(G/H,V;, ). According to [7], p.
562, Cor. 1, for generic A € ay. the function f) has an asymptotic expansion of the
form

Hi(zexptX) ~ Z peu(fr: 51 A)(z) eCr PP X (1 o o0) (14.21)

SEWpP\W
vENAR(P)

for X € apq at every Xy € aj,. Proposition 10 of [7] is valid with £,(G/H, V;, )
in place of £,(G/H,A,Qp), by the remarks in the beginning of [7], Sect. 12. In
particular, there exists a full open subset “aj. of aj. such that, for all s € Wp\W
and v € NA, (P), the coefficient pp, (fy: s: A) is holomorphic as a C*(G, V;)-valued
function of A on the full open set {2y N “ag..

On the other hand, since f € P(X,: 7: A), and deg,f = 0, the expansion
(12.2) holds, with £ = 0 and Y = {0}, for all A € Q:= reg,f. Thus, if A €
QN af2(P,{0}) is generic, then it follows from comparing the expansions (14.21)
and (12.2), and using Lemma 6.2 and uniqueness of asymptotics (see the proof of
Lemma 1.7), that

gsp(Pe| £, X, A)(m) =pp,(fa:s: A)(m), (14.22)
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for all s € Wp\W, v € NA, (P), X € apq and m € Mp_; here we have written Mp
for the preimage of Xp,  in Mp.

By analytic continuation the equality (14.22) holds for all A in the full, hence
connected, open subset Q:= QN Qy N a5, of ai.. In particular it follows that
A — g5, (P,el| f,\) is holomorphic on €' as a function with values in Py(ap,) ®
C®(Xpe: 7p), for all s € Wp\W and v € NA, (P). This establishes the assertion
on holomorphic globality, see Definition 13.6. O

Lemma 14.6 Let A € by, v € °C[A], S C W and define fs:a}. x Xy — V; by

fs(A\z):= ZEJF,S(PO: A ).

seS

Then the family fg belongs to E(I;yp(X+: 7: A). Moreover, let t € W and a € A,
and assume that either Wyt C S or Wot NS = (), where W, = {1, s,}. Then the
family fs is holomorphically W,t-global along (P,,v), for every v € Nk(aq).

Proof: The first assertion is an immediate consequence of Lemma 14.3 with Py in
place of P.
Let v € Nk(ag). It follows from (14.13) and Lemma 3.5 that

Exp(Pp, v | fs1a) C 8A|anq — Pa — NA, (Py)

for each s € W. For X in the full open subset a3 .(Po, {0}) of a%. the sets sA[q,, —
Po— NA, (P,) are mutually disjoint for different [s] = W,s from W, \W, see Lemmas

6.2 and 6.5. Hence

G.¢(Pasv | fis3) =0, (14.23)

for all s € W\ Wyt and all £ € A.(P,).
First assume that W,t NS = 0. Then it follows from (14.23) that gp¢(Pa,v |
fs) =0 for all £ € A,(P,). Hence fs is holomorphically [t]-global along (P,,v).
Next assume that Wyt C S. Let S = W\ S. Then fs = fi — fsc, and it follows
from Lemma 14.5 and what was just proved, that fg is holomorphically [t]-global
along (P,,v). O

If Q € P, is standard, then we define the subset W® of W by
We={seW]|s(Ag) CcX} (14.24)

It is well known, see e.g. [16], Thm. 2.5.8, that the multiplication map W@ x Wg —
W is bijective. Moreover, if s € W? and ¢t € Wy, then I(st) = I(s) + [(t); here
I: W — N denotes the length function relative to A. In particular this means that
W@ consists of the minimal length representatives in W of the cosets in W/W.
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Lemma 14.7 Let s € W, a € A and assume that s ala,, # 0. Let t € Wg. Then
s € W@t if and only if s,s € W¥t.

Proof: The hypothesis s~ a/q,, # 0 is also satisfied by the elements s; = st~ and
S9 = So5t~ 1. Hence we need only prove the implication s € W® = 5,5 € W€.
Assume that s € W@, Then s(Ag) C £F. From the hypothesis it follows that
s 'a ¢ Ag, hence a ¢ s(Ag). Since « is simple, it follows that s,(s(Ag)) C X7.
Hence s,s € W@. O

Corollary 14.8 Let ¢ € °C[A] where A € b}, and let Q € P, be a standard
parabolic subgroup. Fixt € Wy, and let the family f:a;. x Xy — V. be defined by

FOvz)= Y Ela(Po: A z)(1h).
sEWQ
Then f € £ (X1 7 A)ngiob- I L € M(*Qyqc, £0)iaurs then the family L, f belongs
to the space Sgﬁ;(m: T: 0)nglob, Where Y = supp L, and where § is a suitable
element of Dy.

Proof: Let S = W@t Then, f = fs, where we have used the notation of Lemma
14.6. It follows from the mentioned lemma that f € ”®(X,: 7: A). Moreover,
let s € W and o € A be such that s~ ala,, # 0. Then it follows from Lemma
14.7 that either W,s C S or W,s N S is empty. Hence it follows from Lemma 14.6
that f is holomorphically W,s-global along (P,,v), for every v € Ng(ay). Thus
f € EY(Xy: 7: Angop by Lemma 13.11. The remaining assertion now follows
from Theorem 13.12. O

15 Asymptotics of partial Eisenstein integrals

Let P € P™™ and let @ be a o-parabolic subgroup containing P. For the application
of the asymptotic vanishing theorem, Theorem 9.10, in the next section we need
to determine the coefficient of the leading exponent in the (@), v)-expansion of the
Eisenstein integral E°(P: A), for every v € Nk (aq). To formulate a result in this
direction, we need some additional notation.

Let v € Nk (aq) and select a complete set of representatives Wy, in Nk, (a4) for
Wo/Wkonwro-1- We define °C(Q,v) = °C(Q,v,7) to be the analogue of the space
°C for the data X,q,, 7¢. Thus

°C(Q,v) = Buew,,,C=(M/M NuvH (uv)™": 7) (15.1)

with an orthogonal direct sum. Note that °C(Q, v) is also the analogue of °C for the
data Xg,, 7g-

One readily checks that the map Wy, — W/Wgkng given by u — Ad(uv)|a, is
injective. Hence we may extend Wy ,v to a complete set W C Nk(a,) of represen-
tatives for W/Wgnp. If w € W, then w € Wy ,v <= wv ' € Kg. With such
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choices made we have a natural isometric embedding ig ,: °C(Q,v) — °C, defined by

if we WQ,v’U,

otherwise. (15.2)

(iQ,vdJ)w = { Bﬁwv—l

The adjoint of the embedding ig, is denoted by prg ,:°C — °C(Q,v). It is given by
the following formula, for ¢ € °C,

(PI"Q,vlb)u = wuva (u € WQ,v)- (153)

The normalized Eisenstein integral associated with the data X;q ,,7¢ and *P: =
PNM,q is denoted by E°(X1q,: *P: v), for v € a}.. Similarly, the partial Eisenstein
integrals associated with these data are denoted by E. (Xig,: *P: v), for s € Wy
and v € a.. Note that all of these are (7 ®1)-spherical smooth functions on X;q,, 1
with values in Hom(°C(Q,v),V;) ~ V; ® °C(Q, v)*.

Proposition 15.1 Let P € P™" ) € P, and assume that Q D P. Let v € Nk(ay),
and choose Wy,,, W as above such that Wy, C Wuv™'. Let ¢ € °C and let the
family f: a3, x X — V. be defined by

fz)=E°(P: \: x).
Then, for A € a;. generic, and for all X € agq and m € Xq,y+,

U agy—ra (Q,v] fo, X,m) = E°(X1gp: "P: A1 m) prg 2. (15.4)

Proof: We first assume that v = e. Then Xy, = X1, = Mig/M1oNH. Moreover,
the set Wg: = Wy . is contained in W. From [7], p. 563, Thm. 4, it follows that

q/\|aQq*pQ (Q7 € | f)\v X7 m) = EO(XIQ,e . *P: )‘: m) pl"gﬂ/’a

for generic A € aj. and all X € agq and m € Xg. . Here pry is the natural
projection map from °C onto °Cq(7) = @veyw, C°(M/M NvHv™': 1y), see [7], pp.
544 and 547. Thus, pr(, equals the map prg, , defined above and it follows that (15.4)
holds with v = e. To establish the result for arbitrary v € Ng(a,), we first need a
lemma.

From Remark 3.1 we recall that X, = Xy5, = G/vHv ' The set Wg,:= Wov !
is a complete set of representatives for W/Wiyn,m,-1. Accordingly, the analogue
°C(G,v) = °C(G, v, T) of the space °C is given by (15.1) with G in place of Q). The
associated map i ,: °C(G,v) — °C is now a bijective isometry; moreover, its adjoint
Prg, 1s its two-sided inverse.

We recall from the end of Section 3 that right translation by v induces a topolog-
ical linear isomorphism R, from C*°(X: 1) onto C*(X, : 7). In the following lemma
we will relate the right translate of E°(P: \) to the normalized Eisenstein integral
associated with X,, Wv~! and P.
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Lemma 15.2 Let ¢ € °C. Then, for generic A € ag,
R, (E°(X: P: A\)Y) = E°(X,: P: \)[prg ¢ (15.5)

The formula remains valid if the normalized Fisenstein integrals are replaced by
their unnormalized versions.

Proof: We first prove the formula for the unnormalized Eisenstein integrals. Let
A € af. be such that (ReA + pp, o) < 0 for all a € Z(P) Deﬁne the function
¥(A\):G — V, as in [ ], E ( 9). Then E(P:X:z)y = [ 7(k)d(A: k~'z) dk.
Hence E(P: \: zv)y = fK @bGU (X : k') dk, where leu(/\ x) = @b(/\: zv).
One now readily checks that ¥, ()\) is the analogue of 9()), associated with the
data X,,, Wv~" and with the element ¢, = prg v of °C(G,v). From this we obtain
the equality (15.5) for the present A. For general )\, the result follows by meromorphic
continuation.

Let Q@ € P™®. Then it follows, by application of Lemma 3.7 and the definition
of the c-functions (cf. [7], § 4), that, for every s € W, each u € Wv™! and generic
A € ale, we have [Cop(X: 5: A)hluy = [Coip(Xy: s: A)prg Y]y In other words,

prg, o Coip(X: s: A) = Coip(Xy: 81 A)oprg,.

The proof is completed by combining this equation, after substitution of P and 1 for
@ and s, respectively, with the unnormalized version of (15.5) and the definitions of
the normalized Eisenstein integrals (cf. [7], eq. (49)). O

qe’

Completion of the proof of Prop. 15.1. Let v € Nk(a,) be arbitrary. Then
from Lemmas 3.7, 15.2 and equation (15.4) with X,, e and prg % in place of X, v
and 1, respectively, it follows that, for X € agq and m € Xg,, +,

CI)\|qu—pQ (Qa v | f)\a Xa m) = q)\|uQ —pQ (Q: € ‘ Rv(f)\) X m)
= B°(Xige: "P: Az m) Pro prg, .
In the last expression the two tildes over objects indicate that the analogues of
the objects for the symmetric space X, are taken. We now observe that Xig,
equals the space Miq/MigNevHv e = Xiq,. Hence, to establish (15.4), it suffices
to show that prg .prg ¢ = prg,%. For this we note that pry, is the projection

from °C(G,v) onto the sum of the components parametrized by the elements u of
Mg " Wu™t = Wg,,.. Moreover, for u € Wg.,,

[prQ eprG v ] [prG 111/]]’& 1/11“1 = [prQ,vw]u-

The result just proved generalizes to partial Eisenstein integrals.

Proposition 15.3 Let P € P™®. Let 1) € °C, let S C W and let the family f = f
be defined by

x) = ZE+,3(P3 At x)),

sES
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see Lemma 14.6. Assume that () € P, contains P and that v € Ng(aq). Then, for

generic A € ag., and all X € agq and m € Xq,y +,

Nagq —pe(@,v| fr, X,m) = Z E, s(Xigu: "P: A:m)prg ,¢. (15.6)
seSNWq

In particular, if SN Wg = 0 then oy, — po ¢ Exp(Q, v | f»).

Proof: For S = W this result is precisely Prop. 15.1. We shall use transitivity of
asymptotics to derive the result for arbitrary S from it.

It suffices to prove the above identity for m = bu € Xq, 4, With u € Nk, (aq)
and b € *A}, (*P) arbitrary.

According to Lemma 14.3 and Remark 12.2, the function fg belongs to C’g‘f{o}
for the full open subset {2: =reg, fs of ag.

Hence, according to Theorem 7.8 with Py, and P in place of @), P and P,
respectively, for A € af, generic the following holds, with [1] the class of 1 € W in
w/ ~QIPo— WQ\Wa

q)\\aQq—pQ (Qa v ‘ fS)\a X7 bU,) = Q[l],O(Qa v | f57 X)()‘a bU)
= Z Z b rrkg, (Pyuv| fs, X +logb)()e).

sEWq ueNAq (P)

(Xy:7:9Q),

Now, for all s,t € W, € NA and v € Ng(a,) it follows from (14.13) and Lemma
6.2 that ¢, ,(P,v| fi3) = 0if s # t. Hence

I qs,/L(P)U|fW) if SE S,
Gsu(Pyv| fs) = { 0 otherwise.

Thus, we obtain that

DWagy e (@ V| fsr, X, bu) Z Z b7 kg, (Pyuv | fir, X +logb)(),e).

sESNWgq ueNAg (P)

(15.7)

This equation is valid for any subset S of W; in particular, it is valid for S = W.
Using (15.4) we now obtain that, for any u € Nk, (aq) and all b € *A% (*P),

E°(Xigu: "P: At bu)pro o= > b P7Hg (Puv| fir, X +logb)(, €).
s€EWq ueNAg (P)
(15.8)

This is the Ag(P)-exponential polynomial expansion of the Eisenstein integral along
(*P,u). In view of (14.12) and the remark following (14.13), with X, , in place of X,
we infer from (15.8) that, for each s € Wy, and every u € Nk, (aq) and b € *A5 (*P),

By (Xigw: "P: X: bu)prg 0 = Z VP W (Pouv | fir, X +1ogb) (A €).
pENAQ (P)
(15.9)

Finally, (15.6) with m = bu follows by combining (15.7) and (15.9). O

96



We end this section with a generalization of Proposition 15.3, involving the
application of a Laurent functional.

Proposition 15.4 Let assumptions be as in Prop. 15.3 and let £ € M(*a5c: Q) iaur-
Then the family L. f defined by L. f(v,z) = L[f(- +v,z)], for generic v € ag,,. and

x € X, belongs to 553:5(X+ : 7:0), with Y = supp L and for a suitable 6 € Dy.
Moreover, for generic v € ag,. and all X € agq and m € Xq,y+,

Qv—pg (Q7 v | (‘C*f)t/aXa m) = ﬁ[ Z E+,5(X1Q,v3 *P: - +uv: m) prQ,Mb]- (15-10)
SESOWQ

In particular, if SN Wg = 0 then v — pg ¢ Exp(Q,v | (L.f)v).

Proof: The first assertion follows from Cor. 14.4. For the second assertion, we
note that L,f € Cy(Xy: 7: Q), where Q is the full open subset ag,. \ UH, s of
UHqcr see Remark 12.2. The set .: = QN ag,.(P,{0}) is a full open subset of af)c
Moreover, from (7.14) it follows that, for v € €Q,,

G—po (@0 | (L), X) = quio(@,v | L. f, X)(v), (X € agq); (15.11)

here [1] denotes the image of the identity element of W in W/ ~g|o . The expression
on the right-hand side of the above equation is given by (13.5), with P = Q,0 =
[1] € W/ ~gq and £ = 0. Note that an element s € W satisfies [s] = [1] if and only
if s € Wy. It follows from this that [1] - Y = {0}. Hence from (13.5) and (13.2) we
conclude, with 1 denoting the image of 1 € W in Wg\W,

G Qv L, X) W) = Y L a10(@, v £)(X, )], X)

A€Y

= 3 eI L [eOX) g 0(Q, 0| £)(X, )] (UL5.12)

A€Y

for X € agq and generic v € aj,.. From (A+v)(X) = v(X) we deduce that the last
expression in (15.12) equals ).\ La.[g1,0(Q,v | f)(X, -)](v). Hence from (15.11)
and (15.12) we obtain

Q—po (@, 0] (Laf)w, X) = Lig1,0(Q, v | [)(X, -)](v). (15.13)

It follows from (15.6) and (7.14) that, for X € agq, m € Xg, +,

aro(@ v )X, Am) = Y By (Xige: "P: A: m) pro, 4, (15.14)

seSNWq

as a meromorphic identity in A € a?.. The equality (15.10) now follows by combining
(15.13) with (15.14). O
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16 Induction of relations

After the preparations of the previous sections we are now able to apply the vanishing
theorem, Theorem 12.10, to families obtained from applying Laurent functionals to
partial Eisenstein integrals. This will lead to what we call induction of relations.

We retain the notation of the previous section. Moreover, we assume that ) € P,
is a standard parabolic subgroup. Thus *Fy: = Mg N P, is the standard minimal
o-parabolic subgroup of My, relative to the positive system 25: =YoN.

We assume that @W is a complete set of representatives in N (a,) for the double
coset space Wo\W/Wknp. We also assume that for each v € QW aset Wq,» as above
(15.1) is chosen. Then one readily verifies that

W = Upecow Wo,ov (disjoint union). (16.1)

is a complete set of representatives for W/Wkng in Nk (a,). Combining this with
(15.2) and (15.3) we find that

Z iQ,v OprQ,v = Ioc.
veEQW

Combining (16.1) with (15.2) and (15.3), it also follows, for u,v € ®W, that

Loc(g) if w=w;

Plouelow = { 0 otherwise. (16.2)

Theorem 16.1 (Induction of relations) Let £; € M(*ag.c, Xq)
for each t € Wy. If, for each v € YW,

® °C be given

ikaur
Y LB, (Xgu: "Por - 1m)oprg,] =0,  (m€Xqu4) (16.3)
teWq

then for each s € W€ the following holds as a meromorphic identity in v € AQqc:

Y L[E a(X:P:-+viz)]=0, (ze€Xy). (16.4)

Conversely, if the identity (16.4) holds for some s € W and all v in a non-empty
open subset of a,., then (16.3) holds for each v € W.

Proof: Define for each w € W the family g,,: a5, x X4 =V, ® °C* by
Gw(V,2) =Ly B4 0(X: Py: - +v:2)]

for generic v € ag, . and every x € X ; the elements s € W@, t € Wg are determined
by the unique product decomposition w = st (see below (14.24)).

It follows from Cor. 14.4, that there exist d,, € D¢ such that g, € £gy’§w (Xy:7: 0w);
here Y,, = supp L, where ¢t € W, is determined as above. If we put ¥ = UY,, and
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d = max(dy), then g, belongs to 55¥$(X+: 7:0) for all w € W. Moreover, for
generic v € agqc,

Exp(Py,v | (gw)») Cw(v+Y) — p—NA. (16.5)

In view of Proposition 15.4 it also follows for X € agq, m € Xg, 4+ and generic
v € a5y that

Q—pa (@, v | (90)v, X,m) = LBy (Xgu: "Fo: - +v:im)oprg,]  (t€Wo),
(16.6)

and
Qu—po (@, V| (guw)v, X, m) =0 (w ¢ Wo). (16.7)

According to Cor. 14.8 the family } | ;o g5 belongs to the space ngg (X4 171 0)glob
for each t € Wy,. Hence so does the family g =" 1, 9w = ZteWQ,seWQ gst- More-
over, by (16.6) and (16.7)

Qv—pg (Qa v | (g)lla X7 m) = Z ['t[E-l—,t(XQ,v : *PO 2 m) OprQ,v] (m € XQ,U,+)‘
teWq

From Theorem 12.10 we now see that (16.3) holds for each v € YW if and only if

g=0.
On the other hand, let ¢° = ZteWQ gt for s € W@ Tt follows from (16.5) that

Exp(Py,v|(¢9°),) C sv + WY — p— NA.

Since the latter sets are mutually disjoint as s runs over W, for v in a full open
subset (see Lemma 6.2), we conclude that for such v,

(sv + WY — p—NA) NExp(FPy,v|g,) = Exp(FPo,v | (9°),)-

Hence g = 0 implies that ¢* = 0 for each s € W?. Conversely it follows from Corol-
lary 9.15 that g = 0 if g° = 0 for some s € W?. The theorem follows immediately.
O

Corollary 16.2 Let v € ®W and let L, € M(*a})e, £ )jou: ® °C(Q, v) be given for
eacht € Wq. If

3 LB (Xgu: "Po: - :m)] =0, (m€Xgus) (16.8)
teWg

then for each s € W@ the following holds as a meromorphic identity in v € AGqc:

Y L[ Erq(X: Py - +v:2)oige] =0, (z€Xy) (16.9)
teWg
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Conversely, if the identity (16.9) holds for some s € W< and all v in a non-empty
open subset of af,,., then (16.8) holds.

Proof: For t € W, we define the functional £ € M(*afc, X0 )jaur ® °C by L7 =
[ ®ig,u](L:). Then for F' € M(*aj,c, Xq) ® °C* we have

LIF = LoF (- )ig.)- (16.10)

Let u € ¥W. Then from (16.2) and (16.8) we deduce that (16.3) holds with u and
L¢ in place of v and Ly, respectively. It follows that (16.4) holds with £ in place of
L. In view of (16.10) this implies (16.9). The converse statement is seen similarly.
Il

Another useful formulation of the principle of induction of relations is the fol-
lowing.

Corollary 16.3 Let v € “W. Let L, € M(*ahe, X))t and ¢ € M(a}., %) ®
°C(Q,v) be given for each t € Wg. Assume that

> LBy (Xgu: "Por - :m)e(- +0)] =0,  (m€Xguy) (16.11)
teWqg

for generic v € ag.. Define ¢y = (I ® igy)p: € M(aie, ¥) ® °C, for t € Wq. Then,
for each s € W9,

Y LBy w(X: Py - +viz)(- +v)] =0, (ze€Xy)

teWq

as an identity of V;-valued meromorphic functions in the variable v € ag.

Proof: Let # be a X-configuration such that sing(y;) C UM, for each t € Wy,.
Moreover, let Y = Uew,supp £y C "apye- Fix t € Wq. Let H':= Ha*Qqc (Y) be the
¥, (Q)-configuration in ap,. defined as in Corollary 11.6. Let v € ag, \ UH'; then
the function ©f: A — ¢;(A + v) belongs to M(*ag.c, Y, Xgq). It follows from (10.7)
that the functional £} € M(*ahc, L@)* ® °C(Q,v) defined by

LYFC]:= LdF (e + )],

for F' € M("ahye, Xq) ® °C(Q,v)*, is a °C(Q,v)-valued Y-Laurent functional on
*agHqc- The hypothesis (16.11) may be rewritten as (16.8) with £} in place of Ly, for
each t € W. By application of Corollary 16.2 we therefore obtain, for v € aan\U’H’ ,
that

Y LBy w(X: Py - +pza)y(- +v)] =0 (16.12)

teWg

as an identity of V;-valued meromorphic functions in the variable y € ag,.. Accord-
ing to Lemma 11.9 the expression in this equation defines a meromorphic V,-valued
function on ag, X ag, whose restriction to the diagonal is a meromorphic function
on agc- Thus, if we substitute v for y in (16.12), we obtain an identity of V;-valued
meromorphic functions in the variable v € ag. 0
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Corollary 16.4 Let L1, Lo € M(*a54c 2Q) i @ °C- If; for each v € W,

[Ag)

Li[EL(Xgu: "Py: - :m)oprg,] = Lo[E°(Xgu: "Po: - : m)oprg,], (m e Xgu+)

then the following holds as a V:-valued meromorphic identity in v € ag:

L Y B o(X:Py: - +viz) | =L B°(X: Py: - +via)],  (zeXy).

(16.14)

In particular, for regular values of v, the expression on the left extends smoothly in
the variable x to all of X.

Conversely, if the identity (16.14) holds for v in a non-empty open subset of a5,
then (16.13) holds for each v € QW.

Proof: It follows from (14.12) that E°(Xq,: *Py: A) = ZteWQ E  (Xgu:*Po: A).
Define £; € M(*a5qe, £q)jaur ® °C for t € Wy, as follows. If ¢ = e then L;: = Ly — Ly,
and otherwise £;:= Lo. Then the hypothesis (16.3) in Theorem 16.1 follows from
(16.13). Hence the conclusion (16.4) holds for each s € W®. By summation over s
this implies that

S Y LIE u(X: Py - 4via)]=0, (zeXy) (16.15)

SEWQ teWq

which, by the definition of the operators £, is equivalent to (16.14).

For the converse, let ¢°(v,z) denote the expression in (16.4), as in the proof of
Theorem 16.1, with L; specified as above. Then it was seen in the mentioned proof
that if the sum g of the ¢g° vanishes then so does each g° separately. Now (16.14)
implies (16.15) which exactly reads that g = 0. Thus (16.4) holds for each s € W9,
so that the converse statement in Theorem 16.1 can be applied. O

The result just proved allows a straightforward corollary similar to Corollary
16.2, in which the maps ig, are used instead of the maps pry,. We omit the
details. The following result is derived from Corollary 16.3 in exactly the same way
as the first part of Corollary 16.4 was derived from Theorem 16.1.

laur

tionals on *ag., and let @1, py € M(ak.,X) ® °C(Q,v). Assume that

Li(EL(Xgu:"Py: - :m)p1(- +v)) = Loy E°(Xgu: "Po: - : m)pa(- + 1)),

Corollary 16.5 Let v € @W. Let L, L € M(*a*QqC, Y0)tur be Xg-Laurent func-

for all m € Xqq,+ and generic v € ap .. Define 1; = (I ®ig,)p; € M(a;.,X) ® °C,
for j = 1,2. Then, for every x € X,

L1 Eeo(X: Py -+ v 2)ihi (- +v) = Lo(B°(X: Po: - + v a)ga(- +0)),

SEWQ

as an identity of V;-valued meromorphic functions in the variable v € ag-
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Corollary 16.6 Let v € W and let ¢y € M(*ay.,Xq) ® °C(Q,v) be given for
each t € Wq. Let Ao € "aj,.. Assume that for each m € Xq,,4, the meromorphic
V;-valued function on ag,., given by

A Y B i(Xgw: "Po: Ar m)isy(N),

teWgo

is regular at \g. Then for s € W®, x € X, and generic v € 05qc the meromorphic
function

A Y By (X Py A+ vt 2)iguih(N) (16.16)

teWg

is also regular at \g.

Proof: The function in (16.16) has a germ at Ao in M(*aj), Ao, Xg). By Lemma
10.7 it suffices to show that it is annihilated by M (*a%yc, Ao, Bg)inee- Let L €
M(*5qer Ao 2o)ir and define £, € M(*6)0, 2o)fpur ® °C for t € Wy by Ly =

my, L, see (10.7). The desired conclusion now follows from Corollary 16.2. 4

We shall now give an equivalent formulation of the induction of relations. We
call it the lifting principle. For the group case a similar principle was formulated
by Casselman, see [1], Thm. I1.4.1, however with Eisenstein integrals that carry a
different normalization.

Definition 16.7 The space Ap, (X4 : 7) is defined as the space of functions
x> LIE (Py: -:x)] €V,

where £ € M(a%, X)f, ® °C. It is a linear subspace of C*(X, : 7).

laur

It follows from Corollary 14.4 with @ = G that A}, (X, : 7) consists of D(X)-
finite functions in C*?(X; : 7).

Remark 16.8 Let £ € M(a}., ¥)},,,®°C. Then L{p(-)E,(FPo: -)] € Aaw(Xy: 7)
for all ¢ € M(ai.,¥) (see (10.7)). In particular, it follows from (14.18) that
C°(s: +) € M(a;.,¥) ® End(°C). Hence it follows from the identity (14.14) that
LIE;(Po: +)] € Alaur (X4 : 7) for each s € W. Moreover, by similar reasoning it
can be seen that the space Ay (X, : 7) does not depend on the choice of Py € P,

Remark 16.9 Let )y € aj. and ¢ € M(a;,,%) ® °C, and assume that A\ —
E_(Py: M)p(X) is regular at A\g. Then the function z — u[E; (Fo: A: 2)@(A)][aza,
belongs t0 Apur(Xy : 7) for each u € S(a7) (see the previous remark and Lemma
10.15). Moreover, it follows easily from the definition of M (a%., X)), that Ay (X, : 7)
is spanned by functions of this form.

qc ’ laur

Theorem 16.10 (Lifting principle) Let Q € P, be a standard parabolic subgroup,
and let s € W9 be fixed.
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(a) There exists for each v € “W a unique linear map
Fispt Aur(Xqu,+ 1 @) = M(agqe, Er(Q), CF (X1 7))

with the following property. If ¢ € Ajaur(Xg 0,4+ : Tg) is given by

p(m) =Y LB+ y(Xgu: "Po: - :m)]  (m € Xgua), (16.17)

teWg

for some L; € M(*a5qc: @)t ® °C(Q,v), t € Wy, then

Froal@0) = S LA Eoul(X: By - +v:i0)iqu]  (1618)
teWg
for x € X, and generic v € g
(b) The function x — FYy ;,(¢,v,z) belongs to Ay (X4 : 7) for generic v.
(c) The map

F+,S: Dyeew Alaur(XQ,v,+ : TQ) - M(“quca E?‘(Q)a o= (X+ : T)):
given by F ((¢) =Y, F} 5090, is injective.

Proof: The uniqueness is clear from Definition 16.7. We use (16.17) and (16.18) as
the definition of F; ; ,; the fact that F, () is well defined for all ¢ € A (Xg .+ 70)
is equivalent with the first statement in Theorem 16.1 (see also Corollary 16.2).
Once the definition makes sense, it is easily seen that F; ;,(¢) depends linearly on
@. That Fy ;,(p,v) € Apur(Xy @ 7) for generic v is seen from Lemma 11.7. Finally,
the injectivity of FY, ; is equivalent with the final statement of Theorem 16.1. O

Remark 16.11 Note that with ¢, = E°(Xg,: *Py: A) for each v € W we obtain

Z EiaX: Po: A4v:x)igy = Fi s4(p0, v, 1),
tEWQ

for x € X, and hence by summation over v and s

E°(X:Py: A+v:z)= Z Fi (¢, v, ).

sEWQ

Remark 16.12 In [11], Definition 10.7, we define the generalized Eisenstein integral
Ep(p:v) € C®°(X: 1) for ¢ € Cp, v € apy (With the notation of loc. cit.). By
comparison with Theorem 16.10 for ) = Pp it is easily seen that Ep(¢: v: z) =
Fi1(¢,v,z) for z € X,
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17 Appendix A: spaces of holomorphic functions

If Q is a complex analytic manifold, then by O(2) we denote the space of holomor-
phic and by M(2) the space of meromorphic functions on 2.

If V is a complete locally convex (Hausdorff) space, we say that a function
©: 2 = V is holomorphic if for every a € {2 there exists a holomorphic coordinati-
sation z = (z1,...,2,) at a such that in a neighborhood of a the function ¢ is
expressible as a converging V-valued power series in the coordinates z. The space
of such holomorphic functions is denoted by O(Q2, V). We equip this space with a
locally convex topology as follows. Let P be a separating collection of continuous
seminorms for V. For every p € P and every compact set K C {2 we define the
seminorm vk, on O(2,V) by vk ,(p) = supg pog. This collection of seminorms
is separating hence equips O(2, V') with a locally convex topology. Note that this
topology is independent of the choice of P. Moreover, it is complete; it is Fréchet if
V' is a Fréchet space.

We recall that O(£,V) is a closed subspace of C*(Q, V). Indeed, if 0 denotes
the anti-linear part of exterior differentiation, then O(f, V) is the kernel of 0 in
C>®(Q,V).

A densely defined function ¢: Q) — V is called meromorphic if for every a € (2
there exists an open neighborhood U of a, and a function ¢ € O(U) \ {0} such that
o € O(U,V). As usual, meromorphic functions are considered to be equal if they
coincide on a dense open subset. The space of V-valued meromorphic functions on
2 is denoted by M(2, V). If ¢ is an V-valued meromorphic function on €2 we define
reg(yp) to be the largest open subset U of € for which |y coincides (densely) with
an element of O(U, V). The complement sing(p) = Q \ reg(y) is called the singular
locus of ¢.

Lemma 17.1 Let X be a C'* and ) a complex analytic manifold. Let V be a
complete locally convex space.

Let F be the locally convex space of C'*°-functions X x ) — V' that are holo-
morphic in the second variable. Given f € F and x € X, we define the func-
tion 1 f(x):Q — V by 1f(z)(2) = f(z,2). Given z € Q we define the function
2of(2): X =V by of (2)(2) = f(=,2).

(a) The map f + 1 f defines a natural isomorphism of locally convex spaces from
F onto C*(X,0(Q,V)).

(b) The map f + of defines a natural isomorphism of locally convex spaces from
F onto O(Q,C*®(X,V)).

In particular, the above maps lead to a natural isomorphism

C*(X,0(02,V)) ~ 0(02,C°(X,V)).

Proof: The above isomorphisms are valid with O replaced by C* everywhere. This
is a well known fact, and basically a straightforward consequence of the definitions,
though somewhat tedious to check. The isomorphisms with O are seen to be valid
by showing that the appropriate kernels of the operator 0 correspond. Checking
this involves a local application of the multivariable Cauchy integral formula. [
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18 Appendix B: removable singularities

We discuss a variation on the idea of removable singularities for holomorphic func-
tions that is particularly useful for application in the present paper.

A subset T of a finite dimensional complex analytic manifold €2 will be called
thin if for every A € €2 there exists a connected open neighborhood U and a non-zero
holomorphic function ¢ € O(U) such that TNU C ¢ 1(0), see [21], p. 19. An open
subset U of 2 will be called full if its complement is thin. It is clear that a full
subset of {2 is dense in ). Note that the union of finitely many thin subsets is thin
again; accordingly, the intersection of finitely many full open subsets of €2 is again
a full open subset. Obviously any union of full open subsets is a full open subset.
Note also that if €2 is connected, then every full open subset of € is connected ([21]

p. 20).

Lemma 18.1 Let j:V — W be an injective continuous linear map of complete
locally convex Hausdorf spaces, and let F' be a W -valued holomorphic function on
a complex analytic manifold §2. Assume that there exists a full open subset €y of
Q2 and a holomorphic function Gy: €2y — V such that such that F' = j .Gy on €.
Then there exists a unique holomorphic map G:€) — V such that j oG = F.

Proof: Clearly the result is of a local nature in the (-variable, so that we may
assume that ) is a connected open subset of C", for some n € N. Moreover, we
may as well assume that Qp = Q\ ¢ 1(0), with ¢ € O(Q) a non-zero holomorphic
function.

Fix Ay € Q. Since ¢ is non-zero, the function z — @(Ag + zu), defined on a
neighborhood of 0 in C, is non-zero for some p € C* \ {0}. Being holomorphic, this
function then takes the value 0 in isolated points. Hence we may choose p such that
Ao+ zp € Qp for 0 < |z| < 1. By compactness there exists an open neighborhood
Ny of A in © such that A+ zp € Q for all A € Ny and z € C with |z| < 1, and such
that A + zp € Qp for |z| = 1. By the Cauchy integral formula we have:

1 dz
F\) = omi Jo F(\+ zp) - (18.1)
Here 0D denotes the boundary of the unit circle in C, equipped with the orientation
induced by the complex structure, i.e., the counter clockwise direction.
Note that the W-valued (or V-valued) integration is well defined, since W (or
V') is complete locally convex. In the integrand of (18.1) the function F(\ 4 zu)
may be replaced by j(Go(A+ zp)). Using that j is continuous linear we then obtain
that

FQA) =4(GM), (18.2)

where . p
z
G(A\):= — Go(A — A€ Np).
M= g [ Gora T (e Ny
Clearly G: Ny — V is a holomorphic function; moreover, it is uniquely determined
by equation (18.2), since j is injective. This implies that the local definition of G
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is independent of the particular choice of p. Moreover, it also follows from (18.2)
and the injectivity of j that all local definitions match and determine a global
holomorphic function G: 2 — V satisfying our requirement. O

Corollary 18.2 Let €y be a full open subset of a complex analytic manifold §2 and
let Xy be a dense open subset of a C'*°-manifold X. Moreover, let F':2 x Xq — C
be a C* function that is holomorphic in its first variable, and assume that its
restriction to {2y X X, has a smooth extension to €2y X X. Then the function F' has
a unique smooth extension to {2 x X. Moreover, the extension is holomorphic in its
first variable.

Proof: As in the proof of the above lemma we may as well assume that {2 is an
open subset of C", for some n.

Let V = C*(X) and W = C*°(Xy) be equipped with the usual Fréchet topolo-
gies. Restriction to Xy induces an injective continuous linear map j: V' — W.

By Lemma 17.1(b) we see that the function F:Q — W, defined by F(z) =
F(z, -) is holomorphic. Let Gy be the extension of (z,z) — F(z,x) to a smooth
map {2y X X — C. Then by density and continuity the function G satisfies the
Cauchy-Riemann equations in its first variable. Hence it is holomorphic in its first
variable, and it follows that the function Gy: Qy — V defined by Go(2) = Go(z, -)
is holomorphic. From the definitions given we obtain that F =7 oé() on €. By
the above lemma there exists a unique holomorphic function G: Q2 — V such that
F = joG. The function G: (z,z) — G(z)(x) is the desired extension of F. O
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