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Abstract. Eigenvalue analysis plays an important role in understanding physical phe-
nomena. However, if one deals with strongly nonnormal matrices or operators, the eigen-
values alone may not tell the full story. A popular tool which can be useful to get
more insight in the reliability or sensitivity of eigenvalues is e-pseudospectra. Apart from
e-pseudospectra we consider other tools which might help to learn more about the eigen-
value problem, viz. condition numbers of the eigenvalues, condition numbers of sets of
eigenvectors and angles between invariant subspaces. All these concepts will be studied
and compared for both standard and generalized eigenvalue problems. The tools can be
used to analyze large eigenvalue problems. We apply the different concepts to a gener-
alized eigenvalue problem obtained from magnetohydrodynamics. In this problem one is
interested in an interior part of the spectrum, called the Alfvén spectrum.
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1 Introduction

Eigenvalues play an important role in many applications. In order to analyze (the behaviour
of) a matrix or operator one often computes some eigenvalues and eigenvectors and make
predictions based on this information. If the matrix or operator is normal (i.e. the eigenvectors
form an orthonormal basis) this approach is reliable and a study of the eigenvalues can be
used safely to analyze the problem. However, in many applications the matrices or operators
are not normal, and an analysis based on eigenvalues only can be misleading. For example,
let us consider the eigenvalue problem

(1.1) Az = Az,

where A is a square matrix. If the real parts of the eigenvalues of A are negative, the vector
e4y converges to the zero vector as t — 0o, but nevertheless the entries of e’4y can become
arbitrarily large for finite ¢, which may lead to instabilities. A similar phenomenon occurs, e.g.,
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in problems from fluid dynamics, see, e.g., [27, 29]; this behaviour may show why an analysis
based on eigenvalues only cannot explain observations obtained from laboratory experiments.

In this paper we will study and compare several tools which may be helpful for un-
derstanding the behaviour of matrices. One of the most popular tools used nowadays is
e-pseudospectra, studied extensively by Trefethen and others since 1990 (see, e.g., [26]). The
e-pseudospectra of A indicate how the eigenvalues of A may change if A is perturbed by a ma-
trix F of which the norm is at most €. Knowledge about the e-pseudospectra may help, e.g.,
to understand the behaviour of e’y better, as well as other processes involving A. Moreover,
e-pseudospectra may also give some insight in the accuracy of numerically computed eigen-
values. However in applications it may happen that one is only interested in a few eigenvalues
and eigenvectors of A. In such a situation it may be useful to consider e-pseudospectra of A
restricted to the space spanned by these eigenvectors. For example, if y is in such a subspace,
the e-pseudospectra restricted to that space may give better estimates for e'4y than the e-
pseudospectra of A (see Section 3.3). Moreover, the computation of e-pseudospectra may be
very time consuming if A is a large matrix and the computation of the e-pseudospectra of
A restricted to a small subspace is much cheaper in that case. In this paper we study both
e-pseudospectra of A as well as e-pseudospectra restricted to so-called invariant subspaces,
and we also compare these sets.

Apart from e-pseudospectra we also consider various condition numbers related to A.
The condition number of an eigenvalue, introduced by Wilkinson [30] in 1965, measures how
much this eigenvalue may change under small perturbations of A. It is obvious that there
is a relation between these condition numbers and e-pseudospectra, and we will discuss this
in more detail. If the condition number of an eigenvalue is very large, it may be difficult
or even impossible to compute such an eigenvalue accurately by numerical methods. This
is another reason to be suspicious about the use of eigenvalues in such situations. Apart
from the condition numbers of eigenvalues, we also study the condition number of a set of
eigenvectors. This condition number can be used to investigate whether the eigenvectors from
such a set make small angles with each other. Furthermore it can be used as well to estimate
¢4y for y in the subspace spanned by those eigenvectors. The condition number of a set of
eigenvectors does not give any information about the relation to other eigenvectors. In order
to investigate whether two subspaces spanned by eigenvectors are close to each other or not,
we also compute the angle between these subspaces.

Apart from the eigenvalue problem (1.1) also generalized eigenvalue problems of the form

(1.2) Az = ABz

occur in applications; here A and B are two square matrices. The matrix B may be singular,
and in that case the (mathematical) properties of (1.1) and (1.2) may be different in nature.
The concepts mentioned above for the standard eigenvalue problem can be generalized to
(1.2), and we will study these generalizations in this paper as well. If B is nonsingular, (1.2)
is equivalent to the standard eigenvalue problem

(1.3) B™'Az = )z .

Although the eigenvalues and eigenvectors of (1.2) and (1.3) are the same, this does not hold
for the e-pseudospectra and the condition numbers of the eigenvalues. The difference can be
large and we will analyze this also in the paper. In our application from magnetohydrody-
namics (see Section 5) we indeed will see that the difference is large. The formulation (1.3)



has the advantage that one can use the theory related to (1.1), which is more developed than
the theory of matrix pencils (1.2). The condition number of a set of eigenvectors and the angle
between two subspaces spanned by eigenvectors are the same for both formulations (1.2) and
(1.3), because these numbers depend only on the underlying eigenvectors.

We will also comment on the computational work and implementation aspects of the
different tools studied in this paper. The matrices A and B are assumed to be large, so
the computation of eigenvalues, eigenvectors etc. is not trivial. The determination of e-
pseudospectra is the most expensive task, and we consider this issue in Section 3.4. The
computation of condition numbers and angles between subspaces will be discussed in the
sections where they are introduced. If some eigenvalues and the corresponding eigenvectors
are known, the condition numbers of a set of eigenvectors and angles between subspaces can be
computed relatively cheaply (compared to the computation of eigenvalues and eigenvectors).
In order to compute the condition number of an eigenvalue, one also has to determine the
corresponding left eigenvector as well (left eigenvectors are defined in Section 2).

All concepts discussed in this paper are applied to a problem in magnetohydrodynamics,
taken from [14]; this problem is of the form (1.2) with a nonsingular matrix B. As in [14]
we consider only a part of the eigenvalues, the so-called Alfvén spectrum. It turns out
that both the e-pseudospectra and the condition numbers of the eigenvalues depend strongly
on the choice of the formulation of the eigenvalue problem ((1.2) or (1.3)). In fact the
e-pseudospectra related to (1.2) are so large that even perturbations of order 10712 on the
matrices A and B may change the spectrum completely. Perturbations of the same order have
a less dramatic effect on B~'A. A similar behaviour is observed for the condition numbers
of the eigenvalues. The e-pseudospectra restricted to invariant subspaces are much smaller
than the e-pseudospectra for the whole problem in this application, and the same holds for
the condition numbers of the eigenvectors from these subspaces.

The paper is organized as follows. In Section 2 we introduce some notation, definitions
and present some facts from (numerical) linear algebra. The computation of a few eigenvalues
and eigenvectors is also treated in that section. e-Pseudospectra is the topic of Section 3:
the e-pseudospectrum of a matrix A is defined in Section 3.1, and e-pseudospectra related to
generalized eigenvalue problems (1.2) is treated in Section 3.2. Restrictions of e-pseudospectra
to invariant subspaces is discussed in Section 3.3, and Section 3.4 deals with the computation
of e-pseudospectra. Condition numbers of eigenvalues and sets of eigenvectors are treated in
Sections 4.1 and 4.2, respectively. The angles between invariant subspaces are considered in
Section 4.3. The application of all these concepts can be found in Section 5: a formulation of
the problem is given in Section 5.1, Section 5.2 deals with the e-pseudospectra of the problem,
and the other tools are considered in Section 5.3. The main conclusions of the paper can be
found in Section 6.

2 Preliminaries and notation

In this section we present some theory from (numerical) linear algebra and introduce some
relevant notation.

The matrices A and B are N X N matrices with complex entries and the pair (A, B) is
called a matriz pencil. For singular matrices B the (mathematical) properties of the eigenvalue
problem (1.2) may differ significantly from (1.1). For example, if there is a vector 2 # 0 such
that Az = Bz = 0 then (1.2) is satisfied for any A € C. In that situation it does not make



sense to study (the sensitivity of) eigenvalues of the matrix pencil and in this paper we assume
that the determinant of A — zB as a function of z is not identically zero, so that (1.2) has at
most N eigenvalues. In order to understand (1.2) better for singular B it is useful to write
the eigenvalue problem as follows (cf., e.g., [24]):

(2.1) fAzx = aBzx

with a, 8 € C. The pair (o, ) is called an eigenvalue of this pencil, and A = a/g if § # 0.
The pair o and $ in (2.1) is not unique. If B is singular then («, 3) = (1,0) is an eigenvalue
of (2.1) which corresponds to the infinite eigenvalue of (1.2) (A = oc0). In (2.1) finite and
infinite eigenvalues are treated equally, and this formulation has also the advantage that it
does not discriminate between A and B.

The identity matrix is denoted by /. For an arbitrary (possibly rectangular) matrix C'
we denote its transpose by CT and its (Hermitian) adjoint by C*; these matrices are the
same if all entries of C' are real. The eigenvalues of (1.1) or (1.2) are denoted by A;, and the
eigenvectors by z; (it will be clear from the context to which eigenvalue problem we refer);
the set of all eigenvalues of (1.1) or (1.2) is called the spectrum of A or (A, B). Apart from
the eigenvectors z; we also consider the left eigenvectors y; # 0 given by

(2.2) y;A = yiA;
corresponding to the standard eigenvalue problem (1.1), or
(2.3) y;A = y;BA;

(related to (1.2)). In connection with left eigenvectors, the vectors z; are sometimes called
right eigenvectors. If we take the transpose of the equations (2.2) and (2.3) we see that 7;
(the complex conjugate of y;) is the right eigenvector corresponding to A; of AT or (AT, BT),
respectively.

In the following we have v € C* and C'is a (possibly rectangular) matrix with ¢ columns,
so that C'u exists. The (Euclidean) norm of u is denoted by ||u|| (= v/u*u) and

IC] = max{|Cull : u € C and ful| = 1)

is the (spectral) norm of C'. At a few places in the paper we consider other norms as well.
Other numbers associated to matrices are the singular values (see, e.g., [13, Section 2]): these
numbers are real and nonnegative and we denote the smallest and largest singular value of
C by omin(C) and omax(C), respectively. One has omax(C) = ||C]| and for square matrices
omin(C) satisfies the following important equality:

(2.4) Omin(C) = min{||Cu|| : v € C* and ||lu|| = 1} .
For a square nonsingular matrix C' we define the condition number of C' as
(2.5) K(C) = ICI-ICTH] (= omax(C)/omin(C) ) -

In the remainder of this paper @ and Z; are N X k matrices of which the columns are
orthonormal (i.e. Q;Qr = Z;Zy = I1, (the k X k identity matrix)), and Ry, S and T} are
k X k matrices. If either

(2.6) AQr = QiR



or
(2.7) AQr = ZpSr and BQr = Zily

are satisfied, then span{@Q} is called an invariant subspace of A (if (2.6) is satisfied) or the
matrix pencil (A, B) (if (2.7) is satisfied), respectively. The canonical example of an invariant
subspace is a space spanned by some eigenvectors, so invariant subspaces can be seen as a
generalization of eigenvectors. In the literature (cf., e.g., [10]) the characterizations (2.6)
and (2.7) are sometimes called partial Schur forms if the matrices Ry, Sy and Tj are upper
triangular. One can always determine an orthonormal basis )5 of an invariant subspace in
such a way that the matrices Ry or Si and T} are upper triangular.

We conclude this section with mentioning some numerical methods for computing (a few)
eigenvalues and eigenvectors of (1.1) or (1.2). If N is small, the QR method (see, e.g., [13])
can be used to compute the eigenvalues of (1.1), and for the generalized eigenvalue problem
(1.2) the QZ method (see, e.g., [13]) may be applied to compute the spectrum of (1.2). A nice
overview of eigenvalue methods for large matrices, with guidelines how to choose a method
which may satisfy the needs of the user and pointers to software, can be found in [1]. In our
experiments described in Section 5 we have computed some eigenvalues and eigenvectors of
(1.2) with the Jacobi-Davidson QZ (JDQZ) method which has been developed by Fokkema,
Sleijpen and Van der Vorst [10]. We briefly discuss some ingredients of this method. The user
has to prescribe a target 7 € C, and the JDQZ method tries to compute a partial generalized
Schur form (2.7) with S and T upper triangular in such a way that the eigenvalues of (S, T%)
are the k eigenvalues of (A, B) which are as close to 7 as possible. (The JDQZ method also
allows the possibility to compute, e.g., (2.7) so that the eigenvalues of (S, T%) are likely to be
those of (A, B) with largest absolute values or largest real parts.) The corresponding eigen-
vectors of (A, B) can then be computed from the eigenvectors of the small pencil (Sk, T%). The
most expensive part of one step of the JDQZ method is to solve approximately the so-called
correction equation, which involves the matrix EA — aB where (@, @ is an approximation to
the eigenvalue (@, 8) from (2.1). This is usually done with an iterative method such as, e.g.,
GMRES [21], and in order to speed up the convergence of this iterative solver one should use
a proper preconditioner: in fact, a preconditioner for the matrix EA — aB is needed, and we
will use a LU-factorization of A— 7B as a preconditioner which seems useful if 7 (3?/5. The
reader may consult http://www.math.uu.nl/people/sleijpen/ if he or she is interested in
obtaining software for the JDQZ method.

3 Pseudospectra

3.1 An introduction to pseudospectra

The concept of e-pseudospectra has been studied extensively by L.N. Trefethen and others
in the last decade. With the convention ||(zf — A)~!|| = co whenever z is an eigenvalue of A
the set A.(A), the e-pseudospectrum of A, is defined as follows:

(3.1) Ac(A)={zeC:|(zI - A7 >}
It is easy to see that this definition is equivalent to

(3.2) A(A)={2€C:omin(z] — A) <e}.



Another important characterization of A.(A) is (see, e.g., [17])
(3.3) A.(A) ={z € C:3 F with ||E|| < e such that z is an eigenvalue of A+ F'} .

From (3.3) we see that e-pseudospectra reveals how sensitive eigenvalues may be under per-
turbations of the matrix A. If the set A.(A) is large for very small ¢, it may be difficult to
compute the eigenvalues accurately. e-Pseudospectra may be used to investigate the accu-
racy of the approximate eigenvalues: suppose that A and 7 are approximations to A and z,
respectively, and ||Z|]| = 1. The norm of the residual &y = ||A7 — AZ|| should be small and
from (2.4) and (3.2) we get A € A (A). Let I be the closed curve in the complex plane such
that owyin(2/ — A) = ¢, for all z € I' and X is in the interior of the region surrounded by I'. It
follows from the maximum principle (see, e.g., [8, Section II1.14]) that there must be at least
one eigenvalue A of A in that region, and max{|A —z| : z € ['} is an upper bound for |A — A|.

For normal matrices A, i.e. matrices for which the eigenvectors are an orthonormal basis
of CV, the set A.(A) is the union of the disks with radius e centered at the eigenvalues. For
nonnormal matrices however, the set A.(A) can be much larger; see the examples in, e.g.,
[26, 27] and in Section 5 of the present paper. For such matrices it may be useful to consider
e-pseudospectra instead of the eigenvalues (spectrum). It may not only be difficult to compute
the eigenvalues of A numerically, but the true eigenvalues may give misleading information
about processes involving A. Examples of this include the stability of numerical methods for
linear ordinary differential equations [7, 17, 18], the convergence of iterative methods for solv-
ing linear systems Az = b, applications in fluid dynamics [27, 29] and magnetohydrodynamics
[3]; see [28] for more references.

As an illustration we consider the following situation. Assume that the real parts of the
eigenvalues of A are negative. Then the matrices e’ are bounded for ¢ > 0 and e!* converges
to the zero matrix as t — co. However, |le’4|| may become large (cf., e.g., [9, Theorem 11¢]):

(3.4) max Rez > Ce = max ||’ > C .
z€AL (A) t>0

The largest possible constant C' > 1 in the left-hand side of (3.4) cannot be determined from
the eigenvalues of A. Suppose f is a smooth nonlinear function and that one deals with an
ordinary differential equation 3y’ = f(y) which has a stationary solution ys, i.e. f(ys) =0, and
A is the Jacobian matrix of f evaluated at y;. In order to investigate whether y, is a stable
equilibrium one often linearizes the differential equation around y, and studies the solution of
this linearized equation equipped with an initial value y; + Ay. The deviation of the solution
to that linearized equation from y, is equal to e Ay, and |[e!?Ay|| can become very large
according to (3.4); hence the equilibrium y, may actually behave unstable in practice.

One also may define e-pseudospectra subject to other norms than the spectral norm; this
allows the possibility to use, e.g., norms related to an energy norm, or the maximum norm.
The equivalence of (3.1) and (3.3), as well as some other properties of e-pseudospectra, such

as, e.g., (3.4), remain valid for norms || -|| derived from arbitrary vector norms; cf. [7, Section
4].

3.2 Pseudospectra for matrix pencils

In applications eigenvalue problems for matrix pencils occur, so it may be useful to study e-
pseudospectra for matrix pencils as well. This has been done by various authors, and several
different definitions have appeared in the literature, cf., e.g., [3, 6, 11, 19, 20]. In the first



papers on this topic [3, 19] one considers the case where the matrix B is Hermitian and positive
definite: with B = F*F the eigenvalue problem (1.2) is equivalent to (F~1)*AF~1y = Ay with
y = Pz, and the authors define the e-pseudospectrum related to (1.2) as A.((£~1)*AF~1),
which is equal to the e-pseudospectrum of B~ A with respect to the norm ||z||z := Vz* Bz.
In [20] the author defines the e-pseudospectrum of the pencil (A, B) as A.(B~1A). Another
generalization has been considered in [6]; in loc. cit. the e-pseudospectrum of the pencil
(A, B) was defined by replacing the identity matrix in (3.1) (or (3.2)) by the matrix B.
Using this definition, the e-pseudospectrum is equal to the union of all z € C for which there
exists a matrix £ with ||F]|| < ¢ such that A + ' — 2B is singular (cf. (3.3)). Hence this
definition deals only with perturbations of the matrix A (and not of B), which may seem
unnatural. Perturbations of both A and B were taken into account in [11]; in that paper the
e-pseudospectrum of the pencil (A, B) is defined as the union of the eigenvalues of the pencils
(A+ E,B+ F) where ||E|| < cae and ||F|| < ¢ge (ca and cp are positive constants). The
reason for introducing the constants ¢4 and cp is to include the possibility to use perturbations
relative to the norms of A and B: note that for ¢ # 0 the eigenvalues of (cA, ¢B) are equal to
those of (A, B), but this does not hold in general for the perturbed pencils (cA+ F,cB+ F)
and (A4 F, B+ F); for |c| > 1 the effect of perturbations on (cA, ¢B) with matrices of a
fixed norm may be much smaller that for (A, B). The definition in [11] is equivalent to (see

[11])
(3.5) {z€C:omin(zB—A) <e(ca+cnlz])} .

From (3.5) we observe that perturbations of the matrix B do not change the e-pseudospectra
much in the neighbourhood of the origin. In our application from magnetohydrodynamics
(see Section 5) we are interested in e-pseudospectra in the neighbourhood of the origin. For
that reason and for the sake of simplicity we take ¢4 = 1 and ¢g = 0 in (3.5) and define
A.(A, B), the e-pseudospectrum of the pencil (A, B), as

(3.6) A(A,B)={z € C:0min(zB—A) <e}.

Once the set A.(A, B) has been determined numerically it is easy to compute the sets (3.5)
for given ¢4 and cg; moreover, any theoretical result regarding A.(A, B) can be adapted in
such a way that it fits in the form (3.5). The e-pseudospectra of the pencil (A, B) can also
be used to investigate the accuracy of numerically computed eigenvalues: one has to replace
the matrix I by B in the discussion on this topic in Section 3.1.

One of the aspects of e-pseudospectra we will consider in this paper is the relation between
A (A, B) and A.(B™"A) (the latter set is considered in [20]). Working with the sets A.(B~"A)
has the advantage that one can use the theory and insight of e-pseudospectra for matrices;
the relevance and application of e-pseudospectra for matrices is much better understood than
for matrix pencils. Computational issues will be considered in Section 3.4.

One can easily show that (see [6])

(37) Aa/||B||(B_1A) C AE(A, B) C AE||B—1||(B_1A),

which implies that there is not much difference between A.(B~'A) and A.(A, B) if both ||B||
and ||B~'|| are close to 1. However, the difference can be large as the following example shows:
let B be a multiple of the identity matrix. Then A.(A, B) = A,y (B~'A) (which means
that the first inclusion of (3.7) is sharp), so the difference between A.(B~'A) and A.(A, B)



can be very big if one chooses ||B]| close to zero or very large. Also in our application from
magnetohydrodynamics (see Section 5) we observe a big difference between A.(B~1A) and
A (A, B).

We now briefly discuss the situation when the matrix B is singular. This will happen in
some applications from fluid dynamics, e.g., in problems which are derived from incompress-
ible Navier-Stokes equations. The set A.(A, B) is always defined and not empty for ¢ > 0
(unless B is the zero matrix), and A.(A, B) = C for ¢ > min{|[Az| : 2 € CV with ||z| =
1 and Bz = 0}; see [6] for the proofs of these statements and more illustrations for singular

B.

3.3 Pseudospectra restricted to invariant subspaces

In [25] it was suggested that one might approximate the set A (A) for large matrices A by
A-(Rg), with Ry asin (2.6). It is obvious that one may save a lot of computation time doing
this. Of course, this approach only makes sense if the e-pseudospectra of A projected on the
invariant subspace do not depend on the choice of Qy: let ka be another N x k matrix of
which the columns form an orthonormal basis of span{@:} and define Ry = Qv};Aka One can
casily verify that A.(Ry) = A.(Ry) for all € > 0, so the choice of the basis for span{Qy} does
not influence the e-pseudospectra of the matrix A projected on span{@x}. In a similar way
one may restrict the e-pseudospectra of the matrix pencil (A, B) to an invariant subspace,
using (2.7): the set A.(Sk,Tx) does not depend on the choices of the bases of span{Q;} and
span{Z;}. The same holds for the set A.(T;'S;) which might be used as an approximation
for A.(B~'A): note that (2.7) implies B="AQ), = Q41" Sk. The following theorem, which
can be proved by using (2.4), shows that the e-pseudospectra restricted to invariant subspaces
are nested.

Theorem 3.1 Let ; be a N X j matrix such that the columns of (); form an orthonormal
basis of span{@;} (j = k,k + 1) and assume that span{Qy} C span{Qx4+1} C CV. If both
span{Q} and span{Q4+1} are invariant subspaces of A, i.e. (2.6) is satisfied for both k and
k + 1, the inclusions

A (Rr) C Ac(Rig1) C A(A)

hold for all € > 0. If both span{Q} and span{Qy+1} are invariant subspaces of the matrix
pencil (A, B), i.e. (2.7) is satisfied for both k and k + 1, the inclusions

AE(SkaTk) C AE(Sk+17Tk+1) C AE(Aa B)
hold for all ¢ > 0.

Another reason for dealing with e-pseudospectra restricted to invariant subspaces is to study
the effect of perturbations related to that subspace. As an illustration we consider the fol-
lowing result [7, Theorem 4.8], which can be seen as the converse of (3.4).

Theorem 3.2 Let C' > 1 be a given constant and assume that A is an N X N matrix such
that A.(A) C {z € C:Rez < Ce} holds for all ¢ > 0. Then

||| < CeN forall t>0.



In actual applications (cf. Section 3.1) one might only be interested in upper bounds ||e!4Ayl|
with Ay in a certain invariant subspace of A; the question is whether it is possible to obtain
a sharper upper bound for |[e*4Ay|| in that case, e.g., an upper bound without the factor N
which can be large in practice?. This is indeed possible, as we will see below. First we present
a lemma involving an arbitrary function W (instead of the exponential function), which may
be useful for other applications as well.

Lemma 3.3 Let U :C — C be analytic in a neighbourhood of the spectrum of A, and let
Ry and Qy, be defined by (2.6). Then the matrices W(A) and V(Ry) exist and

WAyl = [[W(ix)Qryll for y € span{Qy} .

Proof. Let I}, be the kxk identity matrix. From (2.6) it follows that ((I—A)Qr = Qx({Ir—Rk)
holds for all ( € C. Assume that y € span{Qx} and ( is not an eigenvalue of A. Then

y=QrQry = Qr(Clx — Ri)(Clx — Re)™'Qty = (I — A)Qr(Clk — Ri)™'Q%y so that
= A"y = Qu(Cly — Ri) ™' Qhy -

From the matrix version of the Cauchy integral formula (see, e.g., [8, Section VII.3]) one

obtains
1

L L GIGEMET
- = [ w(OQulct~ k)@ C
= QpV(Rr)Qry,

where ' is a closed contour in the complex plane surrounding the eigenvalues of A. Hence

WAyl = [[QrV (L) Qryll = V(1) QY

which proves the lemma.

O

Lemma 3.3 with U(¢) = e¢ can be used to estimate ||[e*4y|| for y € span{@Q;}. Observe that
Lemma 3.3 implies ||e*y|| < |[e'F¥||-||y||, and Theorem 3.2 provides a bound for |[e’F¥||. This
leads to the following result.

Theorem 3.4 Let Cy > 1, and assume that A.(Ry) C {z € C: Rez < Cie} holds for all
e > 0 with Ry and Qy as in (2.6). Then

(38) eyl < Cyekl|lyll for yespan{Qx} and >0,

From Theorem 3.1 it follows that the smallest possible Cj in Theorem 3.4 cannot be larger
than the smallest possible C' in Theorem 3.2. Hence Theorem 3.4 gives a much sharper
estimate than Theorem 3.2 for £ < N. This result shows that it may be worthwhile to study
e-pseudospectra restricted to invariant subspaces.

2Tf the assumption in Theorem 3.1 holds with ¢ =1 one has ||e"*|| < 1 for t > 0 (see, e.g., [7]).
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3.4 Computation of pseudospectra

Trefethen has written a nice review paper on the computation of e-pseudospectra [28]; here
we will discuss a few aspects of this and refer to [28] and the references cited therein for more
information and details.

For small N the standard approach is to compute pin(21 — A) or Gpin(2B — A) for several
z in an interesting region in the complex plane, and draw the level curves of this function
— usually z is taken from a rectangular grid which contains (part of) the spectrum of the
underlying eigenvalue problem. In order to get a picture of reasonable quality, one needs to
use about 50 gridpoints or more in each direction. If B is nonsingular the matrix B~ A can
be computed explicitly and A.(B~'A) can be determined in a similar way.

For large sparse matrices A and B this approach is not practical and one has to proceed
differently. Several authors have studied question; see [28] for an overview. Some papers
deal with the reduction of the number of gridpoints z for which oyi,(2] — A) needs to be
computed. If this is done in a proper way, one may reduce the computation time significantly
without destroying the quality of the picture. Now we will discuss the computation of the
smallest singular value of 2/ — A, zB — A or zI — B™'A for a given z. In the literature
two types of techniques have been considered (cf. [28]): the first approach is to restrict the
matrices A and B to a low-dimensional subspace and approximate the e-pseudospectra by
the e-pseudospectra of the projected problem related to this low-dimensional subspace. The
second approach is to compute the smallest singular value for each z with an appropriate
eigenvalue method.

3.4.1 Restriction to a low-dimensional subspace

We now discuss the first approach, which has already been mentioned in Section 3.3. In that
section we explain how invariant subspaces can be used to approximate the different types of
e-pseudospectra. However it is not clear what the size of these subspaces should be to obtain
a reasonable approximation at least in the neighbourhood of the eigenvalues of the projected
system (one might not expect to get a good approximation far away from these eigenvalues, in
particular not in the neighbourhood of the eigenvalues of the original problem which are not
eigenvalues of the projected problem). See, e.g., [25] and Chapter 5 for illustrations. It is also
possible to approximate e-pseudospectra by using subspaces that are not invariant. In [25, 31]
the authors use variants of Arnoldi’s method to obtain the identity AV} = V1 Hyyy i; here
V; is an N X j matrix of which the columns are an orthonormal basis of a Krylov subspace
with respect to A and Hytq1 4 is an (k + 1) x k& Hessenberg matrix. In these papers A.(A)
is approximated by A.(Hyt1%) (although Hyyq g is not a square matrix one can still define
Ac(Hpyq1,1): see [25, 31]) or A.(Hpy), where Hy j is the matrix obtained by removing the last
row of Hyi1 ;. These ideas seem to be useful: in [31] the authors have approximated A.(A)
for a matrix of order N = 200, 000 using the implicitly restarted Arnoldi method. The main
computational work for such large matrices lies in the determination of a suitable Hessenberg
matrix Hgq k.

For generalized eigenvalue problems one might use, e.g., rational Krylov iterations to ob-
tain (k41) X k Hessenberg matrices Hyyq 5 and Kjyq i satisfying the relation AVyy1 Hyp i =
BVyy1 Kiq1,5; the columns of the matrix Vi, are again orthonormal. These Hessenberg ma-
trices may be used to approximate A.(A, B) and A.(B~'A): see [20] for details.

The main disadvantage of projecting the original problem onto low-dimensional subspaces
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it that it is not known how large k should be taken to obtain reasonable approximations of
the e-pseudospectra. In practice one might take, e.g., k between 20 and 50.

3.4.2 Computing the singular values with sparse eigenvalue methods

Another approach to approximate e-pseudospectra is the following: Amin(C(2)), the smallest
eigenvalue of the Hermitian matrix C'(z) = (zB—A)*(2B—A) is the square of oyin(2B—A) and
several authors (see, e.g., [4, 5, 11, 16]) have computed Amin(C(2)) with, e.g., the inverse power
method, Lanczos method or the (Jacobi-)Davidson method (see, e.g., [1] for a description of
these methods). Although most papers deal with the case B = I, the generalization to
arbitrary B is straightforward. In order to apply these methods one needs a starting vector,
and it was suggested by Lui [16] to order the gridpoints z in such a way that the new gridpoint
Znew 18 close to the previous one z,q. The eigenvector corresponding to Amin(C(2o1d)) may
be a good starting vector for the computation of Amin(C(2new)). Methods like the Jacobi-
Davidson method [22] can be started with a subspace instead of one vector; (unpublished)
experiments show that it is more efficient to start the iteration for Amin(C (Znew)) With the last
subspace used to compute Amin(C'(201a)) instead of the (computed) eigenvector corresponding
to )\min(c(zold))-

Another observation which may be useful in practice is the following: if x(C'(2)) is in the
order of the reciprocal of the machine precision or larger, it may be impossible to compute
Amin(C(2)) accurately, due to rounding errors. In that situation the quantity ||(zB — A)v||
with v a normalized eigenvector of C'(z) corresponding to the computed eigenvalue Amin(C'(2))
might be a more accurate approximation to omin(zB — A) (cf. (2.4)) than the computed
quantity /Amin(C(2)).

In general it may very time-consuming or even impossible to compute A.(B~'A) with this
technique. In order to apply the methods mentioned above one has to be able to determine
B~'z for arbitrary vectors z very accurately. Even if this is possible, it will in general be
much more expensive than a matrix vector multiplication with A or B. In our experiments
(see Section 5) it was possible to determine an LU-factorization of zB — A and we used this
to apply the inverse power method for computing A.(A, B). By noting that (21— B™1A)~! =
(2B — A)~!B one can also use the LU-factorization of 2B — A to compute A.(B~!'A) with
the inverse power method: so both omin(2B — A) and omin(2f — B™' A) can be computed
simultaneously with the inverse power method at the cost of one LU-factorization.

4 Condition numbers and invariant subspaces

4.1 Condition numbers of eigenvalues

The condition number of an eigenvalue of a matrix A was introduced by Wilkinson [30, Section
2.8] and is a well known concept in numerical linear algebra. Assume that the eigenvalue A;
of A is simple, and consider for small ¢ > 0 the eigenvalue problem

(4.1) (A+tE)z;(t) = Ajt) z;(t) 5

here K is an N x N matrix, A;(0) = A; and 2,;(0) = 2;. The function X;(t) determines
how much the eigenvalue A; may change due to perturbations of A with the matrix ¢F£.

It is obvious that there is a strong connection with e-pseudospectra: cf. Definition (3.3).
The identity (4.1) is differentiable in ¢ = 0 and A;(t) &~ A; + A%(0)¢ for small ¢; note that
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A%(0) = (y; Ex;)/(yiz;) where y; is the left eigenvector of A corresponding to A; (see (2.2)).
This implies

' oy < leallll
(4.2 PO <

and the bound (4.2) is sharp for £ = y;2%. The number

Il 1ly;
( J) |yjmj|

occurring in the right-hand side of (4.2) is called the condition number of the eigenvalue A;
and k(A;) gives an indication of the sensitivity of A; if A is perturbed slightly: ignoring higher

order terms, one obtains from (4.2) that |X;(t) — A;| < k(Aj)[[tE]] for ||[tE]| < 1.
One might ask whether it is useful to compute e-pseudospectra if the condition numbers of

the eigenvalues are known and vice versa. However, both concepts have their own merit. For
example, it may happen that a picture of the e-pseudospectra suggests that all eigenvalues
in a certain cluster have a large condition number, but that needs not to be the case: it
may happen that one or more eigenvalues from the cluster are well-conditioned. On the
other hand, condition numbers only provide information about the e-pseudospectra for € | 0,
and the (theoretical) results mentioned in Section 3 cannot be rewritten in terms of condition
numbers. One might say that condition numbers provide local information (for each eigenvalue
separately) while e-pseudospectra give more global information about the matrix A.

There is an analogue of (4.1) for generalized eigenvalue problems. Following [12], we
consider for ¢t > 0 the eigenvalue problem

(4.4) (A+1E);(t) = Aj(t) (B+tF) z;(t)

with £ and F' N x N matrices. If we assume that A; is simple and finite then we can
differentiate (4.4) for t = 0 and we arrive at

y; (B = AjF)z;

MA0) =
]( ) y;waj

with y; as in (2.3), which implies

F

(@5) o < el
The right-hand side of (4.5) multiplied by t provides a first-order “bound” for |X;(¢) — A;|.

The expression (4.5) is more complicated than (4.2) (one actually obtains (4.2) for B = [
when I’ is the zero matrix); note, e.g., that the bound for |)\;(0)| depends on A;. However,

+IA D -

for |A;| & 1 the quantity

4.6 v(\;) = -——2

may give an indication how sensitive A; is under small perturbations, and therefore one might
interpret v(A;) as a condition number for [A;| &~ 1. In [12], other definitions of condition
numbers, based on upper bounds for ||E|| and ||F||, have been obtained from (4.5).
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In case B is invertible one can also determine the condition number of A; with respect
to B~ A: if y; is the corresponding left eigenvector of B~!'A and y; is as in (2.3), one has
y;" = y; B (or y; = B*y;) which leads to (note that the right eigenvector is the same for both
eigenvalue problems)

(4.7) K(\;) = H%H*Iléfjll _ =il Byl
|77z |y Baj]

Hence if one intends to compute (4.6) one gets (4.7) almost for free if the denominator in
(4.6) is computed as y;Bz; = (B*y;)*z;; the left eigenvector y; is not needed to determine

K()\])

Remark 4.1 In [24] the generalized eigenvalue problem is written in the form (2.1) and the
authors study the effect of small perturbations of A and B on (a, ). (We omit the subindex
j in (e, 3).) In order to do this one has to measure the distance between (o, 3) and (d,ﬁ),
with (@, 3) an eigenvalue of the perturbed pencil (A + E, B + F), in some metric and the
so-called chordal distance (see, e.g., [24, p. 283]) turns out to be a proper measure. The
chordal distance between (o, ) and (&, 3) can be bounded by the condition number

[EXINEAI
Vw5 Azj[2 + |y; B

(4.8)

multiplied by the norm of the perturbation (¥, F) (see, e.g., [24, Section VI.2]). Asin [12] we
call (4.8) the chordal condition number. An advantage of this approach is that one can define
the condition number of an infinite eigenvalue. A drawback is that the chordal distance might
not be the most natural metric to measure differences in finite eigenvalues. Furthermore, the
chordal distance behaves counter-intuitively for large numbers. The chordal condition number
(4.8) is of the same order of magnitude as (4.6) for |A;] ~ 1, and we will consider only such
eigenvalues in the example presented in Section 5. Therefore we consider only (4.6) as a
measure for the condition of the eigenvalues of the generalized eigenvalue problem (1.2) in
the remainder of this paper, and we refer to [12, 24] for more discussion and comparisons of the
different concepts of condition numbers for eigenvalues stemming from generalized eigenvalue
problems.

4.2 Condition numbers of eigenvectors

Let V be an N X N matrix so that the columns of V' are the eigenvectors of A. The number
£(V) may sometimes be used as a measure of the nonnormality of A. This condition number
is related to the condition numbers of the eigenvalues and e-pseudospectra: Kantorovi¢ has
showed that (cf., e.g., [2])

(1.9) R(V) 2 w(N) + \[x(0)? -1

for all simple eigenvalues A; of A, and A.(A) is contained in the union of the disks with radius
k(V)e centered at the eigenvalues (see, e.g., [28]). If k(V) is very large, then the matrix of
eigenvectors is ill-conditioned. This does not necessarily mean that there are eigenvectors
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which are nearly dependent: as an illustration we consider the following matrix. Let 0 < § < 1
and

-1

101 100 101
(4.10) A=(lo11]-[o20]-[011
0034 00 3 00 6

For this matrix one has (};) = O(6~") for each eigenvalue A;, k(V) = O(67'), but the angle
between two different eigenvectors is larger than 45°. However, each eigenvector makes a
small angle with the subspace spanned by the two other eigenvectors, and this causes (V') to
be large. So (V) gives an indication how small the angles between the invariant subspaces
may be.

In applications one might be interested only in a part of the spectrum of a matrix or
a matrix pencil, and one might ask whether the corresponding set of eigenvectors is well-
conditioned. Let Vi be an N x k matrix of which the columns are eigenvectors of the matrix
A and determine a ) R-factorization of Vi,

(4.11) Vi = QrRe ;

the columns of Q) form an orthonormal basis of span{V;} and Ry is a k x k upper triangular
matrix. Note that Ry is different from the matrix Ry in (2.6); in fact the columns of Ry are
the eigenvectors of Ri. We define the condition number of V. as follows:

(4.12) k(Vi) = K(Ry) .

The number (V) does not depend on the choice of the orthonormal basis @ of span{Vj}.
However one should note that (V) depends on, e.g., the scaling of the eigenvectors in the
matrix Vi: for example, let V; consist of the first two eigenvectors of (4.10) written as (1,0,0)"
and (0,7,0)" with |y| > 1; then x(V2) = ||, so one should take |y| = 1 in order to minimize
£(V3). In general it is not known how the eigenvectors should be chosen to minimize x(Vy).
A permutation of the columns of Vj does not change x(V%), so the only thing one can try to
do is to scale the columns of V}, properly. The length of the jth column of V} is equal to the
length of the jth column of Ry, and it is shown in [23, Theorem 3.5] that x(Rx) and hence
#(V3) is minimized up to a factor vk if all columns of Ry (and V;) have the same length.
In practice k will not be very large, so one should use (4.12) with the columns of V}, having
equal length.

The following theorem, which might be seen as the counterpart of Theorem 3.1, shows
that x(V%) increases with k if the matrices Vj are chosen properly.

Theorem 4.2 Let V4 be an N x (k+ 1) matrix of rank k+ 1 < N obtained by adding a
column to V,. Then

I@(Vk) S ’@(Vk+1) .

Proof. Let Qr and Ry, be asin (4.11) and denote the (k+1)-th column of Vj44 as v. Similarly,
we define the matrix QJr41 by adding a vector ¢ to ), where ¢ is such that the columns of
Qr+1 form an orthonormal basis of span{Vj4;}. Define

* Rk Q*'U
Rit1 = Qip1Vap1 = ( 0 qfv )
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(note that ¢*V; = 0). From this relation it follows that omax(Ri+1) = ||[Re+1|| > || Rkl =
Omax(Rr) and ((cf. 2.4)) omin(Ri+1) < Omin(R1); hence (2.5) implies kK(Rg41) > (Ri), and
from Vi1 = Qp41Rk+1 and the definition of k(V}) one gets (Vi) < K(Vig1)-

U

The condition number (V) provides only information of the eigenspaces in the invariant
subspace span{Vj} and not about the other eigenspaces. The condition number x(V}) is small
if and only if the eigenvectors are a well-conditioned basis of span{Vj}. Another application
is the following: let a[C] = max{Re A : \is an eigenvalue of C'}. It is easy to see that ||e*4|| <
e[l (V) if A is diagonalizable, and an application of Lemma 3.3 yields for y € span{Vi}
that, with @3 and Vj as in (4.11) and Ry = Q3 AQy as in (2.6) (cf. Theorem 3.4),

lleyll < U k(Vi) |lyl| for ¢>0;

if k(V%) is not too large this upper bound may be a useful competitor for (3.8).

The condition number k(V}) of eigenvectors of a matrix pencil (A, B) can be defined in
a similar way. For invertible B the columns of V} are also eigenvectors of B=!A; note that
£(Vi) does not depend on the actual formulation of the generalized eigenvalue problem.

As in (4.1) one might study what happens with the eigenvector z; under perturbations of
A. Tt is not obvious how the condition number defined in (4.12) can be used to investigate
this: note, e.g., that x(z;) = 1 for any eigenvector z;. One can determine 2’ (0) with z;(t) as
in (4.1) if A; is a simple eigenvalue and A is diagonalizable [30, Section 2.10]:

Kz,
:C’-(O) _ yi—J*xl .
! ; (A = Ay

. !
In order to compute oy

of A, which is impractical for large matrices A. Instead of considering only one eigenvector

(0) one has to determine all eigenvalues and left- and right eigenvectors

one might also study what happens with an invariant subspace under small perturbations of
the matrix A. We refer to [24, Chapter 5] for more discussion on this topic.

4.3 Angles between invariant subspaces

In the previous sections we observed that large condition numbers of eigenvalues and eigen-
vectors are related to small angles between subspaces spanned by eigenvectors. For instance
it may happen that (V) is large while the condition numbers k(Vj,) and &(Vy,) (with Vi,
an N X k; matrix of eigenvectors) are small. In such cases it might be useful to determine the
angle between span{Vj, } and span{V},}. We now consider two linear subspaces ¢/ and V of
dimension £ and k, respectively, and define the angle ¢ € [0, 7] between f and V as follows
(cf. [13, Section 12.4]):
(4.13) cosgo:max{M:ueu,vEV} .

[l {]v]]
Let Qy and @y be orthonormal bases of ¢ and V respectively. It is easy to see that (cf. [13,
Section 12.4])

(4.14) s ¢ = Omax(QuQV) = Tmax(@QVQu) ;

the angle ¢ in (4.14) does not depend on the choice of the matrices Qzy and Qy.
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For k = f the arccosines of the singular values of Q;,Qv are called the canonical angles
between I/ and V.

In our applications ¢ and V are invariant subspaces with 4 NV = {0} of which bases
(consisting, e.g., of eigenvectors) are available, and after determination of orthonormal bases
of the spaces, the angle ¢ can be computed easily from (4.14). We assume that k and ¢ are
not too large, so that the singular values of Q7;,Qy can be computed. If the JDQR or JDQZ
method [10] is used to compute eigenvectors, then an orthonormal basis of a corresponding
invariant subspace is generated, so the angle can be determined directly from (4.14).

Remark 4.3 In the literature other ways of measuring the “distance” between linear sub-
spaces is studied; cf., e.g., [13, 24]. The subspaces ¢ and V contain both the zero vector, so
the ordinary distance min{|ju—v|| : w € «, v € V} between U and V is not a useful concept in
this case. In [24] the gap between U and V has been defined for arbitrary norms. We restrict
ourselves to the Euclidean norm and adopt the notation from [24]: the gap between U and V,
denoted as pg(U,V), is defined as follows?:

peU,V) = max { max{d(uw,V):u €U, |lul| =1}, max{d(v,U):v eV, |v]|=1}},

where d(z,U) = min{||z — u|| : w € U} is the distance from z to . Note that for z € CV,
dz,U) = ||(I — Qu@y)z|| < ||z]| (Qu is as above) and similarly d(z,V) < |jz||, so that
pe(U,V) < 1. For k # € one always has* p, (U, V) =1 (cf., e.g., [24, p. 99]) so pe(U, V) does
not provide much information about ¢/ and V in that case. If £ = £ one can show that (see,
e.g., [24, Section 11.4])

peU,V) = /1 - 02, (QQv) ;

this equality implies that pg (U, V) is the sine of the largest canonical angle between i/ and V
if the dimensions of I/ and V are equal.

5 An illustration from magnetohydrodynamics

We apply the different concepts discussed in the previous sections to a problem from mag-
netohydrodynamics (MHD), which has been taken from [14]. This leads to a generalized
eigenvalue problem of the form (1.2) with a matrix B which is Hermitian and positive defi-
nite. The e-pseudospectra and condition numbers related to this problem are very large, and
depend also on the formulation of the eigenvalue problem.

5.1 A description of the model

The model deals with a plasma in a tokamak reactor, which has the geometry of a torus. In
[14] the authors consider equations linearized around an equilibrium. In this equilibrium the

#For readers familiar with the concept of Hausdorff distance we note that pg(U, V) is equal to the Hausdorff
distance between Y NS and VN S, where § = {z € CV : ||z = 1|}

1 Assume £ < k: then N—£+k > N which implies that the intersection of V and the orthogonal complement
of U have a vector ¥ with ||7]| = 1 in common, and ||(I — QuQz)?|| = 1 implies pg(U,V) = 1. If £ > k one
should interchange the roles of & and V.
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velocity of the plasma is equal to zero, and the linearized equations read as follows:

% = =V (pov1),
- po% = —-Vpi + (VX By)x By + (VxBy)x By,
| o _ —v1-Vpog — ypoV -v1
ot
% = Vx(mxBy —nVxBy), VB =0.

Here a subindex 0 corresponds to the equilibrium, and a subindex 1 refers to the perturbation
of this equilibrium. The letter p stands for the density, v for the velocity (note that vy = 0),
p for the pressure and B for the magnetic field. Furthermore v and 7 are constants of which
7, the resistivity, plays an important role in the analysis in [14]. The boundary conditions
are given in [14]. Another important quantity in this problem which does not appear in
the differential equations is the aspect ratio, i.e. the ratio of the large and the small circle
defining the torus. The dependence of the MHD spectrum on this aspect ratio is studied in
[14]; here we take the aspect ratio equal to 5 and the (normalized) resistivity n = 2.5+ 1077;
this situation has been considered also in [14].

The system (5.1) is discretized using finite elements in the radial direction of the small
circle of the torus and Fourier modes in the poloidal direction (which is related to the angle
of the small circle). This leads to an eigenvalue problem of the form (1.2) with

(5.2) N = 16M N, ,

where M is the number of Fourier modes and N, the number of radial gridpoints. The matrices
A and B are block tridiagonal: the number of blocks is equal to N, and the blocksize is 16 M.
The matrices A and B are generated by a code called CASTOR [15]. For more details on
this problem and the discretization we refer to [14].

We are interested in a part of the MHD spectrum only: the Alfvén spectrum. The Alfvén
spectrum has been computed in [14] for M = 4 and N, = 1000. A variant of the Jacobi-
Davidson method [22] has been applied in that paper to (A — 7B)~!' B where 7 is the target:
if u is an eigenvalue of (A — 7B)™1B then A = 7+ 1/u is an eigenvalue of (1.2). Due to the
fact that A — 7B is block tridiagonal it is possible to compute an LU-factorization of that
matrix at a reasonable cost.

For this problem it turns out that taking /N, = 100 instead of N, = 1000 is sufficient to
compute the Alfvén spectrum (one needs, e.g., a larger resolution for smaller values of n); we
have computed the eigenvalues displayed in Figure 5.1 for both values of N, and M = 4, and
the difference between the corresponding eigenvalues was less than 0.5%. Therefore we take
M = 4 and N, = 100 in our experiments; this reduces the size of the matrices from N = 64000
to N = 6400 (cf. (5.2)). Working with these smaller matrices is in particular important for
the computation of e-pseudospectra, which can be very time consuming. All our computations
have been performed on the CRAY C90 at SARA, Amsterdam (The Netherlands).

We have applied the JDQZ method [10] to compute the Alfvén spectrum, using the LLU-
factorization of A — 7B as a preconditioner for the correction equation. Some eigenvalues
could not be computed unless the target 7 was chosen very close to these eigenvalues. This
might be a consequence of the fact that these eigenvalues are very ill-conditioned: see Sections
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5.2 and 5.3. With one target we were able to find at most a few eigenvalues. The Alfvén
spectrum is displayed in Figure 5.1.
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Figure 5.1. The Alfvén spectrum.

This figure corresponds to [14, Figure 3.b]; in [14, Figure 3.b] the eigenvalues are scaled by
the inverse aspect ratio 1/5. In the upper part of Figure 5.1 there are some eigenvalues which
are not displayed in [14, Figure 3.b]. In order to be able to distinguish between the different
invariant subspaces later on (cf. Sections 3.3, 4.2 and 4.3), we have used different markers
to plot the eigenvalues. (For instance, we will speak of the invariant subspace spanned by
the eigenvectors corresponding to the eigenvalues marked with a small circle (o), etc.) The
subdivision of the eigenvalues is based on physical properties of the MHD problem; see [14]
for more discussion on the model. There are also eigenvalues on the negative real axis, but
these are not considered in [14] and the present paper.

5.2 Pseudospectra of the MHD problem

We have determined both A.(A, B) and A.(B~! A) on the domain in Figure 5.1. The quantities
Omin(zB — A) and omin(21 — B™1A) have been computed with the inverse power method as
explained in Section 3.4.2, on a 100 x 100 grid. The iterations were stopped if the difference
between two consecutive approximations of the smallest singular value is less than 0.1%. The
total CPU-time for the computation of A.(A, B) and A.(B~'A) is 1.56 - 10* seconds (= 260
minutes). To obtain a picture on a 50 x 50 grid would cost about 25% of the computational
time for the 100 x 100 grid and the picture would be essentially of the same quality. On
average we needed 3.72 inverse power iterations per grid point for A.(A, B) and 6.74 inverse
power iterations per grid point for A.(B~1A).

The e-pseudospectra are plotted in Figure 5.2. From this figure we see that the e-
pseudospectra of B~ A differ a lot from A.(A, B) and the latter is very large: for example,
the eigenvalues of the pencil (A + F, B) with [[F|| < 1.0-107'" can be anywhere in the area
considered in Figure 5.2. One might try to understand this difference by looking at (3.7). One
has ||B|| = 9.3-10", ||B~"|| = 1.3-10"?, so both inclusions in (3.7) are far from sharp. The big



Figure 5.2. The sets A.(A, B) (upper picture) and A, (B~' A) (lower picture). An integer
j on a curve means that this curve is part of the boundary of the ¢-pseudospectrum with
£ = 1077, The eigenvalues are indicated by dots.
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difference between A.(A, B) and A.(B~'A) might be explained as follows: let B = UgXgV}3
be the singular value decomposition (see, e.g., [13]) of B. Then A.(A, B) = A.(U5AVR, XB)
and A.(B7'A) = AE(E;UEAVB); the effect of the small singular values of B is that some
entries of ¥5'U5AVE are much larger than the corresponding entries of U} AVp and this
might be the reason why perturbations may have less effect on the eigenvalues of EglUgAVB
than on the eigenvalues of (U5 AVp,Xp) or (A, B). This example nicely illustrates what can
happen if there is a large difference between the size of the smallest and largest singular values
of B (i.e. k(B) is large).

From Figure 5.2 we see that the e-pseudospectra are very large in a triangular shaped
region in the upper part of the plots, and one might ask the question whether the eigenvalues
found in that region are actually correct. (In Section 5.3 we will also see that these eigenvalues
are very ill-conditioned.)

The other paper we are aware of that deals with e-pseudospectra for an MHD problem is
[3]; however, the problem considered in that paper differs essentially from ours: the authors
consider an incompressible cylindrical plasma while the problem studied in [14] and this
section is a compressible plasma in a tokamak. One property of e-pseudospectra for MHD
problems observed both in [3] and Figure 5.2 is that for small ¢, the e-pseudospectra become
larger in the neighbourhood of a triple point, i.e., a point where three branches on which
eigenvalues are intersect; cf., e.g., Figure 5.2 in the neighbourhood of the triple point near
—0.11 4 0.225.

We now consider e-pseudospectra restricted to invariant subspaces. Let (Jx be a matrix
of which the columns form an orthonormal basis of the subspace spanned by the eigenvectors
corresponding to the eigenvalues indicated by small circles in Figure 5.1, and let S, and T}, be
as in (2.7); k = 18 in this case. The sets A.(Sg,7x) and A.(1)7'S;) are visualized in Figure
5.3 (note that the scale in Figure 5.3 is different from the scale in the previous figures).

0.4 : : : : : 04—
0.35 0.35}
0.3 0.3}
0.25 0.25}
0.2 0.2}
0.15 0.15}
0.1 0.1}
0.05 0.05}
2025 02 -015 -01 005 O 025 02 —015 -01 -005 0

Figure 5.3. The sets A.(Sg,Ti) (left) and A, (Tk_lsk) (right). An integer j on a curve
means that this curve is part of the boundary of the e-pseudospectrum with ¢ = 1077,
The eigenvalues are indicated by dots.

From Figure 5.3 we see that A.(A, B) is much larger than A.(Sg, 7)), and A.(B~1A) is much
larger than AE(Tk_ISk); the approximation of the e-pseudospectra of the large problems with
N = 6400 by the e-pseudospectra of the small problems with & = 18 leads to inaccurate
results, even in the neighbourhood of the part of the spectrum considered here, despite the
fact that the k eigenvalues are well separated from the other part of the spectrum (see Figure
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5.1). This example illustrates that one should be careful with using invariant subspaces to
approximate e-pseudospectra.

If we compare Figure 5.2 and 5.3, we see that the shape of the curves in the neighbour-
hood of the eigenvalues considered is the same; in particular, for small ¢, the e-pseudospectra
are large in the neighbourhood of the triple point. Moreover, there is hardly any differ-
ence between the shape of the curves in the left and right picture of Figure 5.3; only the
corresponding values of ¢ differ roughly by a factor 10°. This behaviour can be explained
as follows: one has [[Sk|]| = 9.1 1074, ||Tx|| = 5.3 - 1072 and (Tx) = 7.2. The identity
Aqg-5.(Sk, Tx) = A(103Sy, 10%T}) combined with (3.7), with A and B replaced by Sy and 1%,
respectively, explains the resemblance between the left and right picture in Figure 5.3. Note
that the scaling of Si and T} depends only on the scaling of A and B in the original problem.

We have also computed e-pseudospectra restricted to the subspaces corresponding to the
eigenvalues indicated with triangles (I>) and asterisks (*) in Figure 5.1, and the behaviour
turns out to be similar as for the subspace considered before; therefore we will not discuss
these e-pseudospectra further.

5.3 Condition numbers for the MHD problem

For each eigenvalue A; in Figure 5.1 we have computed the quantity v(A;) from (4.6), which
gives a first order indication of the effect of perturbations of A and B on the eigenvalues of
(1.2). Also the condition numbers k() of the eigenvalues of B=' A have been determined (cf.
(4.7)). We have applied the JDQZ method [10] to (AT, BT) to obtain the left eigenvectors of
(1.2), and k(A;) is then computed from the second equality in (4.7). The numbers v(};) and
k(A;) are visualized in Figure 5.4.

From Figure 5.4 we observe that v(\;) > k(J;), and this is not a surprise in view of
Section 5.2. The number v(};) ranges from 1.0 - 107 to 1.0 - 10'6, so that some eigenvalues
of the matrix pencil are better conditioned than others; this could not be predicted from the
plot of A.(A, B) in Figure 5.2, because the e-pseudospectra are large throughout the area.

The condition numbers and the e-pseudospectra of B=!' A (Figure 5.2) are nicely in agree-
ment in the sense that the magnitude of the condition numbers x(A;) may be predicted from
A:(B~'A) (and vice versa).

If we compare both pictures in Figure 5.4 we see that the pattern is very similar: this
behaviour is not obvious, because v();) measures the effect of perturbations of (A, B) while
(A;) deals with perturbations of the matrix B~'A. For example, in both cases the eigen-
values closest to the imaginary axis are the ones with the smallest condition number. Also
the eigenvalues near the triple point —0.11 4 0.22: have larger condition numbers than the
eigenvalues at the endpoints of those branches which intersect at that triple point.

Now we discuss the condition numbers of the clusters of eigenvectors (cf. Section 4.2)
and angles between invariant subspaces (cf. Section 4.3). Note that the dimension of the
subspaces is different, so the gap between the subspaces, as defined in Remark 4.3, does not
provide any information in this case. We denote the set of eigenvectors corresponding to the
eigenvalues indicated by small circles in Figure 5.1 by Vi(o), etc. The results are displayed
in Table 5.1.

The magnitude of k(Vy) is not surprising in view of the e-pseudospectra of B~'A and
the condition numbers of the eigenvalues. The angle between span{Vj;(o)} and the other two
invariant subspaces is not small, which means that span{Vj (o)} is well separated from the
other two. On the other hand, the angle between span{V}(>)} and span{V}(*)} is very small.
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Figure 5.4. The numbers v from (4.6) (upper picture) and the condition numbers k
from (4.7) (lower picture). Different markers are used to indicate the magnitude of the

numbers v and k.

Vi |k | Vi) | £(VisVi(0)) | £(Vi, V() | £(Vi, Vi)

Vi(o) |18 | 2.2-10° 0 39.5 45.5
Vi(>) | 32 | 4.4 102 39.5 0 0.22
Ve(x) | 27 | 4.4-107 45.5 0.22 0

Table 5.1. In this table the condition numbers of the different sets of eigenvectors are
displayed, as well as the angles (in degrees) between the corresponding invariant subspaces.

The number of eigenvectors in each set is given in the second column of the table.

The behaviour of the angles cannot be explained by inspecting the e-pseudospectra. Because
the angle between span{Vj(>)} and span{Vj(*)} is so small, we also consider the set of
eigenvectors which consists of the union of Vi(>) and Vj(x), and we call this set V().
We have computed x(V;(<)) and the angle between span{Vji(o)} and span{Vi(<)}. One
has #(Vi(<)) = 6.3 - 107 which is the same order of magnitude as x(Vg(*)); Theorem 4.2
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implies that x(V3(<{)) > £(Vi(x)). Note that the condition numbers of all sets of eigenvectors
considered here is much smaller than (V') if V| the set of all eigenvectors, exists: if we apply
(4.9) to all \; displayed in the lower picture of Figure 5.4 we find (V) > 2.1-10'°. The
angle between V3(<) and Vi(o) is 35.3°, which is slightly smaller than the angle between
span{Vj(o)} and span{Vj(>)}, so span{Vj; (o)} and span{V;(<)} are well separated.

6 Conclusions

We deal with several concepts which can be used to understand the behaviour of standard
and generalized eigenvalue problems that are strongly nonnormal, i.e. problems for which the
eigenvalues or the matrix of eigenvectors (if it exists) are ill-conditioned. For those problems
it may be difficult to compute the eigenvalues accurately and moreover, an analysis based
on the exact eigenvalues only may not reveal some important properties of the matrices
under consideration. The concepts we consider are e-pseudospectra, condition numbers of
eigenvalues and a set of eigenvectors, and angles between invariant subspaces. Apart from the
e-pseudospectra related to the whole eigenvalue problem, we consider also e-pseudospectra
restricted to invariant subspaces. This might be useful in some applications, and these e-
pseudospectra are much cheaper to compute. We compare all these tools and discuss their
advantages and disadvantages.

In practice these tools may be applied to large matrix problems originating from physics,
chemistry or other applications, and therefore we also discuss the computation of these tools.
In particular the computation of e-pseudospectra may be very expensive and this is considered
in more detail.

We apply the concepts studied in this paper to a problem from magnetohydrodynamics.
This leads to a large generalized eigenvalue problem of the form (1.2) with a nonsingular
matrix B. It turns out that this problem is very ill-conditioned and that the e-pseudospectra
and the condition number of the eigenvalues depend strongly on whether the problem is
considered in the form (1.2) or (2.1). Each tool reveals some information about the eigenvalue
problem that the others do not, so this illustrates that all concepts considered in this paper
are worthwhile to investigate for strongly nonnormal eigenvalue problems arising in practice.
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