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Abstract

We study 3-dimensional Lagrangian submanifolds, without totally geodesic points,
of the 3-dimensional complex projective space CP?(4) which satisfy Chen’s equality.
We show how to associate with such a submanifold a minimal surface in S°(1) of
which the ellipse of curvature is a circle. We also give a brief sketch of how this
construction may be reversed. Details of the reverse construction will appear in a
forthcoming paper.

1 Introduction

A totally real submanifold M™ of the complex projective space CP™(4) of constant holo-
morphic sectional curvature 4 is said to satisfy Chen’s equality if

H(p) + 50+ 1)(n — 2),

nQ(n —2)

<1> 5M(P) = 2(17, — ]>

for each p € M, where H denotes the length of the mean curvature vector and dys is the
Riemannian invariant, introduced by Chen in [5], defined by

dm(p) = 7(p) — (inf K)(p).

Here

(inf K)(p) = inf {K(W) | 7 is a 2-dimensional subspace of TpM},

where K () is the sectional curvature of 7, and 7(p) = Zz’<j K (e; A €j) denotes the scalar
curvature defined in terms of an orthonormal basis {eq,... ,e,} of the tangent space T, M.
In this paper we study Lagrangian submanifolds of CP?(4) which satisfy Chen’s equal-

ity. In particular we show how we can, in a natural way, locally associate with such a

9Key words and phrases. Complex projective space, Lagrangian submanifold, sphere, minimal surface.
2000 Mathematics Subject Classification. Primary 53B25; Secondary 53B20.



submanifold a minimal surface in S®(1) with ellipse of curvature a circle. We also indi-
cate briefly how this construction can be reversed, and details of this will appear in a
forthcoming paper [2].

We now give some background material. In [5], Chen proved that for any submanifold
M™ of a real space form R™(¢) of constant sectional curvature c,

H2(p) + 5(n + 1)(n — 2.

n2(n — 2)
(2) om(p) < 5

~ 2(n—1)

The class of submanifolds of R™(c¢) for which equality in (2) is attained at each point p
turns out to be surprisingly large, and these submanifolds have been studied by several
authors, for example see [6] and [11].

In [7] it was observed that the inequality (2) also holds for a totally real submanifold
M™ of a complex space form of constant holomorphic sectional curvature 4¢, and we shall
say that M" satisfies Chen’s equality if equality in (2) is attained at each point p € M". If
h denotes the second fundamental form of M™, the nullity subspace D(p) at a point p € M"
is defined by

Dp)={Z € T,M | h(X,Z)=0forall X € T,M},

and, if M" is Lagrangian with dimension n > 3, then M™ satisfies Chen’s equality if and
only if M" is minimal and D(p) has dimension at least (n — 2) at each point [8].

Lagrangian submanifolds with constant scalar curvature satisfying Chen’s equality were
classified in [7] and those with integrable nullity distribution D in [§].

We remark that, for a Lagrangian submanifold of a complex space form, the cubic form
(h(X,Y), JZ) is totally symmetric. Following the ideas of Bryant [4], minimal Lagrangian
submanifolds can be divided into different classes, depending on the properties of this
cubic form. These different classes have been further investigated in [4] for 3-dimensional
minimal Lagrangian submanifolds of C*. In fact, the same distinction can be made for
3-dimensional totally real submanifolds of other complex space forms, and Lagrangian
submanifolds of CP?(4) satisfying Chen’s equality correspond to Case 4 of Proposition 1
of [4].

For the rest of the paper we restrict ourselves to the case of Lagrangian submanifolds
of CP*(4). This is the lowest non-trivial dimension, since any totally real immersion of a
surface in CP"(4) clearly satisfies Chen’s equality.

2 Preliminaries

Throughout this paper we assume that M" is a Lagrangian submanifold of CP™(4). That
is to say, if J is the complex structure of C'P™(4), then .J maps the tangent space of M
onto the normal space so, in particular m = n. If V denotes the standard connection on

CP™(4), and V, V* the induced connections on M and the normal bundle of M in CP"(4),



then the formulae of Gauss and Weingarten are given respectively by
VxY = VxY + h(X,Y),
Vxé=—AX + Vi

for vector fields X and Y tangential to M and for normal vector fields £. Since J is a
parallel complex structure, it follows from the above formulae that [9]

ViJY = JVxY,
A X = —Jh(X,Y).
These formulae imply that 3, defined by
BX,Y,Z) = (h(X,Y),]Z),
is totally symmetric. Let VA be defined by
(Vh)(X,Y,Z) = Vxh(Y,Z) = h(VxY,Z) = h(Y,Vx 7).

The Codazzi equation says that VA is also totally symmetric, whereas the Gauss curvature
equation states that the curvature R of V is given by

RIX,Y)NZ =(Y,Z)X — (X, Z)Y + [A;x, Aw]Z.
We now recall the following theorem from [7] and [8].
Theorem 1 Let M™ be a Lagrangian submanifold of CP™(4) of constant holomorphic
sectional curvature 4. Then M™ salisfies Chen’s equality if and only if around each non

totally geodesic point there exist a positive function A and a local orthonormal moving
tangent frame {Ey, ..., E,} such that

h(Eq, Ey) = A FEy,
(Ela 2) _)\JE27
h(Eq, Ey) = =AJ Fy,

h(Ei, Ej> = 0, ] > 2.
In this case X is the positive funclion given by
40 =n(n —1) - 2r.

For construction purposes, it is often useful to work with a horizontal lift under the
Hopf fibration of a Lagrangian immersion. For that purpose we conclude this section with
the following correspondence theorem of Reckziegel [13].

Theorem 2 Let p: S*"*t'(1) — CP"(4) be the Hopf fibration. If EE: M™ — S*"*t1(1) is a
horizontal immersion, then f =po E: M" — CP"(4) is a Lagrangian immersion.

Conversely, let M™ be simply connected and let f : M™ — CP"(4) be a Lagrangian
immersion. Then there exists a 1-parameter family of horizontal lifts E : M™ — S**+1(1)
such that f = po FE. Any two such lifts Ey and Fy are related by Fy = e F,, where 0 is a
constant.



3 Lagrangian submanifolds of CP?(4) satisfying
Chen’s equality

;From now on we assume that M is a 3-dimensional Lagrangian submanifold of CP?(4)
satisfying Chen’s equality. We will also assume that M is orientable, connected and simply
connected and does not have any totally geodesic points. In this case, it follows from

Theorem 1 that there exist globally defined vector fields Eq, Eq, E5 on M satisfying

h(Er, Ev) = A Ex, h(Ey, E3) =
h(Ey, Ey) = =AJEy,  h(Fy, E3)
h(EQ,EQ) == _)\']Ela ]’L(Eg,Eg)

0,
0,
0,

where X is a strictly positive function determined by the scalar curvature. It is now easy to
check that, as is also indicated in Proposition 1 of [4], E3 is determined up to sign whereas
Fy is determined up to rotations about Fs by 27 /3. However, as we will see later, the
possible choices of Ey, Ey and Ej give exactly two minimal surfaces in S°(1) and these are
closely related to each other.

Theorem 2 shows the existence of a globally defined horizontal lift Eq : M — S7(1),
and we will identify a point of M with its image under Fy in S7(1). Similarly, we identify
F1, Fq, F3 with their images under the derivative dFy of Fjy.

We now introduce functions a, b, ¢, d by

a = (Vg Ey, E3),
b= (Vg sy, Es),
c= (Vg FEy, Ey),
d= (Vg FE, Ey)

Then, Lemma 4.1 of [8] implies that the connection V is given by

VElEl = CE2 + ClE3, VE2E1 = dEQ — bE3, VEE,EI = —(1/3)bE2,
VElE'Z = —CE1 + bE3, VE2E2 = —dEl + CZE3, VE3E2 = (1/3)bE1,
VElEg = —aE1 — bEQ, VE2E3 = bEl — CLEQ, VEE,ES = 0,

and that the function X satisfies the following system of differential equations:
El(/\> = —3/\d, EQ(/\) = 3/\6, E3(/\) = \a.

We now use the above constructions to define a map &£ from M to the unitary group

U(4) given by

(3> g: (EO)EI)EQ)EB)-



The equations for the second fundamental form - and the connection ¥V written down
earlier in this section may be written in terms of the C*-valued functions Fy,... , F3 as
follows:

dEy = w'Fy + w?FEy + w3E3,

dE, = —w'FEy + idw' By + (cw' + (d — id)w® — %wa)E‘Z + (aw' — bw?) Fs,
dFy = —w?Ey — (C(.u1 + (d+1A) z_ %wa)El — M By + (bwl + aw2)E3,
dEB; = —w° By — (aw' — bw?)Ey — (bw' + aw®) By,

where {w!, w? w3} is the dual basis to {Ey, Eq, Es}.

Note that taking a different horizontal lift would imply that we rotate Ey (and thus
also F;, Fy and E3) by a factor €'/, where 6 is a constant. Thus we may choose a lift Ej
for which € lies in SU(4) at some point. It then follows from (4), (5), (6) and (7) that &
always lies in SU(4) so, by choosing a suitable horizontal lift Ey, we may assume that

(8) £: M — SU(4).

4 An associated minimal surface in S°(1)

We begin this section with a brief description of the use of the Hodge star operator to give
the standard double cover of SO(6) by SU(4).

Recall that the standard Hermitian inner product on C* extends to a Hermitian inner
product ( , ) on the second exterior power A*’C* of C'. Then the Hodge star operator
¥ : A2C* — A’C? is the sesquilinear map defined by

(B, ra)w=a B, a,BeACT,

where w = ey A €1 A ea A ez with eg,...,es3 the standard unitary basis of C'. Then
A’C' = V @iV, where V is the real subspace of A*C* which is the (+1)-eigenspace of .
The star operator commutes with the natural action of SU(4) on A*C*, so that SU(4) acts
on V as a group of orthogonal transformations. If we now choose an orthonormal basis of
V', we obtain the double cover of SO(6) by SU(4). It turns out that the most convenient
basis for our purposes is that given by

Uy = (1/\/5)(60 Nes+ el Aes), Us = (i/ﬂ)(eo Aes—er Aey),
Uy = (1/\/5)(60 Aep+ ez Aes), Uy = (i/\/g)(eo Aep— ez Aes),
Uy = (1/\/5)(60 Aeg+es A 61>, Uz = (i/ﬂ)(eo A ey —es A 6]),

and we will use the orthonormal basis {ug, ... ,us} to identify V with R® in the usual way.

We now let U = (Uy, ... ,Us) : M — SO(6) be the composite of this double cover with the
map € : M — SU(4) constructed in Section 3 from a suitable horizontal lift Fy. Then the



relation between Uy, ... ,Us and Ey, ..., F5 is obtained by replacing lower case letters by
upper case letters in the equations above. It then follows from (4), (5), (6) and (7) that

9

) dUy = (—awl + (1 + b)w2)U1 —((1+ b)wl + an)Ug,
10

dU; = —(—awl +(1+ b)wQ)Uo + (cwl + dw? + (1— b/3)w3)U2 + o' Uy — MUy,
dUs = ((1 + b)wl + aw2)U0 — (ccu1 + dw* + (1-— b/3)w3)U1 — M Us — A" Uy,
dU; = = o'Uy + M\o?U,y + (cr.u1 + dw? — (14 b/3)w3)U4 + (awl + (1 — b)wQ)U5,
dUy = Mo* Uy + MotlU, — (qu1 + dw? — (1+ b/3)w3)U3 —((1 - b)wl — aw2)U5,
dUs = —(awl + (1 — b)wQ)Ug + ((1 - b)wl - an)U4.

—_
—_
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Taking now the projection of ¢ onto the first factor, i.e. the map p — Uy(p), we obtain
a map from M into the 5-dimensional sphere S°(1) in R Notice that the definition of Uy
implies that Uy is invariant under rotations of Fy and Fj, which shows that the possible
choices of Fy, Ey, I3 referred to in Section 3 lead only to two antipodally opposite pairs of
maps Uy into S®(1), one pair obtained from the other by changing the sign of Ey or Es. As
we shall see in the proof of the following theorem, this essentially corresponds to replacing
the corresponding minimal surface in S®(1) by its polar [12], [1].

Theorem 3 Let p € M and assume that a®* + (1 4+ b)* # 0 in a neighborhood X of the
point p. Then the image of the restriction of Uy to X is a minimal surface S in S°(1) with
ellipse of curvature a circle. Moreover, provided that a* 4+ (1 — b)? is not identically zero
on X, S is linearly full in S°(1). In that case, the polar immersion of this minimal surface
is congruent to the minimal surface oblained via this construction when Es3 ts replaced by

— L.

Proof. Let p € M. Since dUy(F3) = 0, it follows that Uy remains constant along the
integral curves of Fs. Therefore, in order to describe the image of Uy around p, it is
sufficient to consider through p a surface N? which is transversal to E3. Then there exist
local functions o and 3 such that the tangent space of N? is spanned by V; = E; + aF;
and V; = Fy 4+ BF;5. We denote the restriction of Uy to N* by g. It then follows from (9)
that

(15) dg(Vi) = —ally — (1 4 b)UL,
(16) dg(Va) = (1 + b)U, — al,.

Since a® + (1 4+b)* # 0 in X, this implies that ¢ is an immersion of N* into S°(1) and that
Vi and V; form an isothermal frame. Moreover, it is clear that U; and U, span the tangent
space of the image of g. Using (10) and (11), we find that the second fundamental form A
of ¢ is given by

(17) h(Vi, Vi) = —aXUs + (1 + b)AU,,
(18) h(Vi, Vo) = h(Va, Vi) = (1 + B)AUs + aAUy,



Hence g is a minimal immersion and, since h(V;, Vi) and h(V;, V;) are orthogonal and have
the same length, the ellipse of curvature is a circle. Further, ¢ is linearly full in S°(1) if
and only if Us is not a constant vector, i.e. provided a® + (1 — b)? is not identically zero.
We also note that (Uy,...,Us) is a strongly adapted orthonormal frame over S in that
U; and U; span the tangent space while Us and U, span the image of h. In particular, it
follows that Us is the polar of g.

On the other hand, if we denote the frame obtained by replacing F3 by —F3 by adding
a ~, we see that Uy = iUs, so that the corresponding minimal surface is congruent to the
polar of g. |

Note that if @ = 0 and 5% = 1 on an open set, then, depending on our choice of E3, one
of the maps Uy or Us becomes constant. For simplicity, we assume that Us is constant so
that the minimal surface determined by U is contained in a totally geodesic S*(1). Our
correspondence is then equivalent to that obtained by Bryant [3] between superminimal
immersions in S*(1) and holomorphic horizontal curves in CP?(4).

An example of the above is provided by the exotic immersion of S® in CP*(4) described
in [7]. In fact, it follows from Lemma 4.5 of [7] that for this example we have b=1,a =10
and A = % Thus the corresponding minimal surface S is contained in a totally geodesic

S4(1), and it follows from the Gauss equation that the Gaussian curvature K of S is given

by

This implies that S is the Veronese surface in S*(1).

5 Final Remarks

The construction discussed in this paper locally associates to each Lagrangian submanifold
M without totally geodesic points of CP?(4) satisfying Chen’s equality a three-dimensional
subbundle of the bundle of strongly adapted orthonormal frames over a minimal surface
S in S%(1) with ellipse of curvature a circle. In a forthcoming paper [2] we discuss the
reverse process. In fact, if S is a minimal surface without totally geodesic points in S?(1)
with ellipse of curvature a circle, we construct an essentially unique three-dimensional
subbundle of the bundle of strongly adapted orthonormal frames over S which arises via our
construction from a Lagrangian submanifold of CP?(4) satistfying Chen’s equality. This
will give an essentially one-to-one local correspondence between Lagrangian submanifolds
without totally geodesic points of CP?(4) satistfying Chen’s equality and minimal surfaces
S without totally geodesic points in S?(1) with ellipse of curvature a circle.

A direct computational approach to this correspondence is also possible. In fact, using
special coordinates on the Lagrangian submanifold, we may use the Gauss curvature equa-
tion to obtain a system of differential equations for the functions a, b, ¢, d. The solution of



this system leads to a system of partial differential equations for two functions in two vari-
ables. This latter system of differential equations turns out to describe minimal surfaces
in S°(1) with ellipse of curvature a circle. This computational approach is followed in [10]
when dealing with the similar question in the complex hyperbolic space. In that case the
geometric approach described in the present paper breaks down completely.
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