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Abstract

In this paper we will concentrate on the numerical solution of the Cauchy-
Riemann equations. First we show that these equations bring together the
finite element discretizations for the Laplace equation by standard finite ele-
ments on the one hand, and by mixed finite element methods on the other. As
a consequence, methods for a posteriori error estimation for both finite element
methods can derive their validity from each other. Moreover, we show that
given a finite element approximation of one of the vectorfields, the missing can
be accurately computed in optimal complexity.

Keywords: Cauchy-Riemann equations, Laplace problem, superconver-
gence, post-processing, error estimation, marching process, optimal complexity.

AMS subject classification: 65N 30.

1 Introduction

The ordered pair (u,v) of functions defined on some domain Q C IR? is said to
satisfy the Cauchy-Riemann equations in Q if Vu = curlv in €2, which, written out
in partial derivatives, reads as

J J J J

—u=—v and —u=——wv in Q. 1

oz Yy oy oz ()
For ease of explanation, we will also say that (v,u) satisfies the Cauchy-Riemann
equations, even though the pair (—v,u), rather than (v, u), satisfies (1).

The Cauchy-Riemann equations have not been the study of numerical approximation
extensively. Nonetheless, already in 1979, Ghil et al. [9] developed a finite difference
scheme on rectangular domains that is as efficient as a fast Poisson solver, whereas
in the context of elliptic systems, the Cauchy-Riemann equations were taken as a
first model problem by Brandt et al.in [3]. A fairly recent paper by Borzi et al. [1]
considers a multilevel approach with cell-vertex finite volumes on a square domain.
The papers just mentioned treat the general inhomogeneous equations.

*Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht, The Nether-
lands. E-mail: brandts@math.uu.nl



1.1 Motivation

The importance of the Cauchy-Riemann equations lies in several fields, both of the-
oretical and practical nature. Firstly, it is well-known that a function is complex
analytic if and only if its real and complex part, seen as functions from IR? to IR,
satisfy (1). This means that if either the real or the complex part of such a function
is known, a general form for the remaining part can be found by solving it from the
Cauchy-Riemann equations. Secondly, an elementary practical application is that
the level curves of w,v : IR* — IR are mutually orthogonal if the pair (u,v) satisfy
the Cauchy-Riemann equations. An example is given in Figure 1 below.

U(X,Y)=05(Y2-X) V(X.Y)=XY

SeNeesien)
SIS
0‘0‘0‘0‘0‘0‘0’0’:‘:‘0&0 S
s
SIS
A K

4

Figure 1. Example of a Cauchy-Riemann pair (u,v) with u(z,y) = 1(2? + y?)
and v(z,y) = zy. Note that actually v is the function u rotated over 7/4, i.e.,

u(z,y) = (y —z)(y + ).

So, the Cauchy-Riemann equations describe the relation between isotherms and
heatflow, between equipotential lines and the direction of electric force, and also
between equipotential lines and the streamlines of a fluid flow. As a final motivation
for the study of Cauchy-Riemann equations we recall that they are in fact the sim-
plest example of an elliptic system and can therefore be taken as a model problem
for more complicated systems. As shown in [15], they form the elliptic part of the
inviscid incompressible Euler problem in two space dimensions. These applications
explain our interest in fast and accurate numerical tools for their approximation.

1.2 Formulation of the problem and outline of the approach

Depending on the context, there are several feasible formulations of the Cauchy-
Riemann problem. An example is that v is given, and that u such that Vu = curlv
is desired. In that case, u is uniquely determined up to a constant value. Another
example is that both » and v are unknown, but that they satisfy (1). In that case,
compatible boundary conditions for both w and v should be given, or boundary
conditions sufficient to determine one of the two. In this paper, we will concentrate
on both formulations, the first being a sub-problem of the second. As a model



problem, we will look for a pair of functions (u,v) with mean values zero such that
Vu=-curly inQ, Vulv=3 ondQ, and (j,1) = 0, (2)

where v is the unit outer normal to 012, and formulate this as an independent po-
tential problem for u. It will become clear further on that also Dirichlet boundary
conditions could have been posed.

Approximations vy, for v will be constructed from standard [5] finite element ap-
proximations u; of u in (2). In case u is already known a priori, the same ideas
can still be applied in a slightly modified form. In Section 2 it will be shown that,
rather surprisingly, mixed finite element approximations v, of v can be directly and
cheaply obtained as a by-product of the computation of u;. Finally, we concentrate
on superconvergence properties of some of the discrete functions of interest. The
possibilities of a posteriori error estimation and adaptivity turn the procedure into
a complete and attractive package.

1.3 Notations and preliminaries

In this paper, Q is a convex polygonal domain such that the boundary 0 is
Lipschitz-continuous. By Hk(Q) we denote the Sobolev space of functions with weak
partial derivatives of order & in H°(Q) := L?(Q), normed with || - ||z, semi-normed
with | - |. The subspaces H*(Q) C H*(Q) are formed by the functions with mean
value zero. The space H(div ; Q) consists of functions with weak divergence in L%(€),
and we supply it with the usual norm ||-||4;;, . The subspace H(div; Q) c H(div; Q)
contains the vectorfields with normal traces that have zero average on 992. By the
Gauss Divergence Theorem, this means that divq € L%(Q) for q € H(div; Q). We
denote unit outer normal vectors by v and counterclockwise tangent vectors by 7.
To what exactly they are normal and tangent will become clear from the context.
The L? inner products on  and 9 will be denoted by () and (-, -) respectively.
For volumes of edges and triangles we use the notation |- |.

1.4 Two problems involving potentials

Problem (2) can be cast in the form of two weakly formulated potential problems.
We refer to Girault and Raviart [8], Ch.1 for details on the statements concerning
regularity, and start with assuming that u,v € f{Q(Q) Then, taking the divergence
of the identity Vu = curlwv results in a Laplace equation for u with Neumann
boundary conditions for which it follows that Vulv = j € H%((?Q),

~Au=0 inQ, Vu'v=7j ondQ, and (j,1) = 0. (3)

Similarly, taking the rotation of Vu = curlv shows that Av = —rotcurlv =
—rot Vu = 0. Next, a boundary condition for v can be found by using the identities

0 1 0 1
cu1c'l_(_1 O)V and 1/_(_1 O)T, (4)

iv =Volr=curlv’v =vulv = ;. (5)

or

which leads to



Integration of (5) along 0f2 results in a Laplace equation for v with Dirichlet bound-
ary conditions,

—Av=0 inQ, and v=g on dQ, where gg =j on 01, (6)
T

and it follows that ¢ € H%(ﬁﬂ) Now, by the theory of elliptic regularity for the
Poisson problem on convex polygonal domains, the assumed regularity u, v € H?(f)
can, conversely, be concluded from the assumption j € H;_(E?Q) on the given data,
which is what we will from now on assume.

Remark 1.1 Problem (2) has solutions u,v € HY(Q) if j € H_%((‘)Q). However,
with the upcoming lowest order finite element discretizations in mind, we prefer to
have u,v € H%(Q) for optimal convergence.

We will use the standard finite element method with Lagrange finite elements for
the approximation of u, which will give us a sequence of approximate solutions
up, € Vi, € H'(Q) of (3). Simultaneously, we will construct mixed finite element
approximations v, € W, C L%(Q) for the function v. This will be done in such a
way, that each pair (up,vy) € Vi, X W), satisfies the Cauchy-Riemann equations in
a certain discrete sense. Indeed, neither uj nor vy is a harmonic function, but the
weak partial derivatives of uj can be interpreted as distributional derivatives of vy,
on the finite dimensional space Wh. As up, converges to u in f[l(Q), vy, converges to
v in EQ(Q) We will consider lowest-order elements only, although the procedure is
easily extended to higher order elements.

2 Discretization by finite elements

In this section we will formulate the standard finite element method for Laplace
equation (3), and apply the mixed finite element method to Laplace equation (6).
We refer to Ciarlet [5] and Raviart and Thomas [14] for details on these methods.

2.1 Standard finite elements

Consider Equation (3). Its solution is the unique function u € H?*(Q) ¢ H'(Q) such
that for all y € H(Q),

(Vu,Vy) = (4, ). (7)

Denote the space of continuous, mean value zero, piecewise linear functions rela-
tive to some triangulation 73 of the domain Q by V}, where A is the usual mesh-
parameter. Then the standard finite element approximation u, € Vj of u uniquely
satisfies

(Vur, Vyr) = {4, yn), (8)
for all y, € Vi, and the Galerkin orthogonality (V(u — up), Vys) = 0 obtained by

subtracting (8) from (7) for testfunctions y, € Vj, expresses that uy is the elliptic
projection of u on Vj. The following a priori bound

lu = wnllo+ Allu = unlls < Ch2lula, ©)



holds under the mild additional assumption that the family (7z) of triangulations
employed, is regular, which means that there does not exist a sequence (T3);, with
Ty, € T such that liminf,_o Vol(73)h=2 = 0.

2.2 Mixed finite elements

The mixed weak formulation of (6) introduces a second variable p = —Vv €
H(div;Q) and treats it as an independent variable. Concretely, it seeks a pair

(v,p) € L2(Q) x H(div; Q) such that for all (w,q) € L2(Q) x H(div;Q),

(p,q) — (v,divqg) = <g,qT1/> and (divp,w)=0. (10)

Note that the term (g, q” v} is independent of any integration constant for g chosen
in (6) because q”v has average normal trace zero on 9.

For the discretization of (10) we use the space W), of piecewise constant functions
with mean value zero, and the ﬁ(div ; Q2)-conforming lowest-order Raviart-Thomas
space I's. Recall that those spaces satisfy the Babugka-Brezzi-L.adyshenskaja con-
dition and that divLl, = W,. Moreover, [} isa proper subspace of all piecewise
linear vectorfields and its fl(div ; Q)-conformity is guaranteed by continuity of the
normal components of the discrete fields across the element edges. Those normal
components are constants on each edge and represent the degrees of freedom.

Remark 2.1 With the application illustrated in Figure 1in mind, note that contour
lines of a piecewise constant functions do not make much sense. In Section 3.2.4
we will describe a post-processor that maps vy, into a better approximation of v.
This approximation will be continuous piecewise linear, such that its contourlines
are well-defined.

With the above choice for the discrete spaces, the mixed finite element approxima-
tions (v, pr) € Wy x T'j, satisfy
(Pryan) — (on,divas) = (g,afv) and (divps, ws) =0, (11)

for all (wn,qn) € Wi, x f‘h. Since the space f‘h does not contain all the piecewise
linear vectorfields, its approximation quality is only of order h, which is reflected
in the optimal order a priori bound for the mixed method in case the family of
partitions (7x)x is regular,

lv = villo+ 1P = Pallgiy < Chlvlz. (12)
We will show an interesting relation between Vuy and pj in Section 2.4. First, we
recall the discrete Helmholtz decomposition of Raviart-Thomas spaces.

2.3 Discrete Helmholtz decomposition

A very useful property of Raviart-Thomas spaces is, that they reflect, on a discrete
level, the Helmholtz decomposition of vector fields. The continuous version is well-
known, and we refer to [8] for details:

[L3(Q)])? = VH(Q) & curl H1(Q). (13)



The discrete version is preluded by the property [8],

qp € ', and div q,=0 & qp € curlVy. (14)
Also, define an operator Vj, : W), — T’ by the Riesz theorem,

(Viwn,qr) = —(wp,divgy) for all qi € T (15)

Theorem 2.2 A discrete Helmholtz decomposition for Raviart-Thomas space is
given by . .
Ty, =V,W, D curl V. (16)

This decomposition is L*-orthogonal.

Proof. See also [13]. The right-hand side of (16) is clearly a subspace of T'y. The
orthogonality follows directly from (15) by substituting q; = curlw;, and the fact
that diveurl = 0. Now, for given q; € f‘h, let r;, be its L2%-orthogonal projection
on VhWh, S0,

Ywy, € Vi/h, (qh — Ty, Vhwh) =0. (17)

Recall that divI, = Wj. This, in combination with (15), gives that q — ry is

divergence-free, which, by (14) implies that q; € curlV}. So, also the reverse
inclusion in (16) holds. o

2.4 Discrete Cauchy-Riemann relations

We will now derive some results on the standard and mixed approximations of the
Cauchy-Riemann pair (u,v). Looking at the defining equations (11) for the mixed
finite element approximations, we can conclude by div I, = W, that div pr =0
and therefore, by (14), that ps = curlwy for some wj € Vi. Substituting this
information back into (11) gives that

Vap € Th, (curlwp,ai) — (v, divas) = (g,q;v). (18)

By the discrete Helmholtz decomposition (16), this decouples into two independent

sets of equations by testing into the two orthogonal subspaces of I';, consecutively.
This gives first of all that

Yy, € Vi, (curlwy,curly,) = (g,curlylv). (19)

Using (4), note that curly!v = aa—Tyh. Then, integration by parts on 992 and using
(4) again to conclude that (curlwy,curly,) = (Vws, Vi), gives

- 13} .
Vyn € Vi, (Vwr, Vi) = <8_7_97yh> = (J, yn)- (20)

Comparing this to (8) leads to the interesting observation that the Cauchy-Riemann
relation p = curlu is reflected in the discretizations. We summarize our findings in
the following theorem.

Theorem 2.3 Let u and v satisfy the Laplace equations (3) and (6), and let

(up, Vuy) and (vy, pn) be the standard and mixed finite element approximations
of (u, Vu) and (v,p = —Vv) as described by (8) and (11). Then,

curlu =p=-Vv and curlu, = ps. (21)



3 Fast solution, superconvergence, and error estimation

In this section we will concentrate on some issues of practical importance. Knowing
that up and v, satisfy the discrete Cauchy-Riemann relation (21), the question is
how to compute vy, given that p, = curluy is known. Another question is how to
benefit from superconvergence of the finite element solutions.

3.1 Optimal complexity solution of the missing potential

We will first describe an efficient method to solve v, from

Van € Ty, (v, divay) = (curluy, qu) — (g, qfv), (22)

This equation is nothing more than (11) combined with the result from Theorem
2.3 that p, = curluy. For the practical solution of v, from (22), it is important to
see that, although divT), = Wy,

dim(T;) = dim(curl V3) + dim (VW) = dim(V4) + dim (W) > dim(W3),  (23)

which means that (22) results in a non-square though consistent linear system of
equations, which, for example, can be solved by elimination of redundant equations.

3.1.1 Reducing the number of equations

An obvious way to reduce the number of equations would be to use only the subspace
VW, C T, as testspace in (22) and to solve v, from

Yw,, € Vi/h, (thh,vhwh) = <g,Vhw}7;l/>. (24)

This, however, has the practical disadvantage that the operator Vj is given in the
form of a linear system (15), and that a local basis for V;, W)}, is not known. Therefore,
the following trivial observation is important. We do not need the space VW), itself
as test space. Any subspace Zj C T, such that

div : Zj, — W), is a bijection (25)
gives rise to a non-singular square system with, henceforth, the correct solution. We
will now implicitly give an example of such a subspace.

3.1.2 The marching process

Let e be an internal edge of the triangulation, and S and I’ triangles sharing e. Let

qe € L', be such that q’vs = |e|~! on e, where vs points from S to T, q7v = 0 on

all other edges. Define w, := div q. € W}, then by the Gauss Divergence Theorem,
=1[S|7" on S and w, = —|T’|~! on 7. The set

W :={w. | eis an internal edge of the triangulation}, (26)

spans Wj, but is, in general, not a basis for Wy. As depicted in Figure 2 below,
simple triangulations can be found for which the number of internal edges is strictly



larger than the dimension of W}, which equals the number of triangles 7" minus one.
This can be quantified, for example, by using the discrete Helmholtz decomposition
(16). The dimension of I, equals the total number F of edges minus one, whereas
the dimension of curl V4, equals the total number N of nodes minus one. This results
in a special case of Euler’s formula,

E=T+N —1. (27)

Since the numbers of boundary edges and boundary nodes coincide, this formula
can also be used reading for £ and N the number of internal edges and nodes.

Figure 2. The dimension of W}, equals three, which
is the number of triangles minus one. But there are
four internal edges, so W is not a basis. The functions
we only form a basis if there are no internal nodes, as
follows from (27).

A direct way to solve vy, from (22) is the so-called marching process (see for example
[6, 16]). It is based on the fact that for each constant value ¢, the function v, + ¢
satisfies (22), which explains the start of the algorithm:

e On an arbitrary triangle, assign an arbitrary value to vy,.

e let e be an internal edge such, that a value has been given to v, on exactly
one of the two triangles sharing e. Compute the missing value of v; on the
other triangle by testing (22) with q..

e Repeat the second step until all triangles have been visited.

e Subtract the mean value of vy from vy,.

An example of a “march” is given in Figure 3 below. Starting with a given value in
triangle 1, a value in triangle 2 is computed, then in triangle 3, and so on.

11

10 12

Figure 3. [lustration of a marching 2
process. Contrary to what this example

may suggest, it is not necessary that tri- 3
angle 741 is a neighbor of triangle 7, only

that it is a neighbor of triangle k& for some

k<j+1. 7




Remark 3.1 The marching process has optimal complexity. It computes T'— 1 :=
dim(W}3) unknowns in O(T') arithmetical operations.

Another important observation is that since all the functions q. in the marching
process have normal trace equal to zero on 9f2, we have that

vqe, <g7 QZV> =0. (28)
so in fact we do not need to know g at all. Concretely, vy is computed from
Van € Zn C Ty, (vn,divay) = (curluy, qp), (29)

so apparently, u; contains all information from the boundary data necessary to
compute vy. Note that the evaluation of both terms in (29) can be done exactly, for
example by numerical integration. Denoting the two triangles sharing an edge e by
S and T and their centers of gravity by P and @ , the midpoint rule gives

(v, divge) = v (S) = vp(T), and (30)

(curluy, q.) = |S|curlul q.(P) + |T|curlu} q.(Q). (31)

3.1.3 The marching process for exactly given curl u

So far, we have assumed that approximations for v became available through stan-
dard finite element approximation. In some applications, it might happen that « is
known a priori. In that case, note that (29) still defines a valid discretization, since
the matrix corresponding to the left-hand side is still invertible. Moreover, since we
know that curlu = —Vu, it follows that v, satisfies

Var € Zn CThy  (vn,divas) = —(Vo,qi) = (v,divay). (32)

So, this discretization yields the optimal approximation vy, := Prv, where P, is the
L?-orthogonal projection on Wj. The use of quadrature for the evaluation of the
right-hand side (curlw,qy) could damage this property.

3.1.4 The effects of numerical integration and algebraic errors

In numerical practice, the standard finite element solution uj needs to be solved from
a linear system of equations. This may introduce an algebraic error in wuy, resulting
in an approximation @ of u;. Apart from that, numerical integration might have
been used to compute the right-hand side of (8). Consequently, (22) will in general
only have a solution in the least-squares sense. The marching process, however, can
still be applied without modification. As a matter of fact, it then approximates the
solution to this least-squares problem by selecting a number of T — 1 := dim(ﬁ/h)
equations from the overdetermined system (22), and to solve those exactly.

Remark 3.2 A similar process is known in the context of numerical linear algebra!.
Suppose A is an eigenvalue of an n X n matrix A and that for v # 0, (A — Alv = 0.

'l thank Michiel Hochstenbach and Jasper van den Eshof for pointing out this similarity



Assume that A is single, then rank(A — AI) = n — 1 so all entries of v must be
non-zero. Now, fix an entry v; of v, and bring v; times the j-th column of A — AT
to the right hand side. What remains is an overdetermined though consistent linear
system for the remaining n — 1 entries of v. In case merely an approximation A of
A is known, Wilkinson suggests in his 1958 paper [17] to use the same procedure.
Move one column of the matrix A — Al to the right-hand side and solve the least-
squares problem that remains by selecting n — 1 equations. In case of a tridiagonal
matrix A, this solution process can be done in optimal complexity (approximately
3n operations) by forward substitution.

From numerical linear algebra point of view, it is known that procedures like these,
can result in a non-optimal approximate solution. A safe way out would be to give
up the optimal complexity and to solve the least squares system by ) R-factorization
or by using the normal equations.

3.1.5 A note on stability of marching processes

The stability of the marching process depends very much on which march is chosen,
but also on the distribution over the domain of the perturbation of the right-hand
side. The march as illustrated in Figure 3 is one long march, which means that
errors are accumulated along the whole trajectory. A better march would be to start
somewhere in the center of the domain, compute new values for all three adjacent
triangles, then all triangles adjacent to those four, etcetera. In Figure 3 this would
be: start with 10, compute 3,9,11 from 10, compute 2,4,8,12, then 1,5,7, and finally
6. The maximum error accumulation trajectories would then have a length that is
of the order of the square root of the length of the march given in Figure 3. The
analysis of a march could follow from the error equation

Vg, € Zy, CTh, (0 — vp, divas) = (curl (@, — uy), qn) (33)

where 1, is the approximation of uj obtained by the finite element method, which
can contain errors due to numerical integration and inexact solution of the linear
system. From (33) it follows that

llarllo

[0n = vnllo < sup o [[eurl (@, — up)|o, (34)

0£an€Zy, ||diV qh|

which involves the operator norm of the inverse of the divergence seen as operator
from W, to Zy, and Zj, the subspace of L corresponding to the march. Clearly,
an analysis independent of the march would lead to upper bounds for the error
propagation that would be an overestimation for a specific march. On the other
hand, analyzing a specific march is not very hard but we do not want to specify the
form of the domain and its triangulation. We will just present one line of reasoning
here for illustration.

A local bound follows already directly from (33) in combination with (30). Writing
ap, = vy, — Uy, for the error, we get, using that ||qc|lo,7us < C on regular families of
partitions, that

|ar(S) — an(T)| < Clleurl (up — ) lo,Tus- (35)

10



So the difference between the errors on two arbitrary triangles A and B is bounded
by the accumulation of those local bounds over the shortest possible trajectory from
A to B. We prefer to minimize the length of the trajectory instead of minimizing
the local errors, since the latter are basically unknown. The result is that

N
lan(A) —an(B)| < C Z ||eurl (up, — ip)ljo,r, < C\/Nchrl (up, = ip)llox, (36)
k=1

where IV is the number of triangles 1% on the shortest path in the marching process
between A and B, and X denotes their union. Since a; has mean value zero, we
conclude the second inequality in

llanllo < Cllarlloc < € max. |an(A) — an(B)]. (37)

For the long march from Figure 3, which uses all O(h~%) elements, triangles nr.1
and nr.12 maximize the expression in the right-hand side of (37), which leads to the
upper bound,

l5n — vallo < Ch™"||eurl (up — )]0, (38)

because the trajectory from A to B covers the whole domain. In case the paths are
shorter, like suggested earlier in this section, we need to assume that the errors in
up, are distributed equally over the domain, as holds for the finite element error. In
that case we get, with O(h~') elements and Y the corresponding portion of €,

|68 — vr|lo < Ch_;_chrl (un — an)lloy < C|leurl (up — @r)l|o,0- (39)

The bounds show that to obtain the optimal a priori approximation quality of vy,
it is necessary to solve up with an algebraic error in the same order of magnitude
as its discretization error in case the latter march-type is employed, or one order
higher if the simple long march type of Figure 3 is used.

3.2 Superconvergence based a posteriori error estimation

In standard as well as in mixed finite elements, superconvergence results are know
that may help to post-process the discrete solutions and to estimate the error a pos-
teriori. Because of the discrete Cauchy-Riemann relation of Theorem 2.3, supercon-
vergence properties of the one method can in fact be derived from superconvergence
of the other. We will therefore start with recalling superconvergence results for the
standard finite element method. Then we apply them to the Laplace equation and
finally transfer them to the mixed approximations.

3.2.1 Historic remarks and sketch of the main idea

Already in 1969, Oganesjan and Ruhovets [12] proved superconvergence for the linear
finite element method applied to the Poisson problem with homogeneous Dirichlet
boundary conditions and on uniform triangular partitions. Recall that uniform
partitions are also called three-directional because the directions of the edges of
each triangle are the same. Oganesjan and Ruhovets showed that the gradient of

11



the continuous linear finite element approximation up, is closer to the gradient of
the linear Lagrange interpolants Lju of u than to the exact solution Vu. Explicitly,

IV (un = Lpu)llo < Ch*|uls, (40)

whereas both Vu, and VL,u approximate Vu only with order O(h). This su-
percloseness is due to the key property that derivatives in the mesh directions of
functions from the space Vpp of continuous piecewise linear functions that are zero
on the boundary, are piecewise constant functions on parallelograms, and zero on
remaining boundary triangles, as depicted in Figure 4 below.

Figure 4. The tangential deriva-
tive along a dashed edge of a con-
tinuous piecewise linear function yp
is constant on the parallelogram
formed by the two triangles sharing
that edge. The union of all parallel-
ograms over all internal edges in a

given direction covers omega, apart
from some triangles at the bound-
ary. If y, is zero on 0f), then so
is its tangential derivative on those
boundary triangles.

This property holds in particular for functions Lp € Vy, where p is a quadratic
function. If p is quadratic, it is moreover easy to check that given an edge e with
midpoint M and a vector 7 tangential to e,

0
—Lpp(M)

" (M), (41)

" or
Since <= Lp(M) is constant and -p(M) linear on the parallelogram N around e,
we get

(%(p — Lup), )N = 0. (42)

This property enables the local application of the Bramble-Hilbert lemma, and this
results in

Yyn € Von, |(Vu— VLyu, Vy)| < Ch*|uls|Vylo, (43)

from which (40) can be derived through Galerkin orthogonality. We refer to [12] for
details.

Remark 3.3 The regularity assumption u € IEIS(Q) cannot be obtained by demand-
ing higher regularity of j because 9 is not smooth enough. However, u € H%/2(Q)
is possible. Moreover, restricted to interior triangles, u will be smooth enough. Ap-
plication of the Bramble-Hilbert lemma will be possible apart from a strip Qj of

12



width order A along the boundary. On this strip the bound |z|oq, < C’\/ﬁ|z|1/2’ﬂh
can be used. This results in a total bound of order (’)(h\/ﬁ), just as for the Laplace
problem that we will consider now.

3.2.2 Supercloseness in the Laplace problem

For the Laplace problem (3) and its discretization (7), the situation is slightly more
complicated as a result of the non-homogeneous boundary conditions. There exist
boundary triangles, on which the directional derivatives of functions from V3 do not
vanish. Application of the Bramble-Hilbert lemma is there not possible, basically
because integrals of functions that are odd around the center of gravity of a single
triangles do not vanish. Fortunately, there are not many boundary triangles, and the
result (derived by several authors, see for example [11] for a review) is that merely

Yy € Vi, |(Vu = Vinu, Vyn)| < ChVE ([uls o, + lulsore, ) [Vorlo,  (44)
which gives a supercloseness of magnitude

I (un = Law)llo < ChVE (Juls o, + luls\0,) - (45)

3.2.3 Postprocessing and error estimation

The supercloseness result (45) for the Laplace problem, though less super than
in (40), can still be effectively used to post-process the gradient approximation.
There are several possibilities to do so, but each one of them is based on (41).
So, on a triangle T, three parameters of the five that uniquely determine Vp on T
can be directly found from V/1L,p only. Thus, combining information from several
neighboring triangles, Vp can be recovered exactly. This is illustrated in Figure 5,

where a post-processing scheme is depicted that exactly recovers Vp(N) at some
node N.

Figure 5. The average of two exact tangential T

derivatives in the same direction gives the exact )y
derivative in that direction at the node N. The N —>
gradient can be recovered by doing this for two S

independent, not necessarily orthogonal, direc-
tions. T

Let K : VV), — [V,]? be the operator of which the nodal values are determined by
this process. So, at an internal node, the value of Ky, is computed by averaging
of tangential components at midpoints of edges as in Figure 5. At boundary nodes,
use extrapolation of recovered values at nearby internal nodes. The result will be
that

IVu = K Vurllo < ChVE (Juls g, + [ulsra,,) - (46)
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Consequently, the difference e(h) between the post-processed approximation KpVuy,
and the original approximation Vuj will be an asymptotically exact a posteriori error
estimator for the error ||Vu — Vuy||o,

e(h) = ||(I = Kp)Vupllo and n(h) == e(h)

N R e R
HVU,—V’U,hHO_> (h = 0) (47)

3.2.4 Supercloseness for the mixed method

Consider the mixed discretization (11) of Laplace problem (6). We have proved in
Section 2.4 a discrete Cauchy-Riemann relation stating that p, = curlwu,. From
this and the results of the previous section for Vuy, we conclude easily that (h) is
also an asymptotically exact a posteriori error estimator for the error || — Vv —pllo,
and that )

e(h) = |l(1 = Kn)Vupllo = [|(1 = Kn)pallo, (48)
where Kj, : T'j, — [V},]? is the similarly derived recovery operator for the exact normal
components instead of for the tangential components. So, £(h) can be computed
in the mixed setting directly from pj. Note that the recovery operator K} was
introduced in [4] for mixed approximation of elliptic equations. We have shown now
that for the Laplace equation it is equivalent to K.

The most interesting question is of course how to profit from superconvergence when
the mixed approximation vy of v is under consideration. This is answered by the
following result by Douglas and Roberts [7], which states that on regular families of
possibly non-uniform partitions,

|Pyo = villo < CA?Jols, (19)

where P, stands for the L*-orthogonal projection on W This supercloseness gives
rise to a post-processing scheme (), defined by averaging at nodes of the constant
values on all triangles sharing that node, followed by interpolation on those averaged
values by continuous piecewise linear functions. This results in

v = Qrovrllo < Ch?[vla. (50)

Similar as for the vector fields, this gives rise to an asymptotically exact a posteriori
error estimator 7(h) for the original error in vy,

v(h) = |[(1 = Qr)vrllo and &(h) := 7(h)

= o= ol — 1, (h—0). (51)
Contour lines of the post-processed solution @@jv, will be continuous and piecewise
linear, whereas contour lines for v, do not make sense. So apart from the fact
that @, is a higher order approximation to v than vy, it also allows the application
described in the Introduction of this paper. Note that no special grid structure is
required for this post-processing, so that adaptive and local refinement can take

place that is based on information supplied by the error estimator.

Remark 3.4 To guarantee the superconvergence in vy, it is necessary to solve uy
with an algebraic error that is superconvergent, i.e., one order higher than the ap-
proximation error of uj;. Then , the marching process from Section 3.1.5 should be
used.
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4 Conclusions

We have developed a complete package for the approximation of the Cauchy-Riemann
equations. Firstly, we showed a discrete Cauchy-Riemann relation that was valid
for the standard and mixed finite element discretizations of the unknown functions.
Secondly, we concentrated on the practical computation of one as by-product of
the computation of the other one. Thirdly, we concluded that superconvergence
properties from standard finite elements automatically get transfered to the mixed
elements. Using the superconvergence, the error in the gradient, the curl, and one of
the potentials can be estimated a posteriori, and grid refinement could be applied.

Acknowledgments

The research leading to this paper was supported by a Research Fellowship of the
Royal Netherlands Academy of Arts and Sciences. This support is gratefully ac-
knowledged. Moreover, the author thanks Rob Stevenson for useful suggestions and
discussions in the context of the topic of this paper.

References

[1] A. Borzi, K.W. Morton, E. Siili and M. Vanmeale (1997). Multilevel solution
of cell vertex Cauchy-Riemann equations. SIAM J. Sci. Comp., 18:441-459.

[2] D. Braess and R. Verfuerth (1996). A posteriori error estimation for the Raviart-
Thomas element. SIAM J. Numer. Anal., 33:2431-2444.

[3] A. Brandt and N. Dinar (1979). Multigrid solutions to elliptic flow problems, in
Numerical methods for partial differential equations, S.V. Parter, ed. Academic
Press, New York.

[4] J.H. Brandts (1994). Superconvergence and a posteriori error estimation in
triangular mixed finite elements. Numer. Math., 68(3):311-324.

[5] P. Ciarlet (1978). The finite element method for elliptic problems. North-
Holland, Amsterdam.

[6] C. Cuvelier, A. Segal, and A. van Steenhoven (1986). Finite element meth-
ods and Navier-Stokes equations. D. Reidel Publishing Company, Dordrecht,
Netherlands.

[7] J. Douglas and J.E. Roberts (1985). Global estimates for mixed methods for
second order elliptic problems. Math. Comp., 44(169):39-52.

[8] V. Girault and P.A. Raviart (1986). Finite element methods for Navier-Stokes
equations. Theory and algorithms. Springer Series in Computational Mathe-
matics, Springer-Verlag, Berlin Heidelberg.

[9] M. Ghil and R. Balgovind (1979). A fast Cauchy-Riemann solver. Math. Comp.,
33:585-635.

15



[10] W. Hackbush (1986). Theorie und Numerik elliptischer Differentialgleichungen.
B.G. Teubner, Stuttgart.

[11] M. Krizek and P. Neittaanmaki (1987). On superconvergence techniques. Acta
Appl. Math., 9:175-233.

[12] L.A. Oganesjan and L.A. Ruhovets (1969). Study of the rate of convergence
of variational difference schemes for second-order elliptic equations in a two-
dimensional field with a smooth boundary. Z. Vyéisl. Mat. i Mat. Fiz., 9:1102-
1120.

[13] P. Peisker and D. Braess (1992). Uniform convergence of mixed interpolated
elements for Reissner-Mindlin plates. RAIRO Modél. Math. Anal. Numér.,
26:557-574.

[14] P.A. Raviart and J.M. Thomas (1977). A mixed finite element method for 274
order elliptic problems. Lecture Notes in Mathematics, 606:292—-315.

[15] S. Ta’asan (1993). Canonical forms of multidimensional steady inviscid flows.
ICASE 93-34, Institute for Computer Applications in Science and Engineering,
Hampton, VA.

[16] S. Turek (1994). Multigrid techniques for a divergence-free finite element dis-
cretization. Fast-West J. Numer. Math., 2:229-255.

[17] J. Wilkinson (1958). The calculation of eigenvectors of codiagonal matrices.

Computer J. ,1:90-96.

16



