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Abstract

This paper starts off with studying simple extrapolation methods for the
classical iteration schemes such as Richardson, Jacobi and Gauss-Seidel itera-
tion. The extrapolation procedures can be interpreted as approximate minimal
residual methods in a Krylov subspace. It seems therefore logical to consider,
conversely, classical methods as pre-processors for Krylov subspace methods, as
was done by Zitko (1996) for the Conjugate Gradient method.

The observation made by Ipsen (1998) that small residuals necessarily imply
an ill-conditioned Krylov matrix, explains the success of such pre-processing
schemes: residuals of classical methods are (unscaled) power method iterates,
and building a Krylov subspace on such a classical residual will therefore lead
to expansion vectors that are at small angle to the previous Krylov vectors.
This results in an ill-conditioned Krylov matrix. In this paper, we present
a large number of experiments that support this claim, and give theoretical
interpretations of the pre-processing.

The results are mainly of interest in Krylov subspace methods for non-
Hermitian matrices based on long recurrences, and in particular for applications
with heavy memory limitations. Also, in applications in which minimal residual
methods stagnate due to a lack of ill-conditioning, the use of a classical pre-
processor can be a cheap and easily parallelizable remedy.

1 Introduction

Among the iterative methods for solving large and sparse linear systems of equations,
the Krylov subspace methods [4] are very popular. For special systems (i.e., posi-
tive definite and/or Hermitian matrices), elegant short recurrences lead to methods
like Conjugate Gradients (CG), Minimal Residuals (MinRes), Conjugate Residuals
(CR) and Symmetric L.Q (SYMMILQ). Their generalizations, respectively the Full
Orthogonalization Method (FOM), Generalized MR (GMRES) and Generalized CR
(GCR) for non-Hermitian systems, use however necessarily long recursions for build-
ing orthogonal bases of the Krylov subspace, which, for large systems, becomes the
more (and very) expensive as the number of iterations increases. Therefore, it is
important to find ways, for example by suitable preconditioning, to keep this num-
ber as small as possible. If one is willing to sacrifice the minimization properties of
the methods, one could consider using the bi-orthogonal Petrov-Galerkin approach
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leading to methods with short recurrences like BiCG, CGS and QMR. One could
also restart or truncate the method. Either way it is of interest to build Krylov
subspaces that contain good approximations of the initial residuals.

1.1 Aiming for ill-conditioned Krylov matrices

In this paper we investigate the effect of aiming the initial residual ry of a Krylov
subspace method in the direction of a dominant eigenvector of the preconditioned
system matrix B := AK~! through application of the K-preconditioned Richardson
iteration. Only afterwards, we will apply the Krylov subspace method. This would
force ill-conditioning of the Krylov matrix [rg,..., B¥~!rg], which, as observed by
Ipsen [6], is a necessary condition for small minimal residuals.

One has to be cautious when working with vectors that are at close angle to one
another because of the unavoidable effects of finite precision arithmetic [7], and
be aware of differences in true residuals and residuals obtained through updating
processes. It should be intuitively clear though, that when building a Krylov sub-
space on a random initial residual r¢ in a high-dimensional space, it will in general
not contain good approximations of ry. Especially in long recurrences, it seems a
waist to keep such an irrelevant part of the subspace in memory and to use it in
computation. In asymptotic convergence rates of the methods, this waist is usually
not visible. However, aiming for as little iterations as possible, these asymptotics
hardly show up in the first place. In particular in non-normal applications, it is by
now well-known [15] that one should be more worried about the initial phase of an
iterative process. Therefore, in this paper, we concentrate on the start of Krylov
subspace methods, as opposed to their asymptotic behavior.

1.2 Outline

The outline of this paper is as follows. In Section 2 we recall iterative methods. Then,
in Section 3 we introduce extrapolation methods for classical iteration schemes.
A general reference for extrapolation is [2], and for some more recent work see
[8, 9, 18]. Alongside some numerical experiments we will discuss some stability
matters and preconditioning together in Section 4. Apart from being useful on their
own account, the extrapolation theory will serve as a tool for deriving, in Section 5,
asymptotical properties of the effect of preprocessing the initial residual in minimal
residual methods. In [17] this idea is worked out for the Conjugate Gradient method
while we also refer to [12] and the references therein. After a mathematical analysis
in Section 6 we see our expectations confirmed by more numerical experiments in
Section 7. In Section 8 we comment on related topics and give our final conclusions.
In Appendix A we give details on the testmatrices used.

2 Iterative methods for linear systems of equations

Iterative methods for approximating the solution of a non-singular system of linear
equations Az = b are based upon the following principle. Starting with an initial
guess zg for the solution, the initial residual ro := b — Az( is calculated and a
sequence xj with corresponding residuals rp, = b — Azp is constructed, using only



the action of A on specific vectors. Since z is unknown, it is not clear where zy
should converge to. However, we do know that we want the residuals r; to converge
to zero. Therefore, we are interested in identifying a so called ”search direction”
ug for the approximation and a ”correction direction” ¢ of the residual with the
property that

Aug, = ¢ and lre — crll < |7l (1)

If we have found such a pair (ug, cg), then setting
Tpy1 = Tp + Ug (2)
realizes the reduction of the norm of the residual as aimed for in (1), since
Tha1 =b— Azpy1 = b — A(zp + up) = ri — ¢ (3)

It is easy to generate pairs (ug, c;) at random such that Au, = cg; the problem is
to find them such that c; reduces the residual well. The ideal situation would be
to have up = A~'ry since then ¢ = r, and we would have found z := z + uy.
However, calculating A='ry, or solving Auj = r, is in general as least as difficult
as solving our original problem Az = b.

2.1 Classical iterative methods

In classical methods, the problem of generating pairs of vectors as in (1) is ap-
proached as follows. One looks for a matrix K that is, in some sense, an approx-
imation of A, and that is such, that solving Kux = ry is relatively (very) easy.
Then, writing B := AK~!, we have ¢, = Auy = Brj, &~ r}, since if K was supposed
to approximate A then B should be close to the identity. This gives the following
algorithm. Start with some zg and corresponding rg, and repeat until the norm of
the residual is small enough

U = I(_lf‘k, cp = Auyg, Phg1 = Tk — Cky  Thy1 = Tg + U, k=k+1. (4)
Combining the lines above, one can easily write this iteration into the more familiar
form

Tht1 :mk—}—K_](b—Amk). (5)

The choice K = I is called the Richardson iteration, K = D, with DD the diagonal
of A, the Jacobi iteration, and K = (L + D), with L the strict lower triangular part
of A, is the Gauss Seidel method.

Theorem 2.1 ([5]) The method (4) is convergent if and only if the spectral radius
of the iteration matrix I — B is less than one. Sufficient for convergence of the
Gauss-Seidel method is positive definiteness of A. Sufficient for the Jacobi iteration
to converge is positive definiteness of both A and 2D — A.

It has been observed in many practical applications that the convergence of classical
methods (if convergent at all) is very poor. This is due to the following. First note,
that the residual ryy; can be expressed in terms of r; and hence, recursively, in
terms of the initial residual as follows. Writing M := I — B we have

k1
Phpl =Tk — Cp = Mry = M rg. (6)



The preconditioning K to A is often too poor. Either the spectral radius p(I — B)
of the residual reduction matrix M is (much) larger than one, or, if smaller, only
very little smaller than one. This leads in practice to a correction vector ¢ that is,
compared to rg, very small in magnitude, and therefore only a small change in the
norm of the residual is the result in each iteration step. Second, as already observed
in the introduction, as a result of non-normality of the matrix M, the condition
number (V') of (any) basis V of eigenvectors might ruin the convergence even in
case the spectral radius is small enough. Explicitly we have

[rraall < M < R (V)p(M) o]l (7)

which does mean an upper bound that reduces by a factor p(M) in each iteration,
but the upper bound may start as an extremely large value. A simple example
illustrates that not only the upper bound is large; also the size of the residuals may
increase substantially before convergence.

Example 2.2 Suppose that vy := (¢,1) and vy := (¢, —1) are eigenvectors of a two
by two matrix with respective eigenvalues % and % Then the Richardson iteration

matrix I — B has the same eigenvectors but with eigenvalues % and —%. Let rg be

the vector vy + vy, then ||ro|| = 2¢. Applying I — B gives ry = 3(v; — v2). In spite

of the spectral radius being one half, the norm of the first residual is ||r|| = 1.

The pseudo-spectrum [15] of M often gives a better bound on the norm of the powers
of a matrix, although the relevant pseudo-spectral radius is not easy to compute.

2.2 The Local Minimal Residual method

A first effort to overcome some of the problems of classical iterative methods is the
following. Having found a pair (ug,cg) such that Aup = cx, we know that for all
o € IR the pair

(g, éx) = (ug, acg) (8)

satisfies Aty = ¢;. We can compute ay such, that apcy is the best possible correction
of the residual r; within the one-dimensional linear subspace spanned by ¢, (with
respect to the L?-norm). It is easy to see that ajcy should be the L? orthogonal
projection of r; on the space spanned by ci. Hence, ap be computed accordingly,
which leads to the following improvement over (4).
=1 T‘;:C]C

up, = K™ 'ry, ¢ = Aup, ap = c};ck’ Thil = Tk — OkCly, Thy1 = Tk + apug. (9)
This method is called a Local Minimal Residual (LMR) method, and clearly, the
residuals for this method are non-increasing. If one extends this idea, one arrives
at the Generalized Conjugate Residual method (GCR), which is mathematically
equivalent to Generalized Minimal Residuals (GMRES).

2.3 Minimal residual methods

In GCR, in each iteration step, all the information about the action of the inverse
A~1 that is obtained in previous iteration steps, is being used. Explicitly, after &



iteration steps one has k + 1 sets of vectors uj, ¢; such that AK~'u; = ¢;, and the
initial residual can therefore be corrected optimally in the space spanned by cg, - - -, ¢z
by means of 12 orthogonal projection. In GCR, this projection is implemented by
means of a recursive orthogonalization procedure for the vectors ¢;. It can be seen
that the span of the ¢; is equal to the Krylov subspace K*+t1(AK~! AK~1ry), where,
for general B and v, K*(B;v) is defined by

K*(B;v) := span{v, Bv, - -+, B v}, (10)
Explicitly, in GCR the following minimization problem is solved,
find ¢, € K*(B, Bry) such that ||rg — ¢g|| is minimal. (11)
Equivalently, since K**(B, Bro) = BK**1(B, rg), we could also solve
find u € K*(B,ro) such that ||ro — Bul| is minimal. (12)

An implementation based on this formulation leads to GMRES, which, though math-
ematically equivalent to GCR, is less expensive (and has different stability proper-
ties). Given B and the initial residual ry, an orthogonal basis vy, - -+, vg41 for the
Krylov subspace K**'(B,r) is computed using (for example) the Gram-Schmidt
process. Writing V; for the matrix with columns vy, -+, v;(j < k + 1), this results
into the equivalent relations

BVk = Vk-}-lHk-l-l,k and B‘/k = V]ng + hk+1,kvk+lez (13)

where Hyy1, = (hsj) is an upper Hessenberg matrix which contains the orthogo-
nalization and normalization coefficients, and Hj its upper k x k block. Writing
vy = ro/p with p := ||r||, the first relation in (13) is used to find the element Viy;
from the column span K*(B,v;) of Vj, for which ||BViys — ro| is minimal. Indeed,
using (13) we get || BViyk — rol| = |[Vesr Hrv1ktk — pVirren| = [[Hrsrpyr — per|
so y is defined by a small least squares problem that can be solved by standard
methods.

In case B is Hermitian, GCR and GMRES reduce to CR and MR respectively. In
these methods, the orthogonalization reduces to a three term recursion, as opposed to
the long recurrences in GCR and GMRES. We will now define extrapolation schemes
of classical methods that can be interpreted as inexact minimal residual methods
in a Krylov subspace, and encounter the first case of deliberate ill-conditioning of
Krylov matrices.

3 Extrapolation of classical methods

Let us first concentrate on the effect of one projection step of LMR, which, one
should note, requires the evaluation of two inner products. From Figure 1 it is clear
that one such a step has the most effect if r, and c¢; are almost linearly dependent,
which is the case when r; and the next classical residual rl?+1 = r;, — ¢ make a
small angle. In equation (6) we have seen that the classical residuals are (unscaled)
power method iterates. So, the angle between consecutive residuals should become



smaller at the convergence rate of the power method. The same is valid for the
angle between the ¢, and rj. This raises the question if it would pay off to apply the
projection in LMR not in each step (since in LMR one computes w%ﬂR such that
r,ﬁ‘ﬁR’ is orthogonal to c¢g), but only after some more steps of the classical iteration,
in order to let the Power Method do its work and have r; and ¢ at small angle to
one another. This would be our first example of deliberate ill-conditioning in order

to speed up convergence. In the following we will give a mathematical analysis.

3.1 First extrapolation

Assume that k steps of a classical iteration have been performed, which resulted
in an approximation z; with corresponding residual ry := b — Azy. Application of
the next step of this classical iteration leads to a correction vector ¢; and a search
direction uy, and to the updated approximation z;4q and corrected residual rj4;
as in (4). Alternatively, instead of the k 4 1-st step of the classical iteration, we
can, after having determined ¢; and uj, compute a; = rjcg/cick, which leads to a
different updated approximation and a different corrected residual according to (9),
which we will denote from now on by s;4; (Cf. Figure 1 and Alg.(3.1)). Clearly,

7541l

For the time being, we interpret the computation of s;1q as a post-processing or
extrapolation step that applied after some number k& of classical iteration steps.
However, for the ease of theoretical discussion, in the algorithm below this extrap-
olate is constructed for each value of k. In practical situations, there is no need to
do this after each classical iteration step.

ALGORITHM 3.1: Extrapolated Classical Method.
input: A, K, b, 2, tolerance

To =b- ALL‘O

k =0

while |[s;||2 > tolerance
U = I(_lf'k
¢, = Auy
ar = cgre/(cick)

k41 = TE — Ck
Tpy1 = Tg + U
Sk+1 = Tk — QCE
Ye+1 = Tp + opug
k =k+1

end (while)

In the following analysis, we will prove a more interesting bound than (14) for the
reduction factor resulting from the extrapolation.



3.2 The improvement rate of the extrapolation

Recall the notation M = I — AK~!, and define 6, as the angle between rj and rgy,
ie. let . “ g
rir riMr

cos B, = k kL kR

lrelllreedll llrell[[ Ml

Assume M has a dominant single eigenvalue A; with a corresponding eigenspace

spanned by the eigenvector v;. Let Ay be an eigenvalue of second-largest magnitude.

(15)

Figure 1. sy is the result
of the best correction of ry in
the one dimensional subspace
spanned by cp, on which the ac-
tion of A=! is known.

I'k41

Ok) > Tk

Consider Figure 1. Using basic trigonometry and some additional notations intro-
duced in the picture, we can immediately write down

: h :
gy Dol Il sl Dl ”
el Hlexll el llexl]
On the left-hand side of the expression in the right, the extra reduction of the clas-
sical residual obtained by performing the extrapolation is given.

Let us now recall some well-known results about the convergence of the power
method. These results are already specialized for the situation in which the it-
eration matrix is M and the start vector ro and in which no scaling is applied to
the iteration vectors. We refer to [3] for details.

Proposition 3.1 Suppose that rjv, # 0 and let v be the angle between vy and ry.
Then there exists a C' > 0 such that for all k

. A2
jsiny] < €[22 (1)
A1
Proposition 3.2 Suppose that |A;| # 1. Then
7] !
— for k — oo. (18)
lell 1= 1M

Combining the two propositions above with eq.(16) leads to the following upper
bound for the reduction of the residual after extrapolation.

Corollary 3.3 Applying one extrapolation step after k steps of the classical method
reduces the norm of the residual with an additional factor as follows. There exist

numbers N and C such that for all k > N
k
} . (19)

Il skl < mind1, 2C
7 el 1 — |\

Az
At




Proof. The angle 65 in eq.(16) is smaller than or equal to the sum of the angles
vk and vx41. The same is valid for their sines. a.

An interpretation of Corollary 3.3 is the following. A classical iterative method with
spectral radius almost one shows slow convergence. If this is caused by only one
single eigenvalue with modulus almost one, this can be corrected successfully by
extrapolation in a one-dimensional Krylov subspace. Indeed, the convergence rates
of the residuals ||rg and ||sg|| are

lrxll < CilMl® and Il < CalAal”, (20)

respectively. One can interpret these results also as iterating with the deflated matrix
after having found the dominant eigenvector. The deflated matrix is never explicitly
constructed. Note that the asymptotics might take many iterations to show up if
the matrix M is far from normal. In case of high non-normality, it is not clear what
happens at early stages, although residuals will never increase.

3.3 Second extrapolation

Consider Figure 2, which is an extension of Figure 1. It contains not only the
extrapolated residual sgy1 = rp — aicp but also the next extrapolated residual
Sk42 1= Tk+1 —Qky1Ck+1 that arises from approximation of riy; in the space spanned
by ¢x+1. In order to emphasize that rip1y (and several other vectors) do not need to
be in the same plane as g, rg+1, ¢ and sg41, they are drawn as thick lines, indicating
that they might have a component orthogonal to this sheet of paper.

Figure 2. The second ex-
trapolate tpyo arising from

Sk+2 Sg+1 and Spyo.

Ck41

Tk

One might hope for the two vectors sxy; and si42 to be close to linearly dependent
again. Their difference is
dit1 2= Sky1—Skp2 = (Pe—oncr) — (Thp1 —Ohp1Ck41) = (1—ap)ep+agpicryr. (21)
This means, that we know the action of A~! on the space spanned by dj;.
Vg1 = A7 ey = (1 — ap)up + apgy g (22)
As before, we can now correct the extrapolated residual sjys in the space spanned

by dry1 to obtain an extrapolated extrapolation, which we will denote by tx4s.

Shiodrt1
thyo = Sgpy2 — Br41dryr,  where (i = d*-l-id (23)
k41 %k+1

Obviously the residual ¢35 is always smaller in norm than sgio.



3.4 Some intuition on the improvement rate

We already noted that ry as well as ¢ converge towards the dominant eigenvector
direction vy of M. This means, that the component in the direction of vy in sg4q
is small, since si4 is the orthogonalization of r; to ¢;. The same is valid for sgyq.
Since a simple computation shows that

Mspp1 = Skyo + (Qpg1 — Q) Crga, (24)

and also that
lim (og41 — ag) =0, (25)
k— oo

we could therefore hope for the sequence si to behave similarly as ry. The im-
provement of the second interpolate over the first will then be of order [A3/As| and
hence

1tk ]l < CslAsl". (26)

Note that he calculation of the correction direction dj4; could become relatively
inaccurate since both sy, and spy2 are the result of the subtraction of two almost
equal vectors, and are themselves subtracted from one another. We will pursue this
issue further in Section 4.

3.5 Further extrapolates

The process of extrapolation can be extended in a similar fashion. Taking two
vectors 41 and ¢, we can consider their difference

€ht1 = 1tp — by = Sp — Bro1dp—1 — Spy1 + Brdr = (1 + Br)dy — Br—1dp—1. (27)

We know from (22) that A='dy = vy so we can correct tx1 in the space spanned
by exr+1, leading to a new and smaller residual. We will not go into detail here, but
only state the following.

Remark 3.4 In exact arithmetic and for fixed m, assuming that the largest m
eigenvalues of M are single, the asymptotic behavior in k of the m-th extrapolate
of the k-th classical residual R} is

BN < Cont [Amga]*. (28)
Moreover, the sequence ||R}*||is (non-strictly) monotonic decreasing in m.

Just for clarity of notation, we will add here the computational scheme of the ex-
trapolates. In order to be able to calculate a certain extrapolate, one only needs the
one directly left and the one left above from it.

To = R8
r = R(l) 81 = R%
ro = R(Q) 89 = R% ty = Ré (29)

7‘3:Rg 83:R:13 t3:R:23 R%
ra=Ry ss=Ry ty=R; Ri Rj



For completion, we give below the algorithm that computes two extrapolates in
each iteration step. As mentioned before, in practice one should compute them only
occasionally.

ALGORITHM 3.2: Twice Extrapolated Classical Method.
input: A, K, b, 2y, tolerance

To =b- AJ)O

S0 =T

a_1 = 0

k =0

while ||tz||2 > tolerance
U = K“lrk
cp = Aug
ap = cpri/(cier)

k1 =Tk — Ck
Tpy1 = Tg + U
Sk+1 = Tk — QkCk
Y+l = Tp + Qpuy

v = (1 = agpoy)up—y + agug
dp, =5, — sk

Br = Shyrdi/(didi)

tht1 = Sp+1 — Prdi

Zht1 = Yrg1 + Brvr

k =k+1

end (while)

4 True residuals and preconditioning: experiments.

Our exposition so far has concentrated on taking advantage of iterates of the power
method that make a small angle to each other. Our mathematical analysis gives
statements that are asymptotically valid in exact arithmetic. In practice, we will
have to deal with the effects of finite precision arithmetic, and this asks for special
care. In what follows, we will perform some numerical experiments and try to
identify points in the approach that need extra attention. We will comment on
the difficulty of finding a (nearly) convergent classical method, and on true versus
updated residuals. For details on the testmatrices we refer to the Appendix.

4.1 True versus recursively computed residuals

In our first experiment, we solved a system Az = b, where A is the non-Hermitian
SHERMAN3 matrix of dimension 5005 and b is the corresponding right-hand side
taken from [11]. As preconditioning we used Incomplete LU-factorization with
threshold 0.001, which we denote by ILU(0.001). We monitored the classical residu-
als and its first five extrapolates in logarithmic scale. The convergence history of the
recursively computed residuals is shown in the left picture of Figure 3. The upper
graph represents the classical residuals, going down we see the norms of the once
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extrapolated residuals (the s;) and further down the second to the fifth extrapolate.
In the right picture we plotted the true residuals, i.e. the residuals directly com-
puted from the approximations.

SHERMANS3 with ILU(0.001) - RECURSIVE RESIDUALS
T T T T T

SHERMANS with ILU(0.001) - TRUE RESIDUALS
T T T T

Figure 3. True versus recursively computed residuals for SHERMAN3,
incomplete LU preconditioned with threshold 0.001.

As has been observed in many iterative methods, there can be significant differences
between the two. And indeed, here too we see that the true residuals do not become
smaller than about le-11 relatively, whereas the recursively computed residuals go
easily all the way down to le-18. This should be a guideline in the use of the
extrapolation: at least in the final stage, one should monitor the true residuals, as
the recursive ones can be inaccurate.

4.2 An alternative computational scheme

One of the key points in our algorithm (3.2) has been the property that we know the
action of A™' on the difference of two consecutive iterates s,. Explicitly, we have

Avg = A((1 — ap—1)ugp—1 + apug) = dg. (30)

However, the relation Avy = di has not been established by direct calculation via
the use of the action of A on v, or A=! on dj. It might therefore very well be that
in finite precision arithmetic, the residual Avy — dj is non-zero, whereas when dj,
was explicitly defined as dj := Awg, it would be zero. But since vy is computed
independent from dg, it is actually possible to replace the line dy = sy — sp+1 by
dr := Avg. This makes sure that the correction and updating of #z4; and zz4q
happens with vectors fpdy and Spvr that have the property that dy := Avy as much
as is possible in finite precision arithmetic. The same can be done for all further
extrapolates, and in particular when one plans to compute many of them, this might
add to the stability of the algorithm. We should however point out, that it did not
make any difference to the results of the experiments in this paper.

11



4.3 Preconditioning

Extrapolation of a classical method makes sense if the classical method converges,
or, as we will see below, does not diverge to strongly. This rather seems to restrict
the range of application, since we have already noted that classical methods often
fail to converge. In the following experiments, we discuss suitable preconditioning.

POISSON-4900 with LOWER TRIANGULAR PREC. SHERMANS with ILU(0.005)
T T T T T T T

10°

10°

10700

i i i i 1072 i i i i i i i
0 500 1000 1500 2000 2500 0 50 100 150 200 250 300 350 400

o SAYLR4 with ILU(0.1)
~ Figure 4. Preconditioning for three

different matrices.

Left above: Poisson problem, size
4900, symmetric positive definite,
preconditioned with (non-symmetric)
lower triangular part (Gauss-Seidel).

Right above: SHERMANS problem,
size 3312, non-symmetric, precondi-
tioned with ILU, threshold 0.005.

Left below: SAYLR4, symmetric in-
definite matrix of size 3564, precondi-
tioned with ILU, threshold 0.1.

In all three examples, the true residuals are shown, which were (with the bare eye)
indistinguishable from the recursively computed ones.

First example. Left above a Poisson problem on a square is solved using standard
finite differences on, leading to a positive definite system matrix of size 4900 for
which Gauss-Seidel converges (Cf.Th.2.1). As preconditioner we also tried ILU(0.1)
which gave a similar picture, but then in about 700 iterations instead of 2500.

Second example. The picture right above in Figure 4 shows the results for the
SHERMANS5 matrix, which is non-Hermitian and has size 3312. The problem was

12



now which K to choose such that the classical method converges, since both Jacobi
as Gauss-Seidel showed divergence. We chose to use ILU(0.005). The computation
of the factorization costed only about half a percent of the computation of a com-
plete LU factorization, but already gives very good convergence of the extrapolates.

Third example. In the picture left below we took the symmetric indefinite SAYLR4
matrix. Again we took ILU preconditioning, with threshold 0.1. Although the clas-
sical method hardly converges, the extrapolates converge quite well. Compare this
with the discussion after Corollary 3.3.

Remark 4.1 Let us stress once more that it is essential that the preconditioner
is constant in the iteration number. Hence, for example, the Richardson, Jacobi
and Gauss-Seidel method can be used, and also (Modified) Incomplete LU decom-
position. In the course of the computation of the iterates one should monitor the
true residuals and not the recursively computed ones. For higher extrapolates, the
adapted method (Cf.Sect.4.2) could be considered.

4.4 Slowly divergent classical method

Here, we wish to pay some extra attention to the fact that even if the classical
method, after preconditioning, fails to converge, it is still possible that extrapola-
tion is effective. Consider the following example with divergent classical method.

LSHP3466 with ILU(0.01)
T T T T

Figure 5. A divergent classical
method with convergent extrapolates.

The symmetric indefinite matrix
LSHP3466 of size 3466 gives a diver-
gent classical method when ILU(0.01)
is used as preconditioner. In spite
of that, the extrapolates converge rel-
atively very fast, although comput-
ing higher extrapolates does not really
seem worthwhile.

i i i i i i i i i i
0 10 20 30 40 50 60 70 80 920 100

4.5 A note on inexact extrapolation

Consider once more Figure 1. To get the best possible correction of rj in the space
spanned by ¢, we have to evaluate two inner products. However, when r; and ¢
are at small angle to each other then we can approximate the projection as follows.

~ ~ = — .
ik lerll  llrell = llreall U= llregall/llrall 1= M

rece el o flrll 1 1 31)

This approximation involves two norms that have already been computed since they
are used as stopping criterion in the classical method. Since the approximation has
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no effect on the r; themselves, it will gradually improve, leading to almost the same
s as without this approximation. The resulting algorithm 4.1 is studied from a
different viewpoint in [9].

ALGORITHM 4.1: Inexact Extrapolated Classical Method.
input: A, K, b, zg, tolerance

ro =b— Axg

Po = 7“87“0

k =0

while ||5||2 > tolerance
Uk = I(_lf'k
¢, = Aug

k1 =Tk — Ck
Tpp1 = Tp + Ug
Pk+1 = r]t.|_1rk+1
Y =1/(1— pr+1/pr)
Sk41 =Tk — VECk
Uk+1 = Tk + VECk
k =k+1
end (while)

The approximation of inner products in this fashion can also be done for the higher
extrapolates; we expect that asymptotically, the convergence graphs will coincide
with those of the exact method. This was confirmed by numerical experiments (not
shown in this paper).

5 Preprocessing of minimal residual methods

In this section we will use the extrapolation method of the previous section to study
some Krylov subspace methods. This is motivated by the fact that the first ex-
trapolation step is in fact the first step of minimal residual methods like GCR, and
GMRES. Again we will write B for AK~!, though not implying that the precondi-
tioned matrix has been explicitly formed.

5.1 Upper bounds for minimal residual methods

Recall that, although their implementation differs, both GCR and GMRES, as well
as their Hermitian versions CR and MINRES, correct the initial residual by its best
approximation in the Krylov Subspace K**!(B, Bro) (Cf.Sect.2.3). Now, consider
the extrapolation method of Section 3. In particular, let k& be fixed and consider the
sequence R} for increasing m. Clearly, the first extrapolate s, = R} minimizes the
"initial” residual r; by optimal correction in K'(B, Bry). For the second extrapolate
ty = R? we already noticed that is was constructed by correcting R} in the space
spanned by dr. Remembering equation (21) tells us that this correction lies in
K?%(B, Brg_1), since it uses ¢ and ci_j. One can easily check using induction
arguments that for higher iterates and higher extrapolations the same still holds.
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Lemma 5.1 For all k and all m, R}' —ry € K™ (B, Bri_,,). For application of m
extrapolation steps to rj one needs the m previous residuals.

So, because the extrapolations form a non-optimal Krylov subspace method, the
m-th iterate of a minimal residual method with start vector ri, has a norm that is
bounded by the norm of the m-th extrapolate of riy,,. This results in the following
theorem.

Notation. Denote by GCR(m)r and CL(k)r the residuals obtained after applying
to the initial residual r, m steps of GCR and the classical method respectively.

Theorem 5.2 The following asymptotics hold for GCR applied to a residual ob-
tained by the classical iteration method.

IGCR(m)CL(k)roll < R mll < Congt [ A [, (32)

This means, that a graph in which the convergence history of the classical method,
all its extrapolates and GCR are displayed, no graphs intersect. The un-extrapolated
classical method and GCR form their respective upper and lower bounds as illus-
trated in Figure 6 for a small convection-diffusion problem.

EXTRAPOLATES 0 TO 5 AND GCR FOR CONVDIFF400 DETAIL OF LEFT PICTURE
T T T T T T T T T T T T

10°

Figure 6. Classical method (upper graph), GCR (lower graph) and the five
extrapolates in between for CONVDIFF400, right picture is a detail of the left.

Remark 5.3 Since the asymptotics for small m will need to be realized in practice
before the asymptotics for larger m can take place, we have informally re-derived the
superlinear upper bound for the convergence pattern of minimal residual methods
(Cf.[16]). In a logarithmic convergence history of a minimal residual method, the
norms of the residuals are bounded by a continuous piecewise linear graph of which
the slopes decrease for k tending to infinity.

These observations naturally raise the question if it would pay off to use a (few steps
of a) Krylov subspace minimal residual method as extrapolation. Alternatively, one
could consider the classical method as a preprocessing for this Krylov subspace
method. We will from now on continue our analysis from this point of view.
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5.2 Preprocessing

The right picture in Figure 6 (depicted again, and extended, in Figure 7) will serve
as a model for our further discussion. First note that in that picture, the GCR
graph stays quite close to the graph of the fifth extrapolate. It only starts to turn
away from it after iteration 25, roughly. A consequence of this proximity is the
following. Suppose that we do k < 20 classical iterations with the same starting
vector as before. Then, we use r; as initial residual for GCR. From Theorem 5.2 it
follows that the first five iterations of GCR must give residuals that are smaller than
or equal to the extrapolates ||R7, [,m = 0,---,5. And indeed , this is what we
clearly see in Figure 7. The stars "*’ on the dotted lines indicate GCR convergence
histories that had initial residual rs,r10,--,r2s (which, due to MatLab plotting,
have z-coordinates 6,11, ---,26).

APPLYING GCR AFTER 5,10,...,25 CLASSICAL STEPS
T T T T

Figure 7. As an example, let the
initial residual for GCR be ry5 (sit-
uvated at z = 16 as a result of rg be-
ing at z = 1). The first GCR iter-
ate is equal to the first extrapolate
s16 = Rlg of r6. The second GCR
iterate cannot be larger than second
iterate of ri7, and so on. Since the
graph of the fifth extrapolate is still
close to the original GCR graph, the
graph of pre-processed GCR, is nec-
essarily almost forced back onto the

original GCR graph.

In each iteration of GCR starting with a pre-processed initial residual, the graph of
the next extrapolate has to be passed. Since the GCR(-)ry graph stays close to the
fifth extrapolate, the graphs of GCR(5)CL(f), for £ roughly smaller then 20, almost
catch up with the GCR(:)ry graph. Of course it could be that for larger ¢ this still
happens, because it could be that the graphs of still higher extrapolates stick to the
GCR(+)ro graph even longer than the fifth extrapolate’s graph.

Remark 5.4 Starting GCR after a larger number of preprocessing iterations does,
of course, not need to produce a graph that falls back onto the original GCR, graph.
Nor does it (for any number of preprocessing steps) have to stick onto this graph for
the rest of the convergence history. Nevertheless, according to our theory, the more
preprocessing steps are taken, the faster the upper bounds for GCR decay.

Before proceeding with a mathematical analysis of preprocessing, we will show, in
Figure 8, what happens if we preprocess the small CONVDIFF400 problem with
Gauss Seidel steps, in number varying from zero to fifty. We set the relative resid-
ual tolerance to le-14. In the picture left above, we see fifty convergence histories.
The lowest one, of course, is plain GCR, and the upper one is GCR pre-processed
with fifty Gauss-Seidel steps. The other graphs split off the upper graph after a
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number of preprocessing steps and go GCR-like down. In the upper right picture,
the total number of iterations (Gauss-Seidel plus GCR) is given against the number
k of Gauss-Seidel steps. It is remarkable that this graphs stays constant until £ = 12.

10°

PREPROCESSING FOR CONVDIFF400 PREPROCESSING FOR CONVDIFF400
T T T T T T

N w N I3y @ ~ ®
=] S S =} =} =) =)
T T T T T T T

TOTAL NR OF PREPROCESSING AND GCR STEPS
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T
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TOTAL NR OF PREPROCESSING AND GCR STEPS NR OF PREPROCESSING STEPS
X 10° PREPROCESSING FOR CONVDIFF400 Flgure 8. Three aspects of prepro-
5 ; ; ; : ; : ; ; ; .
cessing.

»
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Left above: Problem CONV-
DIFF400.  Convergence graphs of
GCR with & = 0,1,::+,50 Gauss-

Seidel preprocessing steps.
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Right above: Total number of iter-
ations (Gauss-Seidel steps plus GCR
steps) against number of preprocess-
ing steps.
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Left below: Amount of flops against
number of preprocessing steps. Good
preprocessing gains a factor two.

o
o

0

0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100
NR OF PREPROCESSING STEPS

This means that preprocessing GCR with 12 Gauss-Seidel steps needs only 35 GCR

iterations, while plain GCR needs 57. All the graphs with & < 12 preprocessing

steps ”converged” to the original GCR graph, which emphasizes the success of pre-

processing. The dimension of the Krylov subspace reduced from 57 to 35, which is

interesting since the amount of work to build a £ dimensional subspace is quadratic

in k.

Left below in Figure 8 we pictured the amount of floating point operations (flops)
against the number of preprocessing steps. Although this number is not totally reli-
able because we calculated the true residuals in each step, the general shape of the
graph shows that it saves quite a lot of work when preprocessing steps are done.
Also, one does not really have to be afraid of doing to many steps since there seems
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to be a relatively long flat part of the graph. The up-down structure in the right
part of the graph is explained by the fact that there, where the graph goes down
a bit, another GCR step has been saved. It takes however to many preprocessing
steps to reduce the number of GCR steps by one, so it does not pay of in the total
amount of work done.

6 Mathematical aspects of the preprocessing

In this section we will try to analyze preprocessing from a number of different view-
points. First we will see that it can be interpreted as changing the inner product of
the projection method, and provide some intuition on the remarkable phenomenon
visible in Figure 8, where we noticed that preprocessing can replace early minimal
residual iterations. Throughout this section we assume that p(M) < 1.

6.1 Preprocessing is changing the inner product

To start with, we will study the difference between the following two means to reduce
the initial residual. Write M =1 — B.

(A) Apply m steps Classical Method followed by k steps Krylov Subspace method.
Denote the resulting residual by r¢,, =GMRES(k)CL(m)ro.

(B) Apply k steps Krylov Subspace method followed by m steps Classical Method.
Denote the resulting residual by rp. = =CL(m)GMRES(k)ro.

In the first approach (A), the initial residual rg is first multiplied by M™ and then
optimally corrected in the Krylov Subspace K*(B, BM™rg).

Proposition 6.1 B and [ — B are commuting matrices, and hence
K*(B, BM™ry) = M™K*(B, Br). (33)

Corollary 6.2 The correction of M™ry is of the form M™c® with ¢* € K*(B; Br)
where ¢ satisfies

Vv e K¥(B,Bry) : (M™(rg—c%), M™v) = 0. (34)

a

This makes ¢* into the best approximation of ry in the space K*(B;Bry) with
respect to the inner product generated by the Hermitian positive definite matrix
(M™)*M™, and hence the minimizer of the norm

[Pl = 1M (ro = )| = min{|[M™ (ro = ¢)|| | ¢ € K*(B; Bro)}. (35)

This means that the m pre-processing steps can be interpreted as changing the inner
product of the Krylov Subspace Method.

In the second approach (B), rg is first approximated in K*(B; Brg) and the resulting
corrected residual is multiplied by M™, leading to

Phym = M™(ro— "), where ||[ro — ¢’ = min{||(ro — ¢)|| | ¢ € K*(B;Bro)}. (36)
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Theorem 6.3 The first approach (A) reduces the residual best.
[Pl = 1M (r0 = e[ < IM™ (ro = )| = [kl (37)

Proof. By definition, ¢* minimizes the norm ||M™ (rg — +)|| in K*(B; Bry). O

This result gives an interesting view on the preprocessing. It is well-know that
initially, a minimal residual method reduces the eigenvector components belonging
to the extremal eigenvalues best. Applying m steps of a classical method after
those components have been reduced, would therefore give much better residual
reduction (in these m steps) than applying m classical steps before starting the
minimal residual method.

i,
-
P~
——

CL(m)
Figure 9. lllustrating Theorem 6.3. approach (A)
Residual reduction of approaches (A)
and (B) on the vertical axis, and iter-
ation number on the horizontal. The GMRES(K)

method that is applied secondly, prof-
its from pre-processing by the first. In-
deed, the slope of CL(m) is larger in

(B) then in (A), and the slope of GM- -
RES(k) is larger in (A) then in (B). approach (B) \‘\\
But GMRES as second method is al- CL(m) ~~
ways best.

GMRES(k)

~

Nevertheless, Theorem 6.3 shows that approach (A) gives a better total reduction
(for the combination of classical method and GMRES), which implies that pre-
processed GMRES behaves better than plain GMRES. Apart from that, the gain of
(A) over (B) is bigger than the gain a GMRES-pre-processed classical method has
over a plain classical method.

6.2 Explanation of GMRES(k)CL(m) ~ GMRES(k + m)

As observed in numerical experiments of previous and upcoming sections of this
paper, sometimes the pre-processing seems to replace a part of the optimal Krylov
subspace method, or, put differently, GMRES(k)CL(m)~ GMRES(k+m). It would
be interesting to identify when this happens, because obviously, replacing the first
m steps of GMRES by a classical iteration would save memory and computational
costs. For ease of explanation, we analyze the case m = 1. First note that

K*(B; (I = B)rg) ¢ K*Y(B;r). (38)

The space on the left-hand side is the k-dimensional Krylov subspace in which the
pre-processed ’initial’ residual (I — B)rg is approximated. On the right-hand side we
have the (k4 1)-dimensional subspace in which rg is approximated. The question of
equality of both approaches can therefore be reformulated as the question when the
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minimizer y € K**1(B;rg) of the norm ||rg— By|| happens to be in K*(B; (I — B)ro)
as well. Now, recall that

Vv e K*Y(B;ry), v= P(B)rg (39)
for some polynomial P of degree k£ + 1, and correspondingly,
Yw e K*(B; (I — B)rg), w=Q(B)(I — B)rg (40)

for some polynomial ¢) of degree k. Since polynomials in B commute, the answer to
our problem is therefore given: if the polynomial P* defining the minimizer y has a
factor I — B, the second approach gives the same residual.

Since the zeros of P* are the eigenvalues of the projected matrix Hyyy 1= Vi ; AV
(the so-called Ritz values, see (13)), the two convergence graphs of GMRES(k)CL(1)
and GMRES(k + 1) stick together from the point N onwards that H; has a Ritz
value equal to one for all § > N. This would probably be a converged Ritz value,
and hence an eigenvalue of B, the preconditioned matrix AK~!. Since the goal of
preconditioning is to make B resemble the identity, it can be expected that B has
indeed eigenvalues close to one.

Observation 6.4 The success of the pre-processing of GMRES by K-preconditioned
Richardson iteration depends on the quality of the preconditioner. If B := AK~"' has
m eigenvalues close to one, and if the Ritz values of plain GMRES would converge
to those eigenvalues before the approximation to the solution of the linear system
Az = b has been found with sufficient accuracy, then the use of m pre-processing
steps is suggested to save memory and computational costs.

Naturally, one does not know such detailed information on beforehand. Nevertheless,
as our computational examples suggest, and in particular for very large matrices, it
does not seem seldom that there are indeed converged Ritz values close to one. More-
over, in cases where pre-processing does not significantly improve the procedure, it
does not seem to harm it either.

Remark 6.5 The analysis is not restricted to the classical iterations considered so
far. As a matter of fact, replacing I — B by zI — B shows that any complex value z
can be used to obtained the same effect. Good a priori guesses z for other eigenvalues
of B or for Ritz values would therefore lead to successful pre-processings as well.

7 More experiments with pre-processing

We will now proceed with presenting a few more experiments that will illustrate
the success of preprocessing. We employ the same presentation of results as was
done in Figure 8, so we show convergence histories of GMRES pre-processed with k
classical iteration steps for relevant k. Then we show the amount of flops against k,
and the total number of iterations against k. In some of the pictures it may seem
as if convergence graphs intersect others. This is not the case. Almost horizontal
lines are caused by a sequence of short horizontal lines each belonging to a different
convergence graph. For details on the testmatrices, see the appendix and [11].
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7.1 SHERMANS3, non-Hermitian, size 5005, with ILU(0.001)

Our first experiment is with the SHERMAN3 matrix from Figure 3. From the flat
start of the graph in the right picture we conclude that until eleven preprocessing
steps, the end of the twelve convergence graphs (nearly) coincide. From the middle
picture this is also clear by the reduction of the amount of flops until about & = 14.

PREPROCESSING FOR SHERMAN(3) x10° PREPROCESSING FOR SHERMAN(3) PREPROCESSING FOR SHERMAN(3)

-3

8

3

NR OF FLOPS

©
TOTAL NUMBER OF PREPR. AND GCR STEPS
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0 5 E3 a0 o 5 2 30 0 5 2 30

10 15 20 25 30 10 15 20 10 15 20
TOTAL NR OF ITERATIONS CL + GCR NR OF PREPROCESSING STEPS NR OF PREPROCESSING STEPS

Figure 9. Preprocessing SHERMAN3. Convergence histories, number of flops, and
total number of iterations. The y-range of center and right picture starts at y = 0.

Also noteworthy and visible from the right picture is that plain GMRES requires 24
iterations, while GMRES pre-processed with 30 classical steps requires only 9.

7.2 SHERMANS5, non-Hermitian, size 3312, with ILU(0.05)

Our second experiment is with the SHERMANbS matrix from Figure 4. The flat
start of the graph in the right tells us that until fifteen preprocessing steps, the end
of the sixteen convergence graphs (nearly) coincide. The middle picture shows a
reduction of the amount of flops at k = 30 of almost a factor two.

PREPROCESSING FOR SHERMAN(5) x10" PREPROCESSING FOR SHERMAN(5) PREPROCESSING FOR SHERMAN(5)
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Figure 10. Preprocessing SHERMANS5. Convergence histories, number of flops,
and total number of iterations.

The amount of GMRES steps is reduced from 39 in the un-pre-processed case to 13
in the case with 50 preprocessing steps.

7.3 SAYLRA4, symmetric indefinite, size 3564, with ILU(0.1)

Third experiment is with the SAYLR4 matrix from Figure 4. The preprocessing
appears still effective, although the flat part of the right picture is only seven pre-

21



processing steps long. Again, there is a reduction of the amount of flops of almost
a factor two.

PREPROCESSING FOR SAYLRA x10" PREPROCESSING FOR SAYLR4 PREPROCESSING FOR SAYLR4
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Figure 11. Preprocessing SAYLR4. Convergence histories, number of flops, and
total number of iterations. The y-range of center and right picture starts at y = 0.

In this experiment we were did not use a Krylov method for symmetric matrices like
MinRes because we could not find a suitable preconditioner for the symmetric case.
It should be noted that MatlLab’s Incomplete LU decomposition for symmetric ma-
trices gives factors L and U such that A &~ LU even though the product LU is not
always symmetric. The non-symmetric preconditioning caused MinRes to stagnate,
and that is why we used GMRES. The amount of GMRES steps is reduced from 64
in the un-pre-processed case to 30 in the case with 50 preprocessing steps.

7.4 LSHP3466, symmetric indefinite, size 3466, with ILU(0.01)

Next experiment is with the matrix LSHP3466 from Figure 5, for which the classical
method ultimately diverges. Preprocessing is also in this case still effective, although
there is only a small reduction of the amount of flops.

PREPROCESSING FOR LSHP(3466) x10" PREPROCESSING FOR LSHP(3466) PREPROCESSING FOR LSHP(3466)

NR. OF FLOPS
5 % 8 2 8 8

TOTAL NR. OF PREPROCESSING AND GCR STEPS

°
&

0 5 30 35 o 5 2 30 0 5 2 30

10 15 20 25 10 15 20 10 15 20
TOTAL NR OF ITERATIONS CL + GCR NR. OF PREPROCESSING STEPS. NR. OF PREPROCESSING STEPS.

Figure 12. Preprocessing LSHP3466. Convergence histories, number of flops, and
total number of iterations. The y-range of center and right picture starts at y = 0.

The amount of GMRES steps is however drastically reduced from 24 in the un-pre-
processed case to 3 in the case with 30 preprocessing steps. The reason that this
does not show in the flop count is due to the fact that matrix-vector multiplications
and preconditioning solves are considerably more expensive than inner products for
this matrix. Therefore it would also not have made a big difference if we could have
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used a Krylov subspace method for Hermitian matrices (see previous experiment).

7.5 POISSON and CONVDIFF, size 4900, with Gauss-Seidel

Last experiment is with the matrix POISSON 4900 from Figure 4. First we used
Gauss-Seidel preconditioning, which asks for a method for non-Hermitian matrices.
In spite of that, preprocessing is also in very effective, there is a considerable reduc-
tion of the amount of flops.
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Figure 13. Preprocessing POISSON4900. Gauss-Seidel preconditioning, and GM-
RES.

For completion, we will also show the effect of preprocessing in the symmetric pos-
itive definite case. For that, we applied diagonal preconditioning to POISSON4900
(Jacobi iteration) and changed GMRES to Conjugate Residuals. As already re-
marked before, we do not expect a big gain in flops since both Jacobi and CG need
one matrix vector multiplication, and CG three inner products per iteration. Qur
expectations are confirmed.
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Figure 14. POISSON4900 with Jacobi preprocessing for Conjugate Residuals.

To conclude, we added to the matrix POISSON4900 an non-Hermitian perturbation
due to convection resulting in a matrix CONVDIFF4900. Gauss-Seidel precondi-
tioning was used, which resulted in a divergent preprocessing. Nevertheless, pre-
processing is in this case still effective, although more than 20 steps should not be
taken since then the relative reduction of the residual (from more than 1e5 to less
than le-10) comes in the area of machine precision. So a disadvantage of a too fast
diverging classical method is that the final reachable precision is lower by about the
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amount of increase of the norm during the preprocessing.
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Figure 15. Preprocessing CONVDIFF4900 with a divergent classical method.

8 Conclusions

In this paper we have developed extrapolation methods for classical iteration schemes,
after which we used them as inspiration for the related topic of preprocessing in
Krylov subspace methods. Indeed, it all depends on your point of view whether to
call a Krylov subspace method that is applied after a classical method an extrapo-
lation method for this classical method, or to call a classical method that is applied
before a Krylov subspace method a preprocessing method for the Krylov subspace
method.

We have performed many numerical experiments that show the behavior of both,
and for a range of different matrices arising from different applications. They also
served as examples to illustrate the different algorithms presented.

Finally we have made an effort to give mathematical foundation for the phenomena
that have been observed, in particular the counter-intuitive fact that sometimes, a
pre-processed minimal residual method’s convergence graph becomes indistinguish-
able close to the un-pre-processed minimal residual method’s graph. This would
mean that too much energy is put into building a too large Krylov subspace, in
which case the preprocessing really means a big decrease of the amount of work
needed to solve the system.

8.1 Additional remarks

On the whole, preprocessing and extrapolation both make use of the simple classical
iterative method. It should be noted that in particular with respect to parallelism
this is very interesting and rewarding. Classical methods are much better paral-
lelizable that Krylov subspace methods, so that the gain due to preprocessing in
terms of CPU-time can be much larger than in terms of floating point operations in
specific cases.

Apart from using preprocessing in the context of solving linear systems, the whole
idea of aiming a residual in the direction of the Krylov subspace to build can natu-
rally be applied to Arnoldi’s method for eigenvalue approximation. This might lead
to improved approximations of the extremal eigenvalues. Also note, that the anal-
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ysis of Section 6.2. can be done differently using ideas of the Implicitly Restarted
Arnoldi (IRA) method [13, 10]. In this method, clever use is made of a relation be-
tween applying the p-shifted Q) R-eigenvalue algorithm to Hy and pre-multiplication
of the start-vector by ul — B . An analysis via IRA is given in [1]. The one in
Section 6.2. seems easier though.
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Appendix. More about the testmatrices

In this appendix we will present some details on the testmatrices that were used
in the numerical experiments. With a single exception, they are taken from the
Harwell-Boeing collection, which features as a part of Matrix Market [11] on the
Internet. For all matrices, we will give size, type, number of non-zeros, a MatlLab
spy-plot, a two-norm condition number estimate, and an estimate for the following
measure for the deviation from normality,
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n(A) :

|[A*A — AA*||
= AA - 24 (41)
|| A*Al|
SHERMANS: Qil reservoir simulation chal-

lenge matrix from the Harwell-Boeing collection.
IMPES simulation of a black oil model.

Size: 5005 by 5005, 20033 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 6.9e+16
Estimate 7(A): 1.4e-8

SHERMANS5:  Qil reservoir simulation chal-
lenge matrix from the Harwell-Boeing collection.
Fully implicit black oil model.

Size: 3312 by 3312, 20793 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 3.9e5
Estimate 7(A): 9.8e-1

SAYLRA4: Saylor’s
ing/reservoir simulation matrix from the Harwell-

petroleum engineer-

Boeing collection.

Size: 3564 by 3564, 22316 non-zeros
Type: real, symmetric indefinite
Cond.nr. estimate: 6.9¢6

Exact n(A)=0
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LSHP3466: Graded L-shapes patterns, matrix
from the Harwell-Boeing collection.

Size: 3466 by 3466, 13681 non-zeros
Type: real, symmetric indefinite
Cond.nr. estimate: 1.2e5

Exact n(A)=0

CONVDIFF 4900: Standard discretisation of
a convection dominated convection-diffusion prob-
lem on a square using finite differences. Taken
from [14].

Size: 4900 by 4900, 24220 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 3e3
Estimate n(A)= 1.3e-1

CONVDIFF 400: Standard discretisation of a
convection-diffusion problem with mild convection
term using finite differences. Taken from [14].

Size: 400 by 400, 1920 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 1.3e2
Estimate n(A)= 6.1e-2
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