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Abstract

Continuum percolation models where each point of a two-dimensional
Poisson point process is the center of a disc of given (or random) ra-
dius 7, have been extensively studied. In this paper, we consider the
generalization in which a deterministic algorithm (given the points of

the point process) places the discs on the plane, in such a way that
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each disc covers at least one point of the point process and that each
point is covered by at least one disc. This gives a model for wireless
communication networks, which was the original motivation to study
this class of problems.

We look at the percolation properties of this generalized model,
showing the almost sure non-existence of an unbounded connected
component of discs for small values of of the density A of the Pois-
son point process, for any covering algorithm. In general, it turns out
not to be true that unbounded connected components arise when A
is taken sufficiently high. However, we identify some large families
of covering algorithms, for which such an unbounded component does
arise for large values of A.

We show how a simple scaling operation can change the percolation
properties of the model, leading to the almost sure existence of an
unbounded connected component for large values of A, for any covering
algorithm.

Finally, we show that a large class of covering algorithms, that arise
in many practical applications, can get arbitrarily close to achieving a
minimal density of covering discs. We also show (constructively) the

existence of algorithms that achieve this minimal density.

1 Introduction and motivation

Geometric covering algorithms have been extensively studied in the last 20
years, in the context of computational geometry and combinatorial opti-
mization (see the survey by Agarwal and Sharir (1998)). More recently,
distributed versions of these algorithms have been proposed in the context
of wireless network architectures (see Gerla and Tsai 1995).

Continuum percolation models (also referred to in the literature as Pois-
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Figure 1: Two different disc coverings of a random point process. A
continuum percolation model places a disc at each random point; in our generalized model
a covering algorithm places (possibly fewer) discs to cover all the points, according to
a deterministic rule. We are interested in the almost sure existence of an unbounded

connected component of discs, for a given density of points A.

son Boolean models) were introduced by Gilbert (1961) to model wireless
networks of radio transmitting stations, and they have been considerably
extended by mathematicians since then. In these models discs of a given (or
random) radius r are centered at each point of a two-dimensional Poisson
process X. The a.s. (almost sure) existence of unbounded connected compo-
nents of discs, for a given density A of the point process is often considered.

We consider the generalization in which a deterministic algorithm (given
the points of the point process) places the discs on the plane, in such a way
that each disc covers at least one point of X, and each point is covered by
at least one disc (see Figure 1 for a visual example).

Our aim is twofold: on one side we explore the mathematics of the new
model and we answer some very natural questions that arise from a pure
mathematical point of view. On the other side, we note that most of our
results can be applied to rigorously model geometric properties of wireless

communication networks.



Random graphs are the natural tool that is often used to model commu-
nication networks. In such graphs vertices represent communication end-
points and edges represent two-way channels. In the standard model of
Erdés and Rényi (1959,1960,1961a,b), each pair of vertices has some prob-
ability (the same for all pairs of vertices, regardless of their separation) of
being joined by an edge. Therefore, for each natural number n, there is a a
probability space consisting of all graphs with exactly n vertices. Krdds and
Rényi proved that many interesting properties of random graphs occur a.s.
as n — 0o. Their model of random graphs, however, is not suited to accu-
rately represent networks of short-range radio transmitting stations. This
motivated Gilbert (1961) to propose an alternative model in which the range
of the transmitters is a parameter. In his paper, he constructed a random
network by considering a two-dimensional Poisson point process and joining
each pair of points by an edge, if discs of radius r centered at those two
points intersect. He was the first to introduce the concept of continuum
percolation, identifying a phase transition behavior, i.e., the existence of a
critical value A, for the density of the Poisson point process, at which an
unbounded connected graph a.s. forms and the network can provide some
long distance communication. His results were later extended, from a pure
mathematical standpoint, by Hall (1985), Menshikov (1986), Roy (1990),
Meester and Roy (1994), and others, leading to a theory of random cover-
age processes (see the books by Hall (1988) and Meester and Roy (1996)).
In a more applied framework, Gupta and Kumar (1998, 2000) recently used
a similar model to determine the throughput capacity of a wireless network.

Our model of communication refines the one introduced by Gilbert, con-
sidering a wireless backbone that routes data packets through the network.

In our model, we differentiate between base stations and clients: clients com-



Figure 2: The Wireless Backbone. A connected component of discs forms the
wireless backbone of the network. If a client A wants to communicate to a client B, it
connects to the closest base station and its message is routed through the backbone in a

multi-hop fashion, until it reaches client B.

municate between each other by connecting to base stations that forward
their messages to their destinations (see Figure 2). If a client is within a
given distance to a base station, it can connect to it and we say that the
client is covered by the base station. Hence, the network appears as a set
of circular cells (base stations broadcast domains) that cover a set of points
(clients). A covering algorithm decides where to place the cells, accord-
ing to the distribution of the clients. The algorithm can be a distributed,
self-organizing one, in a model where the entire population of clients elects
‘cluster heads’ and divides itself into subsets that are covered by the cluster
heads (see Gerla and Tsai 1995); or a more centralized one, in a model where
the clients are mobile and the base stations are static. In the latter case,
the base stations could be laid on a fixed grid and the covering algorithm
could determine the subset of them that need to be turned on, at any given
time, to provide coverage (see Franceschetti, Cook, and Bruck 2001). The

algorithm would typically try to minimize the number of base stations that



need to be turned on to cover all the clients, or, in the dynamic case, would
try to minimize the base stations movement needed to cover all the clients.

As in Gilbert’s model, we assume a completely wireless network, hence,
base stations can connect to other base stations only up to a limited distance.
We assume two base stations to be connected only if the corresponding discs
overlap (we will modify this requirement later in the paper). Therefore, if
two clients are in the same connected component of overlapping discs, they
can communicate, because they are reached by a connected path of base
stations of that component.

In percolation theory one is interested in unbounded connected com-
ponents. In our setting, unbounded connected components are of interest
because they represent the almost fully connected state of the wireless net-
work. If there exists a.s. an unbounded connected component, then the
network is largely connected, since most of the clients fall inside the un-
bounded connected component and are able to communicate. In this case,
few additional ‘bridge’ stations can be added to connect isolated components
to the unbounded one and achieve the full connectivity of the network.

We informally summarize our main results in the next section; in Sec-
tion 3 we introduce some notation and definitions; Sections 4 is devoted to
existence and non-existence results for unbounded components, for differ-
ent covering algorithms; Section 5 considers the effect of varying the base
stations communication radius; Section 6 discusses existence of optimal cov-

ering algorithms; Section 7 contains some open problems.



2 Summary of results

Our results can be grouped into four categories: non-existence results, exis-
tence results for different classes of covering algorithms, scaling results, and
results concerning the optimality of certain algorithms. In the following, we
let X be a two-dimensional Poisson point process of density A. The points

of X represent the clients that are covered by base stations.

Non-existence results. Our first results regard the non-existence of an
unbounded connected component of covering discs. We show (Theorem 4.1)
that for any algorithm covering all the points of X by discs of radius r,
there exists a Ag > 0 such that for all 0 < A < Ag, Py(there is an infinite
component) = 0. Then we show that the symmetric result, i.e., the a.s.
existence of an unbounded connected component for large values of A, is not
generally true, but depends on the type of covering algorithm. It is known
that a covering that places a disc centered at each point of X forms a.s. an
unbounded connected component for large values of A (Gilbert 1961). In or-
der to show that this result does not generalize to all coverings, we specify a
covering algorithm that does not form an unbounded connected component

for any value of .

Existence results. We proceed by identifying different families of cover-
ing algorithms that form an unbounded connected component a.s. for large
values of A. One of such coverings, that is practical for our applications, is
a grid covering. We show (Theorem 4.3) that for any algorithm covering all
the points of X by discs of radius r centered at the vertices of a grid, there
exists a A; < oo, such that for all A > Ay, P, (there is an infinite connected

component) = 1.



Another large family of coverings that we consider are the finite horizon
coverings. In these coverings, the position of the covering discs in a certain
region does not depend on the points of the point process that are further
away than some fixed distance (the horizon) of that region (a precise def-
inition follows later). We show (Theorem 4.4) that for any finite horizon
covering which satisfies a very natural condition, there exists a A; < oo,
such that for all A > Ay, P\ (there is an infinite connected component) = 1.

A third class of algorithms that we examine are the shift invariant cov-
erings. These algorithms are defined by the requirement that the covering
commutes with shifts of the points. We ask if any shift invariant algorithm
forms a.s. an unbounded connected component for large values of A, and we
answer this question negatively, by constructing a shift invariant algorithm

that does not exhibit this property.

Scaling results. We then introduce a further extension of our model. We
note that when we consider overlapping discs as connected components, then
we implicitly assume, in our model of a wireless network, that the maximum
radius of communication between two base stations is twice as large as the
maximum radius of communication between clients and base stations. This
observation leads to the natural question of what would happen if the ratio
between the two radii is different from two.

In the standard Poisson Boolean model, that places a disc centered at
each point of a Poisson point process X, considering a different radius for
connectivity corresponds to a simple scaling operation, hence it does not
change the basic properties of the model. In our extended model, however,
this leads to more interesting results. Call r the radius of the discs used

to cover the points of X and R the maximum distance sufficient to connect



disc centers. We show (Theorem 5.1) that:

o If R/r < 1, then, for any grid G, there is a covering algorithm that
places discs only at the vertices of GG, and a.s. does not form an un-

bounded connected component, for any value of A.

o If 1 < R/r <2, then, for some given dense grid G, there is a covering
algorithm that places discs only at the vertices of G, and a.s. does not

form an unbounded connected component, for any value of .

o If R/r =2, then, for any grid G, any covering algorithm that places
discs only at the vertices of G forms a.s. an unbounded connected

component for large values of .

o If R/r > 2, then any algorithm forms a.s. an unbounded connected

component for large values of A, even if it is not grid-based.

Note that the latter case has a high practical value, because it states
that if base stations can communicate at a distance larger than twice the
maximum communication distance to the clients, an unbounded connected
component forms a.s. for large values of the density of the clients, regardless

of the covering algorithm used to build the cellular network.

Optimality Results. Finally, we show (constructively, in Theorem 6.3)
the existence of algorithms that are optimal in achieving a minimal density
of covering discs. We also show that a certain class of practical algorithms

can achieve densities arbitrarily close to the optimal.



3 Notation and definitions

Let R? be the Euclidean plane, let B? be the c-algebra of Borel sets in
R? and let £(-) be Lebesgue measure in R% Let N be the collection of
all counting measures on (R% B2), which assign finite measure to bounded
Borel sets and for which the measure of a point is at most 1. In this way, N
can be identified with the set of all configurations of points in R? without
limit points. Let N be the o-algebra of N generated by sets of the form
{v € N :v(A) =k}, for all integers k and bounded Borel sets A. A (planar)
point process X is defined as a measurable mapping from a probability space
(Q, F, P)into (N, N). For A € B%, we denote by X (A) the random number
of points inside A. In this paper, X will always be a Poisson process with
density A > 0. We sometimes abuse notation and write z € v, for z € R?
and v € N, to express that z is one of the points of v.

We define a shift operation 7; : R? — R? as a translation in R? over the
vector t € R? such that T;(z) = ¢t + = for all z € R% The shift 7; induces
in a natural way a shift transformation on NV, which we also denote by 1}.
Let, for all z € R? and r > 0, D(z,r) be the disc of radius r centered at z:
D(z,r) ={y € R?: |[y—z| < r}. A circle of radius r centered at z is the set
{veR?:|y—z|=r}.

We call two discs D;, D; adjacent if D;(\D; # 0. We write D; < D;

if there exists a sequence D; , D , D, of discs such that D; = D,

gy e

D;, = Dj, and Dy, is adjacent to D;,, for 1 < I < k. A (connected)

ik 141
component or cluster is a set {D; : i € J} of discs which is maximal with
the property that D; <+ D; for all 7,5 € J. We identify a component with
the set of centers of the discs in it.

We now formally define a covering algorithm: A covering algorithm A
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with discs of radius r, is a measurable mapping A : N — N with the

following properties:
1. forall z € A(v)3y € v:y € D(z,r),
2. forally ev3iz € A(v):y € D(z,r).

We define the occupied region C' of A(v) as the union Usreaqw) D(z,r).
In this paper, we examine different classes of covering algorithms, which

we define as follows:

1. Grid Algorithms. let G C R? be the set of all vertices of a two
dimensional lattice. A grid algorithm A constraints the covering discs

to be centered at the vertices of G'. That is, z € A(v) implies z € G.

2. Finite Horizon Algorithms. Let B, (z) be the box of size n X n centered
at z, and let, forallv € N, v[g, () denote the restriction of v to By ().
In other words, v|g,(,) can be identified with the set of points {v N
B, (z)}. We say that a covering algorithm A has finite horizon if there

exists a constant h > 0 (the horizon), so that whenever v|g .. () =

V'|Boyyon(z)y We have A(V)|g, ) = AV)|B,(), for all n and z. In
words, this means that changing v outside By, 12 (2) does not change

the covering inside B, (z).

3. Shift Invariant Algorithms. A shift invariant algorithm A is defined
by the property that T;(A(v)) = A(T(v)), for all £. In words, this

means that the covering algorithm commutes with shifts of the points.

4. n-Square Algorithms. An n-square algorithm is obtained as follows.
Partition the plane into boxes of size n X n. For each such box B,,

the covering of the points inside B,, should use the minimal number of
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discs possible, it should be independent of point configurations outside
B,,, and also commute with horizontal and vertical shifts of n. Note

that such an algorithm is automatically of finite horizon.

Suppose now that we want to cover the points of X by the covering
algorithm A, that is, we consider the measurable map Ao X : Q@ — N. This
Boolean model is denoted by (X,.A) = (X, A, r,.A), where A is the density of
X, and r the radius of the covering discs. The law of this process is denoted
by Py,. The standard Poisson Boolean model that places a disc of radius r,
centered at each point of X is obtained when we take A to be the identity,
and is denoted by (X, A, r). In this model there exists A.(r) such that for
A < A (r) we have no infinite cluster a.s., while for A > A.(r) there is an
infinite cluster with probability 1. We often denote A.(1) by A, and scaling
implies that A.(r) = A.(1)/r* (see Meester and Roy (1996) for more details).

Next, we define the density of (X,A). Let N(x 4y(n) be the (random)
number of discs centered inside the box B, (0). The density of (X,.A) is
given by

Jim Nix ay(n)/n,
whenever this limit (i) exists a.s. and (ii) is an a.s. constant.

Finally, we introduce one more piece of terminology. If (X,.A) contains

an unbounded component of discs with positive probability, we say that

(X, A) percolates.

4 Existence of percolation

In this long section we think of r as being fixed, while A varies. Accordingly,
we sometimes write Py = P .. We also use I” to mean P ;. The expectation

under P we denote by F.
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Our first result deals with the non-existence of percolation for small

values of .

Theorem 4.1 For any covering algorithm A, there exists a Ao(r) > 0 such

that for all 0 < X < Xg, (X, A, r,A) does not percolate.

Proof of Theorem 4.1. Assume that, with positive probability, there is
an unbounded connected component of covering discs for (X, A, r, A). Then
with positive probability, there is an unbounded connected component in the
Poisson Boolean model (X, A, 2r). That is because two intersecting covering
discs in (X, A, r, A) cover points that are at a distance of at most 4r to each
other; and the Poisson Boolean model (X, A, 2r) places discs of radius 2r at
each of the covered points. We then choose Ag = A;/(2r)?, so that (X, A, 2r)

does not form an unbounded connected component a.s. for A < Aq. a

A symmetric result to Theorem 4.1, i.e., the a.s. existence of percolation

for large values of A, depends on the type of covering algorithm used:

Proposition 4.2 There exists a covering algorithm A, such that for all A,
(X, A, 7, A) does not percolate.

Proof of Proposition 4.2. The proof is constructive. Draw circles of radii
{3kr,k € N} around the origin, and notice that a.s. no Poisson point falls
on any of these circles. Then cover the Poisson points, with discs of radius
r, without intersecting these circles. Notice that the circles divide the plane
into finite annuli and, since each cluster of discs resides in at most one of
these finite annuli, each cluster must be bounded, whatever the value of A.

O

We now look at families of algorithms that do percolate for large values

of A. We first consider grid algorithms.
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Figure 3: Mapping to the site percolation model. The grid discs partition the

square ABCD into a finite number of small areas.

Theorem 4.3 For any grid covering algorithm A, there exists a Ay < oo,

such that (X, A, r, A) percolates for all X > X;.

Proof of Theorem 4.3. The proof relies on a construction that maps
the covering discs to a discrete site-percolation model. We illustrate the
idea by considering a square lattice and a distance between two neighboring

lattice vertices of one. Call a covering disc centered at a lattice vertex a

Ne)

5=, in order to being

grid disc. Clearly, the radius of a disc must be r >
able to cover all possible points on the plane by using only grid discs. For
any r > @, the number of grid discs that intersect a lattice square ABC'D
is finite and it partitions the square into some number k, of small regions
A; (see Figure 3). If at least one point of the Poisson point process falls
into each region A;, then the entire square ABC'D must be covered by grid

discs. Now view each lattice square as a site of a site percolation model.

Call the site occupied if there is at least one point of the Poisson process

14



situated inside each region A;, for ¢ = 1...k.. Note that the occupancy

of a site is independent of the occupancy of other sites and the probability
kr

of a site being occupied is given by: p = H(l - e_M’(Ai)). Moreover, if
two adjacent sites are both occupied, then tilzelcorresponding covering discs
form a connected component. Thus, if there is an unbounded component of
occupied adjacent sites, then there is an unbounded connected component of
covering discs. Next, we choose A large enough so that p > p., where p, is the
critical probability for site percolation on a square lattice. The a.s. existence

of an unbounded connected component of covering discs immediately follows.

O

Next, we consider finite horizon algorithms A with the property that the
restriction of A to any box of size n x n contains at most k£ = k(n) discs,
for any value of A. Note that this really is a weak requirement, since we
can completely cover the box using at most «[(n/r)]? discs, for some a < 1.
Any ‘sensible’ algorithm should therefore satisfy the requirement. Note that
k(n) < oo for some n, immediately implies that k(m) < oo, for any m, as
we can cover an m X m square by a finite number of n X n squares.
Another version of this theorem requires an upper bound on the density
of discs centers to exist, along with stationarity. The proof is very similar
and we will mention the small adaptation necessary after the proof of the

main theorem.

Theorem 4.4 Let A be a finite horizon covering algorithm with the property
that the restriction to any box of size n X n contains at most k(n) discs, for
some k(n) < co. Then there exists A\ < 0o, so that (X, X, r, A) percolates
for all X > Aq.
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At first sight, the statement of the theorem is counterintuitive, since we
claim that we force percolation by restricting the number of discs. The
point is that by restricting the number of discs (independently of A), the
requirement of covering all points with this restricted number of discs makes
percolation unavoidable. Before we prove Theorem 4.4, we first state and

prove a preliminary geometric lemma.

Lemma 4.5 Consider a collection of discs of radius r, with the property
that at most k(n) < oo discs intersect any box of size n x n. Then there
exists an € = ¢(n,r) > 0 with the following property: if there are, either, at
least two components of discs that intersect the boundaries of both B, 4, (z)
and B1a,(2), or a component wholly contained in B,1s,(z), then there is
a disc of radius ¢, contained in By,ys,(z), which is not intersected by any

disc.

Proof of Lemma 4.5. We write B, = B,(z). All discs that intersect
By 43 must be centered inside Bj4s.. Therefore, at most & = k(n + 5r)
discs intersect B,,13,. Let ' be a component that intersects the boundaries
of both B, 4, and B, ;3,. The number of discs in C' that intersect B, 9, is
denoted by /. Note that [ < k.

Consider a section AB of the perimeter of C, from the boundary of
B+, to the boundary of B, i;,, which does not intersect either of these
boundaries except at its ends (see Figure 4). This section has length at
least r/2, and consists of parts of the boundaries of at most [ discs, each of
which appears only once. This latter fact follows from the observation that,
since the distance between the boundaries of the two boxes is only r/2, any
disc that contributes to an arc in AB, must overlap the boundary of at least

one box. Moreover, note that were AB to contain two disjoint arcs from
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the same disc, then any disc overlapping that disc in order to make these
arcs disjoint, must overlap the boundary of the other box. It follows that at
least one arc in AB is of length at least r/2[. Call this arc a.

Note that there are at most £ — 1 discs intersecting B, 43, if we do not
count the one that has a as a part of its boundary, and none of them intersect
a, except at its end points. If we divide a into k arcs of equal size, then
each of these discs will be nearest to one of these smaller arcs. One of the
smaller arcs (of size at least r/2kl ) will, however, have no disc which has it
as its nearest neighbor. This means that the space left by discs tangent to
the ends of this smaller arc cannot be covered, and we can choose € so small
that a disc of radius e fits into this space (see Figure 4). The value of € that
we have to choose only depends upon r and n.

The same argument applies to a component wholly contained in B, 9.,
by considering its perimeter rather than the edge between B, 4, and B, 4a,.

O

Proof of Theorem 4.4. Let t,u € Z, and denote the box of size n X n cen-
tered at (tm,un) by B,(tn,un), as before. Let ¢ be chosen as in Lemma
4.5. We say that the vertex (t,u) is a neighbor of (¥, u’) if the boxes
By, (tn,un) and B, (t'n,u'n) share an edge or corner. We call a vertex
(t,u) good if all discs of radius ¢ contained in By, ys,(tn, un) contain at least
one point of the Poisson process. Denote the event that (¢,u) is good by
G(t,u). It is clear that when A — oo, the probability of G(t,u) converges
to 1. It is also clear that G(¢,u) and G(t',u') are independent whenever
max{|t — /|, |u — u'|} > (%—’I-h)'\, for n larger than 2r, and where h is the

horizon of the covering. Hence, the configuration of good sites is formed

through a discrete, finite-range dependent percolation process, and it fol-
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Figure 4: Subdividing the arc. An edge AB of a component C connecting the two
boundaries of Bpi, and Bpiar, has length at least r/2. This edge contains an arc a of
length at least r/2l. Arc a is divided up into k sections, and by one of these we can place

a small disc of radius € that is not contained in any cluster.
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Figure 5: A good square. There is only one component of discs (represented by
the dashed line) that intersects both By42, and Bpy,. This component must reach to
within 2e of all edges of Bn4r, and will therefore intersect a component of an adjacent

good square.

lows then from Kesten (1980) that for A high enough, the good vertices
percolate, i.e., contain an infinite component of good squares with proba-
bility one. What does this mean for our covering? Consider a good square
B,,. By Lemma 4.5 any component cannot be wholly contained in B, 42,
therefore, a component that covers points inside B,,42,, must also intersect
the boundary of Bj,19,.. Also by Lemma 4.5, there can be only one compo-
nent that intersects the boundaries of both B, 49, and B,4,. For n larger
than 2¢ such component exists and must reach to within 2¢ of all edges of
B4 (see Figure 5). Thus, the components associated with adjacent good
squares must overlap, and we must have an infinite component of discs with

probability one. a

The alternative assumption for Theorem 4.4 is that a § < co exists, such
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that:
number of discs in B,,

< 0.

lim sup 5
n—0o0 n

We also require that we have stationarity under some shift, say of 1’,.

In this case, we first choose v > 0 sufficiently small that 1 — ~ is strictly
above the critical point for the finite range discretized process to percolate.
We then find n, a multiple of m, so large that the probability that B, 45,
is intersected by more than (8 + 1)(n + 5r)* discs is less than «, uniformly
in A\. We then use (§ + 1)(n + 5r)% as our k in the lemma, and find an ¢
such that, if we have at most (§41)(n +5r)? discs intersecting B, 15, in the
way described in the lemma, then we must have a disc of radius ¢ empty of
Poisson points.

In the proof of the theorem we then call B, good if B, 3, has both no
disc of radius € empty of Poisson points in it and B,4s5, contains at most
(641)(n+57)? points. Other boxes are called good analogously. If A is high
enough, these boxes percolate, and we again have an infinite component of

discs.

We have seen that both finite horizon algorithms under a bounded den-
sity condition and grid algorithms necessarily percolate for high enough A.
It is natural to ask whether the same holds for shift invariant algorithms. It
turns out that for these algorithms, large values of the density A of the points
do not guarantee the a.s. existence of an unbounded connected component.
This is shown by describing a shift invariant covering algorithm that does
not form an unbounded connected component for all A, thus proving the

following theorem:

Theorem 4.6 There exists a shift invariant covering algorithm A of all the

points of X by discs of radius r, such that for all X\, (X, A, r, A) does not
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percolate.

The proof of Theorem 4.6 is constructive and rather technical. The
covering we describe will have density A.

Without loss of generality, consider covering discs of radius r = 1. The
main idea is the following: given a realization of the Poisson point process,
we first build a large structure of circles similar to those obtained in con-
tinuum fractal percolation models. We do this by placing circles of radii
r = 18™, with m € N, where we see certain configurations of points in the
plane. The resulting structure is composed of clusters that are finite, but
contain every bounded region of the plane. We then derive a shift invariant
covering of all the points of X by discs of radius r = 1, leaving an empty
space near to the boundaries of these clusters.

We illustrate the proof taking the density A to be 1. The proof for the
covering of a Poisson process of another density follows in the same way (in
the proofs to follow, only the values of the €’s change).

We define a potential-point to be a Poisson point with at least one other
point in the half-disc of radius % to the right of it, and no points in the disc
of radius 1 of it, except in the aforementioned half-disc (see Figure 6).

Given a decreasing sequence of positive numbers, by = %,bg,by,..., an
m-point, for m € N, is a potential-point which has its nearest neighboring
point between b,,, and b,,; away.

We start by proving a few lemmas.

Lemma 4.7 For ¢ > 0 sufficiently small, there exists a sequence by =
%,bg,bg, ..., such that the density of m-points is exactly ¢18~*™, for each
m € N.
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Figure 6: A potential point A potential point is a Poisson point with at least one
other point in the half-disc of radius % to the right of it, and no points in the disc of radius

1 of it, except in that half-disc.

Proof of Lemma 4.7. The density of potential points, A,, is calculable.
Choose ¢ > 0 so that

o0

Z 1
-2 _
618 m — 61827_1 S )\p.

m=1
We can now define b; inductively, i.e. given b,, we choose b,,41 so that the
density of m-points is exactly ¢18727, O
We consider a circle of radius 18™ around every m-point. Call such a

circle an m-circle.

Lemma 4.8 Fvery bounded region of the plane is a.s. wholly contained in

some m-circle, for some m.

We will use Proposition 3.1 of Meester and Roy (1994). This states:

Proposition 4.9 (Meester and Roy, 1994) Let S be a stationary point
process in R, and let p be a non-negative random variable. If E(p?) = oo,

then in the Boolean model (S, p) the occupied component is a.s. R%.
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Proof of Lemma 4.8. Let S be the random collection of m-points, for all
m. S is stationary. Note that the radii of points in S are independent. Let p
be the radius distribution of the circles. Then (5, p) is a Boolean model, and
the occupied component corresponds to all areas contained in some circle.

In addition

o0

E(p?) = (18™)2c187%" = oo,

m=1

so we can apply Proposition 4.9 and conclude that every bounded region is
contained in some circle.

O

Now that we have shown that our circles a.s. contain any bounded region,
we want to show that any cluster of intersecting circles is a.s. finite. To do
this, we give a slight variation of a proof for fractal percolation that is in
the book by Meester and Roy (1996) (Theorem 8.1). Again, we proceed by
proving a series of lemmas but first we need a couple of definitions.

We define the sets of possible dependence to the square [0,18™]% as the
rectangles (I x Iy : I; € {[—4 x 18"~ 0],[0,18™]})\[0, 18™]? (see Figure 7).
Sets of possible dependence to other squares of the same size are the natural
translations of this. Call a set of sets of possible dependence to a certain
square, a known region. Define A,, to be the number of m-points in the
square [0,18™]?, and As,, to be the number of k-points, with m < k € N,
within distance 4 of the square. Let C be the number of m-points in the

known region J to the square.

Lemma 4.10 For any 6 > 0, we can find m' and, uniformly in m > m/,

€ > 0, sufficiently small that:
P(Ay > 0/As, =0NCL =0) <46,
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18"

m-1

418

Figure 7: Sets of possible dependence.
for any known region, J, to the square [0,18™]2.

Proof of Lemma 4.10. We are interested in

P(A, >0NAs, =0NnC =0)
P(As, =0NCZ =0)
< P(A,, > 0)
= PAs,=0NnCI =0
< P(A,, >0)
= 1= P(Asy, >0) - P(C > 0)’

P(A,, > 0|As,, =0NCY =0)

if E(Asn)+ E(CL) < 1. We recall that, for a non-negative integer-valued
random variable N, P(N > 0) < F(N), obtaining:

P(A, >0)
1= E(Asm) — E(CF)
< E(A,
T 1= E(Asn) - E(C)

P(A, > 0[As,, =0NClL =0) <

Now, E(Asn,) = (187" 4 4(18™ 4 1))187 2™ -—, which is the area of
the region within distance 4 of the square multiplied by the total density
of k-points, for all & > m,k € N. Noting that the maximum area of the

known region is (18™(1+44/18))% — (18™)2, we see that E(C) < ((18™(1+
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4/18))* — (18™)?)e18~%™, Thus, the bound becomes:
P(A, > 0[As,, =0NC. =0) <

€
1 — (18%m 4+ 4(18™ + 1))18=2m f—= — ((18™(1 4 4/18))% — (18m)2)e18=2m’
which we can make uniformly less than § by choosing ¢ small enough. O

Let H(18") = [-35 x 18", 5 x 18"]*\ (=318, £18")%. Define If (150 to be
the maximal connected cluster of (possibly partial) circles and the boundary
of the box [~318", 118"]% fully contained in H (18"), and define Omr1sn) to

X

N ~—

be the maximal connected cluster of circles and the boundary of [—
187, 2 x 187]2, fully contained in H(187).
Let G(18") be the event that there is a gap in H(18"), i.e. the minimal

distance between Ip(1gn) and Op(1gn is at least 18.
Lemma 4.11 For e > 0 sufficiently small,

lim P(G(18") >

n—oo

DN | —

We prove Lemma 4.11 in two parts. Let G (18") be the event that there is
a gap between I (1gny and Op(1gny in H (18™), when we consider circles only
of radius 18"~ or less. The size 18"~! is chosen because it is a convenient
size comparable to the size of H(18"). Let (GG3(18") be the event that no
circles of radius 18" or greater intersect H(18") at all. Clearly, if G(18")
and G2(18") both occur, then G/(18") does also. Thus, Lemma 4.11 follows

from the following two lemmas.
Lemma 4.12 For ¢ > 0 sufficiently small,

lim P(Gy(18")) >

n—oo

Ao
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Lemma 4.13 For ¢ > 0 sufficiently small,

lim P(G5(18")) >

n—oo

I

Proof of Lemma 4.12. This proof closely follows that of Theorem 8.1
of Meester and Roy (1996) for fractal percolation, except for a number of
extra technicalities. We are going to show that we dominate a version of the
process which has more independence.

We first divide H(18") into 8 x 182 sub-squares of size 18”71 in the
obvious way. We call two squares of the same size neighbors if they share
an edge or corner.

Suppose for a moment that the probability that a square of size 18™
contains an m-point, is uniformly &, for all m, independently of the occur-
rence of k-points anywhere, with k # m, k € N, and independently of the
occurrence of m-points outside the square. We give our proof initially under
this assumption, and then compare our original process with this.

We consider the 8 x 182%sub-squares of H(18"), and in an order such that
for any two squares, B and B’ say, B is considered before B' if B is neither
to the right of nor above B'. We examine, in this order, these sub-squares

of size 18"~!, looking for (n — 1)-points, in the following inductive fashion:
e to begin, all squares are declared to be neither corrupt nor bad.

e if a sub-square is not corrupt, then we examine the whole of it, looking
for (n — 1)-points. If it contains any, then we call it bad, and its

neighboring squares of the same level corrupt.
e if a sub-square is corrupt then we do not examine it.
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Squares are bad if they contain centers of circles of comparable size to them-
selves, which then may extend into the corrupt squares. Corrupt squares
may or may not contain (n — 1)-points. We are careful not to find out this
information, as it might tell us something about the distribution of points
in the squares we have not yet considered.

We can then divide up each of the good squares (those that are neither
bad nor corrupt) into 18* pieces, obtaining at most 8 x 18?*% squares of
size 18”772, and we examine those, in an order such those squares nearer
the bottom-left hand corner are considered first, looking for (n — 2)-points,
in the same inductive fashion as above. We end up declaring each of the
squares of size 18”72 that are sub-squares of good squares in H (18") to be
good, bad or corrupt.

We divide up each of the good squares of size 18”72 into 182 squares of

size 18773

, and use the same procedure to declare each good, bad or corrupt.
We can then divide up each of the good squares, and repeat this procedure,
while we still have good squares, and to a minimum square size of 18.

We then work backwards through the squares, starting with the smallest,
to declare each either dreadful or not. A square of size 18 is dreadful if it is
bad. In an inductive fashion, a square of size 18™ is dreadful if it is either
a) bad or b) good but contains 2 or more dreadful squares of size 181,
We call H(18") dreadful if it contains any dreadful squares of size 18771,

Under our temporary independence assumption, a square of size 18 is
dreadful with probability &, conditioned on the fact that it has not been de-
clared corrupt before being checked. Thus, the probability that it is dreadful
is at most §. Then the probability p,, that a square of size 18™ is dreadful,
is the probability it is a) bad or b) good but contains 2 or more dreadful

squares of size 18”~1. The probability that it is bad, is, as for a square of

27



size 18, at most §. The probability that it is good is at most 1 — §. It may

8m=1 of this square are corrupt,

be that some of the sub-squares of size 1
due to being neighbors of bad squares of the same size outside this square.
Let N be the number of such squares. As the probability of a square being

dreadful is maximal when N =0, it follows that:

P <6+ (1= 8)((1 = proc)™ = 1821 (1= pra)™ 7).

Letting

F(p,8) =8+ (1= 8)(1— (1—p)'* —18%p(1 — p)'®"1),

this becomes p,, < f(pm—1,8). Note that p; = §. If we can now show, for
all &, that
0 < p < b(8) implies 0 < f(p,d) < b(),

for some b(6) > ¢, it will follow that p,, < b(4) for all m. We need b(9) to
be a bound that tends to 0 with 4.

Note that f(p,d) is continuous in p and &, that f(0,) = § and that
%(O, d) = 0. It follows that f(p,d) = p has a solution in [0, 1] for § suffi-
ciently small. The smallest such solution we call b(8). Notice that b(§) > 4,
as f(0,6) = & and %(p, §) > 0 on [0,1]. %(p, §) > 0 on [0,1] also tells us
that 0 < p < b(8) implies 0 < f(p,§) < b(8). Since f(0,0) =0, 2£(0,6) =10
and f is continuous, limgsyo b(8) = 0.

We have shown that the probability that a square of size 18™ is dreadful
is bounded from above, uniformly in m, by a function of § that we can
make arbitrarily small by choosing § small enough. It then follows that the
probability that H(18") is dreadful (i.e. contains any dreadful squares of
size 18"71) can be made as small as we like by choosing 4 sufficiently small.

We choose 4 so that this probability is less than i.

28



We can now come back to our original process, and give up the indepen-

dence assumption. We make the following comments:

e The probability that a square of size 18 contains an m-point, when
we come to check it, given any of the information we already have
found, is at most &, by Lemma 4.10, and because we never consider a

corrupt square.

e By choosing ¢ sufficiently small we can make the bound § as small as

we need.

Let us consider what it means for H(18") not to be dreadful. We argue
that, in this case, we cannot have a connection by circles, of the appropriate
sizes, from the inside to the outside of the box.

We first note that any m-point in H(18") is either in a bad or a corrupt
box of size 18™. An m-circle may thus only intersect a box of size 18™, if
that box is either bad, corrupt, or neighbors a corrupt square of the same
size, unless it neighbors the boundary of H(18").

We now give a series of definitions. Call a box of size 18™ dodgy if it is
either bad, corrupt, neighbors a corrupt square of the same size, is dreadful,
neighbors a dreadful square, or neighbors the border of H(18"). Call it clean
if it is not dodgy. Call two boxes of size 18™ adjacent if they share an edge.
Define an m-circuit to be a series of boxes of size 18", (By, By, Bs, ..., By)
where B; is adjacent to B;;; for i = 1,2,... ,k — 1 and By, is adjacent to
By. We also require that the circuit cuts off the origin from infinity.

A sub-circuit of boxes of size 18j,(B{, Bg, Bg, e ,Bij), of a circuit of
boxes of size 18™ (with j < m),(BT*, By*, By, ..., Bf® ), is a circuit of boxes
of size 187 inside the circuit of boxes of size 18™, such that there exists

j j
Bl Bl

P . o j i
0 = 41,%9,23,...,0,1,%, = k;, such that B; 11 B
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Figure 8: Avoiding dodgy squares. A circuit of squares of size 18™ contains a

circuit of squares of size 18™ ™! avoiding dodgy squares.

are contained in B;*. This means that the first few boxes of size 187 are
contained in B7*, the next few are in BJ*, and so on.

We say that the property £, holds if any m-circuit consisting of clean
boxes of size 18™ contains a sub-circuit of boxes of size 18 that are not
intersected by k-circles, for all & < m. Our objective is to show that F,,
holds for m =1,2,...,n — 1, by induction on m.

If m = 1, we have a 1-circuit of clean boxes. Therefore there can be no
1-circle intersecting any of these boxes, and F; holds.

The inductive hypothesis is that F,,_; holds. In order to perform the
induction step and prove that F,, also holds, consider an m-circuit of clean
boxes of size 18™, as depicted by in Figure 8. In this figure, the smallest

8m—1

squares are of size 1 . If we show the existence of a sub-circuit of clean
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boxes of size 181

inside the m-circuit, then, by the inductive hypothesis,
the occurrence of F,, will follow.

By construction, all the boxes of size 18™ in our circuit are clean. This
tells us that none of them intersects an m-circle. It also means that there
is at most one dreadful square inside each box of size 18™ in the circuit.
These are depicted in Figure 8 as black squares. A dreadful square may
cause a 5 x 5 block of squares of size 18™~! to be dodgy (grey 5 x 5 blocks
in Figure 8). This can happen because the dreadful square can neighbor a
corrupt square, which also has neighbors. Finally, any of the squares of size
18™~1 neighboring the edge of the circuit, or the neighbors of these squares,
may be dodgy, due to the proximity of dreadful squares just outside the
circuit. This latter case is depicted in Figure 8 by the two grey circuits
of width 2 x 18™~1, along the edges of the m-circuit. These are all the
possibilities for dodgy squares of size 18™~! in our circuit.

By considering all possible arrangements of the dodgy squares we see that

87~ ingide our circuit that avoids

there must be a circuit of squares of size 1
those dodgy squares (see Figure 8). Then, by the inductive hypothesis, there
must also be a sub-circuit of squares of size 18, so F,, holds.

Hgn is a circuit of boxes of size 18", and if all are clean, by the argument
above, it follows that we must have a sub-circuit of boxes of size 18 that

are not intersected by any m-circles, for m = 1,2,...,n, which is what we

wanted to prove. |

Proof of Lemma 4.13. Let X be the number of circles of radius at least
18™ that intersect [—% X 187, % x 18"]%. A circle can only touch the boundary
of the box if the distance between the center of the circle and the center of

the box is within 3 x 18" X % of the circle’s radius (see Figure 9). Now
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Figure 9: Intersection between disc and box. A circle of radius at least 18"

can touch the boundary of the box [—% x 18", % x 18™]? only if the distance between the

center of the circle and the center of the box is within 3 x 18" x % of the circle’s radius.

write:

P(X >0) < E(X)

< ) easTr((1s+

b=n

3 x 18"

V2

3 x 18"

V2

)2 - (18"~ )%).
We can make this less than 1/4 for all n by our choice of ¢, implying that

the probability of a large disc intersecting the box is less than 1/4. a

We can now prove the finiteness of our clusters. We define a thickened
cluster as a maximal connected component of points strictly within distance

9 of a disc boundary.
Lemma 4.14 All thickened clusters are finite, for ¢ > 0 sufficiently small.

Proof of Lemma 4.14.

[_M M]Z

5 g and

By Lemma 4.11 there is a gap between

[_3><18’" 3x18™

5 g ]2, with probability at least 1/2, by our choice of ¢, for every

m.
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We now need to show that such a gap exists a.s. , for some m. We need
to be careful in doing this, so that the negative information gained by the
knowledge that there is no such gap, for a certain m, does not prejudice our
attempts to find one in a later m. We proceed as follows.

We begin by looking whether there is a gap between the boundaries of

[_Q g]z and [_3><18 3><18]2_

> 3 5 T In order to do this we search for the cen-

ters of the circles that might intersect this area, in order of increasing size.
Either there is no gap, in which case a (random) K; < oo exists, so that
these boundaries are connected by circles of radius up to 1851, or there is

a gap (with probability of at least 1/2). In the latter case we would be

18M1 18M1]2

satisfied. In the first case we can find an M, so large that [—-5—, =5

[— 3x18M1 3x18M1
b

5 ]2, cannot be overlapped by any circle of radius up

and

to 1851 that could also have overlapped [—%, ?’EJ]Q. We know nothing

about larger circles.

We have no information about the circles that may connect

M M M M
(18— 18112 and [-3xI&8 2 3xI8 112, hence, the probability that there

is a gap between them is again at least 1/2. We search for a connection

between the boundaries of [—1

My My My My .
8 18 ]2 and [_3><18 ’3><128 ]27 again

2 1 2 2

starting by looking at the smallest circles. Either there is a gap, or there
exists Ky < oo such that there is a connection from one of these bound-
aries to the other using circles of size up to 18%2. In this latter case, we

My My My My
can find an M, > M so large that [—18= 18212 and [—2x18 2 3x18 212

cannot be overlapped by any circle of radius up to 1852 that could also have

_ 3x18M2 3><18M2]2
3 .

overlapped [ )

18M2  18M2 49
—=5—, 5" and

We now search again for a gap, this time between [

[_ 3x18M2 3% 18M2

5 g %, and repeat. At every stage we have a probability of at

least 1/2 of there being a gap, independently of the previous times. If there
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is no gap (which happens with a probability of at most 1/2) then we find
this out at some time and search in a larger annulus. It follows that there
is almost surely a gap.

O

Finally, we can now give a proof of Theorem 4.6, by describing a shift
invariant covering algorithm that a.s. never forms an unbounded component

of covering discs, for all A.

Proof of Theorem 4.6. As this covering should be a deterministic function

of the points, we first calculate A in our realization, via

number of points in B, (0)

A= lim 5

n—00 n

if this limit exists and is constant. This happens with probability 1. Other-
wise we take A = 1. Fix ¢ at half the supremum of all values of ¢ that allow
all our proofs to work at this particular value of A. We construct smooth
curves based upon the finite circle clusters. Consider some maximal set of
clusters such that, if we take the locus of points at a maximal distance of 4
from the points in the clusters, then this forms a connected set, and run a
disc of radius two around the outside of this set (see Figure 10). The disc
traces out a kind of sausage shape around the clusters. We note that all
such sausages must be finite by Lemma 4.14.

We take the inside edge of this sausage as our curve, and note that a
covering disc (of radius 1) can get arbitrarily close to any point of it without
touching it.

We construct these smooth curves for each set of sufficiently close clus-
ters, noting that they surround every region, are always finite, and never

come within distance 18 of each other.
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Figure 10: Sausages. By sliding a disc of radius 2 along the boundary of some cluster,

we trace a kind of sausage shape.
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We finally cover our Poisson points as follows:

e if a point is at a distance more than 2 from every smooth curve, then

we center a covering disc at the point.

e if a point is within distance 2 of a smooth curve, then we place a disc
so that its edge covers the point, and so that the center of the disc is
at the maximum distance away from the smooth curve. If there are a

number of such possible positions, we choose the leftmost.

It immediately follows that, for any given value of A, a.s. there is no perco-

lation. O

5 Scaling

In this section we consider an extension that is useful to model the transmis-
sion power in wireless communication networks. We look at the percolation
properties of our model, for different values of the connectivity range of the
base stations and of the clients.

Let r be the clients connectivity range and let R be the base stations
connectivity range. It follows that discs of radius r are used to cover the
points of X and two disc centers are considered connected, if their distance
is less than, or equal to R (see Figure 11). We are interested in the a.s.
existence of an unbounded connected component of disc centers, for large
values of the density A of the Poisson point process.

Our result is the following.

Theorem 5.1 (The Scaling Theorem) Let G C R? be the set of all

vertices of a square lattice in which the distance between two neighboring
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Figure 11: Scaling. Points are covered by solid line discs of radius r. Discs centers

are considered connected if their distance is at most R.

lattice vertices is §. Call two disc centers connected if their distance is at

most R. We have:

o CASE 1. If g < 1 then, for any § > 0, there exists a grid covering
algorithm A that places discs only at the vertices of G, such that, for
all X, (X, A, r, A) does not percolate.

o CASE 2. If1 < g < 2 then, there exists a § > 0, depending on g,

such that there exists a grid covering algorithm A that places discs only

at the vertices of G' and, for all X\, (X, A, r, A) does not percolate.

o (CASFE 3. If% = 2 then, for any § > 0, for any grid covering algorithm
A, there exists a Ay < oo, such that, for all X > XA, (X, A, r, A)

percolates.

o CASE 4. If % > 2 then, for any covering algorithm A, there exists a
A1 < o0, such that, for all A\ > Ay, (X, A, r, A) percolates.

Note that Case 4 of the theorem states that in a wireless network in

which base stations can communicate at a distance larger than twice the
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maximum communication distance to the clients, an unbounded connected
component forms a.s. for large values of the density of the clients, regardless
of the covering algorithm used to build the cellular network.

Before giving a proof of Theorem 5.1, we discuss an intuitive interpreta-
tion of the Theorem. Consider a fixed value of R and let r approach zero. In
the limit for »r — 0, a covering algorithm needs to place a disc at each point
of X, therefore, any covering algorithm behaves as the standard Poisson
Boolean model {X, A, R/2}. For this model it is known that an unbounded
connected component a.s. forms, for large values of the density A.

What Theorem 5.1 states is that, when r is small, the covering algorithm
is constrained to place the discs almost as a Poisson point process, therefore
an unbounded connected component a.s. forms, for large values of A. On the
contrary, when r is large, a covering algorithm has more freedom in placing
the covering discs and percolation can be avoided.

Note that (surprisingly) we do not need r a2 0, and the covering process
to behave exactly as a Poisson Boolean model, to obtain the percolation
property, but as long as r is small enough that the ratio % is greater than
2, Case 4 of the theorem applies, and the result on the existence of an

unbounded connected component holds for any covering algorithm.

Proof of Theorem 5.1.
Case 1. We can restrict our attention to % = 1. That is because if a grid
covering algorithm does not form an unbounded connected component when
% =1, then it does not form such a component when g < 1 either.

Note that, for g = 1, two disc centers are considered connected if and
only if the corresponding discs of radius r cover each other’s centers. More-

over, in order to being able to cover all points on the plane by using only
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grid discs of radius r, the grid spacing 6 must be at most v/2r.
We now consider all values of the grid spacing § < v/2r, subdivided into

intervals.

e Forr < & <+/2r, any grid covering algorithm places discs on the plane

that do not touch each other’s centers.

e lor % < & < r, consider the tiling of the plane depicted in the left
part of Figure 12. Discs of this tiling do not cover each other’s centers,
therefore, any grid covering algorithm that covers all the points of X
using only the grid discs depicted in the left part of Figure 12 does not

form an unbounded connected component, a.s. , for any value of A.

e For2r <4< %, consider the tiling depicted in the right part of Fig-
ure 12. Discs of this tiling do not cover each other’s centers, therefore,
any grid covering algorithm that covers all the points of X using only
the grid discs depicted in the right part of Figure 12 does not form an

unbounded connected component, a.s., for any value of .

For the remaining values of 4, we can use the same tiling of the two cases

depicted in Figure 12, scaled by the appropriate factor.

Case 2. In this case, two disc centers are considered connected if and only
if the corresponding discs of radius r overlap by a region of measure at least
€ > 0, where the value of ¢ depends on the ratio g.

We follow a similar construction as that used to prove Proposition 4.3.
Draw circles of radii {3kr, k € N} around the origin, and notice that a.s. no
Poisson point falls on any of these circles. Then cover the Poisson points,
each with a disc of radius r, without intersecting these circles. Notice that

the circles divide the plane into finite annuli, whose boundaries are not
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Figure 12: Theorem 5.1, Case 1. Two tilings of the plane by discs centered on a

grid that do not cover each other’s centers.

covered by discs. We now approximate this covering using a grid covering.
Consider a square grid G and move each disc of the above covering to the
nearest vertex of G that still allows to cover its corresponding Poisson point.
Note that each disc needs to be translated by at most v/26. That is because
a Poisson point is covered by a disc centered within r from it, and there is
always a grid vertex, within radius r from the Poisson point, that is also
within /28 from this center (see Figure 13). By this translation, some discs
may intersect the boundaries of the annuli, that were previously untouched.
We then take the grid size § so small, that any two discs that intersect these
boundaries do not overlap by an area of measure greater, or equal to ¢, and
are therefore not connected.

It immediately follows that, for any given value of the density A, a.s.

there is not any unbounded connected component for this covering.

Case 3. This case is proven by Theorem 4.3.
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Figure 13: Theorem 5.1, Case 2. A Poisson point P is covered by a disc centered
at point O, that is within r from P. The covering disc can be moved to a nearby grid

vertex, that is inside the solid disc and is within /26 from O, and still covers point P.

Case 4. In this case, two disc centers are considered connected if and only
they are at a distance of at most R — 2r (see right hand side of Figure 11).

We construct a mapping from the covering discs to a discrete site per-
colation model. Consider a partition of the plane into boxes of side length
%, with 0 < € < % — r. Note that if some point of X falls inside a box of
the partition, then it must be covered by a disc of radius r, and therefore
the entire box is covered by a disc of radius % (see Figure 14).

Consider now each € x € box as a site of a site percolation model. Call the
site occupied, if there is at least a point of X situated inside the box. Clearly,
the occupancy of a site is independent of the occupancy of other sites, and,
if two adjacent sites are both occupied, then the corresponding covering
discs form a connected component. Next, we choose A large enough that the

probability of a site being occupied is larger than p., where p, is the critical

probability for site percolation on a square lattice. The a.s. existence of an
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Figure 14: CASE 4. If some point of X falls inside a box of side length ~=, then the

entire box is covered by a disc of radius %.

unbounded connected component of covering discs immediately follows. O

6 Optimal algorithms

In this section we explore the notion of an optimal algorithm, i.e. one which
uses as few discs as possible. We first consider n-square algorithms, and
show that they are nearly optimal, then we describe an algorithm which
really is optimal.

Fix the density of points, A, and r, and extend the definition of the

density of a covering, A, to be

number of discs centered in B,

b4 = lim 5
n— oo n

if this exists and is a constant a.s., and co otherwise. We then define the
optimal density to be

5Pt = inf §
H}‘ A
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where the infimum runs over all covering algorithms. We are interested in
whether there exists an optimal algorithm, A°P, for which, a.s., §%P" = § gopt.
This would be an algorithm which uses the minimal number of discs possible.
We would not expect such an algorithm to have a finite horizon.

First we show that n-square algorithms can get as close as we like to
the optimal density. Define 8, to be the density of discs under an n-square
algorithm. By ergodicity §, < oo exists. Notice that &, does not depend

upon the particular n-square algorithm we choose.

Theorem 6.1 Given ¢ > 0, there exists n. such that §,, < §°°' + ¢, and

hence 6°Pt = inf,, §,,.

Proof of Theorem 6.1 We prove this theorem by contradiction, so suppose
that we can find an € such that there is no n-square covering with density
between §°?* and §°?' +¢. We can find another covering, A say, with density
b 4 € [6°P", 6°P! + ¢/4], by the definition of §°P*,

Choose v > 0 such that (1 —)(8P" + ¢/2) + v(1 + ¢/2)/r* < 5P +e.
Note that the number of discs necessary to cover an n-square is at most
[n/r].

As 64 = limye number of discs centered in B,

n2

, a.s, we can choose
n. > 1 sufficiently large that a) the number of discs centered in B,,_ is less
than n2(8°P*4¢/2) with probability larger than 1—+, and b) [n/r]* (1/n)% <
(14 ¢/2)/r2.

Given a finite set of points there are a finite number of distinct possible
coverings of those points, where we call two coverings distinct if there exist
a set of points covered by one disc in one of the coverings but covered by
two or more in the other. Coverings that are not distinct are equivalent. We

will occasionally work with the equivalence classes of theses coverings.
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We now define a covering of the box B, which is based upon A but is
independent of the points outside B, . Given a point configuration, =, in
B, there is a finite set of equivalent classes of coverings of these points. Let
Sr be the subset of equivalence classes which occur with positive probability
if we use A to cover 7 U X|lBﬁ€’ where X|/Bﬁe is a Poisson process on By
independent of m and X . In each equivalence class all coverings use the same
number of discs so we can choose an equivalence class from S, in which
the number of discs used is minimal, according to some deterministic rule.
Choose a covering from this class, according to some other deterministic rule.
This is the covering we use to cover B, . Note that this is independent of
the actual point process outside B,, .. The expected number of discs required

to cover the points in B, under this algorithm can be at most that under

A.

We now divide up the plane into squares of size n., and cover each square
independently using the same algorithm in each as we use on B,,.. For those
squares for which this requires less than or equal to n?(§°P + ¢/2) discs, we
use this covering. In the other squares we cover optimally, which means that
we have a density of at most (1 + ¢/2)/r? on these squares.

We have created an algorithm that covers each square of size n. indepen-
dently, and which therefore cannot have a density less than §,,,. However, the
density of the covering is at most (1 —v) (8% +¢/2)+v(14¢/2)/r? < §%'+¢,

and we have a contradiction. O

Next, we prove a proposition that extends the previous theorem and will

be useful later.

Proposition 6.2 Let &, be the density of discs under an n-square algo-
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rithm. Then

lim &, = §" .
n—oo

Proof of Proposition 6.2 We know that §°?! = inf,, §,,, and that §,n? is the
expected number of discs needed to cover an n-square. For the sake of con-
tradiction suppose that there exist ¢ > 0 and a sequence {t1,t2,...},lim; t; =
oo such that &, > 8°Pt + ¢ for all i. However we can choose « so that
8o < 6°P'+¢/3. We can also choose i so large that (1 - [%‘JZ (%)2) A< €/3.
The reason we need this will become clear shortly.

We then cover the square By, as follows. We first divide as much of the
square as possible into squares of size a. FEach of these we cover optimally.
We have an area of (t7 — o* L%JQ) left, and each of the points in this area

we cover with one disc. This gives us a covering with expected density,

) (- @) )rsomvomeon

However, the minimal expected density for any algorithm covering the box

By, 8, > 0°P' + ¢, so we have a contradiction. ]

Note that it is still not clear a priori that an optimal algorithm should
exist. The existence of an optimal density, defined as the infimum over all
attainable densities, does not have to be attainable itself. However, we have

the following theorem:
Theorem 6.3 There exists an optimal algorithm.

We give first the algorithm that we claim is optimal, and then prove that

this is so in a number of steps.

The algorithm
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The basic idea is to recursively find coverings of points in boxes, which are
part of optimal coverings of points in larger boxes, incrementally covering
the whole plane. Consider the boxes B,,n € N. In each box there is a finite
number of distinct possible optimal coverings of the points in that box, and
from now on we work with the equivalence classes of these coverings.

Let A, be an optimal covering of B,, chosen according to some rule, and
let A,|m be the covering of the points of B, induced by A,, by which we
mean the covering consisting of all discs of A,, that cover at least one point of
B,,,. Take By and consider the sequence of coverings A, |1, n € N. There are
only finitely many equivalent coverings of By, and at least one of these must
appear infinitely many times in A,|;,n € N. Choose such an equivalence
class and cover Bj using a covering from this class. Let /1 C N be the infinite
set of indices, such that A,|;,n € Iy is in the chosen equivalence class. Let
J1 be the smallest element of this set that is larger than 1.

We can repeat this exercise to find a covering of By, . We consider the
sequence of equivalence classes of coverings A,|z,n € I;. Again this set
is finite, so we can find an infinite set Iy C I, such that all the coverings
Anln,n € Iy are in the same equivalence class. We fix a covering for By,
from this class, which is necessarily consistent with the covering we have
already chosen for By. Let .J; be the smallest element of [, that is larger
than Jy.

We repeat this procedure in the natural way. Every time we fix a covering
of a box corresponding to the lowest element of some index set, and take
a new index set which is an infinite subset of the previous one. We find in

this way a covering of the whole plane.

It is not obvious that this covering should be optimal. We have a se-
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quence of boxes, {By, Bj,, B1,, ...} which contain coverings that are parts

of optimal coverings of larger boxes, but there is no a priori guarantee that

number ozf2dlscs N Bi wil] be §oPt

. To show that it really

the limit lim;_ o
is optimal we need a few definitions and a lemma.

For a bounded subset of the plane, V, let V be the set {z : Jy €
V such that |z — y| < 2r}. Let Ny be the (random) number of discs in
an optimal covering of the points in V. If W D V is another such subset
then, given an optimal covering algorithm of W, let Ny |y be the number

of discs in the covering of W that also cover points in V.

Lemma 6.4 Let A and B be bounded subsets of the plane such that B D
A. Fiz optimal covering algorithms for A and B. Then for every point

configuration Ny < N ;.

Proof of Lemma 6.4 Notice first that we can find a covering of B by
covering all the points in A optimally and then use an optimal covering of

B to cover the points in B/A. This gives us:
Np < NA+NB|B/A'

Secondly, notice that any point in B/%Nl is at least 2r from any point in
A. This implies that each disc used in an optimal covering of B can cover

points in only one of these sets. Thus,
Npla+ NBlg/4 < Nb.

Combining these inequalities gives us the result. m

Let us take a box, By, as A in the lemma, and By, as B, where By, C
Bj,. Then the lemma says that the number of discs covering points in By

under an optimal covering of Bj, is at most the number of discs covering
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points in Byyy, under an optimal covering of this area. We note that this
last quantity is at most the optimal number of discs covering B; plus the

number of points in Biyg,/By; (call this number P;). Hence,
NBJ|B75 < NBt+2r < NBt + B

Let My be the number of discs in the covering that we claim is optimal
that cover points in B;. Note that M; = NB]|Bt for all 7 > t+2r. Therefore

we can write:
Np, < M, < NBC‘}‘Pt-
12— 2 — t2

Notice that % goes to 0 as ¢ goes a.s. to infinity, as follows from, for example,
Chebyshev’s inequality.

It follows that to prove Theorem 6.3 it is enough to show:

Lemma 6.5

Proof of Lemma 6.5 We use a continuous sub-additive ergodic theorem.
See Akcoglu and Krengel (1981), in particular Theorem 2.8, for more details.

L.et Nr be the minimum number of discs required to cover all the points
in the rectangle R, and suppose we have two disjoint rectangles, Ry and R,.
Then we note that:

NRg,ur, < Nr, + NR,.

It then follows that

exists and is a constant, a.s. Proposition 6.2 together with the fact that
Np,/t*,t > t' is bounded above, for any ¢ > 0, gives by dominated conver-

gence that this limit is 4. O
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7 Open Problems

We would like to mention a number of open problems:

e Lor which classes of algorithms does there exist a critical density? By
this we mean a a critical value A., such that percolation occurs for

A > A, and does not occur for A < A..

e lLor which classes of algorithms is the infinite cluster unique? In other

words, when do we have either 0 or 1 infinite cluster, a.s.?

e We have shown in Theorem 4.4 that if we have a stationary algorithm
with a finite horizon and a bounded density of discs then we must have
percolation for A high enough. We have also shown in Theorem 4.6 that
we can have a shift invariant covering algorithm with an unbounded
density of discs and no finite horizon that does not percolate, even for
high values of A. Do we have percolation for A high enough for a finite
horizon algorithm with an unbounded density of discs? Do we have
percolation for A high enough if we have a bounded density of discs

but no finite horizon?
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