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Abstract

In a previous paper it was shown how to associate with a Lagrangian submanifold
satisfying Chen’s equality in 3-dimensional complex projective space, a minimal sur-
face in the 5-sphere with ellipse of curvature is a circle. In this paper we focus on
the reverse construction.

1 Introduction

It was proved in [9] that at each point p of a totally real submanifold M" of a holomorphic
space form M (4c¢) of constant holomorphic sectional curvature 4¢ we have

n*(n —2)

) < 50,

H?(p) + %(n+ 1)(n — 2)e, (1)
where H denotes the length of the mean curvature vector and das is the Riemannian
invariant introduced by Chen in [7], defined by

Sm(p) = 7(p) — (inf K)(p).

Here
(inf K)(p) = inf {[((Tr) | 7 is a 2-dimensional subspace of TpM},

where K () is the sectional curvature of 7, and 7(p) = Zz’<j K (e; A €j) denotes the scalar
curvature defined in terms of an orthonormal basis {eq,... ,e,} of the tangent space T, M.

Then M™ is said to satisfy Chen’s equality if equality is attained in (1) for each p € M.
In the case where n = 3 and the surrounding space is C? this corresponds to one of the
classes of Lagrangian submanifolds studied by Bryant in [6].
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In a previous paper [3] we gave a local construction which associated to a Lagrangian
submanifold satisfing Chen’s equality but having no totally geodesic points in complex
projective space CP?(4), a minimal surface in S®(1) with ellipse of curvature a circle. In
this paper, we focus on the reverse construction.

In Section 2 we consider the case in which a minimal surface with ellipse of curvature a
circle is contained in a totally geodesic S*(1) of S°(1). The immersion is then superminimal
[5], and our construction in this case is based on the well known correspondence [5] between
superminimal surfaces in S*(1) and horizontal holomorphic curves in CP3(4).

In Section 3, which is the main part of the paper, we consider the case of a linearly full
minimal surface in S°(1) whose ellipse of curvature is a circle. Here we use the theory of
harmonic sequences to show how to construct locally a submanifold M? of SO(6) whose
Maurer-Cartan equations coincide with equations (9) to (14) of Section 4 of [3]. Then, since
SU(4) is a double cover of SO(6), we obtain a local lift into SU(4) for which projection
onto the first column defines a Lagrangian immersion of M? into CP?(4) satisfying Chen’s
equality. It will be apparent that the constructions described in this paper provide a local
inverse of the construction described in [3].

Much of the early work in connection with this paper was carried out in collaboration
with our late, and very much missed, colleague Dr L. M. Woodward of the University of
Durham. We are pleased to acknowledge his contribution.

2 Superminimal surfaces in S5*(1)

In this section we assume that N? is an oriented surface superminimally immersed in
S%(1). The orientation, together with the metric induced on N?, enables us to give N? the
structure of a Riemann surface in such a way that the immersion is conformal.

We first recall the following result of Bryant [5] relating superminimal immersions of
N? into S*(1) to holomorphic horizontal immersions of N* into CP?(4).

Theorem 1 (Bryant) Let T : CP*(4) — S*(1) be the twistor fibration and let ¢ : N* —
S4(1) be a superminimal immersion of a simply connected Riemann surface. Then there
exists a unique horizontal holomorphic tmmersion ng : N2 — CP?(4) such that Togg = +¢.

Conversely qu; : N* — CP?(4) is a horizontal holomorphic curve, then T o 95 i N? —
S4(1) is a (possibly branched) superminimal immersion.

Now, let ¢ : N2 — CP? (4) be a horizontal holomorphic curve defined on a simply
connected Riemann surface N* and let p; : S7(1) — CP?(4) denote the Hopf fibration
determined by the complex structure on R® = C* given by multiplication by 7. Tt is clear
that the natural immersion v of the pullback bundle M* = (5*(57(1)), defined so that the
following diagram commutes, is invariant (and hence minimal) in the Sasakian space form
(S7(1),1,< .,.>). Here, I is the Sasakian structure determined on S7(1) by multiplication



by 7 on R® = C*.

M? s ST(1) C CF =

! l

Nt —%  CPP(4),

In fact, we may use multiplication by 7, 7, £ on R® = H? to define corresponding Hopf
fibrations of S7(1) over CP?(4), and we let p; S7(1) — CP? be the one determined by
multiplication by 7. Since ¢ is horizontal and holomorphic, the immersion ¢ is horizontal
with respect to p; [1] and so we may apply the following special case of a theorem of

Reckziegel [11].

Theorem 2 (Reckziegel) Let v : M?® — S7(1) C C* be an immersion which is horizontal
with respect to the Hopf fibration p; : S7(1) — CP3. Then pj¢p : M® — CP3(4) is a
Lagrangian immersion which is minimal if and only if ¥ is minimal.

Conversely, let ¢ : M® — CP? (4) be a Lagrangian immersion of a connected, simply
connected manifold M>. Then there exists a map ¢ : M> — S7(1), which is horizontal
with respect to pj, such that pjy = U. Moreover, any two such lifts 1, and ¢y are related
by 1y = €4y where 0 is a constant.

Hence, combining the above two theorems, we see that starting from a superminimal
immersion ¢ : N* — S%(1), we obtain a minimal Lagrangian immersion p;¢» : M® —
CP?(4). Note that 79 is tangential to the immersion ¢ of M? into S7(1), and if D denotes
the standard flat connection on R® then for X tangential to M,

Dy (i) = iDxe) = iX.

Hence if & denotes the second fundamental form of ¢ in S7(1), we see that A(., 1)) = 0. Tt
then follows from [9] and [10] that p;i» : M? — CP?(4) satisfies Chen’s equality. Moreover,
it is clear that if we apply the construction of [3] to p;i we recover the immersion ¢.

3 Linearly full minimal surfaces in S°(1)

Let f: N? — S°(1) be a minimal immersion of an oriented surface. As in Section 2, we
use the orientation and induced metric to give N? the structure of a Riemann surface in
such a way that f is a conformal immersion. If I denotes the second fundamental form
of fin S® we recall that the image under I1 of the unit circle in a tangent space of N? is
a (possibly degenerate) ellipse called the ellipse of curvature.

From now on, we assume that f: N* — S°(1) is a linearly full minimal immersion of
an oriented surface with ellipse of curvature a non-degenerate circle at each point. We now
show how to locally associate to such an immersion a unitary moving frame. The approach
we follow here is based on the theory of harmonic sequences, which we describe briefly
below for the special case of minimal surfaces in S°(1) with ellipse of curvature a circle.



The reader is referred to [4] for more details in the general situation of minimal surfaces
in S™(1) or CP™ (4).

Let z = o + 4y be a local complex coordinate on N2, and denote 38—2 by 0 and % by 0.
We introduce Cé-valued functions fo, f1, f2 by

fo=1, (2)
h =91, (3)
fo=11(9,0), (4)

where I now denotes the complex bilinear extension of the second fundamental form of
fin S3(1). It ( , ) is the complex bilinear extension of the standard inner product on
RS, it follows that (fo, fi) = 0 while conformality of f is equivalent to

(f1. /1) = 0. (5)

Thus fo, fi, fi are mutually unitarily orthogonal and f; is the component of df; unitarily
orthogonal to fo, f1, f1.

If f, = a —ib where a,b are R7 valued functions then, using minimality of f,
I'1(cos @;—T + sin ¢%, Cos qb% + sin qbaa—y) = 2(a cos 2¢ + bsin 2¢),
so that the ellipse of curvature is a circle if and only if

f27é0 and (f27f2>:0a (6>

so that in this case f, and f, are unitarily orthogonal. Hence, fo, f1, fi, f2, f2 are mutually
unitarily orthogonal non-zero vectors.

Finally, we define f; to be the component of df; which is unitarily orthogonal to
{fo, f1, fi, fas fo}. As the immersion is contained in S°(1), we deduce that f; and f; are
linearly dependent.

By Takahashi’s Lemma, the minimality condition for f may be written as 99fy = Afy
for some A € R, and an inductive argument readily shows that if we put w, = log |f,|, p=
1,2,3, then

dfo = fr, (7)

dfi = fa+ 20w fr, (8)

fs = f3+ 20w, fy, (9)
while

dfy = =" [, (10)

5f2 = —62(w2_w1)f1, (]])

Ofy = =2l f), (12)



So far, everything is valid for an arbitrary choice of local complex coordinate but we now
pick a special coordinate to facilitate calculations. It follows from (12) that (5f3, f3) =0,
so that (f3, f3)dz® is a holomorphic differential on N?. Hence, away from the isolated
points at which f3 = 0, we can choose a local complex coordinate z for which

(f3, [3) =1, (13)
so that
f3 1sreal and ws = 0. (14)

We now introduce a unitary moving frame {FO, ..., F5} by setting Fyy = fo, Fi1 = e™" f1,
Fy=e"2f) F3=f3 F_1 = —F, and F_, = F, (the minus sign in the definition of F_; is
there for reasons connected with the theory of harmonic sequences, and makes no essential
difference in the present paper). A straightforward computation shows that

dF_y = 7" dzF_1 + (—0wydz + 5w2d2)F_2 + e dz F;s,
dF3 == —€_w2d§F2 — G_deZF_Q.

dFy =e"'dzF) — e"'dz F_y, (15)
dFy = —e""dZFy + (Owidz — QwdZ)Fy + €~ dz Fy, (16)
dF_; = e"dzFy + (—0wdz + 5w1d2)F_1 — T dZF_,, (17)
dFy = =71 dz F) 4 (Qwadz — QwadZ) Fy + e dz Fs, (18)
(19)
(20)

We now consider the manifold W of unitary frames { Vg, V1, V_1, V2, V_2, V3} of the form
{Vba Via V—la ‘/'2’ V—Q’ Vz’)} = {FO’ eian e_iaF—la 6iﬁF2) 6_ZﬂF—27 F3}7 a, ﬁ € R.

Thus, we may regard W as the bundle of strongly adapted unitary frames over N?, in
that Vi (resp. V3) spans the (1,0) component of the complexified tangent space (resp. first
normal space) of N2. If we use z = x + iy, @ and (3 as local coordinates on W, it follows
easily from (15)-(20) that
dVy = e"17%dzV; — et dz Vo, (
dVy = —e1 oz V) + + (Owrdz — Ow,dz + ida)Vy + "2 7"~ gt szQ, (
dV_, = 172V, + (—O0widz + Ow,dz — ida)V_y — e*?~ witif=a) 4=y 2, (
dV, = —ew2—wi—ie=Bgzy. 4 + (Owydz — Owydz + idB)Vo + e~ 2BV, (
dV_y = 2™ MRV | 4 (—0wydz + dwydz — idB)V_y + e~ P dz Vi, (
dVy = —e™ 270 dzV, — e PP ALV, (

We now wish to compare the above formulae to those obtained in Section 4 of [3]. We
recall that there, with a Lagrangian submanifold M*® of CP? satisfying Chen’s equality
but having no totally geodesic points, we locally associated a smooth map {Uy,...,Us} :

M? — S0O(6) such that



(iv) Us is the remaining orthogonal vector such that det(Uy,...,Us) = 1.

We now write

U() = Uo,
Ul = %(U1 - Z'€1U2)7
(7—1 = _%(Ul +16:Us),

UQ = %(U's - Z.€2U4)7
U_, = %(U3+i62U4)a
UB U57

where €1, €, = +1 will be chosen later. If we now rewrite equations (9)-(1

4) of Section 4

of [3] with respect to this frame, we find that for suitably chosen functions a, b, ¢, d and

orthonormal basis {6, 0,, 03} of local 1-forms on M we have

dUo = 51001 + 5—100—17

(27)

AUy = —bioUy + i€ (cly + dby + (1 — 16)05) Ty + by Uy + b_yy U_s, (28)
dU_y = —b_1oUy — ier(cfy + dfy — (1 — 20)05)0U_1 + byy Uy + b_gy U_s, (29)
AUy = —byy Uy — by Uy + iex(chy + dby — (1 4 %5)93>ﬁ2 + 532[73, (30)
dU_y = —b_g Uy —b_y,U_y — iex(chy + dby — (1 4 %b>93)(~]—2 + 53—2(73, (31)
(32)

dUs = —b3yUy — by_,U_s,
where there exists a positive function A such that

bio = —b_19 = 7( aby + (1 +b)0
by = —b_g_y = 5/\((1 —€162)01 + 1(e1 — €2)0,),
bogr = —by_y = %)\((1 + e162)01 + i(e1 + €2)82),

bsy = by_y = %(aﬂl + (1 =0)8) 41 'ﬁﬁ((l — b)f; — aby).

m&l

2) — i<=((1 + b)8; + aby),

We now find a hypersurface M? of the manifold W of strongly adapted unitary frames
over N* described above, together with linearly independent local 1-forms 6,, 8,, 63, and

local functions A > 0, a, b, ¢, d defined on MS, such that the systems (21)-(26) and (27)-(32)

of differential equations coincide.



So, assume that as, (respectively by) are the components of dVj (respectively dUk) in
the direction of V; (respectively U;). As a_y; = 0, it follows that we need b_z; = 0 and

thus
€1€y9 = —1.
Next, we find that if we require that

521 = d21,

bio + bsy = ar0 + asa,
then we need that

Ay + ieqy) =2 tie=Fg
\/5(92 —1e16) =(ew1_m + e_wz'Hﬁ)dz.

Hence, we see that the positive function A must satisfy
/\(ewl—ia + e—w2+iﬁ) + ﬂielewg—w1+i(a—ﬁ) -0
which, as A is real, implies that

)\(ew1+ia + e—wg—iﬁ> _ \/§Z'€1€w2_wl_i(a_ﬁ) = 0.

(33)

It follows from the two previous equations that the following conditions need to be satisfied:

0 7£ (ewl—ia + e—w2+iﬁ)’

. ewg—w1+i(a—ﬁ)
A= —\/5261 (ewl—ia T e—w2+iﬁ)’

e"? cos(2a — B) + €7 cos(20 — a) = 0,

where ¢; = %1 is determined by the requirement that A be positive.

(36)
(37)

(38)

Lemma 1 The conditions (36) and (38) determine a hypersurface M? of W, which may

be parametrized by z and t = o + 3.

Proof: We first introduce new coordinates s and t on W by

s:a—ﬁ,
t=a+ .

Then (38) becomes
e'? cos(%t + %s) 4+ e~ cos(%t — %s) =0,

which we can rewrite as

(e"? +e7"1) cos(%t) cos(ﬁs) = (e —e™™) sin(%t) sin(

2

3
2

s).



It then follows that
33) — tanls (39)

To determine s explicitly in terms of ¢ (up to an initial condition), we differentiate (39)
with respect to ¢ and find that

62(w1+w2) -1

s'(t) = — (40)

L=

e2(witwz) 4 4 Qelwitwz) cost’

The denominator of the right hand side vanishes only if w; + wy; = 0 and ¢ = (Qk + ])71',
k € Z, which is excluded by (36). The function s(t) is now determined (up to a addition of
an integer multiple of %’r) by the condition that cos(%s) = 0 when { is an integer multiple

of 2m. |

We now compute the 1-forms 6y, 6,, 85 and the function A on M3, As ) is real valued,
we see using (37) that

A=)

o 9e2(w2 —wy)
- (ewl —zu+e—w2+zﬁ)(ew1+za+e—w2 —zﬁ)

9e2(wp —wy)
T U 1e=292 12671~ 2 cos t
o e3(wy—wy)
~ cosh(w; +wy)+cost”

Hence, as A is positive, it follows that

\ = e3(wp —wy) /2 . 41
\/cosh(w1+w2)+cost ( )
From (35), we obtain
1. 1.
\/5(92 i i6191> _ (euz1—§z(s+t) + 6_“/2+51(t_s))d27 (42)

which determines the 1-forms #; and 6,. The 1-form 63 is determined by the condition that
ay1 + agg = by + bao.
Indeed, taking into (33) into account, it follows that

O3 = —icr(d(wy + wy)dz — A(wy + w,)dz) + Jerdl. (43)

We may proceed in two different ways in order to obtain a Lagrangian immersion of M3
into CP3(4). The first possibility is to use the following existence and uniqueness result of

10].

Theorem 3 Let (M",(.,.)) be an n-dimensional simply connected Riemannian manifold.
Let o be a symmelric bilinear vector-valued form on M” satisfying

8



(i) (o(X,Y),Z) is totally symmelric,
(it) (Vo )(X,Y,Z)=Vxo(Y,Z) —o(VxY,Z) — o(Y,VxZ) is totally symmetric,
(iit) RX,Y)Z =Y, Z) X — (X, Z)Y +0(c(Y,Z),X) —o(c(X, Z),Y).

Then there exists a Lagrangian isometric immersion z : (M",(.,.)) — CP™(4) such thal
the second fundamental form h satisfies h(X,Y) = Jo(X,Y). Moreover, z is determined
uniquely modulo holomorphic isometries of CP”(4).

The above result may be applied in the following way. We start with the minimal surface
N? equipped with the special local complex coordinate z chosen so that (13) holds. We
consider the 3-dimensional manifold M* of W constructed in Lemma 1, but excluding
those points where wq(z) + wz(z) = 0 and cost = —1. We define 1-forms 6y, 65 and 63 on
M3 using (42) and (43), where ¢; is determined by the two equations (37) and (41) for A
and the initial condition chosen for s. We denote the dual vector fields corresponding to
these 1-forms by F;, E3 and F3 and define a metric on M3 by requiring that F;, Ey and
F5 form an orthonormal moving frame on M3. We define a positive function A on M3 by
(41) and introduce a symmetric bilinear vector valued form o on M3 by

O'(El,El) :)\El, U(E17E3>
U<E17 E2) = _)\E27 U(EQa ES)
O'(EQ, Eg) = —)\El, 0'(E137 E3)

0,
0,
0.

It is then straighforward to compute that all the conditions of Theorem 3 are satisfied and
hence there exists a Lagrangian immersion with the desired properties of M? into CP? (4).

The second way to proceed is to continue with the comparison of the systems (21)-(26)
and (27)-(32) in order to determine the functions a, b, ¢ and d explicitly. The requirement
that

(10 — a3 = blO - 6327
necessitates that

(€w1—ia _ e_w2+iﬁ>d2 = —\/§<(1 + iﬁ]b)(a] —|— i6102>
= —iflﬂ(HQ - 7:6101)(& + ielb>
1 . 1 R
= —iél(a + ielb)(ewl_T(SH) 4 e—u;2+§z(t—s))dz7

where we have used (42) for the final equality. Hence,

( wy —%i(t-}-s) _6—1112+%i(t—s))
1

(ew1—51(3+t) —w2+21(t—s))

+e
. ew1+w2_eit)
= e T )



which determines a and b. Specifically, we have that

ew1tw2 gint¢
witwe) 41 42e%1 %2 cost
b o 1_62(1111 +'1A}2)
- e2(witwa) 11 42ew1Hw2 cogt”

a=2¢ =

Finally, in order to obtain ¢ and d, we consider the condition that

ajp — a2 = b11 - 522-
This yields

8(w1 - ’wg)dZ - 8(w1 - wg)dE + ZdS = 261(691 + dgg — %bgg)

or, equivalently,

= _ 1- e2(wr+wz) _1
a(wl - wQ)dZ - a(wl - wQ)dZ - 5262(w1+w2)+1+26(w1+u}2) Costdt
— 1 1—e2(w1twy)
- 261(601 + db> + 3 (w1 twa) w1 twa cost03)'

Using (43) the above equation gives

O(w1 — ws)dz — O(wy — wy)dz
= 2¢1(cly + dby — %iq o L—g?(v1 1 2) (0(wy 4 wy)dz — 5(w1 + wy)dz)).

witwy) 11 42eW1HW2 cost

However, it follows from (35) that dz and dz may be expressed as linear combinations
of 61 and 6,, so that ¢ and d are uniquely determined by the above equation. It is now
straightforward to check that the systems (21)-(26) and (27)-(32) coincide. Therefore,
using the double cover of SO(6) by SU(4) as described in Section 4 of [3], we obtain a
Lagrangian immersion satisfying Chen’s equality.

Again, it is clear that if we apply the construction of [3] to this Lagrangian immersion,
we obtain the linearly full minimal immersion f : N — S°(1) from which we started.
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