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Abstract. We discuss two variants of a two-sided Jacobi–Davidson method, which have asymp-
totically cubic convergence for nonnormal matrices and aim to find both right and left eigenvectors.
These methods can be seen as Jacobi–Davidson analogs of Ostrowski’s two-sided Rayleigh Quotient
Iteration. Some relations between (exact and inexact) two-sided Jacobi–Davidson and (exact and
inexact) two-sided Rayleigh Quotient Iteration are given, together with convergence rates.

Furthermore, we introduce an alternating Jacobi–Davidson process, that can be seen as the
Jacobi–Davidson analog of Parlett’s alternating Rayleigh Quotient Iteration. The methods are ex-
tended to the generalized and polynomial eigenproblem. Advantages of the methods are illustrated
by numerical examples.
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1. Introduction. We are interested in the computation of one or more eigen-
values and the corresponding left and right eigenvectors of the (possibly nonnormal)
matrix A. It is well-known that when Rayleigh Quotient Iteration (RQI) converges
to a simple eigenvalue of a normal matrix, the asymptotic convergence rate is cubic
(see for example [5, p. 683], [6, p. 77]). For a nonnormal eigenvalue of a nonnormal
matrix, RQI has locally quadratic convergence at best [5, p. 688].

Ostrowski’s two-sided RQI [3] works with the two-sided (or generalized) Rayleigh
Quotient

θ(u, v) :=
v∗Au

v∗u
,

where u and v are an approximate right and left eigenvector. It can be shown that
when two-sided RQI converges to a simple eigenvalue, the local convergence is cubic
(see [5, p. 689] and §2). In (two-sided) RQI, one has to solve linear systems of the
form (A − θI)ũ = u. For large sparse matrices, these computations, and therefore
(two-sided) RQI as a whole, may be less attractive.

Jacobi–Davidson (JD) [8] is an efficient method to compute a few eigenvalues and
corresponding (right) eigenvectors of A. The essence of JD is its correction equation,
where the shifted operator A − θI is restricted to the subspace orthogonal to the
current approximation to an eigenvector. When we solve this equation exactly, then
JD can be considered as accelerated RQI (see [8] and §2).

Because of this, it is of interest to investigate Jacobi–Davidson analogs of two-
sided RQI, leading to an acceleration of two-sided RQI. The idea of a two-sided
Jacobi–Davidson is already, though somewhat hidden, present in [7], in particular
Remark 3.5 and Section 5.1.3. We will see that two-sided JD has two search spaces,
one for the right and one for the left eigenvector. When the correction equations are
solved exactly, the method has locally cubic convergence.
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In practice, it is neither necessary nor advisable to solve the correction equation in
the Jacobi–Davidson method accurately. Instead, we may solve it only approximately,
for instance to a certain precision. This principle can also be applied to the two-sided
processes, leading to inexact two-sided JD and inexact two-sided RQI. At the price
of slower convergence, the methods thus become computationally more attractive.
An attempt to merge the two search spaces of two-sided JD gives rise to alternating
Jacobi–Davidson, which can be viewed as an acceleration of Parlett’s alternating
RQI [5].

It is not quite clear yet for which class of matrices the new methods brings an ad-
vantage, although our experiments indicate that it might be attractive for moderately
nonnormal matrices. The methods are attractive in applications where one wishes to
have estimates for the condition number of an eigenvalue during the iteration process
(for instance for deciding for further refinement, or for pseudospectra computations).

This paper has been organized as follows. Section 2 introduces some notations and
definitions and gives a presentation of Jacobi–Davidson. In Section 3 we review Os-
trowski’s two-sided RQI, and in Section 4 we consider two flavors of two-sided Jacobi–
Davidson. Inexact variants of these two-sided methods, some relations between them,
as well as convergence rates, can be found in Section 5. Section 6 proposes alternating
Jacobi–Davidson, and Section 7 translates the two-sided methods to the generalized
and polynomial eigenvalue problem. In Section 8 we discuss various aspects of the
methods. Numerical experiments are presented in Section 9, and a discussion and
some conclusions can be found in Section 10.

2. Jacobi–Davidson and Rayleigh Quotient Iteration. Let us first intro-
duce some notations. Throughout the paper, λ denotes a simple eigenvalue of the
n×n-matrix A, n > 1, with x and y as its normalized right and left eigenvector. The
(finite) condition of λ is equal to κ(λ) := |y∗x|−1. Approximations to the eigentriple
are indicated by θ for the eigenvalue and u, v for the right and left eigenvector. We
assume that θ is not equal to an eigenvalue of A, which is equivalent to the assumption
that A− θI is invertible. By ‖ · ‖ we denote the Euclidean norm. To avoid confusion,
we remark that throughout the paper, the word “right” is used as the opposite of
“left” (e.g., right eigenvector versus left eigenvector), and does not have the meaning
of “correct”.

Since x 6⊥ y, (A − λI)|y⊥ : y⊥ → y⊥ is invertible; in particular it has a finite
condition number, denoted by κ((A−λI)|y⊥ ). Later in the paper, we use the following
(related) definition.

Definition 2.1. (Cf. [12, p. 145]) We define the effective condition number of a
nonzero matrix C as

κe(C) := ‖C‖ ‖C+‖ = σmax / min
σj 6=0

σj ,

where C+ is the pseudo-inverse of C, and the σs are the singular values of C.

Next, we give a presentation of ‘standard’ JD, such that two-sided JD will follow as
a natural generalization in Section 4. The Jacobi–Davidson method [8] consists of
two ingredients. The first part, the well-known Rayleigh-Ritz approach, deals with
the question: having a k-dimensional search space U (where one should think of the
typical situation k � n), how do we get an approximate eigenpair (θ, u), where u ∈ U?
Let the columns of U form an orthonormal basis for U , and define the residual r by

r := Au − θu.
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Imposing the Ritz-Galerkin condition on the residual

r = Au − θu ⊥ U ,

and writing u = Uc (where c is a k-dimensional vector), we find that (θ, c) should be
a solution of the low dimensional projected eigenproblem

U∗AUc = θc,

so a Ritz pair (θ, u) = (θ, Uc) is a backtransformed eigenpair of the projected matrix
U∗AU . In particular, if (θ, u) is a Ritz pair, we have

θ = θ(u) :=
u∗Au

u∗u
and r ⊥ u,

that is, θ is the Rayleigh Quotient of u and the corresponding residual is orthogonal
to u.

The second ingredient of JD gives an answer to the question: having an approxi-
mate eigenpair (θ, u) to (λ, x), how do we expand the search space U to get an even
better approximation? For this, Jacobi–Davidson looks for an orthogonal correction
s ⊥ u such that

A(u + s) = λ(u + s),

i.e., such that u+ s is a multiple of the eigenvector x. This equation can be rewritten
to obtain

(A − λI)s = −(A − θI)u + (λ − θ)u = −r + (λ − θ)u.

During the process, λ and hence also (λ−θ)u are unknown. Therefore it is interesting
to consider the projection of this equation that maps u to 0 and keeps r fixed. Because
r ⊥ u, this projection is I − uu∗, the orthogonal projection onto the orthogonal
complement of u. The result of projecting the previous equation is

(I − uu∗)(A − λI)s = −r.

In this equation JD replaces λ by θ, this may be considered as ‘throwing away second
order terms’ (both λ − θ and s will be asymptotically small). This suggests that JD
is in fact a Newton method, which is true indeed [9]. Using

(I − uu∗)s = s,

we derive the JD correction equation:

(2.1) (I − uu∗)(A − θI)(I − uu∗)s = −r where s ⊥ u,

from which we see that the shifted operator A − θI is restricted to the orthogonal
complement of u. In practice, (2.1) is often solved only approximately (or inexactly),
for example by an iterative method, e.g., a few steps of (preconditioned) GMRES.
The approximate solution is used to expand the search space U , this is called subspace
acceleration. JD can therefore be viewed as an accelerated inexact Newton method for
the eigenvalue problem [9].

However, when we solve (2.1) exactly, then we find (see [8])

s = − (A − θI)
−1

r + α (A − θI)
−1

u = −u + α (A − θI)
−1

u,
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where α =
(
u∗ (A − θI)

−1
u
)−1

is such that s ⊥ u. JD uses s to expand the search

space U . Since already u ∈ U , we get the same subspace expansion using s̃ :=
(A − θI)

−1
u. Here we recognize a step of RQI, and we conclude that exact JD (i.e.

JD where we solve the correction equation exactly) can also be seen as accelerated
RQI.

In RQI, when the approximations (θk, uk) converge, they converge asymptotically
cubically for normal matrices:

Theorem 2.2 (Constant of cubic convergence of RQI). If A is normal and uk → x
as k → ∞, then

lim
k→∞

‖uk+1 − x‖ / ‖uk − x‖3 ≤ 1.

Proof. See [5, p. 683].
The underlying reason for the cubic convergence is the following property of the

Rayleigh Quotient for normal matrices [5, p. 681]:

(2.2) θ(u) =
u∗Au

u∗u
is stationary ⇐⇒ u is an eigenvector of A.

(Recall that stationary means that all directional derivatives are zero.) We have
already seen that exact JD can be considered as accelerated RQI. Because JD uses
subspace acceleration, it will trivially converge in a finite number of steps. However,
in many practical situations an eigenpair will be well approximated long before the
dimension k of the search space is of the order of the size of the matrix. When
speaking of asymptotic convergence, following [14], we think of this situation. In
other words, by the word ‘asymptotically’ we mean the situation where we have a
(very) good approximation to an eigenpair, rather than the situation where k → ∞.
This justifies speaking of the asymptotic convergence of JD. When we neglect the
effect of the subspace acceleration on the asymptotic convergence, JD ‘inherits’ the
asymptotic convergence of RQI. This explains the statement that “Jacobi–Davidson
has asymptotically cubic convergence for normal matrices.”

3. Two-sided Rayleigh Quotient Iteration. If A is nonnormal, property
(2.2) is lost for nonnormal eigenvalues. This implies that RQI (and therefore also exact
JD) converges asymptotically at best (only) quadratically to a nonnormal eigenpair
(λ, x) [5, p. 688]. But instead of (2.2), we have the following property for the two-sided
Rayleigh Quotient θ(u, v):

(3.1) θ(u, v) :=
v∗Au

v∗u
is stationary ⇐⇒

u and v are right and left eigenvector
of A with eigenvalue θ and v∗u 6= 0.

Because of this property, one may expect cubic convergence for simple eigenvalues of
nonnormal matrices when we approximate the left and the right eigenvector simulta-
neously. For this reason Ostrowski proposes a two-sided Rayleigh Quotient Iteration
[3]. In every step of this method, we solve the two equations

(3.2) (A − θkI)uk+1 = uk and (A − θkI)∗vk+1 = vk.

This leads to Algorithm 3.1.
In [5, p. 689] it is shown that when this two-sided RQI converges to a simple

eigenvalue, it has locally cubic convergence. However, the following theorem states
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Pick initial vectors u1 and v1 with unit norm, such that v∗
1u1 6= 0

for k = 1, 2, . . .

1. Compute θk := θk(uk, vk) =
v∗

kAuk

v∗

k
uk

2. If A − θkI is singular, solve (A − θkI)x = 0 and (A∗ − θkI)y = 0, stop
3. Solve (A − θkI)uk+1 = uk and normalize uk+1

4. Solve (A∗ − θkI)vk+1 = vk and normalize vk+1

5. If v∗k+1uk+1 = 0 then method fails

Alg. 3.1: Two-sided Rayleigh Quotient Iteration [3].

that the speed of the cubic convergence might be significantly slower in the nonnormal
case:

Theorem 3.1 (Locally cubic convergence of two-sided RQI). Suppose that uk

and vk converge to x and y, respectively, as k → ∞. Then θk → λ, and we can write

(3.3) uk = αk(x + δkdk) and vk = βk(y + εkek),

where δk, εk ≥ 0, dk ⊥ y, ek ⊥ x, and uk, vk, x, y, dk, and ek all have unit norm. Then

δk+1 ≤ γδ2
kεk + h.o.t. and εk+1 ≤ γδkε2

k + h.o.t.,

where

γ = κ(λ)κ((A − λI)|y⊥),

and ‘h.o.t.’ stands for higher order terms in δk and εk (i.e., in the statement above
h.o.t. stands for terms of order O(δi

kεj
k), where i + j > 3).

Proof. This is a slight extension on a result in [5, p. 689], where Parlett shows
that (in our notation) there exist nonzero αk+1, βk+1 such that

uk+1 = αk+1(x + δk(λ − θk) (A − θkI)
−1

dk),
vk+1 = βk+1(y + εk(λ − θk)∗(A − θkI)−∗ek),

where

θk − λ = δkεk

e∗k(A − λI)dk

y∗x + δkεke∗kdk

.

Hence

(3.4) |λ − θk| = δkεkκ(λ)|e∗k(A − λI)dk | + h.o.t..

Since (A − λI)
−1

exists on y⊥, and (A − λI)−∗ exists on x⊥, we have for k → ∞

‖ (A − θkI)
−1

dk‖ ≤ ‖
(
(A − λI)|y⊥

)−1
‖ + h.o.t.,

‖(A − θkI)−∗ek‖ ≤ ‖((A − λI)|x⊥)−∗‖ + h.o.t..

We can conclude that

δk+1 ≤ δ2
kεkκ(λ)κ((A − λI)|y⊥) + h.o.t.,

εk+1 ≤ δkε2
kκ(λ)κ((A − λI)∗|x⊥) + h.o.t..
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The proof is completed by the observation

κ((A − λI)|y⊥) = κe

((
I − xy∗

y∗x

)
(A − λI)

(
I − xy∗

y∗x

))

= κe

((
I − yx∗

x∗y

)
(A − λI)∗

(
I − yx∗

x∗y

))

= κ((A − λI)∗|x⊥).

Comparing Theorems 2.2 and 3.1, one may observe two differences. First, The-
orem 2.2 can also be expressed in the angle ∠(uk, x) (see [6, Th. 4.7.1]), but in the
nonnormal case of Theorem 3.1 this is not obvious. Second, because of the possibly
large constant of Theorem 3.1, the cubic convergence may have less significance in
practice.

4. Two-sided Jacobi–Davidson. Inspired by two-sided RQI, we design a two-
sided Jacobi–Davidson method. We work with two search spaces, U for the right, and
V for the left eigenvector. Suppose that we have k-dimensional search spaces U and
V , and approximations u ∈ U and v ∈ V to the right and left eigenvectors, u 6⊥ v. We
now would like to take

(4.1) θ = θ(u, v) =
v∗Au

v∗u

as approximation to the eigenvalue. Note that (4.1) holds if and only if Au − θu ⊥ v
and A∗v − θv ⊥ u. This suggests to impose Petrov-Galerkin conditions on the right
residual ru and left residual rv to determine approximate eigenvectors u and v:

ru := Au − θu ⊥ V and rv := A∗v − θv ⊥ U .

Now write u = Uc and v = V d, where the columns of U and V form bases for U and V
(not necessarily orthogonal, see §§4.1 and 4.2), and c and d are k-dimensional vectors.
We see that the desired c and d are the right and left eigenvector corresponding to
the eigenvalue θ of the projected (generalized) eigensystem

(4.2) V ∗AUc = θ V ∗Uc and U∗A∗V d = θ U∗V d.

To expand the search spaces U and V , the two-sided JD method looks for corrections
s and t (not necessarily orthogonal to u and v, respectively, see §§4.1 and 4.2) such
that

{
A(u + s) = λ(u + s)

A∗(v + t) = λ(v + t).

For the right correction equation this means

(4.3) (A − λI)s = −ru + (λ − θ)u.

As in Section 2, we consider the projection of this equation that maps u to 0 and fixes
ru. In this situation ru ⊥ v, so the sought (oblique) projector is given by P = I− uv∗

v∗u
.

P is an approximation to the spectral projector, just as I − uu∗ is in the normal case
(see §2). The projection and the (second order) replacement of λ by θ yields:

(4.4)

(
I −

uv∗

v∗u

)
(A − θI)s = −ru.
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In a similar way we get for the left correction equation

(4.5)

(
I −

vu∗

u∗v

)
(A∗ − θI)t = −rv.

We now discuss two variants of the two-sided JD approach: one where the pair (U, V )
is bi-orthogonal, and one where both U and V have orthogonal columns.

4.1. The pair (U, V ) bi-orthogonal. For the first variant of two-sided JD, we
want the columns of U and V to be bi-orthogonal, that is, V ∗U should be a diagonal
matrix. This is a natural idea, because the right eigenvector corresponding to a
particular eigenvalue is orthogonal to the left eigenvector corresponding to a different
eigenvalue. This choice has the advantage that the projected eigenproblem (4.2) is
easily transformed into a standard eigenproblem. Since in this variant we look for
bi-orthogonal corrections s ⊥ v and t ⊥ u, the correction equations (4.4) and (4.5)
can be written as





(
I − uv∗

v∗u

)
(A − θI)

(
I − uv∗

v∗u

)
s = −ru (s ⊥ v)(

I − vu∗

u∗v

)
(A∗ − θI)

(
I − vu∗

u∗v

)
t = −rv (t ⊥ u).

The operator in the first equation is the conjugate transpose of the operator in the
second equation, so these equations may be solved simultaneously by Bi-Conjugate
Gradients (BiCG). Note that BiCG tries to solve two equations; but often only one
approximate solution is used, the other solution solves a shadow equation and has
no practical interest. In this situation we do use both approximate solutions from
BiCG; rv takes the role of the shadow residual. Of course, we can also deal with the
correction equations separately, for instance we may try to solve each of them by a
few steps of (preconditioned) GMRES (see the numerical experiments).

The resulting algorithm for the computation of the eigenvalue with the largest
magnitude is shown in Algorithm 4.2. If one is interested in other eigenvalues, one
should change the choice in step 4 of the algorithm accordingly (possibly using har-
monic Ritz values, see for instance [8]). Also recall that V ∗

k Uk is a diagonal matrix.
In step 2 of the algorithm, Bi-MGS stands for Bi-Modified Gram–Schmidt, used to
make Uk and Vk bi-orthogonal.

Note that if the algorithm terminates, we have in general found only one eigen-
vector, say the right eigenvector, to the prescribed tolerance. Often we will also have
a good approximation to the left eigenvector (see also the numerical experiments),
but this is not necessarily the case. In any case, it is not sensible to continue with the
algorithm, for we would then perform superfluous calculations for one of the eigenvec-
tors. If we want to have both eigenvectors accurately, then, at the end of Algorithm
4.2, it suffices to (reasonably accurately) solve t ⊥ v from the system

(4.6) (I − vv∗) (A − θI)∗ (I − vv∗) t = −rv ,

where v is the (often good) approximate left eigenvector from Algorithm 4.2. Solving
one such system will in general be enough, since θ is a very good approximation to
λ. Instead of (4.6), we may also solve a correction equation with oblique projections,
but we prefer (4.6) for stability reasons.
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Input: a device to compute Ax and A∗x or arbitrary x,
starting vectors u1 and v1 (v∗1u1 6= 0), and a tolerance ε.

Output: approximations (θ, u, v) to the largest eigenvalue of A and its

left and right eigenvector satisfying min{‖Au− θu‖, ‖A∗v − θv‖} ≤ ε.

1. s = u1, t = v1

for k = 1, 2, . . .
2. (Uk, Vk) = Bi-MGS (Uk−1, Vk−1, s, t)
3. Compute kth column of Wk = AUk

Compute kth row and column of Hk = V ∗
k Wk

4. Compute the ‘largest’ eigentriple (θ, c, d) of the pencil (V ∗
k AUk, V ∗

k Uk)

5. u = Ukc/‖Ukc‖, v = Vkd/‖Vkd‖, (θ = v∗Au
v∗u

)
6. ru = (A − θI)u = Wkc − θu

rv = (A∗ − θI)v
7. Stop if min{‖ru‖, ‖rv‖} ≤ ε (and compute second vector at will)
8. Solve (approximately) s ⊥ v, t ⊥ u from(

I − uv∗

v∗u

)
(A − θI)

(
I − uv∗

v∗u

)
s = −ru(

I − vu∗

u∗v

)
(A∗ − θI)

(
I − vu∗

u∗v

)
t = −rv

Alg. 4.2: The bi-orthogonal two-sided JD algorithm for the computation of the eigenvalue with
the largest magnitude.

4.2. Both U and V orthogonal. Another obvious idea is to keep the columns
of both U and V orthogonal. Because in this variant we look for updates s ⊥ u, t ⊥ v,
the two correction equations now take the form

(4.7)





(
I − uv∗

v∗u

)
(A − θI) (I − uu∗) s = −ru (s ⊥ u)(

I − vu∗

u∗v

)
(A∗ − θI) (I − vv∗) t = −rv (t ⊥ v).

This leads to Algorithm 4.3 for the computation of the eigenvalue with the largest
magnitude. In step 2 of the algorithm, MGS stands for Modified Gram–Schmidt,
used to make Uk and Vk orthogonal. A problem in this variant is that the opera-
tor in the first equation in (4.7) maps u⊥ onto v⊥, while the operator in the second
equation maps v⊥ onto u⊥. As also observed in [7, § 3.3], it is unnatural to re-
peat such an operator, so it seems unattractive to solve the equations in (4.7) by a
Krylov solver. However, we can fix this by working with preconditioners of the form(
I − au∗

u∗a

)
M−1

1

(
I − uv∗

v∗u

)
for the first equation (a 6⊥ u), which maps v⊥ back to u⊥,

and
(
I − bv∗

v∗b

)
M−1

2

(
I − vu∗

u∗v

)
for the second equation (b 6⊥ v), which maps u⊥ back

to v⊥. Let us consider the simplest case, M1 = M2 = I , for a moment. With a = u
and v = b we get

(4.8)

{
(I − uu∗) (A − θI) (I − uu∗) s = − (I − uu∗) ru

(I − vv∗) (A∗ − θI) (I − vv∗) t = − (I − vv∗) rv .

Here we have used (I − uu∗)
(
I − uv∗

v∗u

)
= I −uu∗ and (I − vv∗)

(
I − vu∗

u∗v

)
= I−vv∗.

We recognize these equations as the correction equations of standard JD applied to A

8



and A∗; so for this special case we get a version of two-sided JD, where the correction
equations are the same as in standard JD. Another natural choice is a = v, b = u, then
on the right hand side, a multiple of v is added to ru. Because ru ⊥ v, all information
of ru (and similarly all information of rv) stays intact. Although this approach seems
to be more natural, numerical experiments (not reported here) indicate that (4.8)
leads to faster convergence.

Input: a device to compute Ax and A∗x or arbitrary x,
starting vectors u1 and v1 (v∗1u1 6= 0), and a tolerance ε.

Output: approximations (θ, u, v) to the largest eigenvalue of A and its

left and right eigenvector satisfying min{‖Au− θu‖, ‖A∗v − θv‖} ≤ ε.

1. s = u1, t = v1

for k = 1, 2, . . .
2. Uk = MGS (Uk−1, s)

Vk = MGS (Vk−1, t)
3. Compute kth column of Wk = AUk

Compute kth row and column of H = V ∗
k Wk

4. Compute the ‘largest’ eigentriple (θ, c, d) of the pencil (V ∗
k AUk, V ∗

k Uk)

5. u = Ukc, v = Vkd, (θ = v∗Au
v∗u

)
6. ru = (A − θI)u = Wkc − θu

rv = (A∗ − θI)v
7. Stop if min{‖ru‖, ‖rv‖} ≤ ε (and compute second vector at will)
8. Solve (approximately) s ⊥ u, t ⊥ v from(

I − uv∗

v∗u

)
(A − θI) (I − uu∗) s = −ru(

I − vu∗

u∗v

)
(A∗ − θI) (I − vv∗) t = −rv

Alg. 4.3: The orthogonal two-sided JD algorithm for the computation of the eigenvalue with
the largest magnitude.

The following theorem states that exact two-sided Jacobi–Davidson, as two-sided RQI,
has locally cubic convergence.

Theorem 4.1. If the two correction equations (4.4) and (4.5) are solved exactly,
both the bi-orthogonal and the orthogonal variant of the two-sided Jacobi–Davidson
process converge asymptotically cubically to an eigenvalue, if that eigenvalue is sim-
ple.

Proof. The solution of (4.4) satisfies

s = −u + ζ (A − θI)
−1

u.

In the bi-orthogonal variant s ⊥ v, so ζ = v∗u

v∗(A−θI)−1u
. In the orthogonal variant

s ⊥ u, then ζ =
(
u∗ (A − θI)−1 u

)−1

. We recognize the updated vector u + s as a

multiple of the one from two-sided RQI. For the left correction equation we have a
similar expression. Now apply Theorem 3.1.

5. Inexact two-sided RQI and Jacobi–Davidson. In the introduction we
have already mentioned that two-sided JD and two-sided RQI are in practice often
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very expensive when we solve the linear systems, occurring in the methods ((3.2)
and (4.4), (4.5)), accurately. In this section, we therefore consider inexact variants.
In §§5.1 and 5.2, we investigate two-sided RQI and two-sided JD when the linear
systems are solved to a certain precision (minimal residual approach). In §5.3, a
relation between two-sided RQI and two-sided JD is established, when the linear
systems are solved by a number of BiCG-steps (bi-orthogonal residual approach).

5.1. Inexact two-sided RQI. In [10] and [13], the authors study inexact RQI
for Hermitian matrices. They show that the asymptotic convergence rate under cer-
tain assumptions is quadratic. Here we give a generalization for inexact two-sided
RQI.

Consider the situation where we solve the two equations (3.2) of the two-sided
RQI method inexactly, by which we mean that we are contented with uk+1, vk+1

satisfying

(5.1) ‖(A − θI)uk+1 − uk‖ ≤ ξ1 < 1 and ‖(A − θI)∗vk+1 − vk‖ ≤ ξ2 < 1.

Note that if we have nonsingular preconditioners M1 ≈ A − θI and M2 ≈ (A − θI)∗,
such that

‖(A − θI)M−1
1 − I‖ ≤ ξ1 and ‖(A − θI)∗M−1

2 − I‖ ≤ ξ2,

then only one action with each preconditioner (that is, take uk+1 := M−1
1 uk and

vk+1 := M−1
2 vk) is enough to satisfy (5.1). However, since A − θI is almost singular

if θ ≈ λ, it is not a realistic assumption to have such preconditioners to our disposal.
To study the convergence rate of inexact two-sided RQI, the following lemma is

useful.
Lemma 5.1. Let v = β(y + εe), e ⊥ x (cf. (3.3)). The following statements are

true:
(a) ‖I − xy∗

y∗x
‖ = κ(λ)

(b) ‖xy∗

y∗x
‖ = κ(λ)

(c) ‖(I − xy∗

y∗x
)|v⊥‖ ≤

√
1 + ε2κ(λ)2

(d) ‖xy∗

y∗x
|v⊥‖ ≤ εκ(λ).

Proof. Define Q := I − xy∗

y∗x
. By examining the eigenpairs of Q∗Q we see that all

singular values of Q restricted to the space span{x, y}⊥ are equal to one. Likewise,
the singular values of I − Q restricted to the space y⊥ are zero. Therefore, one

may check that, up to a normalizing constant, argmaxz 6=0
‖Qz‖
‖z‖ = y − (x∗y)x, and

argmaxz 6=0
‖(I−Q)z‖

‖z‖ = y, both with maximum |y∗x|−1. This proves (a) and (b).

Using y = β−1v − εe, we get that I − xy∗

y∗x
= I + ε xe∗

y∗x
on the subspace v⊥. Similar to

the proof of (a) and (b), it is only of interest to consider the singular values of this

operator on the subspace span{x, e}⊥. Now ‖Qe‖2 = ‖e+ε (y∗x)
−1

x‖2 = 1+ε2κ(λ)2,
because e ⊥ x. Because in general e 6⊥ v, (c) follows. Finally, (d) can be proved by

noting that xy∗

y∗x
= −ε xe∗

y∗x
on v⊥.

From the proof of part (a) and (b), we see that, when κ(λ) is very large, argmax(I −
xy∗

y∗x
) ≈ argmax(xy∗

y∗x
). This implies that when the right eigenvector x and the corre-

sponding left eigenvector y are nearly orthogonal, the decomposition v = η1x+η2d, d ⊥
y, has (almost equally) large η1 and η2 components. We are now ready to state the
following result. As in Theorem 2.2, ‘h.o.t.’ stands for ‘higher order terms in δk and
εk’.
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Theorem 5.2 (Locally quadratic convergence of inexact two-sided RQI, general-
ization of [10, Cor. 4.3] and [13, Prop. 2.2]). Suppose that max{ξ1, ξ2} ·κ(λ) < 1. For
one step of inexact two-sided RQI, where the equations are solved inexactly according
to (5.1), we have (using the notation in (3.3))

δk+1 ≤ γ1δkεk + h.o.t. and εk+1 ≤ γ2δkεk + h.o.t..

Here

γi = κ(λ)κ((A − λI)|y⊥)
ξiκ(λ)

1 − ξiκ(λ)
(i = 1, 2).

Proof. From the first equation of (5.1) we know that there exists a ξ̃, 0 ≤ ξ̃ ≤ ξ1,
and a unit vector f such that

(A − θkI)uk+1 = uk + ξ̃f.

Decomposing f in an x-component and a component orthogonal to y, we get with
Lemma 5.1(a,b) that

(A − θkI)uk+1 = α̃x + δ̃d̃,

where d̃ ⊥ y, |α̃| ≥ |αk| − ξ1κ(λ), and δ̃ ≤ |αk|δk + ξ1κ(λ). Moreover, we have the
estimates

(5.2) |αk| = 1 + h.o.t., and |βk| = 1 + h.o.t..

The value of γ1 now follows, analogous to the proof of Theorem 3.1, from bounding
|δ̃/α̃|, and γ2 is derived in a similar manner.

When we have preconditioners to our disposal, we may also try to solve the (left)
preconditioned equations to a certain precision, e.g.

‖M−1
1 ((A − θI)uk+1 − uk)‖ ≤ ξ1,

Just as for Theorem 5.2, one can prove that this yields locally quadratic convergence,
now with constants

γi = κ(λ)κ((A − λI)|y⊥)
ξiκ(λ)‖Mi‖

1 − ξiκ(λ)‖Mi‖
(i = 1, 2).

As θ ≈ λ, the condition number of the matrix A−θkI increases. Therefore, it may get
more and more expensive to solve (5.1) to a certain tolerance. This forms a motivation
to study inexact two-sided JD.

5.2. Inexact two-sided Jacobi–Davidson. In [13], the author studies inexact
JD for Hermitian matrices. He shows that the asymptotic convergence rate is linear
under certain assumptions. Here we give a generalization for two-sided JD.

Consider the situation where we solve the two equations (4.4) and (4.5) of the
two-sided JD method inexactly, by which we mean that we are satisfied with s̃ ⊥ v
and t̃ ⊥ u (bi-orthogonal variant) or s̃ ⊥ u and t̃ ⊥ v (orthogonal variant) where

(5.3)

∥∥∥∥
(

I −
uv∗

v∗u

)
(A − θI)s̃ + ru

∥∥∥∥ ≤ ξ1 ‖ru‖

11



and

(5.4)

∥∥∥∥
(

I −
vu∗

u∗v

)
(A − θI)∗ t̃ + rv

∥∥∥∥ ≤ ξ2 ‖rv‖,

for some 0 < ξ1, ξ2 < 1. The next theorem states that the resulting local convergence
is linear.

Theorem 5.3 (Locally linear convergence of inexact two-sided Jacobi–Davidson,
generalization of [13, Th. 4.1]). For one step of inexact bi-orthogonal two-sided Jacobi–
Davidson, when the equations are solved inexactly according to (5.3) and (5.4), we have
(using the notation in (3.3))

δk+1 ≤ γ1δk + h.o.t. and εk+1 ≤ γ2εk + h.o.t..

Here

γi = ξiκ((A − λI)|y⊥) (i = 1, 2).

The orthogonal variant of two-sided Jacobi–Davidson has locally linear convergence
as well.

Proof. For clarity, we leave out the index k. Write P = I − uv∗

v∗u
. Let us first

consider the bi-orthogonal variant of Section 4.1, where s̃ ⊥ v. From (5.3) we know

that there exists a ξ̃, 0 ≤ ξ̃ ≤ ξ1, and a unit vector f ⊥ v such that

(5.5) P (A − θI)P s̃ = −ru + ξ̃ ‖ru‖f.

From (4.3) we know that the ‘real update’ s ⊥ v satisfies

P (A − λI)Ps = −ru,

hence

(5.6) P (A − θI)Ps = −ru + (λ − θ)s.

Both u + s (s ⊥ v) and u − αδd (d ⊥ y) are multiples of the eigenvector x, and (5.2)
and Lemma 5.1(c,d) give that ‖s‖ = δ + h.o.t.. Subtracting (5.6) from (5.5) gives

P (A − θI)P (s̃ − s) = ξ̃ ‖ru‖f − (λ − θ)s.

The operator P (A − θI)P is a bijection from v⊥ to v⊥ and

‖ ((P (A − θI)P )|v⊥)
−1

‖ = ‖
(
(A − λI)|y⊥

)−1
‖ + h.o.t..

For the norm of the residual we have by (3.4)

‖ru‖ = ‖α((λ − θ)x + δ(A − θI)d)‖
= δ ‖(A − θI)d‖ + h.o.t.
≤ δ ‖(A − θI)|y⊥‖ + h.o.t.
= δ ‖(A − λI)|y⊥‖ + h.o.t..

So

‖s̃ − s‖ ≤ δξ1κ((A − λI)|y⊥) + h.o.t..
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The term (s̃ − s) ⊥ v represents the error in the updated vector u + s̃. Again using
Lemma 5.1(c,d), we get δk+1 = ‖s̃− s‖+ h.o.t.. This proves the statement for the bi-
orthogonal variant. Now consider the orthogonal variant of Section 4.2. The essential
difference is that s̃ ⊥ u. Along the same lines, it can be shown that ‖ru‖ ≤ δ ‖(A −
λI)|x⊥‖ + h.o.t.. In the same way as in the proof for the bi-orthogonal case, we get

‖s̃ − s‖ ≤ ξ1κ((A − λI)|x⊥)‖s‖ + O(‖s‖2),

where (A − λI)|x⊥ is interpreted as operator from x⊥ to y⊥. This estimate means
locally linear convergence.

Comparing inexact two-sided RQI with inexact two-sided JD, we remark that it is
by no means possible to conclude from Theorems 5.2 and 5.3 that “inexact two-sided
RQI is faster than inexact two-sided JD”. Firstly, the theorems only say something
about the local, not the global, rate of convergence. In fact, it can happen that inexact
two-sided RQI does not converge at all (see the numerical experiments, Fig.9.1(b)),
while inexact two-sided JD trivially converges in a finite number of steps. Secondly
and more importantly, the theorems do not tell how much effort it takes to solve
the equations in question ((5.1) versus (5.3) and (5.4)) to a certain precision. In the
proof of the previous theorem we have seen that the effective condition number of(
I − uv∗

v∗u

)
(A − θI)

(
I − uv∗

v∗u

)
approaches κ((A − λI)|y⊥) as θ → λ, u → x, v →

y, while the condition number of A − θI is unbounded as θ → λ. Therefore, it
may be much more difficult to solve (5.1). Thirdly, in the next section we show
that the solutions to the linear systems are the same if the systems are solved by
unpreconditioned BiCG with a fixed number of steps. This result seems to confirm
our second observation.

5.3. Relation between inexact two-sided Jacobi–Davidson and inexact

two-sided Rayleigh Quotient Iteration. We have already seen that two-sided
Jacobi–Davidson is equivalent to accelerated two-sided RQI if all linear systems ((3.2)
and (4.4), (4.5)) are solved exactly. In [1], the somewhat surprising result is proved
that for Hermitian matrices, standard Jacobi–Davidson is equivalent to accelerated
RQI, when all linear equations are solved by a certain number of steps of Conjugate
Gradients. We generalize this result, and show that two-sided Jacobi–Davidson for
nonnormal matrices is also equivalent to accelerated two-sided RQI, if the linear sys-
tems are solved by a certain number of steps of BiCG. In the next lemma, C plays
the role of A − θI .

Lemma 5.4 (Generalization of [11, Lemma 4.1]). Let P = I − uv∗

v∗u
and r = Cu.

Then for all m ≥ 1,

span{u, r, (PCP )r, . . . , (PCP )m−1r} = span{u, r, Cr, . . . , Cm−1r}.

Proof. Let Km = span{u, r, Cr, . . . , Cm−1r} and Lm = span{u, r, (PCP )r,
. . . , (PCP )m−1r}. The proof is by induction. For m = 1, the claim is evidently true.
Now assume that Kj = Lj for all j < m. If a ∈ Lm, then there exist b ∈ L1 = K1,
and c ∈ Lm−1 = Km−1 such that a = b + (PCP )c. Writing out the projection P , we
get

a = b +

(
I −

uv∗

v∗u

)
C

(
I −

uv∗

v∗u

)
c = b + Cc −

v∗c

v∗u
Cu +

(
(v∗Cu)(v∗c)

(v∗u)2
−

v∗Cc

v∗u

)
u.

Now Cc ∈ Km, and all other terms are in K1, so a ∈ Km and Lm ⊂ Km.
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If Lm is of full rank, then the lemma is proved. Otherwise, let j be the largest
index such that Lj is full rank, then Lj+1 = Lj = Kj . Let now c ∈ Kj , then we
deduce that also PCPc ∈ Kj . From an equation similar to the one displayed above,
we see that Cc ∈ Kj , so Kj+1 = Kj . By induction we have Lm = Lj = Kj = Km for
all m ≥ j.

Proposition 5.5 (Generalization of [1, Prop. 3.2]). Let u and v be approxi-
mate eigenvectors. Let s̃m, t̃m be the approximate solutions to the right and left JD
correction equation (equations (4.4) and (4.5)), respectively, obtained by m steps of
the BiCG method, without suffering from a breakdown. Let ũm+1 and ṽm+1 be the
approximate solutions to the two-sided RQI equations (equation (3.2)), obtained by
m + 1 steps of BiCG. Then there exist µ1, µ2 such that

ũm+1 = µ1(u + s̃m), and ṽm+1 = µ2(v + t̃m).

Proof. Let the columns of Wm and Zm be bi-orthogonal bases for span{ru, (P (A−
θI)P )ru, . . . , (P (A − θI)P )m−1ru} and span{rv , (P ∗(A − θI)∗P ∗)rv , . . . , (P ∗(A −
θI)∗P ∗)m−1rv}, respectively. Apply BiCG to the JD correction equations, then s̃m

and t̃m are of the form s̃m = Wmw, t̃m = Zmz, where w, z are solutions of

Z∗
mP (A − θI)PWmw = −Z∗

mru and W ∗
mP ∗(A − θI)∗P ∗Zmz = −W ∗

mrv .

Now note that v ⊥ Wm and u ⊥ Zm, so PWm = Wm and P ∗Zm = Zm. Hence w, z
solve

Z∗
m(A − θI)Wmw = −Z∗

mru and W ∗
m(A − θI)∗Zmz = −W ∗

mrv.

On the other hand, according to Lemma 5.4, the columns of [u Wm] and [v Zm]
are bi-orthogonal bases for span{u, (A − θI)u, . . . , (A − θI)m−1u} and span{v, (A −
θI)∗v, . . . , ((A − θI)∗)m−1v}, respectively. Hence, BiCG applied to the two-sided
RQI equations gives approximations ũm+1 and ṽm+1 of the form ũm+1 = Wmp+µ1u,
ṽm+1 = Zmq+µ2v, where p, q, µ1, µ2 are determined by the Petrov-Galerkin conditions

(5.7) Â

[
µ1

p

]
=

[
v∗u
Z∗

mu

]
and Â∗

[
µ2

q

]
=

[
u∗v

W ∗
mv

]
,

where

Â :=

[
v∗(A − θI)u v∗(A − θI)Wm

Z∗
m(A − θI)u Z∗

m(A − θI)Wm

]
.

The terms Z∗
mu and W ∗

mv in (5.7) vanish. From the (twice) last n − 1 equations in
(5.7) we get

Z∗
m(A − θI)Wmp = −µ1Z

∗
m(A − θI)u

W ∗
m(A − θI)∗Zmq = −µ2W

∗
m(A − θI)∗v.

Because of the assumption that no breakdown is encountered, Z∗
m(A − θI)Wm is

invertible and the proposition is proved.
Commenting on the number of BiCG-steps in the previous proposition, note that

it is natural that two-sided RQI needs one step more (m + 1 versus m), because two-
sided JD already uses two matrix-vector multiplications to compute the residuals.
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Based on this proposition, it is tempting to conclude that two-sided JD and two-sided
RQI are just the same. But the proposition only gives a statement for the situation
when the linear systems ((3.2) and (4.4), (4.5)) are solved by unpreconditioned BiCG;
and even then JD uses subspace acceleration, and RQI does not. Preconditioning can
be included in JD and in RQI in such a way that Proposition 5.5 still holds for the
preconditioned methods. However, this preconditioning for JD will not be the one
described in [8, 7] and seems to be less effective.

6. Alternating Jacobi–Davidson. Theoretically, RQI does not need to con-
verge globally. Therefore, Parlett [5] proposes a different generalization of RQI to
ensure global convergence, which he calls alternating Rayleigh Quotient Iteration; see
Algorithm 6.4.

Pick an initial vector u1 with unit norm
for k = 1, 3, . . .
1. Compute θk = θ(uk) = u∗

kAuk

2. Solve (A − θkI)uk+1 = uk and normalize uk+1

3. Compute θk+1 = θ(uk+1) = u∗
k+1Auk+1

4. Solve (A∗ − θk+1I)uk+2 = uk+1 and normalize uk+2

If A − θkI or A∗ − θk+1I happen to be singular, solve for the eigenvectors.

Alg. 6.4: Parlett’s alternating Rayleigh Quotient Iteration [5].

This method is somewhat counter-intuitive, because (A − θI)
−1

and (A − θI)−∗

are used alternatingly on the iterates. For fixed θ, every two steps of the algorithm
result in one action with ((A − θI)∗(A − θI))

−1
. This method could therefore be in-

terpreted as an attempt to find the smallest singular value and corresponding singular
vectors of A − θI . As such, it can be considered as a method for the singular value
problem, rather than one for the eigenvalue problem. But because a matrix has a zero
eigenvalue if and only if it has a zero singular value, the method can asymptotically
(that is, for θ ≈ λ) also be regarded as an eigenvalue method. Parlett shows that the
(only) advantage of this process is that it converges for all starting vectors, while it
has a big drawback: the asymptotic convergence is in general only linear with factor
close to one (1 − κ(λ)−2) when applied to nonnormal matrices [5, p. 692].

Alternating RQI gives us inspiration for a new Jacobi–Davidson variant, which we
call alternating Jacobi–Davidson. The idea is to accelerate Parlett’s process, building
up one (orthogonal) search space for both the left and the right eigenvector. Every odd
step focuses on approximating the right eigenvector, every even step on approximating
the left eigenvector, see Algorithm 6.5.

Because of the subspace acceleration, the convergence behavior of alternating JD
is much better than that of alternating RQI. For nonnormal matrices, the odd or even
steps alone guarantee us quadratic convergence (when the correction equations are
solved exactly). For normal matrices, one can check that alternating JD does exactly
the same as standard JD, so with the same amount of work we get cubic convergence.
Our hope is that alternating JD will have fast convergence for (slightly) nonnormal
matrices with only a modest amount of extra work. Numerical experiments show that
alternating JD can even be faster that standard JD (see §9).

7. Generalizations.
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Input: a device to compute Ax and A∗x or arbitrary x,
a starting vector y1, and a tolerance ε.

Output: approximations (θ, u, v) to the largest eigenvalue of A and its

left and right eigenvector satisfying min{‖Au− θu‖, ‖A∗v − θv‖} ≤ ε.

1. s = y1

for k = 1, 2, . . .
2. Yk = MGS (Yk−1, s)
3. Compute kth column of Zk = AYk

Compute kth row and column of Mk = Y ∗
k Zk

4. Compute the ‘largest’ eigenpair
(θ, c) of Mk = Y ∗

k AYk (k even)

(θ, c) of M∗
k = Y ∗

k A∗Yk (k odd)
5. y = Ykc
6. r = Ay − θy = Zkx − θy (k even)

r = A∗y − θy (k odd)
7. Stop if ‖r‖ ≤ ε (and compute second vector at will)
8. Solve (approximately) s ⊥ u from

(I − uu∗)(A − θI)(I − uu∗)s = −r (k even)

(I − uu∗)(A∗ − θI)(I − uu∗)s = −r (k odd)

Alg. 6.5: The alternating JD algorithm for the computation of the eigenvalue with the largest
magnitude.

7.1. The generalized eigenproblem. Two-sided and alternating Jacobi–Da-
vidson can easily be generalized. Let us, for instance, examine the adaptations to
apply two-sided JD to the generalized eigenproblem Ax = λBx. The Galerkin condi-
tions (A − θB)u ⊥ V and (A − θB)∗v ⊥ U lead to the approximations

θ =
v∗Au

v∗Bu
,

where u and v are the backtransformed right and left eigenvectors of the projected
pencil (V ∗AU , V ∗BU). For bi-orthogonal two-sided JD, the right correction equation
now becomes

(7.1)

(
I −

Buv∗

v∗Bu

)
(A − θB)

(
I −

Buv∗

v∗Bu

)
s = −(A − θB)u, (s ⊥ v).

If we solve this correction equation exactly, then we get

s = −u + ζ (A − θB)
−1

Bu,

so that exact two-sided JD can also in this case be viewed as accelerated “generalized
two-sided RQI” (see e.g., [6, Th. 15.9.3] for the symmetric case), leading to cubic
convergence:

Proposition 7.1. Let B be nonsingular, and let λ be a simple eigenvalue of
B−1A. Then exact two-sided Jacobi–Davidson converges locally cubically.

Proof. First, observe that λ is a simple eigenvalue of B−1A if and only if λ is a

simple eigenvalue of AB−1. Now, note that (A − θB)
−1

Bu =
(
B−1A − θI

)−1
u and

apply Theorem 3.1.
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Note that, we get cubic convergence using αAu + βBu instead of Bu as well,
because Au and Bu are linearly dependent in the limit.

Observe that, in contrast to the correction equations for the standard eigenvalue
problem, the operators in the right and in the left correction equation (cf., (7.1)) are
not complex conjugated, which obstructs a direct application of BiCG.

7.2. The polynomial eigenproblem. We now derive the right correction equa-
tion of two-sided JD for the polynomial eigenproblem

(7.2) p(λ)x = 0,

where

p(λ) = λlAl + λl−1Al−1 + · · · + λA1 + A0.

Suppose that we have approximate right and left eigenvector u ∈ U and v ∈ V , where
U and V are, as before, the right and left search spaces. The Petrov-Galerkin condition
p(θ)u ⊥ V implies that θ = θ(u, v) satisfies

(7.3)
∑

l

(v∗Alu) θl = 0.

To derive Newton’s method for (7.2), consider

p(θ)(u + h) − p(θ)(u) = p(θ)(h) +
∑

l

l θl−1Alu
∂θ

∂u
h + O(‖h‖2).

Differentiating (7.3) with respect to u gives

∑

l

l (v∗Alu) θl−1 ∂θ

∂u
+
∑

l

θlv∗Al = 0,

so with the notation z := p′(θ)u =
∑

l l θ
l−1Alu we find, if v∗z 6= 0,

∂θ

∂u
= −

(
∑

l

l (v∗Alu)θl−1

)−1

v∗

(
∑

l

θlAl

)
= − (v∗z)

−1
v∗p(θ).

Hence, the Jacobian ∂p(θ)
∂u

is equal to
(
I − zv∗

v∗z

)
p(θ), and a Newton step solves s from

(
I −

zv∗

v∗z

)
p(θ)s = −p(θ)u.

When we work with bi-orthogonal bases, we search for s ⊥ v and the equation is
equivalent to

(
I −

zv∗

v∗z

)
p(θ)

(
I −

zv∗

v∗z

)
s = −p(θ)u.

This is the right correction equation for the polynomial eigenvalue problem, see also
[7, Eq. (8.4)], where the result is stated without derivation. For the special case l = 1
we recognize equation (7.1), and if, in addition, A1 = −I , we recognize (4.4). Because
it is a Newton method, we expect locally quadratic convergence. This is, under some
conditions, true indeed [2, Th. 2].
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8. Various issues.

8.1. Deflation. If we have found one or more eigentriples of A, and we want to
find another, we can deflate to avoid finding the same value again. Suppose that we
have already found the right eigenvectors xi and corresponding left eigenvectors yi.
Then it can be verified that, if we found the exact vectors,

Ã =
∏

i

(
I −

xiy
∗
i

y∗
i xi

)
· A ·

∏

i

(
I −

xiy
∗
i

y∗
i xi

)

has the same eigentriples as A, except that the found eigenvalues are transformed to
zeros.

8.2. Comparison with two-sided Lanczos. Suppose that we do not solve
the corrections equations (4.4) and (4.5), but just take s̃ = ru = Au − θu and t̃ =
rv = A∗v − θv. Because of the orthogonalization at step 2 of Algorithm 4.2, this is
equivalent to taking s̃ = Au and t̃ = A∗v, which is the subspace expansion of two-
sided Lanczos. Therefore two-sided JD may, besides as a generalization of standard
JD, also be regarded as a generalization of two-sided Lanczos.

8.3. Breakdown. As two-sided Lanczos, two-sided JD may suffer from a break-
down, but in two-sided JD this can easily be overcome. First, BiCG (which we may
use to solve the correction equations) may break down. Second, in the bi-orthogonal
variant, the computed updates s̃ and t̃ may be (nearly) orthogonal. Realizing that our
aim is to compute an eigenvalue and not to solve the correction equation accurately,
we see that these breakdowns are not an intrinsic problem. In both cases, we can
simply restart the method, or take different (e.g., random) approximate solutions to
the correction equation.

9. Numerical experiments. Our experiments are coded in MATLAB and exe-
cuted on a SUN workstation. We have already seen that JD has different convergence
behavior for normal (cubic convergence) and nonnormal matrices (quadratic conver-
gence); this in contrary to two-sided JD. The following lemma implies that two-sided
JD does ‘feel’ a difference, but this is only noticeable in the norm of the residuals,
and not in the approximations to the eigenvalue.

Lemma 9.1. Let A = U∗ΛV ∗
∗ be a diagonalizable matrix (so V ∗

∗ = U−1
∗ ). If

there are no rounding errors, and two-sided JD’s correction equations (4.4) and (4.5)
in step k are solved by mk steps of a Krylov method (without preconditioning), then
two-sided JD applied to

(a) A, with starting vectors u1 and v1

(b) Λ, with starting vectors ũ1 := V ∗
∗ u1 and ṽ1 := U∗

∗ v1

gives the same approximations: θ̃k = θk. Moreover, ũk = V ∗
∗ uk and ṽk = U∗

∗ vk. In
particular, if A is normal, then ‖ũk‖ = ‖uk‖ and ‖ṽk‖ = ‖vk‖.

Proof. The first approximate eigenvalues are the same in both cases:

θ̃1 :=
ṽ∗1Λũ1

ṽ∗1 ũ1
=

v∗1U∗ΛV ∗
∗ u1

v∗1(U∗V ∗
∗ )u1

=
v∗1Au1

v∗1u1
=: θ1.

For the right residuals in the first step of the method we have r̃
(1)
u = (Λ − θ̃1I)ũ1 =

(Λ − θ1I)V ∗
∗ u1, so U∗r̃

(1)
u = r

(1)
u . In the same way we find a similar relation for the

left residuals: V∗r̃
(1)
v = r

(1)
v . So r̃

(1)
u = V ∗

∗ r
(1)
u and r̃

(1)
v = U∗

∗ r
(1)
v . Denote Km(A, r) for
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the Krylov subspace of dimension m, generated by A and r. For the Krylov subspaces
we have (generalization of [6, p. 264]):

Km(A, r(1)
u ) = Km(U∗ΛV ∗

∗ , U∗r̃
(1)
u ) = U∗Km(Λ, r̃(1)

u ),

and likewise Km(A∗, r
(1)
v ) = Km(V∗Λ

∗U∗
∗ , V∗r̃

(1)
v ) = V∗Km(Λ∗, r̃

(1)
v ). With little extra

work one can check that same relations hold for the shifted and projected matrices
that are present in the correction equations, for instance

(
I −

uv∗

v∗u

)
(A − θI)

(
I −

uv∗

v∗u

)
= U∗

(
I −

ũṽ∗

ṽ∗ũ

)
(Λ − θI)

(
I −

ũṽ∗

ṽ∗ũ

)
V ∗
∗ .

So, using the notation P̃ = I − ũṽ∗

ṽ∗ũ
,

Km(P (A − θI)P, r(1)
u ) = U∗Km(P̃ (Λ − θI)P̃ , r̃(1)

u ).

We conclude that the approximate solutions from the first correction equations satisfy
s̃(1) = V ∗

∗ s(1) and t̃(1) = U∗
∗ t(1). By induction we can prove that Ũk = V ∗

∗ Uk and

Ṽk = U∗
∗Vk , so the projected matrices are the same in both cases: H̃k := Ṽ ∗

k ΛŨk =
V ∗

k AUk = Hk. In particular, the approximations to the eigenvalues are the same,
and the approximate eigenvectors (uk, vk) and (ũk, ṽk) are transformations of each
other: ũk = V ∗

∗ uk and ṽk = U∗
∗ vk. In particular, if A is normal, then U∗ and V∗ are

orthogonal, and so ‖r̃k‖ = ‖rk‖.

In the same way one may verify the next lemma.

Lemma 9.2. With the assumptions and notations of the previous lemma, if the
equations of two-sided RQI (see (3.2)) in step k are solved by mk steps of a Krylov
method (without preconditioning), then two-sided RQI applied to

(a) A, with starting vectors u1 and v1

(b) Λ, with starting vectors ũ1 := V ∗
∗ u1 and ṽ1 := U∗

∗ v1

gives ‘the same’ approximations: θ̃k = θk. Moreover, ũk = V ∗
∗ uk and ṽk = U∗

∗ vk. In
particular, if A is normal, then ‖ũk‖ = ‖uk‖ and ‖ṽk‖ = ‖vk‖.
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Fig. 9.1: (a) The convergence of exact (solid line) and inexact (tolerance 0.5, dashed line)

two-sided RQI for diag(1 : 100). (b) The difference of the two-sided Rayleigh Quotient ( v
∗

Au

v∗u
) and

the right Rayleigh Quotient ( u
∗

Au

u∗u
) for exact (solid line) and inexact (tolerance 0.5, dashed line)

two-sided RQI for the tridiagonal matrix with stencil (1 -2 1.2) of size 100× 100.
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Because of these results, our first example is A = diag(1 : 100). In Figure 9.1(a), we
compare exact two-sided RQI (solid line) and inexact two-sided RQI (dashed line),
where the inner equations have been solved with five steps of GMRES. We take for
u1 and v1 the 100th basisvector plus 0.2 times a random vector (MATLAB’s function
rand, ‘seed’ 0), and take ξ1 = ξ2 = 0.5 in (5.1). In this figure, we show the error
|λ−θ| in the approximation to the detected eigenvalue λ. One may see the somewhat
faster convergence for exact two-sided RQI. What we do not see in the figure is that
inexact two-sided RQI converges to λ = 100, while exact two-sided RQI converges
to λ = 79. Apparently, without subspace acceleration it is impossible to guide the
process to the desired eigenvalue.

Figure 9.1(b) is an example of the fact that inexact two-sided RQI does not need to
converge. Here A is the 100×100 tridiagonal matrix with stencil (1 -2 1.2), u1 and v1

are random vectors, and ξ1 = ξ2 = 0.5. We plot the difference between the two-sided
Rayleigh Quotient (θ(u, v) = v∗Au

v∗u
) and the right Rayleigh Quotient (θ(u) = u∗Au

u∗u
).

For inexact two-sided RQI, this difference (and the difference v∗Au
v∗u

− v∗A∗v
v∗v

) stabilizes.
A small comfort is the fact that two-sided RQI can diagnose itself that there is a
misconvergence.
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Fig. 9.2: (a) The convergence histories of bi-orthogonal two-sided JD (dash), orthogonal
two-sided JD (dash-dot), alternating JD (dot), and JD (solid) for the tridiagonal matrix with stencil
(-1 2 1.2) of size 100× 100. All correction equations are solved by 5 steps of GMRES. (b) The same
as (a), but now 10 steps of GMRES.

Next, we experiment with two-sided JD variants. For Figure 9.2(a), we take the
100× 100 tridiagonal matrix with stencil (-1 2 1.2). The starting vectors are random,
and the correction equations are solved by five steps of unpreconditioned GMRES.
All eigenvalues have real part equal to 2, and come in complex conjugate pairs. Note
that for the two-sided methods, the plotted line always represents min{‖ru‖, ‖rv‖}.
The horizontal dashed line shows the stopping tolerance. We see that alternating
JD is faster (also measured in matrix-vector products (MVs)) than standard JD. For
orthogonal two-sided JD we choose the variant of Equation (4.8). The method uses less
iterations, but more MVs than standard JD. The convergence is very irregular; this
might be improved using a target when one suspects that the process is converging.
Bi-orthogonal two-sided JD almost converges, but then shows irregular behavior, and
does not converge within 60 iterations. Using a target may be a good idea here as
well.

For Figure 9.2(b), we change only the number of inner iteration steps to 10. Bi-
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orthogonal two-sided JD uses the fewest number of iterations. It uses slightly more
MVs than JD. However, earlier in the process we already have more information. For
instance, after 21 iterations of bi-orthogonal two-sided JD, κ(λ) ≈ 56.45 is already
approximated to a relative error of 0.5%: the condition number is well approximated
before the method starts to converge. (21 iteration steps may not seem to be ‘early in
the process’. However, with an initial space that is ‘rich’ in the direction of the wanted
eigenvector the initial stage of slow convergence will be absent. We will have such a
situation when we continue the process for the second eigenvalue after detection of
the first one.) After termination, the norms of the residuals are ‖ru‖ ≈ 3.9 · 10−8

and ‖rv‖ ≈ 2.5 · 10−9. Using only 4 extra MVs to find u more accurately (see (4.6)),
we have ‖ru‖ ≈ 9.3 · 10−9. This is also an illustration of the situation that θ(u, v)
is often more accurate than θ(u) and θ(v): we have |λ − θ(u, v)| ≈ 3.6 · 10−15, while
|λ − θ(u)| ≈ 3.4 · 10−10 and |λ − θ(v)| ≈ 1.6 · 10−11. Alternating JD uses slightly
more MVs than standard JD, but approximates the condition of the eigenvalue after
47 iterations up to 0.1% relative accuracy. Moreover, upon termination, the norms of
both residuals are small (‖ru‖ ≈ 3.8 · 10−8 and ‖rv‖ ≈ 8.9 · 10−9). Note the irregular
convergence of the orthogonal variant of two-sided JD.
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Fig. 9.3: (a) The convergence histories of bi-orthogonal two-sided JD (with BiCG, dash-
star), bi-orthogonal two-sided JD (GMRES, dash), orthogonal two-sided JD (GMRES, dash-dot),
alternating JD (GMRES, dot), and JD (GMRES, solid) for the matrix SHERMAN4. All correction
equations are solved by 5 steps of GMRES. (b) The convergence histories of bi-orthogonal two-sided
JD (dash), orthogonal two-sided JD (dash-dot), and JD (solid) for the matrix SHERMAN1, as a
function of the MVs. All correction equations are solved to precision (ξ1 = ξ2) 0.7 by GMRES.

As the next example, we take SHERMAN4 (size 1104, available from the Matrix
Market, http://math.nist.gov/MatrixMarket), u1 random, and v1 the normalized
Au1. We solve the correction equations by 25 steps. See Figure 9.3(a). Now two-
sided bi-orthogonal JD with BiCG is (also measured in MVs) the fastest method. Bi-
orthogonal two-sided JD with GMRES, and orthogonal two-sided JD with GMRES
use less iterations, but more MVs than standard JD. Alternating JD is somewhat
slower than standard JD, but finds the two eigenvectors with ‖ru‖ ≈ 2.4 · 10−8 and
‖rv‖ ≈ 1.5 · 10−12. Also in this example, the two-sided methods approximate κ(λ)
well already a few steps before termination.

For Figure 9.3(b), we take a symmetric matrix, the 1000 × 1000 matrix SHER-
MAN1. The starting vectors are the same as for (a). We solve the correction equations
such that the relative residuals (ξ1 and ξ2 in (5.1), (5.3), and (5.4)) are less than 0.7.

21



The convergence of the two-sided methods looks roughly linear (cf. §5, the number
of MVs per iteration is also almost constant), while standard JD does not converge
within 175 MVs. The history of alternating JD is the same as that of JD, since the
matrix is normal.

10. Discussion and Conclusion. We have discussed an alternative approach
to find eigenvalues and eigenvectors of a nonnormal matrix. Two-sided JD is a natural
generalization of standard JD for nonnormal matrices. Without further demonstra-
tion, we mention that most of the techniques known in JD (such as preconditioning
the correction equation, using a target, restarting, and using harmonic Ritz values)
easily carry over to two-sided JD.

At the introduction of two-sided JD, we have focused on the fast convergence
of the method: exact two-sided JD has asymptotically cubic convergence for simple
eigenvalues of nonnormal matrices. However, in practice this might not be the most
important advantage of the method. Another benefit is the fact that already during
the process, we have approximations to both the left and and the right eigenvector.
We can use this information for an estimation of the condition of the eigenvalue κ(λ).
This, on its turn, can be used as an error estimation

|λ − θ| <
∼ κ(λ)‖r‖,

which can serve as a stopping criterion. Moreover, when we spot an eigenvalue with
(possibly) a high condition, we may want to try to avoid it (using a target) when we
are not interested in it, or stop the method and continue with standard JD.

During or after the process we can compare the three Rayleigh Quotients θ(u),
θ(v), θ(u, v) to check for misconvergence, that is, check to see if they converge to
the same value. Moreover, from (3.1) it is clear that θ(u, v) can be more accurate
(O(δkεk)) than θ(u) and θ(v) (O(δk) or O(εk)), and this is confirmed by numerical
experiments.

Compared with two-sided Lanczos, two-sided JD is more flexible, in the sense that
we can restart with any vectors we like, and add some extra vectors to the subspaces.
Two-sided JD is also more stable than two-sided Lanczos, in the sense that it can
easily cope with breakdown, no look-ahead versions are necessary (see §8.3).

Of course, as compared to standard JD, two-sided JD has also disadvantages.
First of all, we need the action of multiplication by A∗. Two-sided JD costs approx-
imately twice the work per iteration compared with standard JD, and also roughly
twice the storage. One could argue that by two steps of ordinary RQI (or JD) one
gets the fourth degree of the error, in contrary to the third degree by one step of
two-sided RQI (or JD). Ostrowski states that “from this point of view, even in the
case of a non-Hermitian matrix, the use of the ordinary Rayleigh quotient iteration
appears to be not only permissible but even advisable” [4, p. 472]. However, Parlett
[5, Rem. 3, p. 689] criticizes this statement (in the context of dense methods).

Because of the two-sided Rayleigh Quotient and the oblique projections, the
method may have difficulties with eigenvalues with a large condition, affecting the
stability of the method. This can result in loss of accuracy in determining λ; the
order remarks above have little significance if κ(λ) is huge.

In conclusion, two-sided JD is an elegant alternative to standard JD and two-sided
Lanczos, especially in situations where the matrix is nonnormal (but not pathetically)
and when it is of interest to have approximations to the left eigenvector and condition
of the eigenvalue during the process. Alternating JD may also give good results,
especially if the matrix is slightly nonnormal.
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