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Abstract

I write out and discuss how one might try to prove the continuous
time g-computation formula, in the simplest possible case: treatments
(labelled a, for actions) and covariates (l: longitudinal data) form together
a bivariate counting process.

1 Introduction

Robins (1997) outlines a theory of causal inference for complex longitudinal
data, when treatments can be administered and covariates observed, contin-
uously in time. This theory is supposed to extend the earlier work of Robins
(1986, 1987, 1989, 1997), devoted to the case in which covariates and treatments
take values in discrete spaces, and time advances in discrete time steps. Already
in Gill and Robins (2001), we managed to extend the theory to continuously
distributed covariates and treatments. In this note, we address the generaliza-
tion to continuous time. The major part of this research programme has already
been carried out by Lok (2001). It is an open problem to complete that project
with a continuous time version of the g-computation formula and the theorems
centered around it. The formula tells one how to write down the probability
distribution of an outcome of interest, in the counterfactual situation that a
prechosen treatment plan g had been adhered to, rather than the factual case
that treatment was assigned haphazardly.

Lok (2001) manages to develop a martingale and counting process based
theory of Robins’ (1997) statistical models, estimators and tests, without having
recourse to the g-computation formula. So is it so central to the theory, after
all? The answer is that without the formula, the statistical methodology lacks
motivation. In particular, one needs the formula in order to show that the test
statistics of Lok (2001) really do test the null hypothesis of no treatment effect,
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in the sense that the counterfactual outcome under all treatment plans g has
exactly the same probability distribution.

Below we do not succeed in proving the formula, nor establishing the wished-
for results which should follow from it. What we do do, is present a framework in
which these questions can hopefully be studied, and in particular, write down a
conjectural g-computation formula and the assumptions under which it is likely
to be true.

2 The model

Suppose that as a patient is followed in time, longitudinal data is gathered and
treatment decisions or actions are taken; both continuously in time. The most
simple possible of scenarios, is that there is only one kind of action. The only
variation in treatment is in the times at which the action is taken, the nature of
the actions at different times is irrelevant or always the same; similarly, incoming
data takes the form of a sequence of events at random time points, and the only
relevant thing is the time of the events, not their nature. Finally we suppose
that actions and longitudinal data events are never simultaneous. The pair of
point processes therefore forms a bivariate counting process (Na,Nl); or if you
prefer, a single marked point process µ with a mark space X = {a, l}, say, and
component point processes µ

a, µ
l; or if you prefer, two sequences of random

positive time points with no ties between them, (0 < T a
1 < T a

2 , . . .), (0 < T l
1 <

T l
2, . . .). Ordinary random variables are set in plain lettertype, random processes

and random measures in bold. We suppose time varies through a bounded time
interval T = [0, τ ] and that the total number of events of both types is finite
with probability 1. Recall that a marked point process is a random measure
assigning mass 1 to random ordered pairs of a timepoint and accompanying
mark, while a counting process counts numbers of events, of each kind, up to
each timepoint. We suppose there is no event at time zero. The relations
between these quantities are: µ =

∑

j δ(T a
j

,a) +
∑

k δ(T l
k
,l) where δ(t,x) is the

measure with point mass 1 at the point (t, x) ∈ T × X ; µ
x(B) = µ(B × {x})

for each Borel set in T and each mark x = a, l ∈ X ; N
x(t) = µx([0, t]) for each

x ∈ X .
We suppose that we have access to unlimited observational data, and there-

fore essentially know the probabilility distribution, for a randomly chosen pa-
tient, of the just introduced random quantities. The probability law can be
recovered from the cumulative intensity process or compensator Λ of the count-
ing process N or, if you prefer, the dual predictable projection or compensator
ν of the marked point process µ. Let µ (plain lettertype) denote a possible
realization of the random point process µ (bold). Write µt for the restriction
of the measure µ to [0, t]×X . Then for each history of the point process up to
the time of an event, thus for each µt for which there is an event at timepoint
t, we have two conditional hazard measures νx(· | t, µt) on (t, τ ], x = a, l, such
that the conditional probability that the first event of µ after t is in the time
interval ds and has mark equal to x , given the history up to and including
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time t, is νx(ds) for s ∈ (t, τ ] and x = a, l. The two conditional hazard mea-
sures have no atoms in common, since we assumed there are no simultaneous
events. The dual predictable projection of µ is the random measure ν defined
by ν(ds, dx) = νx(ds | t, µt) on the event where t is the time of the last event
of µ strictly before time s. The cumulative intensity process Λ is defined by
Λ

x(s) = ν((0, s] × {x}) for all s and x. Thus Λ
x(ds) = ν

x(ds) = νx(ds | t, µt)
where t is as before.

One can generate the whole process by drawing subsequent time points and
marks using the two conditional hazard measures, given any history of events
up to the jth event at some time point t, to generate the time and mark of the
j + 1st event.

3 Treatment plans

A treatment plan g consists of subplans, one for each j and tl
0 = 0 < tl1 < tl2 <

. . . < tlj , which prescribes subsequent action timepoints, from time tl
j onwards,

so long as no further longitudinal data timepoint intervenes. We may therefore
further split the subplans into sub-subplans, one for each j and each k, which
prescribe the time of the kth action timepoint after the jth longitudinal data
timepoint, so long as no new longitudinal data timepoint occurs. The moment
there is a new longitudinal data timepoint, the old subplan (or subsubplan), is
discarded in favour of the relevant new subplan. Each subplan “assumes” that
the overall plan g has been adhered to in previous segments of the history, so
each subplan “knows” all the preceding, planned, action timepoints as well as
the given preceding longitudinal data timepoints. Thus, if we are adhering to
a particular plan g, we can for any sequence of longitudinal data timepoints
tl0 = 0 < tl1 < tl2 < . . ., thus for any outcome µl, write down the complete
accompanying sequence of planned action timepoints, and thereby reconstruct
a complete outcome of a marked point process µg given the component marked
point process outcome µl. Moreover this can be done in an adaptive way:
µ

g
t = µg |(0,t] is a function of µl

t = µl|(0,t], and of course of the specific treatment
plan g under consideration. We can therefore also compute, in an adaptive
way, an outcome Λg = (Λg,a, Λg,l) of the cumulative intensity process Λ, or
an outcome νg = (νg,a, νg,l) of the dual predictable projection ν, through its
dependence on µ = µg , as a function of any sequence of longitudinal data
timepoints tl0 = 0 < tl1 < tl2 < . . ., i.e., as a function of µl.

4 g-Computation Formula

Suppose a plan g is given. Suppose moreover is given, a random variable Y ,
taking values in some Polish space, which we consider as the outcome of inter-
est. Alongside the “factual” outcome Y we suppose there is also defined the
“counterfactual” outcome Y g: the outcome which would have pertained, had
plan g been adhered to. Now the conditional law of Y given µ can be con-
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sidered as a function of µ, as such we denote it as Law(Y |µ = µ). Therefore,
for a given sequence of longitudinal data timepoints tl

0 = 0 < tl1 < tl2 < . . .,
which determines a possible outcome of µl, we can evaluate the law of Y given
µ at µ = µg = µg(µl) = (µl, µa(µl, g)). The g-computation formula, which
we want to prove under versions of the usual three assumptions of consistency,
no-unmeasured confounding, and evaluability, is the following:

Law(Y g) =
∑

n

∫

· · ·

∫

tl
1
<...<tl

n≤τ

n
∏

i=1
R

s∈(tl
i−1

,tl
i
)

(

1 − Λg,l(ds)
)

Λg,l(dtli) R
s∈(tl

n,τ ]

(

1 − Λg,l(ds)
)

Law(Y |µ = µg).

The first thing to note about this formula is that it is a functional of the cu-
mulative intensity function Λg,l and of the conditional law of Y g given µ, both
considered as functionals of µg, which again is a functional of the chosen treat-
ment plan g and the summation and integration variables in the formula: the
total number n of longitudinal data timepoints in the time interval T and their
values 0 = tl0 < tl1 < . . . < tln ≤ τ . These variables precisely determine an
outcome of µ

l. The cumulative intensity function Λg,l is computed from the
conditional probability laws of the ‘next longitudinal data timepoint’ restricted
to the event, that it precedes the next action timepoint, given the history of
the process µ up to the times of the zero’th, first, second . . . events. Thus it
depends on which version is chosen of each of these conditional probability laws.

Recall from Gill and Robins (2001) that there are two issues in establishing
this formula. The first is the question whether, when one chooses appropriate
versions of the conditional distributions involved, it gives the right answer. The
second question is whether, when conditional distributions are chosen, if pos-
sible, in some canonical fashion, the result is uniquely defined as a functional
of the joint law of the data µ, Y . We may have to face up to one third, more
technical issue: the formula supposes that in the counterfactual world where
treatment plan g is followed, there is no explosion in the sequence of timepoints
of events; in other words, if we replace the conditional law of Y in the integrand
with the constant function 1, the result of the g-computation formula should be
the total probability 1. Let us call this condition, the no-explosion condition for
plan g.

Now we discuss what the three usual conditions should look like, in this con-
text, and make some remarks on how one might attempt to prove the formula.

The consistency condition, in a sufficient and weaker ‘in law’ form, should
naturally be: Law(Y |µ = µ) = Law(Y g|µ = µ) for outcomes µ consistent with
plan g: thus, outcomes µ such that µa = µa(µl, g). The ‘no unmeasured con-
founders’ assumption should be that the intensity process of the action events,
when the history of the process µ is augmented by taking Y g to be a random
variable realized at time t = 0, should be the same as the intensity process of
the action events when only the history of µ is taken into account, for outcomes
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µ consistent with plan g. In terms of conditional distributions, it is the assump-
tion that conditional on the times and types of events up to any number of the
events, Y g is independent of the time to the next action event, restricted to the
event that it precedes the next longitudinal data event; and we only need to
check this condition for outcomes µ consistent with plan g. Just the consistency
and the no unmeasured confounders assumptions should be sufficient to estab-
lish the correctness of the g-computation formula, when the same conditional
distributions are employed in the formula, as are involved in the assumptions.
Since typically the probability that µ is consistent with g is zero, this result has
no empirical content. Still, given versions of all involved conditional distribu-
tions, the result is not obviously true, so does have mathematical content. The
first step in the proof is naturally to replace Y with Y g on the right hand side
of the formula, using the consistency assumption. How to proceed from here, is
not so clear. A strategy which might work, is to consider the right hand side of
the g-computation formula, with Y replaced by Y g and τ replaced by a variable
timepoint σ ∈ T as a function of σ, say b(σ), and show that it satisfies some
integral equation. We are given the value of the function b at σ = τ . If one can
show the integral equation is uniquely solved by a constant function b∗ satisfing
b∗(0) = Law(Y g), we are done. The non-explosion condition will presumably be
needed in this analysis. The important step is guess a non-trivial probabilistic
interpretation of b(σ), and take the guess to define a function b∗(σ). Next, use
the probabilistic interpretation to write informally a relation between b∗(σ+ds)
and b∗(σ), as an expectation of the possible outcomes in the time interval ds.
Use probability theory to convert this to a rigorous relation in integral form.

Informally, the proof should parallel that in the discrete time case and cor-
respond to the remark that the law of Y g given µσ+dσ does not depend on
µa(dσ). Therefore, in order to recover the law of Y g given µσ by averaging over
the conditional law of the events of µ in the time interval dσ given the events in
the past, we need only average over the conditional law of the longitudinal data
events. But whether or not there is a longitudinal data timepoint in this small
time interval is a Bernoulli (Λl(dσ)) variable. Thus Law(Y g|µσ) is a Bernoulli
(Λl(dσ)) mixture of the two distributions Law(Y g|µσ+dσ) with µl(dσ) = 0, 1.

Another possible ingredient is yielded by the remark that the law of Y g

given µt is a martingale in t with respect to the history of µ, and hence can
be written as a stochastic integral with respect to µ − ν. The representation
involves the intensities of µ with respect to its own history, and with respect to
the augmented history when Y g is realized at time 0.

In order to obtain a result with empirical content, we have to show how the
formula can be uniquely evaluated, under further assumptions, from the joint
law of Y and µ. A natural assumption which guarantees a canonical choice of
conditional laws is continuity: we should assume that versions of all the condi-
tional laws involved in the g computation formula, can be chosen so as to be
continuous on the support of the conditioning variables. The conditioning vari-
ables are partial histories of µ up to the so-manyth event, and the total history
of µ on T . Continuity of probability laws is in the sense of weak convergence,
and the partial and total histories of µ are given their natural topologies. The
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conditional laws now have canonical versions on the supports of the condition-
ing variables, and we should make the evaluability condition on the plan g that
for partial histories in the support of the corresponding partial history of µ,
the next planned action time (restricted to the event where it precedes the next
longitudinal data timepoint) lies in the support of the conditional distribution
of that time given the partial history so far.
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