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Abstract

Consider a spatial branching particle process where the underlying mo-
tion 1s a conservative diffusion on D C R corresponding to the elliptic op-
erator L on D, and the branching is strictly binary (dyadic), with spatially
varying rate 8(z) > 0 (and 8 # 0) which is assumed to be bounded from
above. We prove that, under extremely mild circumstances the process
exhibits local extinction if and only if A. < 0, where A. denotes the gen-
eralized principal eigenvalue for the operator L + 3 on D. (This criterion
is analogous to the one obtained by Pinsky (1996) for the local extinction
of superdiffusions). Furthermore we show that when the process does not
exhibit local extinction, every nonempty open subset is occupied infinitely
often with positive probability which can be characterized by a solution
bounded in (0,1] to the semilinear elliptic equation Lu + 8(u® —u) = 0
on D). Moreover, in this case, there is an exponential rate of growth on
sufficiently large compact domains, and this rate can be arbitrarily close
to Ac. In order to reach these conclusions we first develop some results
concerning innerproduct and multiplicative martingales and their relation
to the operators L + 8 and L + B4 respectively, where ¢ (z) = z? — x.
In the case of the innerproduct martingales we show that for some cir-
cumstances they can be used as changes of measure for the law of the
branching process in a similar way that Girsanov densities act as changes
of measure in the context of diffusions. More specifically, the change
of measure induces a drift consistent with a certain Doob’s h-transform
on the path of a randomized ancestral line of descent. These concepts
are essentially spatial versions of spine decompositions for Galton-Watson
processes given in Lyons et al. (1995).
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1 Introduction and main results

1.1 Markov branching diffusions

Let D C R?be a domain and consider Y = {Y'(¢) : t > 0}, the diffusion process
(with probabilities {P;, € D}) corresponding to the elliptic operator L on D
satisfying

1< 02 09
L= > U et + ;bia_xi on D, (1)

i,j=1

where the symmetric matrix a(z) = a;;(z) is positive definite for 0 # z € D and
a;j € C*(D) ,b; € C'(D). (We assumed these stronger than usual smoothness
assumptions for convenience — they guarantee that there will be no problem
defining the adjoint operator.) We assume that Y is conservative, that is, that
P = inf{t > 0 : Y(t) € D} satisfies P,(r” < oc0) = 0 (in other words,
Y has an a.s. infinite lifetime). Furthermore let 0 < g € C*(D), « € (0,1]
be bounded from above on D and § # 0. [Here C*(D) denotes the usual
Holder space.] Then, the binary (L, 3)-branching diffusion under the measure
Py is defined (informally) as follows. A single particle starts at position € D,
performs a Y-motion on D. This particle is killed with spatially dependent
rate 3. At the moment and spatial position of its death, the particle produces
precisely two offspring. Each of these two individuals proceed independently to
perform Y-motions killed at rate § at which point they reproduce in the same
way as their parent and so on. At each time ¢ > 0 the branching diffusion
consists of a point process Z; defined on Borel sets with almost surely finite
total mass Z; (D).

In the sequel, the notation P,, F; and 7 will be used for the branching
diffusion and the notation P,, E, and Y will be used for the diffusion on D
corresponding to L. Moreover, we shall use the Ulam-Harris labelling notation.
That is an individual u 1s identified by its line of decent from the initial ancestor.
More precisely, if u = (i1, ..., in—1, in) then she is the i,th child of the i,_1th
child of ....of the 77 th child of the initial ancestor. Thus uv refers to the individual
who, from u’s perspective, has line of descent expressed as v. Further, the length
|u| is equal to the generation in which individual u lives. We shall use N; to
denote the set of individuals alive at time ¢ and {Y,(¢) : v € N} for their
positions in D. In this way we have for example Z;(A) = card{u € N, : Y, (t) €
A} where A is any Borel set.

A whole array of questions can be asked about the large time behavior of the
process Z = {Z;()}+>0. Basic questions which address the concepts of ‘local
extinction’ and ‘recurrence’ (however undefined as yet) focus on whether this



process will visit nonempty open sets infinitely often and if so, how can this be
quantified. Surprisingly there are few results in this direction in existing liter-
ature. In the late fifties and sixties, there were a small cluster of papers which
considered simple properties of either general or specific examples of branching
diffusions. Specifically we speak of the (former) Soviet and Japanese contri-
butions of Sevast’yanov (1958), Skorohod (1964), Watanabe (1965, 1967) and
Tkeda et al. (1968a,b 1969).

Some results can be found amongst these references pertaining to the kind
of problems we have alluded to above, in particular Watanabe (1967). In more
recent times, the number of articles concerning growth and spread of branching
diffusions are again largely restricted to special cases; for example branching
random walks and branching Brownian motions or simple variations thereof.
Notably Biggins (1979, 1992) has produced local limit theorems analogous to
the one in Watanabe (1967) which demonstrate that numbers of particles in any
Borel set can be appropriately rescaled over time by their average to achieve a
‘Law of Large Numbers’ type result. Ogura (1983) also showed for branching
diffusions where the motion process is a Brownian motion with (a restricted
class of) space dependent drift that in a given compact set, the number of
particles will become zero and remain zero or a strong law of large numbers can
be produced for the number of particles in that set.

By comparison, the recent developments and popularity of measure-valued
diffusions (superdiffusions) have given a more thorough treatment of analogous
issues concerning concentration and migration of mass. It is almost impossible
to give a full account of books and papers on measure-valued diffusions. We
therefore restrict ourselves here by mentioning the two basic textbooks Daw-
son (1993) and Dynkin (1994) and the recent monograph Etheridge (2000) on
measure-valued processes in general, and the articles Delmas (1999), Englander
and Pinsky (1999), Tscoe (1988), Pinsky (1995b), Pinsky (1996) and Tribe (1994)
regarding the long term behaviour of these processes (when then underlying mo-
tion process is a diffusion) in particular.

In this article we have three main goals. The first is to formalize the rela-
tionship between the operators L+ 3 and L+ 8¢ (where ¢(z) = 2 —2) and two
classes of martingales related to the Markov branching diffusion. Secondly to
introduce the concept of ‘spine’ decomposition for Markov branching diffusions.
Thirdly we aim to show the functionality of these two by applying them to the
fundamental question of local extinction versus recurrence.

1.2 Inner-product and multiplicative martingales

In the mid nineties the article of Lyons et al. (1995) appeared which formalized
a new approach to analyzing some fundamental problems in the Galton-Watson
process. It was shown that a classical martingale, that has been a popular ob-
ject of study in earlier years (numbers alive in the n-th generation divided by
their expectation), can serve as a Radon-Nikodym change of measure on the
space of Galton-Watson branching trees. The effect of this change of probabil-
ity is to pick out a randomized line of decent, called the spine, and to size-bias



offspring distributions associated with each node along the spine. In the case of
Galton-Watson processes, the spine dominates the behavior of the process under
the new measure. That is to the extent that simple and intuitively appealing
probabilistic proofs of classical theorems can be achieved where the original
proofs were more analytical and complicated. In fact, this phenomenon is not
particular to Galton-Watson processes. A number of authors have shown that
similar constructions can be produced for a variety of non-spatial and discrete
time spatial branching processes; see Lyons (1997), Kurtz et al. (1997), Olof-
sson (1998), Athreya (2000), Kyprianou and Rahimsadeh Sani (2001), Biggins
and Kyprianou (2001). In each of these cases a naturally occurring martingale
is used as the appropriate change of measure. The ‘natural occurrence’ of these
martingales is a consequence of the fact that they are constructed from pos-
itive harmonic functions. Take for example the case of a discrete time typed
branching process. Roughly speaking for this case, the afore mentioned mar-
tingales are of the form A=" >, h(X;) where the sum is typically taken over
individuals alive in the n-th generation, X; is the a type of individual ¢ (which
could be for example a birth position) and & is an eigenfunction with respect
to the expectation operator with eigenvalue A. The last of these properties can
be written, using obvious notation, F;[>", h(X;)] = Ah(x) where X is the eigen-
value. See Athreya and Ney (1972, Chapter VI.4), Athreya (2000) and Biggins
and Kyprianou (2001).

In Section 2 we show that the idea of martingales from harmonic functions
transfers comfortably into the context of Markov branching diffusions. In this
case, the analogous class of martingales takes the form exp{—At} [ h(y)n: (dy)
where 7 is an appropriately evolving point process embedded within the Markov
branching process and h is positive and harmonic with respect to I + § — A
for some appropriate A € R. These martingales we refer to as innerproduct
martingales (for the case of branching Brownian motion, they have also been
referred to in the past as ‘additive’ martingales).

In Section 3 we follow the trend of the previously mentioned literature and
show that we can use a specific class of these martingales to serve as changes
of measure for the branching diffusion. The effect of the change of measure is
to perform a Doob’s h-transform on the diffusion along a randomized ancestral
line of descent, the spine, whilst doubling the rate of fission along this path. Tt
will turn out that this fact is a direct consequence of Girsanov’s theorem for
diffusions and Poisson processes. It is worth remarking that in the context of
superprocesses, there exists a path decomposition similar in spirit to the spine
construction when one conditions a supercritical superdiffusion to survive. In
this case, the conditioned process can be recovered by taking a particle Markov
branching diffusion as a ‘backbone’ process along which there is a continuum
of immigration at each space-time point according to the superdiffusion condi-
tioned on extinction; and finally add a version of this process with a random
number of initial particles to the process conditioned on extinction. This is also
referred to as the ‘immortal particle picture’ (see Etheridge (2000), Evans and
O’Connell (1994) and Engliander and Pinsky (1999) for an overview). It is an-
ticipated that there is a link between these backbone processes and the spines



that we define here. We hope to offer in future work some insight into their true
relationship.

There exists another class of martingales in the context of Markov branching
diffusions. These are closely related to the non-linear operator L + 81 (recall
that ¢(z) = 2% — z). The works of Tkeda et al. (1968a,b and 1968), Skorohod
(1964) and McKean (1975) all demonstrate clear links between multiplicative
martingales and positive bounded solutions to parabolic differential equations
of the form u; = Lu + B(u® — u). Later, other authors such as Neveu (1988),
Champneys et al. (1995), Harris (1999) and Kyprianou (2001) used these facts
to work with these multiplicative martingales as tools in the context of (typed)
branching Brownian motion. Of particular note is their use to date in analyzing
travelling wave solutions to the Kolmogorov-Petrovskii-Piskunov (K-P-P) equa-
tion or variants of it. In this article, we too shall need multiplicative martingales
as tools in our proofs. For this reason, we spend a little time in Section 4 to
discuss their relationship with the semi-linear operator L + . It will turn out
that when evaluating the probability of local extinction in certain circumstances
(discussed in the following section) we are essentially considering whether there
exist travelling waves solutions to a generalized version of the K-P-P equation.

1.3 Local extinction versus local exponential growth; re-
currence

The issue of local extinction can be understood in the following context. Given
any nonempty open set B CC D (the notation B CC D means that the closure
of B is a bounded subset of D) what are the necessary and sufficient conditions
for this set to be visited for arbitrarily large times with positive probability? It
turns out that the answer to this question boils down to a simple dichotomy
concerning a spectral condition on the linear operator L + 8. That is to say,
whether its generalized principal eigenvalue (defined shortly) is positive or not.
This fact reflects a similar scenario that has been obtained for superdiffusions
in Pinsky (1996) and Englander and Pinsky (1999). We are also able to provide
some weak results pertaining to characterizing the growth in the number of
individuals in the given set B when it s visited for arbitrarily large times
with positive probability. In section 7 we discuss several concrete examples of
branching diffusions where the issues surrounding the dichotomy we demonstrate
can be clearly seen.

To formulate the question of local extinction more precisely we make the
following definition.

Definition 1 (local extinction) Fix an z € D. We say that Z under P,
ezxhibits local extinction if for every Borel set B CC D, there exists a random
time 7 such that

Py(tp < o0) =1 and P;(Z;(B) =0 for all t > 75) = 1.

Remark 2 Since 7 is a discrete particle system, the above definition of local



extinction is tantamount to
Py <1imZt(B) = 0) =1.
ttoo ’

In the sequel we will use the following notation. We write C% (D) to denote the
space of twice continuously differentiable functions with all their second order
derivatives belonging to C%(D). A C?%“-boundary is defined with the help of
C?“maps in the usual way.

Let

Ae = A(L+5,D) :=inf{A € R : Ju > 0 satisfying (L + 8 — A)u=01in D}

denote the generalized principal eigenvalue for L + 8 on D (see section 4.4 in
Pinsky (1995a) or Appendix A for further elaboration). From a probabilistic
point of view, the generalized principle eigenvalue can be equivalently expressed
as

Ae = sup lim ! log E;, <exp </0 B(Y (s)) ds) > t> ,

{A: ACCD, 84 is C2a)ttoo 1

for any € D, where 74 = inf{t > 0: Y (¢) € A}. From the above probabilistic
representation of A, it is clear that A. < oo since § is bounded from above. Tt
is standard theory (see Appendix A) that for any A > A., there exist a function
0 < ¢ € C»%(D) such that (L + 3)¢ = A¢ on D.

The main results concerning local extinction/exponential growth are as fol-
lows.

Theorem 3 (local extinction versus local exponential growth)

(i) For any Borel set B CC D and z € D,

ttoo

P, (limsupZt(B) =0 or oo) =1.

(it) Fiz © € D. The branching diffusion Z under Py exhibits local extinction
if and only if there exists a function h > 0 satisfying (L + f)h =0 on D,
that s, if and only if A. < 0.

(iii) When A, > 0, there exists a function p in [0, 1), such that
P, (tl#m Zy(B) = 0> = p(z) for all nonempty open B CC D, (2)

and furthermore, p solves Lp + B(p*> — p) =0 on D.



(iv) When Ao > 0, Z exhibits local exzponential growth: for any A < A, there
erists a (large enough) By CC D such that for all z € D,

P, <lime_>‘tZt(B)\) = oo> > 0.

ttoo

The next corollary follows from part (ii).

Corollary 4 The local extinction property does not depend on z € D; that is,
etther 7 under P, exhibits local extinction for all x € D or it does not exhibit
local extinction for any z € D.

The reader will note that once the martingale tools are in place, the proof is
reasonably straightforward and does not require a great deal of intricacy thus
motivating the martingale theory presented in sections 2, 3 and 4. The elemen-
tary nature of the arguments can also be seen when comparing our method with
the techniques employed by Ogura (1983) to deduce similar conclusions for a
much less general class of branching diffusions.

Remark 5 (total mass) In Theorem 3 we were concerned about the local
behaviour of the population size. When considering the total mass process
[|Z]] == (1,Z), it is easy to see that the growth rate may actually exceed A..
Indeed, take for example a (transient) diffusion corresponding to L on D with
Ao := A (L, D) < 0 and let 3 > 0 be constant. Then A.(L+ 8, D) = B+ X < S,
but — since the branching rate is spatially constant — a classical theorem on
Yule’s processes tells us that e=t||Z;|| tends to a nontrivial random variable as
t — oo, that is, that the growth rate of the total massis g > A..

It is not clear when the function p in Theorem 3 is equal trivial solution 0
and when it is otherwise a non-trivial solution to the equation Lu+g(u*—u) = 0
on D. If there is no ‘non-trivial’ solution to the semi-linear elliptic equation, we
obtain a ‘zero-one law’ concerning the probability that a nonempty set B CC D
becomes eventually vacant.

Corollary 6 (local extinction versus recurrence) Assume that the equa-
tion Lu + B(u? — u) = 0 has no solution in [0, 1] except the trivial ones u = 0
and w = 1. Then either

limsup Z;(B) = co, Py—a.s. for all z € D, and nonempty open B C D,
ttoo

or

limZ(B) =0, Pp—as.forallz € D, BCCD

ttoo

according to whether A\, > 0 or A, < 0.



An active example of this Corollary concerning branching Brownian motion
will be shown in Section 7. In that case, Lu+3(u?—u) = 0 takes the form of the
travelling wave equation to the K-P-P equation; (1/2)u” + cu’ + B(u? —u) =0
where ¢ is the wave speed and g is a constant.

One can think of Lu + B(u? — u) = 0 as a generalization of the travelling
wave equation associated with the K-P-P equation. Essentially then the ques-
tion of the uniqueness and non-triviality of p would seem to be questions about
existence and uniqueness of ‘travelling waves’. This provides then another mo-
tivation for this work. Tt emphasizes probabilistic interpretations of travelling
waves. In the future we hope to offer further insight into these matters.

Pinsky (1996) and Englander and Pinsky (1999) consider similar questions
for another type of spatial branching process, the superdiffusion correspond-
ing to the semilinear operator Lu 4+ fu — au? where a and § are related to
the variance of the offspring distribution and to the ‘mass creation’, respec-
tively. Their conclusions are proved by considering the relationship between
the superdiffusion and solutions to the parabolic partial differential equation
Ou/Ot = Lu+ Bu — au? with appropriate initial and boundary conditions. The
behaviour of solutions of this class of parabolic equations together with an un-
derstanding of how to express the behaviour of the superdiffusion in terms of
these solutions is fundamental to their methodology. Given that the branch-
ing diffusion we have described here 1s associated with the semilinear operator
L + (i one might argue that with some mild adaptations to the case a = 3,
the analytical arguments of Englander and Pinsky (1999) can be re-employed
here. Indeed that is the case and in Section 6 we follow this line although the
results obtained are weaker than what the probabilistic techniques deliver. In
particular, only part (ii) of Theorem 3 is proved using the analytic approach.
This again emphasizes the motivation for pursuing probabilistic techniques.

1.4 Outline

The rest of this paper is organized as follows. In the second section we give
a number of results concerning inner-product martingales and their connection
to certain partial differential equations. This section will later be completed
by section four which treats similar questions for multiplicative martingales.
Between these two sections, we present a key section (Section 3) which contains
the “spine-construction”. In section five we utilize the preceding three sections
and prove the theorems stated in subsection 1.3. An analytical proof of Theorem
3 part (ii) will be shown in section six. Then, in section seven, we complete the
theory with several concrete examples. Finally, Appendix A is intended to make
this paper easier to read by giving the necessary background material.

2 Natural inner-product martingales

As is well known, the theory of diffusion processes lays down a clear relationship
between positive harmonic functions and the existence of certain martingales,



leading to the stochastic representations of solutions to certain partial differ-
ential equations. For an account of this theory one can consult Karatzas and
Shreve (1991) for example.

The story is very similar for branching diffusions and that forms part of
the motivation for this section. In what follows we shall show that positive
functions that are harmonic with respect to the operator L + g — A for A € R,
either on the whole domain D or a compact subdomain such as a ball B, are
intimately linked to certain martingales which can be written as functionals of
the (L, #)-branching diffusion. The results we shall prove are by no means an
exhaustive analogy of what can be proved for diffusions, but they suffice for
our purposes. The connections we present are not exclusively new. It is clear
that other authors have pursuing these connections in the past, see for example
Watanabe (1967), Tkeda et al. (1968a,b, 1969), Champneys et al. (1995) and
Harris (1999). Our exposition, if not providing more general results within
this context, uses more elementary, probabilisitic proofs. In particular, we will
not (unlike in section six) rely on the theory of evolution equations and their
connection to the Laplace-functional of Z, but rather on arguments only using
standard branching decomposition together with Ito’s formula for the single I-
particle. Thus, on bounded domains, for example, one does not have to worry
about the appropriate boundary condition for the semigroup, nor about the
question, why the solution to the integral equation becomes actually a classical
solution.

Before continuing with the results we need to introduce some notation. Let
Fi be the natural filtration generated by Z;. For any Borel set B CC D, let

us denote by 7 = {Zg > 0} the process corresponding to the branching

diffusion 7 where particles are instantly annihilated when they meet 0B. We
let NP consist of those individuals who are first in their line of descent to hit
OB. Recall the stopping time 7% = inf{t > 0: Y(t) € B}. We would like to
define similar objects for each u € N,2. Henceforth for such a u, we denote the
finite hitting time of B by 2. For technical reasons, we also need to define
7B for u @ NP, for such an individual, 7,? := co. Finally for each individual u,
let o, be their time of death and note that in their particular ancestral line of
descent, if |u| = n then o, is the time of the n-th arrival in a Poisson process
with inhomogenous intensity A(Y (¢)).

Theorem 7 (Local inner-product martingales) Consider a ball B CC D
(or indeed any other compact set with a C*“-boundary). Let h € C*»*(B),
h>0o0on B and A € R. Then

Wth (B) = <hT

15 a Pp-martingale for all x € B with respect to F; if and only if

(L+B—-Xh=0inB.



Proof. We begin by assuming that W/ (B) is a martingale so that neces-
sarily E, (W} (B)) = 1 for all z € B and t > 0. By conditioning on the first
fission point we have for all z € B

h(z) = Ez(h(Y(t/\TB))e—fJ”BW(Y(s))ds)

tAT
+ /
Q
It f()H()WS that

tAT
M; = exp —/
0

B

+ /OMT 28 (Y () e Jd MEY NI B (Y (5)) ds ®

20(Y (5)) €™ Jo PN (v (5)) dS) - ()

B

)\+[7)(Y(S))d8) h(Y (t/\TB))

is a martingale. If h € C? (B), an application of It6’s formula shows that when
M; is written as an Ito diffusion, as the drift component is necessarily zero, we
are forced to have (L — f — A)h = —2fh on B. Thatis (L+ 8 —A)h =0 on B,
finishing the proof in one direction.

For the other direction, let us assume that (L +8—A)h = 0 on B (and
hence necessarily h € C? (B)). Suppose it can be proved that E, W} (B) = 1
for all £ > 0 and z € B. Then the result follows from the decompos1t10n

Wi, (B) = Z 6_’\t<h, >+ Z ) omATY

ueN, u€NP
+ Z Z u’u uu))e—)\(‘rfv—t)
uEN, quNB
B
= S e+ Y PO D) e
wen, G

where given Fy, 7, (u) and W (B, u) are independent copies of 7, and W (B)
under the law Py, ;) respectively.

It remains then to prove then that E, W, (B) = 1 for allt > 0 and = € B.
First some new notation. Let £ to be those individuals who, during their life
time, cross the boundary 9B before time ¢ for the first time their ancestral
history or are alive at time ¢t without having an ancestor (including themselves)
who has met the boundary dB. In the terminology of Chauvin (1991), this is a
stopping line. Let Az (n) be those individuals in the n-th generation who are
neither in £, nor have an ancestor in £. Now define

ay h (Y (t
Wl (B,n)= Y e—A(fAm)(h(é S g h(Yu(ou))
|U|E<£ UEAL )

10



We shall now show that this is a mean one martingale with respect to Gy,
the natural o-algebra generated by the complete life all individuals up to and
including the n-th generation. Note that for individuals u in the n-th generation
or less, a,,, 7,2 and membership of £ are G,-measurable.

Using the assumption on h and Tt&’s formula (recall that A has bounded
derivatives on B) , it follows that (4) is a martinagle and thus we have a
stochastic representation for h given by (3). This representation can otherwise
be written

h(z) = T, (1(u>tArB)6_)‘(MTB)h (Y (t A TB))
+ Lpcinrmy2¢ B (Y (W) h (Y (v))) (5)

for all ¢ > 0 where v is the first fission time in our branching process. Now
consider the decomposition

—(tAr?) h (Yu (t A Tf))

Wi (Bn+1) = Y e )
ueLl K
lul<n
LR EATE) o
"> Z{ e )
u€As(n)i=1 /

o B (Yui(ows))
¢ Aoy ]
+ 2e h (Jf) 1(”’“5“\75) :

By taking conditional expectations in this decomposition with respect to G, and
applying (5) the martingale property is proved.
Now note, using (5) again, that

E. (Wl (B,n)) = FE. (W (B,0))
= (1<u>tArs)e—A(tArB>W
+ 1 gonm2e Y (Vlz)(.:)(y (V)))

= 1.

The branching process does not explode in a finite time, and hence Az (n) —
almost surely. This together with monotonicity implies

1 = liTmEx (W (B,n))
. Y o h (Y (o))

_ h ¢ Aoy
= B (W (B)) 4 lim E ueAL(n)Ze h (z)

We want to prove that the limit on the right hand side is zero. To this end note
that for u € Ag (n), oy € [0,], his bounded on B, Az (n) C {|lu|=n: 0, < t},

11



and the n-th generation contains 2” members. We thus have the upper bound

E, Z Q—MUM < KePtokp (v, < 1)
u€Ag(k (x)

where v is the time of the k-th arrival in the Poisson process {n: : t > 0} whose
intensity at time ¢ conditional on Y is (Y (2)) . Since {n; > k} is equivalent to
{vr < t} it follows that

ZEE Z 26_)‘””71‘(;) w)) < Ixep‘ltZEz ( 2Bt - ’)

k>0 ’U,E.AL k>0

A

KelltE, (e81)
< KellA4sup ep B(z))t

where B; = exp {fot BY (s)) ds} . The finiteness of this sum implies necessarily
that

mE, [ > DA U G )

ntoo uEAL( )

hence E, (W} (B)) = 1 and the proof of the Theorem is concluded. m

The following result is an immediate consequence of the previous theorem.
Denote by A the principal eigenvalue of L+ 3 on B (that is the supremum of the
real part of the spectrum). Recall that (see for example Theorem 3.3.1in Pinsky
(1995a)), the corresponding Dirichlet-eigenfunction ¢ belongs to C*(B), and
¢ >0 on B (while ¢ =0 on 0B).

Corollary 8 (Dirichlet inner product-martingales) The process M? de-
fined by

b b () _ b )
ME= D TR T e

ueﬁt

is a Py-martingale with respect to the filtration generated by the branching pro-
cess for all x € B.

Here is another version of Theorem 7 but with a little weaker assumption on h.
In fact we will not need this version in the rest of the proofs but it shows there
are much deeper connections with Dirichlet problems for diffusions.

Theorem 9 Let B CC D be a ball, h : B — (0,00) a C(ﬁ)-function and
A > 0. Then

(n2) A .
Wi (B) = h(z) Mt Th@) ¢ A

=

uENtB

12



1s a Py-martingale with respect to the filtration generated by the branching pro-
cess for all x € B if and only if

(L+B—Ah=0inB.

Proof. Suppose that W} (B) is a martingale. Then necessarily we have (3).
Indeed by bounded convergence (A > 0) we can write

h(z) = Ez<h(Y (TB))e—fJBAw(Y(s))ds)

+E, (/0 20(Y (5)) ™ Jo MDA (v (S))d8>- (6)

The unique solution to the Dirichlet problem (c.f. Karatzas and Shreve (1991))

(L—(B+A)u = —2Bhin B
u = hon0B.

has stochastic representation equal to the right hand side of the above stochastic
representation of h and hence u = h. That is, (L + f — A) h = 0in B. Note that
we used A > 0 to guarantee the potential is positive and that h is continuous on
B. These conditions together are sufficient to guarantee that the above Dirichlet
problem has a unique solution with a stochastic representation.

Now suppose that (L + 8 —A)h = 0 in B. The function h can be written
as a solution to the above Dirichlet problem. By uniqueness and the stochastic
representation of the solution this implies that (6) and hence (3) or equivalently
(5) holds. The proof is completed in the same way as the previous Theorem. =

For both the Theorems above we have used a technique of approximating the
expectation of our candidate martingale via a generational decomposition. This
technique is essentially based on a method used by Chauvin (1991) who used
it to show the existence of multiplicative martingales for branching Brownian
motion. Not surprisingly this method will be used again when we look in more
detail at multiplicative martingales.

The martingales we have considered so far are ‘local’ in the sense that they
concern the branching diffusion up to containment in a bounded domain B.
Once this containment is removed, it is not necessarily true that we can make
discounted inner products which function as martingales. This reflects a similar
situation for diffusions. We finish this section with the global version of the
previous results.

Corollary 10 (Inner-product (super)martingale) Suppose that 0 < h €
C?%(D) solves the elliptic equation (L + 3 —A)h =0 on D. Then
h _ =Xt <h:Zt>
W' =e —h(:r)
is a (nonnegative, right-continuous) P, -supermartingale for all x € D, hav-
ing an almost sure limit as t 1 oo. Conversely if W is a martingale then

(L+B—A)h=0onD.
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Proof. By taking an increasing sequence of balls B, such that D C |J,, B, we
produce a sequence of equalities in n of the form

Ey (W] (B,)) =1forall z € By, t > 0.

(Note that obviously h € CQ’O‘(B_,I) for all n.) Fatou’s Lemma together with
conservativeness of the underlying diffusion Y implies that for all € D (starting
the limit from sufficiently large n)

1= liTm E, (W} (Bn)) > E, (hTm wi (B,,)) =B, (W}).
The supermartingale property follows from the decomposition

h (Y (¢
Wi = 3 e
uEN; !
where given F;, W/ (u) are independent copies of W under the law Py 1)
For the converse, use conditioning on the first fission time to produce another
martingale similar to (4) with 72 A ¢ replaced by ¢, then apply Tt6’s formula as
before. m

Remark 11 When considering the proof of Theorem 7 one can adopt the
methodology in one of the directions there to prove that if (L + 3 — A)h =0 in
D then W/ is a martingale, providing certain growth conditions hold on h. We
do not specify general growth conditions, but we will use this fact in the first
and last examples of Section 7

3 Girsanov-type theorems, h-transforms and spines
for branching diffusions

The aim here is to give a construction of a change of measure with respect
to P, which has the effect of identifying a randomized distinguished line of
descent, the spine, and adjusting the diffusion and rate of reproduction along
that line of decent according to a classical Doob’s h -transform. This change of
measure, discussed in Subsection 3.2, is defined by the Dirichlet innerproduct
martingales discussed in Section 2. The structure of these martingales can be
decomposed into traditional Girsanov densities for diffusions and jump processes
thus rendering them contemporary with the ubiquitous Girsanov Theorem.

We remind the reader that whilst the results in this section are new, we
are not necessarily introducing new technology. We will show here how the
fundamental concepts behind Lyons et al (1995) concerning size basing and
spine decompositions translate and generalize to the Markov branching diffusion
setting.

Let B be a bounded domain with C?®-boundary . Let A = A.(L+ 3, B) and
¢ be as in Corollary 8. Section 4.7 of Pinsky (1995a) concludes that L+5— X is a
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critical operator. Let %be the eigenfunction corresponding to the formal adjoint
of L+3—X.. Since ¢ and ¢ are bounded, we have [, ¢(z)¢(x)dz < oo and thus
by definition, L + 8 — X is a product-critical operator (see the Appendix). Note
also that on account of invariance properties under h-transforms, the operator

\Y

(L+8-X°= L+l .y

¢
is also product-critical, which means that the corresponding diffusion is positive
recurrent; thus ergodizing with full support on the interior of the domain B.

3.1 Girsanov theorems for diffusions and Poisson processes

Let Py be the law of the diffusion Y corresponding to the elliptic operator 7 on
D. There are two important changes of measure associated with these processes
which we shall now discuss.

Firstly, we quote a special version of Girsanov’s theorem for diffusions which
concerns Doob’s h-transforms. Before stating this result we shall define {G;},+
a filtration with respect to which the process Y is adapted. -

Proposition 12 (Girsanov’s theorem for diffusions) Suppose that B, qﬁ,g
and X compose the Dirichlet set-up as above then there exists a probability mea-
sure P? defined by

P t
% (Y) = 1(t<rs)%e)(p {_/0 A— [)’(Y (S)) ds}

G1
where P,? is the law of a diffusion corresponding to the operator

V¢
Ltag-V.

The new diffusion does not hit the boundary and s positive recurrent in B.

The second change of measure that will be of importance i1s the Girsanov-
type change of measure for the Poisson process n (conditioned on the path of Y
). We do not claim the result is new, it is included merely for completeness as
it 18 easy to prove and not necessarily easy to find in the literature. For this we
suppose that {#;},., is a filtration with respect to which n is adapted. Further

denote by H,f/ the law conditioned on the process Y of a non-homogeneous
Poisson process, n = {v; : i = 1,...,nt},, with instantaneous rate 8 (Y (t)).

Proposition 13 (Girsanov-type theorem for Poisson processes)

N (n) = 2" exp {— /Ut B(Y(s)) ds} :

L3’
.
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Proof. There are a number of ways that this can be proved. The simplest
and quickest is to recall that the (non-homogeneous) Poisson process n;, being
a submartingale, can be characterized by its compensator (that is the increasing
process that appears in its Doob-Meyer decomposition) and therefore through
a martingale representation, see for example Kallenberg (1997). In this context
that means that n is a ILM Poisson process with instantaneous rate 23 (Y (t))

if and only if n, = ny — fo 28 (Y (s)) ds is a martingale with respect to H;. On
account of the fact that n has 1ndependent increments, it suffices to check that
7 has ﬂ‘;’e -expectation 1 for all £ > 0. This is a straightforward computation
using the above Radon-Nikodym derivative. m

3.2 Spines on bounded domains

Theorem 14 (Girsanov-type theorem for branching diffusions) Assume

that B, ¢,$ and X compose the Dirichlet set-up as in Proposition 12; then there
exists a probability measure @y for 7 defined by

dQ.
dPy |z

= Mt¢~
Further, under this change of measure, the branching diffusion has a randomized

line of descent, the spine, that diffuses with corresponding operator

Vo
¢

which does not hit the boundary OB and is positive recurrent.

L+a -V

Proof. The branching diffusion 7 can be considered to be defined on the
space (T,F, Py) where (7,F) is the appropriate measurable space of marked
trees. Note that the marks are points in the path space of of Y and n. (See
Chauvin (199]) for a rigorous deﬁnition). For any Y € 7 there exist distin-
guishable genealogical lines of descent from the initial ancestor. In following
such a line of descent we identify its spatial path & = {{;:},+,-

Let 7* be the enriched space of marked trees in 7 with distinguished line
of descent and F* = o (F,T*) the sigma algebra it generates. Write T; for
the subspace of marked trees in 7 which are truncated (in the obvious way)
at time ¢. Let Ff = o (7;*) where 7,* is the space of marked trees in 7; with
distinguished line of descent.

Given any (Y,§) € 7%, the measure P;| foreach z € B can be decomposed
according to a particular choice of distinguished line of descent giving the path
of the spine so that

dPr (V)| = D Lemvaey) 4P (Y, 6)l 5, (7)

u€ Ny
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where P} F: is a non-probability measure satisfying

dP;(Y,€)

7 ><dIL

Fr = d]P)z (5) }-* X HdPEU |]_~t vi

and the tree Y is decomposed into the distinguished line of descent (with path
&) and Y;, the marked subtrees growing off it.
We can define a bivariate probability measure Q;|7; on the measurable

space (7.%, F;) for each z € B such that for (Y,¢) € T,

¢ (&)
¢ (2)

where we understand 78 = inf{t > 0 : ¢, ¢ B}. Decomposition (7) enables us to
marginalize @} |z. to a probability measure on (7;, F¢) , say Qq|f, , satisfying
; )

dQz (Nlr, = D Lig=vuqey) 4Q5 (Y, 8)] .

u€E N,

= Y T 5o apr (v, 6l

ue N, (l')

- -“Z¢ f P (1)),

uEN,
= M dP. ()l

dQ; (Ya€)|.7~'t* = 1(TB>t) e dp:: (Ya€)|}'; (8)

The effect of the change of this change of measure on the branching process can
be seen though (8). Rewrite this identity as

¢(£f) —f A=pB(€s)ds dP, (E)

dQ; (Yag) F 1(7-B>t) ¢( )

Fi

1 ¢
) — x e~ Jo PE)ds o 1.8 ()
2 ¢

Fi

XHdPEV i)z, Vi

= o x AP,

2
s X dLgﬂ ()| 7y

XHdPEv |];-t i

With Propositions 12 and 13 in mind we see that this decomposition suggests
that under @ the branching process evolves as follows:

(1) a particle moves as a diffusion corresponding to the operator

Vo

(L+B-N?=L+a— V.
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(i1) at rate 23 this particle undergoes binary fission,

(iii) at the instant of fission one of the particles is chosen with probability 1/2,
(iv) the chosen particle repeats steps (i)—(iii) and

(v) the particle which is not chosen initiates an (L, 3) -branching diffusion.

The randomized line of descent we refer to as the spine. The spatial path
along the spine corresponds to the operator (L+3—\)?. Indeed for further con-
firmation, one can perform the following calculation showing the distributions
of the spine position and the number of fissions along the spine. Let A C D be
a Borel set, then

Qr (& € Any=k)
::/Zl =t nemk) AQ% (Y, 6) 5,

uEN:
1
- Z Livu(t)=ti€a, n=k) X 5
ueN,
s dpf (£)|]:; x dlgﬁ '7:* x Hdpfu |.7‘-1: v,

21::
1 2
= 52 [ onimtien mm x4 [P X LE] (€0,
i=1

XHdPEU |-7:t vi

where the indicator in the integral forces there to be precisely 2% nodes in the
marked trees we are considering hence justifying the third equality. Completing
the computation we thus have

Qi (& € Am=k) = [PEx 1Y) (v (1) € A,m, = k)

indicating that the behaviour of the spine is that of the specified h-transformed
diffusion with the instantaneous rate reproduction doubled. m

Remark 15 In many cases (see the later sections containing Examples) the
inner-product martingales which were shown in Corollary 10 can be shown to
be martingales. In these instances, using a more general version of the Girsanov
Theorem for diffusions, it is possible to construct a spine which is not necessarily
confined to a compact domain by following the same procedure as above.

From this construction of a spine using the martingale Mf we are able to find
conditions under which the martingale itself will converge in mean. The im-
portance of this, as will be seen in the next Theorem, is that the measure @),
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becomes absolutely continuous with respect to P,. This will eventually enable
statements about the process under @), where the behaviour of the spine is
quite specific, to be transferred into statements under P,.

Theorem 16 Suppose that B, A and ¢ are the same as in Proposition 12. If
A > 0 then the martingale Mf is LY(P;) convergent for all x € B and hence
Qs L Py

Proof. First recall that M% = lim 4o Mf exists since we are dealing with
a positive martingale. Note that the result is trivial when z € 9B and hence
we only consider the case that z is in the interior of B. To prove this theorem
we make use of a standard element of measure theory. For the case at hand, it
says that

Q: € P, & limsupM;p < 00 Qg-as. < E, (M¢) =1.
ttoo

Suppose that & = o ((&, n¢) : ¢ > 0) is the sigma algebra generated by the move-
ment and reproduction along the spine. Let E@ be the expectation operator
associated with @}. Taking expectations under @} conditional on S we have

B (Mﬁ’

T

R e ® (Yui (1)) e ® (&)
§) = B\ X TS G

¢ (&)
¢ (=)

i=1 iueﬁt

RS e_xuﬁ('ful) Q* P
= 2T (w2,

_ N w0 g (&)
= 2T T e

(Z e M e‘“) X const. (9)

i=1

S) +e

IA

where in the last inequality we have used the fact that ¢ is bounded from
above on B. Now note since [ is bounded from above, the process n is stochas-
tically bounded above by the Poisson process with constant rate co > 3 >
supgep B (x) . Since for this ‘upper-bounding’ homogeneous Poisson process,
the equivalent version of the final sum in is almost surely convergent (one can
apply the Law of Large Numbers, or, alternatively, check that the right hand
side has finite expectation), then so is (9). We have thus proved that

limsup B¢’ (Mf‘ S) < oo Qr-a.s.
ttoo

It now follows from Fatou’s Lemma that

EY (11%1 inf M7

3) < oo @r-a.s.
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-1
and therefore lim inf; o Mt‘j> < 0o @r-almost surely. Since (Mf’) 18 a Qq-
martingale it has a limit Q}-almost surely and hence we have proved that

lim sup;4 Mt‘j> < 00 @, -almost surely and L' (P,) convergence follows. m

4 Natural multiplicative martingales

Browsing existing literature one will again get the feeling that the results we
present in this section are already embedded within existing knowledge. The
fundamental issue is the link between solutions to the non-linear elliptic equa-
tion Lf+B(f* = f) = 0 (on both compact domains B as well as D) and certain
martingales which take the form of a multiplicative structure. The reader is re-
ferred to Skorohod (1964), Ikeda et al. (1968a,b, 1969), McKean (1975), Neveu
(1988) and Harris (1999). Consistent with our earlier remarks about inner prod-
uct martingales we claim that the results here are to some extent more general
in this context than the current literature necessarily offers. Further, our proofs
are again probabilistic relying on similar techniques used for the inner product
martingales. Just like we did it for inner-product martingales, we start with a
local version. Again the reader will note the use of stochastic representations of
solutions to differential equations and generational decompositions.

Theorem 17 (Local multiplicative martingales) Let B CC D be a ball
and let f : B — (0,1] and f € C (B) . Then

gy - T L0 0) 1 L0 (D)
B =11 =5 11

ueN; UENtB

1s an Py-martingale for all x € B if and only if

Lf+pB(f*—f)=0on B.
Proof. First assume that ! (B) is amartingale. Necessarily F, (W{ (B)) =
1. By conditioning on the first fission time we obtain for all £ > 0,

B

fla) = E <f (Y (tA7B)) e o7 A ())ds
+/ By e fﬁﬁ%»dsds) (10)

showing that

B

ﬁ(Y(S))der/MT BV (5)) F2 (¥ (5)) €= Ji SOV g
0
(11)

inrB

f(Y (t/\TB))e_ 0
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is amartingale. By dominated convergence, it can even be seen to be a uniformly
integrable martingale and L' (P,) convergence implies

F@) = B (5 Py o)

+Ex (/0 BLY () f2 (Y (s)) e Ju? dst) 2)

Now consider the Dirichlet problem

(L-Au = —pf*inB
u = fondB

The unique solution to this problem (c.f. Karazas and Shreve (1991)) has
stochastic representation equal to the right hand side of (12) and hence u = f.
That is to say, Lf + 8 (f2 — f) =0in B.

Now suppose that Lf + 3 (f2 - f) = 0 in B. Considering f as the unique
solution to the above Dirichlet problem, we have (12) and hence (10). This
latter can otherwise be written as

F(@) =B (Lpsears)f (Y (EATP)) 4 Lpcinrs) F2 (Y (1))

(Recall that v denotes the first fission time). Using the same notation as before,
let

W{ (B,n) = H w H f ) (13)

|U|E<C uE.AL
u|<n

We claim that 7 (B,n) is a G,-martingale. To see this note that

A Bnsn = T L0u0ATD))
P (Bomtl) = };‘[L f(2)
|u|<n

2 f (Yui (t ATE))
L

f? (Vi (0s))
+ 1(gui§t/\rﬁ) 7 (@) }

and apply (13) to achieve the martingale property. Since f is bounded in
(0,1] it follows that W{ (B,n) is both an almost surely and L'(P;) conver-
gent martingale. The branching process is non-explosive which means that
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limptoo Az (n) = 0. These previous two facts together imply that

E, (w{ (B,O)) E, (fr{ (B))

FY (tATE 2y (y
= B (1(V>“\TB)%+1(USMTB)7JC ;‘(x() )))

=1 (14)
for all ¢ > 0. Observing the decomposition
f Yu t f YU TUB
7r{+s (B) = H %ﬂ'{ (B, u) H M (15)
ueN; ’ “ENtB

where give F;, m{ (B,u) are independent copies of 7{ (B) under the law Py, (s),
the expectation (14) together with the strong Markov branching property shows

that =/ (B) is a martingale. m
An obvious consequence is the following result.

Corollary 18 Let f : B — (0,1] be a member of C(B) and furthermore, let
f=1on 0B. The product

II f (Y (t)
- f(2)
uEN;
ts a martingale if and only if f solves Lf + (f2 — f) =0 on B.
Finally, we have the following result concerning the whole domain.

Corollary 19 (Multiplicative martingale) Let f : D — (0, 1] be continu-
ous. The product

ﬂ_f _ f(Yu (t))
=11 f (=)

u€ Ny
ts a martingale if and only if Lf + 3 (f2 — f) =0onD.

Proof. Tf w{ is a martingale then by conditioning on the first fission time
we obtain for all ¢ > 0,

oy = e (107 @) em 8o 4 [ o) 2 (v (0) = PO )
0

The Feynman-Kac formula (c.f. Karatzas and Shreve (1991)) now tells us that
the right hand side is the unique solution to du/dt + (L — f)u = —Bf% in D
with u(z,0) = f(z). Hence u = f and Lf + 3 (f2 — f) =0in D.

22



Suppose now that Lf + ﬁ(f2 — f) = 0 on D. Let B, be an increasing
sequence of balls such that D C |, B,. Since E, (W{ (Bn)) =1 forall z €

B,,, bounded convergence and the conservativeness of the underlying diffusion
implies that for all z € D

1= lim £, (nf (Ba)) = B Ql& nf (Bn)> =B (nf).

The martingale property now follows by a decomposition similar to (15). =

In contrast to the equivalent version of this Corollary for inner-product mar-
tinagales, note that the method of inflating domains preserves the martingale
equality on account of boundedness.

Remark 20 Using the Maximum Principle given in Proposition 3 of Pinsky
(1996) and/or Proposition 7.1 of Englander and Pinsky (1999), there is at most
one non-trivial (that is not identically one) solution to Lf + 8(f*> — f) = 0 on
B with boundary condition 1. Also any function g > 0 which is not identically
1 solving the same equation on B is smaller or equal than f. Note that in the
above two references for the maximum principle the term u? — u is replaced by
u — u?. One recovers the relevant form here by taking 1 — u in place of u.

Now assume that A. > 0. There exists a domain B, CC D for which
A=A (L + 5, Be), the generalized principal eigenvalue of L + 3 on B, satisfies
0 < A —€ <A< A.. Note that once we know we can find such B, then any
B! with a smooth boundary satisfying B, CC B, CC D also has this property.
Fix B and define the branching diffusion 7 obtained from Z by killing the
particles on meeting the boundary B, which we can assume is C%®smooth. As
previously remarked, the operator L 4+ 8 — X is critical on B. Let ¢ denote the
corresponding Dirichlet-eigenfunction. In Section 2 it is shown how to construct
an innerproduct martingale of the form

Mt¢> — At <j;’(f;>

where # € B.. The next Theorem uses the notation of this paragraph.

Theorem 21 When A. > 0 there exists a unique non-trivial solution to Lu +
8 (11,2 - u) = 0 such that u € (0,1) when in B, and u = 1 on 0B, which can

be characterized as either u(z) = p. (z) = Py (2 becomes extinct) or u(z) =
ge (¥) = Py (limtTm Mt¢ = 0) .

Proof. Note that it is automatic from their definition that on the boundary
of B, both probabilities are one. It suffices then to prove that both p. and ¢,
can be used to construct product martingales and are non-trivial. Uniqueness
is guaranteed by the previous Theorem and its following Remark.
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Theorem 16 shows that M;p is Ll(Pz) convergent for all z € B.. This implies
necessarily that the limit M? is strictly positive with positive probability and
on the complement of the extinction of 7 there can be no mass in the limit.
Consequently for z € B, we have

0 < pe() < ge(x) < 1 with pe(x) = qe(x) =1 on 0B..

This shows that the two proposed probabilities are non-trivial.
For the case of p¢, note that by a classical branching decomposition, for all
t,s>0

{ZH,S (Be) = 0} = {23 (u,B) =0forallue ﬁt}

where given F;, Z, (u, B;) are independent copies of Z, (B) under the measure
Py, t). Tt follows that

P, (2t+s (Be) = 0) =P | 1] Praw (28 P = O)

ueﬁt

Taking the limit as s 1 oo, the Dominated Convergence Theorem implies that
forallt >0

pe(@)=Fx | I] pe(vu @)

ueﬁt

A standard branching decomposition again shows that this last identity guar-
antees that [[, .5 pe (Yu (t)) is a product martingale.

Now turning to ¢., we note that, again appealing to a standard branching
decomposition, the innerproduct martingale M;” can be written as follows for
t,s >0

t+s

oy 0RO
Moo =7 2, =5 M W)

ueﬁt

where given Fy, M¢ (u) are independent copies of M¢ under the measure Pyt

Taking limits as s 1 oo, it is again clear from this equality that

UE[\\”

and hence Hueﬁt ¢e (Yu (1)) is a martingale. m
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5 Local extinction versus local exponential growth
and recurrence: probabilistic arguments

5.1 Proof of Theorem 3 (i)

Let Qo == {w € Q : limsupyo, Z¢(B) > 0}. First, note that it is sufficient to
prove that for all K € RT,

ttoo

P, ({limsupZt (B) < K} N QO) =0. (16)

Indeed, from (16) it follows that

P, ({limsupZt (B) < oo} N Qo> =0.
tfoo

Therefore we now prove (16). Recall that § is continuous and  Z 0, that
is, § 1s bounded away from zero on some ball. Using this along with well-
known positivity and continuity properties of the transition kernel p(t, z, y), it
is straightforward to prove that

¢(K,B) := inf Py(Z1(B) > K) > 0. (17)

reB
Although (17) is intuitively clear, the precise formulation of its proof is a bit
tedious, and therefore we skip here the technicalities.
Then, by the strong Markov-property,

Py ({limsupZt (B) < K} N QO) < liTrn (1—e(K,B))" =0,
ttoo ntoo

finishing the proof.

5.2 Proof of Theorem 3 (ii)

Assume that A, < 0. This means that I + § is critical or subcritical which in
turn means by definition (see Appendix A) that one can pick an h > 0 with
(L 4+ B)h = 0 on D. According to Corollary 10 Section 2, the innerproduct
(h, Z;) is a supermartingale, bounded above in expectation by h(z). Since h is
bounded below on compact domains; it follows that for all B CC D, Z; (B) <
const.x (h, 7Z;) and hence by comparison, when z € B

limsup Z;(B) < oo Py-as.
tfoo
It now follows from part (i) that
limsup Z;(B) = l%m Zy(B) =0 Py-as.
) = am .

ttoo
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Now assume that A, > 0 and let B, A, 2, 0, Mf’, pe and ¢, be as in Theorem
21. Theorem 14 shows that Mf can be used as a change of measure for the law
of the branching diffusion,

d
Qu = Mt¢.
dP; 7,

Further, under @, there is a randomized ancestral line of descent whose path is
the diffusion ¢ = {&; : ¢ > 0} corresponding to the operator

Vo
L + 07 . V,
on B, so that & lives on B¢, and is positive recurrent.
It was shown in Theorem 21 that

pe () = Py (2 becomes extinct) =P, (M¢ = 0) =g (z)

and pe(z) = ge(z) = 1 on 9B,. Clearly Q, < P, and on {M? > 0} the two
measures are equivalent (with probability 1 —¢. = 1 —p.). As we already know
that under @ there is one particle (whose path is that of the spine) which
ergodizes on B, with full support on the interior of B, then we can say that for
any Borel B C B. and z € B.,

Q. <li1;ﬁ}iant(B_) > 0) =1.

Since dQ, = M?®dP,, it follows that

P, (lim sup Zy(B) = oo)

ttoo

P, <li£IT1 inf Z,(B) > 0>

1 —qe(x)
1—pe(z) >0

v

Note we have used again the fact that with probability 1, the limsup,4, Z(B)
is either zero or infinity from part (i). Since we can arbitrarily inflate B,
to enclose any z € D, we have proved that non-local extinction occurs with
strictly positive probability for all Borel subsets of ). Note, generally speaking
the larger B, is chosen, the higher the value of the lower bound. Part (ii) of the
Theorem is now proved.

5.3 Proof of Theorem 3 (iii)

For each * € D we can take a sequence of domains with smooth boundaries
{Bn}, >, satisfying z € B, CC Bny1, UBn =D (and Ac (L + 3, Bn) T Xc.) It
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follows by monotonicity that in a pointwise sense p, (z) | p(x) where p, (2) =
pe (z) if we would take B, = B,,. Note that in the limit p(z) € [0, 1). Further,

Lp+ 8 (p*=p) =0on D. (18)

Remark 20 shows that in fact, p is the maximal solution to (18) in [0, 1). Refer-
ring to the last paragraph of the previous part of the proof, we now have that
p(z) = P, (lim SUPypoo Zt(B) = 0) < p(z) for all z € D. The function p(z) is
also a solution to the equation (18). To see this, note again from the branching
property that for ¢,s > 0

{limsupZH_s (B) = 0} = {limsusz (u,B) =0forallue Nt}

stoo stoo
where given F;, Z; (u, B) are independent copies of Z; (B) . In a similar way to

previous analysis, it follows that [],c~, p (Yu ()) is a martingale and hence by
Theorem 19, p also solves (18).

5.4 Proof of Theorem 3 (iv)

Denote ¢ := Ae — A > 0. Let B, Z and ¢ be as in the second part of the proof.
Obviously, it is enough to show that there exists a B, CC D such that

Pe (liminfe™Z,(Bo) > 0) > 0, (19)

t—co
because then the original statement follows by replacing B, with B./5. We now
therefore prove (19). Since ¢ is bounded from above , we have

Py(liminfe 2, (B.) =0) < Py(liminfe™*Z,(B,) = 0)

ttoo ttoo

Pm(liTme_Mw), 7)) =0)
tToo

= QF(I)

IN

The last probability in the estimate is smaller than 1, giving the required state-
ment.

6 Local extinction criterion: analytical arguments

In this section we present an analytical proof of the local extinction criterion.
Although we have already given a probabilistic proof for the result in the pre-
vious section, we feel that this paper becomes more complete by showing here
how the result can be derived from an analogous one which can be found in
the superprocess literature. This analogous result for superdiffusions (which we
will utilize in the proof) has been proved recently by Pinsky (see Pinsky (1996,
Theorem 6) and the remark afterwards) using quite a bit of heavy analytical ma-

chinery. As far as the proof of the condition for local extinction is concerned, we
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will show how to derive this from Pinsky’s result using a comparison argument
between branching diffusions and superdiffusions. Qur proof of the condition for
no local extinction will be essentially the same as his proof for superdiffusions.

Regarding the comparison mentioned above, it is likely that the deeper rea-
son for it i1s compounded in the fact that one can decompose a superdiffusion
using “immigration” and an underlying supercritical (strictly) binary branch-
ing diffusion (see Evans and O’Connell (1994) and Englander and Pinsky (1999,
Section 6). Intuitively, if the underlying branching process visits a compact
again and again (no local extinction), then so does the superdiffusion as well.
For the rigorous proof we will utilize a result on the “weighted occupation time”
for branching particle systems obtained by Evans and O’Connell (1994) (also
used for proving the immigration picture in the same paper).

Proof of the criterion on local extinction.

(1) Assume that A. < 0. Let (z,s) — ¢(s, z) be jointly measurable in (z, s)
and let ¢(s) = ¢(s, -) be nonnegative and bounded for each s > 0. By Evans and

O’Connell (1994, Theorem 2.2), E, {exp ( fo )} = u(t, z), where u
is the so-called mild solution of the evolution equatlon

Ou I 2 t 0 t

55 (8) = Lul(s) = fuls) + fu™(s) = ¢(t = s)u(s), 0 <s <1, (20)

limg o u(s) = 1.

[Here we used the notation u(s) = u(s,)]. Pick a ¢ € CF(D) satisfying ¢(z) >
0, for z € B and ¢(z) =0, for z € D\ B. Let u = ug? be the mild solution of
the evolution equation

61:( ) = Lu(s) — Bu(s )—{—ﬁu (s )—H(ﬁ][t’w)(T—S)u(T—S), 0<s<T,

lim, o u(s) = 1.
(21)

For the rest of the proof of part (i), let the starting point # € D be fixed.
Using the argument given in Iscoe (1988, p.207), we have that Z exhibits local
extinction if and only if

B e Jm v (To2) = 1 (22

Consider now X, the (L, 8, 3, D)-superdiffusion (that is, the superdiffusion
corresponding to the operator Lu + Bu — fu? on D — see Englander and Pinsky
(1999) for the definition) and let U = Ut(,? be the mild solution of the evolution
equation

%—Z(S) = LU(S) + [)’U(S) — ﬂUQ(S) + 9¢1[t7w)(T — S), 0<s<T, (23)

lim&w U(S) =0.

Again, the argument given in Iscoe (1988,p. 207) shows that the support of X
exhibits local extinction (that, is the property in Definition 1 holds with X in
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place of 7) if and only if

. . . T ¢
fim fim Jim U3 (7,2) = 0. (24)

Using (24), Pinsky (1996) has shown (Theorem 6 and the remark afterwards)
that the assumption A. < 0 is equivalent to the local extinction of the support
of X. Thus, (24) follows from A, < 0. We now show that (24) implies (22),
which will complete the proof of this part. Making the substitution v := 1 — u,
we have that v is the mild solution of the evolution equation

v
2 (s) =
Js
Po(s) + B0(T = 8) = v7(5) + 681 oy (T = $)(1 = o(T = 5)), 0 <5 < T,
lim, g v(s) = 0.

(25)

By Iscoe (1988, pp. 204), U and v (with ¢, 0 fixed) have the following proba-
bilistic representations:

T
U(T,z) = Eyexp (/0 ds <9¢1[t7m)(3),Xs>) ,

(26)
T
o1, 2) = Erexp (f] s (061500) (5)(1 — (), X,))
,From these equations it is clear that v < U. Hence
lim lim lim o) (T, ) = 0. (27)

ttoo f1oo Ttoo

(i1) Assume now that A, > 0. The proof of this part is almost the same as the
proof of the analogous statement for superdiffusions Pinsky (1996, p.262-263).
In that proof it is shown that the assumption A. > 0 guarantees the existence
of a (large) subdomain Dy CC D, and a function v > 0 defined on Dgy which is
not identically zero and which satisfies

Lv+ v — pv? =0 in Dy
limg_9p, v(z) =0, (28)
v > 01in Dy.

Since f = 1 also solves Lf +Bf —Bf? = 0 in Dy, the elliptic maximum principle
(see Pinsky (1996, Proposition 3) and Englander and Pinsky (1999, Proposition
7.1)) implies that v < 1. Let w := 1 —v. Then w > 0 and furthermore w
satisfies

Lw — pw + pw? = 0 in Dy
lim;5p, w(z) = 1, (29)
w < 1in Dy.
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Let P denote the probability for the branching diffusion 7 obtained from Z by
killing the particles upon exiting 8 Dg. Obviously P, (7 survives) < Py (Z(t, Do) >
0 for arbitrary large t's), and thus, it is enough to show that

0< PZ(Z survives). (30)
We now need the fact that w > 0 on Dg. This follows from the equation
(L—pB(1—w))w=0in Dy

and the strong maximum principle (Theorem 3.2.6 in Pinsky (1995)) applied to
the linear operator L — 3(1 — w).
Now an argument similar to the one in the proof of Lemma 17 shows that

Fpelloaw, 2(t) — w(z), t > 0. (31)
Suppose that (30) is not true. Then the left-hand side of (31) converges to 1 as
t T 0o. On the other hand, the right-hand side of (31) is independent of ¢ and

is smaller than 1, which is a contradiction. Consequently, (30) is true. d

7 Examples

In this section we will present five examples for branching diffusions which will
illustrate the general results of this paper.

7.1 Branching Brownian motion (with drift).

This is one of the most simple branching diffusion models one can consider, par-
ticularly if D = R and 3 is a positive constant. In this case L = 1/2 (d2/d;132) .
It is well know that the positive harmonic functions of L + 3 are exp{—8z} for
§ € R giving A = # > 0 (corresponding to the case # = 0). Here one notes that
we have the luxury of innerproduct martingales defined on the whole domain.
Indeed the martingale with growth rate A. is the classical martingale Nye=P*
which converges almost surely and in mean to its limit W.

It is easy to reason without the technology we have presented in this article
that the process visits any Borel set infinitely often with probability one. This
follows by virtue of the fact that every line of descent diffuses as a standard
Brownian motion which exhibits these properties.

Watanabe (1967) has proved an even stronger result than this conclusion. He
has shown that over and above local extinction with probability zero, a strong
law of large numbers exists:

. 7y (B -

o ﬁ = (2m)7"?|B| - W Pyas.
(In fact Watanabe proved versions of this result for higher dimentional Brow-
nian motion too as well as some other special branching diffusions related to
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Brownian motion). Suppose now we consider a branching Brownian motion in
R with a constant drift £ € R. One could reason in this case that despite the
fact that particles exhibit transient motion, for a small enough £ the compar-
ative reproduction ensures that space fills up everywhere with particles. The
necessary comparison is of course captured in the spectral condition on A, in
Theorem 3. In this case we have L = 1/2(d?/dz?) + ¢ (d/dz) and hence, again
referring to well know facts, the positive harmonic functions are again of the
form exp{—f@z} for # € R. This time A\ = B — (1/2)&? (achieved at 6 = ¢)
which is then positive if |g] < 1/20.

In Theorem 3 we should still be concerned about the probabilities p (z). Tt
is not yet clear whether they will be identically one or not. The travelling wave
solutions to the K-P-P equation come to our rescue. According to Theorem
2(ii)-(iii), p € [0, 1] satisfies

1d? d
Ed_ljg +6£+X3(P2—P) =0.
However, Kolmogorov et al. (1937) proved that there are no non-trivial solutions
bounded in [0, 1] to this, the travelling wave K-P-P equation, for |¢| < /23 and
otherwise there is a unique non-trivial solution. Consistently with Corollary 6
we see that there is local extinction with probability zero or one (that is, p = 0
or p = 1) according to whether A. > 0 or A, < 0 respectively.

In the case of non-zero drift, it can be easily checked, using methods similar
to those in the proof of Theorem 7, that inner-product supermartingale associ-
ated with A. is also a martingale. Further, following the discussion in Section
3, it is possible to produce a spine from this martingale along which there is
a doubled rate of reproduction and the associated diffusion operator is simply
that of standard Brownian motion (so the e-drift has been removed).

7.2 Transient . and compactly supported 3

Consider the case when L corresponds to a transient (but conservative) diffusion
on D C R%and §is a smooth nonnegative compactly supported function. Since
the generalized principal eigenvalue coincides with the classical principal eigen-
value for smooth bounded domains, it follows that for any nonempty bounded
B CC D one can pick such a 2 with B = supp(f) and so that L + § is super-
critical on D, that is A > 0 (all one has to do is to ensure that the infimum of
3 on a somewhat smaller smooth domain B’ CC B is larger then the absolute
value of the principal eigenvalue on B’. Then, a fortiori, L + 3 is supercritical
on D as well). On the other hand, by the transience assumption, it is clear that
the initial L-particle wanders out to infinity with positive probability without
ever visiting B (and thus without ever branching), when starting from = ¢ B.
In light of Corollary 5, this now shows that there exists a non-trivial travelling
wave solution to Lu + (u2 — u) = 0 for such an L and 3. To the best of our
knowledge, this is a new result concerning generalized K-P-P equations.
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7.3 The Harris-Williams branching diffusion

This is a specialized example of a branching diffusion studied for aspects of its
prototypical behaviour (and in many ways has served as a source of inspiration
for this paper) by Harris and Williams (1996) and Harris (2000). We consider
here a variant of their model. The diffusion operator on R? is

L—la28_2+ i_ﬁ_Q 6_2_ i
T W G T T 2 Hy? y@y ’

where # € R. That is, the operator corresponding to a time changed Brown-
ian motion with drift where the time change is controlled by an independent
Ornstein-Uhlenbeck process operating in the y-direction. (Since we work with
positive definite operators, we should in fact replace the first coefficient ay? by
af(y) where f > 0 is obtained by modifying the function y®> on a compact.
This, however will not affect the rest of the argument.) In the original version
of this model, £ = 0. The branching rate is dependent purely on the y variable
and takes the form

Bz, y)=ry’+p

where p > 0 and 0 < r < 6/8. Note that 3 is not bounded. However this is
not a problem. Since, as is clear from the model, the process does not explode
and, as far as the parameter values of interest are concerned, the generalized
principle eigenvalue is finite.

Further, note that the operator Lg is symmetric with respect to the reference
density g(z,y) = exp(—y?/2). Using a comparison principle for symmetric op-
erators (see Corollary 6.4.2 in Pinsky (1995a)), it follows that Ly corresponds to
a recurrent diffusion on R2 Consequently, the generalized principal eiganvalue
of this operator is zero (see Appendix); and therefore

Ae(Lo + 3, R2L) > p > 0.
For the case that £ # 0, an application of an h-transform shows that

g2 g2
=P -

Ae(Le + B,R?) = Ae(Lo + B,R?L) — 5 5

Therefore, for sufficiently small £ (]¢] < v/2p) the positivity of the generalized
principal eigenvalue is preserved. The conclusion is that for a small enough
drift, there is no local extinction. This is again consistent with intuition; that
is to say the branching rate ‘wins’ against transience.

Like the previous example, this is another branching diffusion from which
we could in principle compare the transition of local extinction to non-local
extinction against the event of the existence of travelling waves to the equation

xr

1 262u ou 8 [0%u 3u> 9 9 . .
2%Y W+63_+§<w_y@ +(7’y +P) (U —u)_O. (32)
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(Again, one should slightly modify the first coefficient.) Harris and Williams
(1996) have shown there exists an asymptotic wave speed, say &, for the left most
particle in the z-direction of this branching diffusion when £ = 0. Given the
elegant probabilistic arguments in Harris (1999) linking the asymptotic speed
of the left most particle in a standard branching Brownian motion and the
minimal speed at which travelling waves to the K-P-P equation exist and then
the relationship with local extinction expressed in the previous example, one
might be inclined to believe a similar relationship holds here. That is to say: is
it true that the transition in € from local extinction to non-local extinction, seen
through the positivity of A.(L. + 3,1R?), coincides precisely with the transition
from existence to no existence of travelling waves to (32)7 And further that this
transition takes place at precisely ¢ = & 7

Personal communication with Dr. Harris confirms that minimal wave speed
for existence in (32) is indeed &. For the rest, some work awaits.

7.4 Branching Ornstein-Uhlenbeck process and more gen-
eral recurrent motions

Let L = %A —kxz -V onRY d > 1, where k > 0. Then L corresponds to the
d-dimensional Ornstein-Uhlenbeck process with drift parameter k. Note that
it is a (positive) recurrent process. Furthermore let 3 be a positive constant.
Consider now the (L, 3)-branching diffusion Z (on R?). We call Z a branching
Ornstein- Uhlenbeck process. By recurrence it follows that L is a critical operator,
and thus A. = A(L,R% = 0. Consequently A.(L + 8,R%) = 3. By Theorem
3(ii) and (iv), Z does not exhibit local extinction, and exhibits local exponential
growth (with rate arbitrarily close to £) on large compact domains.

Of course, non-local extinction with positive probability would immediately
follow from the obvious comparison with a single recurrent L-particle. Tt fol-
lows that non local extinction and local exponential growth hold even when
L is replaced by an arbitrary L on a domain D as far as L corresponds to a
recurrent diffusion on D. In fact, as Theorem 4.6.3(i) in Pinsky (1996) shows,
Ac(L + B,D) > 0, whenever L corresponds to a recurrent diffusion on D and
the branching rate # > 0 is not identically zero. Therefore, 7 does not erhibit
local extinction, and ezxhibits local exponential growth on large compacts for any
recurrent motion and any not identically vanishing branching rate.

7.5 Branching outward Ornstein-Uhlenbeck process

Let L = %A +kx-VonR% d>1, where k > 0. Then L corresponds to the
d-dimensional “outward” Ornstein-Uhlenbeck process with drift parameter k.
This process is transient. Furthermore let 8 be a positive constant, and consider
the (L, f#)-branching diffusion Z. Following Example 2 in Pinsky (1996), we have
that A.(L + 8,R?%) = B — kd. From Theorem 3(ii) we conclude that if 3 > kd
then Z does not exhibit local extinction, and exhibits local exponential growth
(with rate arbitrarily close to § — kd) on large compact domains. However if
B < kd then Z exhibits local extinction.
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For this case we have the luxury of having an exact form for the one di-
mensional space of harmonic functions satisfying (L + 8 — A.)h = 0. Indeed, it
is easy to see that h(z) = exp{—k|z|*} satisfies (L + 8 — A.)h = 0, and that
making an h-transform with this A, L + § — A, transform into

(L+[;’—/\)h:%A—kz-V. (33)
This operator corresponds to an (inward) Ornstein-Uhlenbeck process which is
(positive) recurrent. Thus the operator in (33) is critical, and therefore it has
a one-dimensional space of positive harmonic functions; the positive constants.
Using the correspondence between the positive solutions for the two operators
(invariance under h-transforms), we conclude, that in fact, h(z) = exp{—k|z|?}
is the only (up to constant multiples) positive harmonic function for L+ 3 — A..

Using the associated inner-product martingale (which can again be shown
to be a martingale using methods found in Theorem T7), we can follow the
arguments of Section 3 to produce a spine with a doubled rate of reproduction.
This spine 1s precisely the Ornstein-Uhlenbeck process corresponding to the
operator (33).

Now, irrespective of the value of 8 — kd it would seem possible to change
measure in such a way that there is a positive recurrent spine. This would seem
to suggest that there is a strong case for non-local extinction without a condition
on # — kd. However, in order to transfer statements of local survival back to
the process under the original measure, we would need mean convergence of the
inner-product martingale and thus the condition 8 — kd > 0 appears.

8 Appendix A: A review on criticality theory

Let L be as in (1). We do not assume in this general setting that L corresponds

to a conservative diffusion. There exists however a corresponding diffusion pro-
cess Y on D that solves the generalized martingale problem for L on D (see
Chapter 1 in Pinsky (1995a)). The process lives on D U A with A playing the
role of a cemetery state. Let § € C*(D) (again, we do not assume anything
further about 3). We denote by P, and E, the corresponding probabilities and
expectations, and define the transition measure p(t, z, dy) for L + § by

¢
p(t,z, B) =Ey <exp (/ ﬁ(Ys)ds) Y € B) ,
0
for measurable B C D.

Definition 22 If

/Omp(t,z,B) dt = E, /Ooo exp </0t/3(Ys)ds> 15(Y:) dt < oo,
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for all € D and all bounded B C D, then

G(a@,dy):/ p(t, z,dy) dt
0

is called the Green’s measure for I + 8 on D. If the above condition fails, then
the Green’s measure for L 4+ # on D is said not to exist.

In the former case, G(z, dy) possesses a density, G(z,dy) = G(x, y)dy, which
is called the Green’s function for I + 8 on D.
For M € define

Crip—r = {ueC? : (L+pB—-XNu=0andu>0in D }.

The operator L + 3 — X on D is called subcritical if the Green’s function
exists for L+ 8 — X on D; in this case Cryg_x # 0. If the Green’s function does
not exist for L4+ — X on D, but Cr4p-» # 0, then the operator L+ —X on D
is called critical. In this case Cr4p-x is one-dimensional. The unique function
(up to a constant multiple) in Cr45-» is called the ground state of L+ 3 on D.
The formal adjoint of the operator L + 8 — A on D is also critical with ground
state ¢. If furthermore ¢¢ € L(D), we call L+ 8 —Xon D product L' critical,
or product-critical in short. (For ¢ = ¢, product-criticality means that ¢ is
an L2-eigenfunction.) Finally, if Cp4s-, = 0, then L+ 8 — X on D is called
supercritical.

If 8 = 0, then L+ 2 is not supercritical on D since the function f = 1 satisfies
Lf =0on D. In this case L + § = L is subcritical or critical on D according
to whether the corresponding diffusion process, Y, is transient or recurrent on
D . Product-criticality in this case is equivalent to positive recurrence for Y. If
3 <0 and 8 #0, then L 4 f is subcritical on D.

In terms of the solvability of inhomogeneous Dirichlet problems, subcritical-
ity guarantees that the equation (L 4+ f)u = —f in D has a positive solution u
for every 0 < f € C7. (Here C7 = C. N C".) If subcriticality does not hold,
then there are no positive solutions for any 0 < f € C7.

One of the two following possibilities holds :

1) There exists a number A, € such that L— A on D is subcritical for A > A,
supercritical for A < A, and either subcritical or critical for A = A..

2) L — A on D is supercritical for all A €, in which case we define A, = occ.

Definition 23 The number A, € (—o0,00] is called the generalized principal
etgenvalue for L on D .

Note that A, = inf {A € : Cpryg_x # 0}. Also, if # is bounded from above,
then case 1) holds.

The generalized principal eigenvalue coincides with the classical principal
eigenvalue (that is, with the supremum of the real part of the spectrum) if D
is bounded with a smooth boundary and the coefficients of L are smooth up
to dD. Also, if L. + # is symmetric with respect to a reference measure pdz,
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then A, equals the supremum of the spectrum of the self-adjoint operator on
L?(D, pdz) obtained from L + 3 via the Friedrichs’ extension theorem.
Let h € C?7 satisfy h > 0 in D. The operator (L + §)" defined by

(L+0)"f = 3(L+A)(hf)

is called the h-transform of the operator L + 3. Written out explicitly, one has

Vh Lh
(L+ﬁ)hf:L+aT~V+T+[)’.

All the properties defined above are invariant under h-transforms.
For further elaboration and proofs see Chapter 4 in Pinsky (1995a).
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