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Abstract: For discontinuous games Simon and Zame (1990) introduced a new approach to the
existence of equilibria. To obtain the required continuity, they convert the original discontinuous
payoff function into an upper semicontinuous payoff correspondence; graphically, this corresponds to
a “vertical interpolation” to close the discontinuity gap at the discontinuity points. The resulting
payoff indeterminacy, in the form of endogenous sharing rules (i.e., measurabe selections of the
payoff correspondence), is an essential feature of their model. The mixed equilibrium existence
result obtained by Simon and Zame (1990) generalizes Glicksberg’s (1952) existence result for Nash
equilibria. This paper proposes to view Simon and Zame’s “vertical interpolation” as the limit of a
sequence of standard (nonvertical) continuous interpolations across the discontinuity. In other words,
we propose to approximate the upper semicontinuous payoff correspondence directly by means of
a sequence of continuous payoff functions. To each of these Glicksberg’s existence result applies,
which yields a sequence of mixed Nash equilibria. The weak limit of this sequence is the equilibrium
of Simon and Zame (1990). However, our approach goes beyond existence, because the approximate
Nash equilibria can often be easily computed in actual examples (most notably, with the aid of
purification methods). This does not only provide a new interpretation of the endogenous sharing
rule as a certain conditional expectation of the payoff vector, but the precise information gathered
about it in terms of the approximate Nash equilibria and their payoff values is, as we show, of
considerable help in the actual computations.
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1. Introduction

This paper introduces a new method to find equilibria with endogenous sharing rules for discon-
tinuous games. Such equilibria were introduced by Simon and Zame (1990) and will be explained
below. First, we wish to demonstrate in a concrete example how the method works. This example
is the California-Oregon psychologists’ game from Simon and Zame (1990); it is a location game in
the spirit of Hotelling (1929). This game (call it Γ) takes place along a section of interstate high-
way 5, which is represented by the interval [0, 4]. The action space of player 1, the psychologist from
California, is S1 := [0, 3] (i.e., the Californian highway stretch), and for player 2, the psychologist
from Oregon, the action space is S2 := [3, 4], which stands for the Oregon part of the highway. The
payoff function of player 1 is

q1(s1, s2) :=

{

s1+s2

2 if s1 < s2

2 if s1 = s2 = 3

Player 2 has payoff q2(s1, s2) := 4 − q1(s1, s2). Clearly, these functions are discontinuous at the
point (s1, s2) = (3, 3), which corresponds to the California-Oregon border.

Consider the following simple approximation of Γ by means of a sequence {Γ(n)}n of continuous
games. For n ∈ N we define Γ(n) as the game with the same two action spaces as Γ and with
continuous payoff

q
(n)
1 (s1, s2) :=

{

( 1
2 − n)s1 + 1

2 + 3n if 3 − 1
n
≤ s1 ≤ 3 and s2 = 3

s1+s2

2 otherwise

for player 1 and q
(n)
2 (s1, s2) := 4− q

(n)
1 (s1, s2) for player 2. Observe that the coefficients v := 1

2 − n
and w := 1

2 +3n are chosen in such a way that v(3− 1
n
)+w = q1(3−

1
n
, 3) and v3+w = q1(3, 3). This

is a standard linear interpolation of q := (q1, q2) by q(n) := (q
(n)
1 , q

(n)
2 ). It is naturally connected, in

a way to be made more precise below, to a “vertical interpolation” proposed by Simon and Zame
(1990). Such vertical interpolation defines a payoff correspondence Qq according to the formula (3)
below; in the present example this gives

Qq(s1, s2) :=

{

{(z1, 4 − z1) : z1 ∈ [2, 3]} if s1 = s2 = 3
{(q1(s1, s2), q2(s1, s2))} otherwise

Now each game Γ(n) has continuous and quasi-concave payoff functions, so it has a Nash equilibrium

in pure actions. Standard computation of the best reply correspondence for player 1 gives B
(n)
1 (s2) =

{3} if s2 > 3 and B
(n)
1 (s2) = {3 − 1

n
} if s2 = 3. For player 2 the best reply correspondence is given

by B
(n)
2 (s1) = {3}. So the (unique) Nash equilibrium for Γ(n) is s(n) := (s̄

(n)
1 , s̄

(n)
2 ) = (3 − 1

n
, 3),

which is of course also immediately obvious. Formally, this means also that the mixed action profile

α(n) := (ε3− 1
n
, ε3) is a mixed Nash equilibrium for game Γ(n). Observe that (s̄

(n)
1 , s̄

(n)
2 ) → (3, 3)

and (q
(n)
1 (s̄(n)), q

(n)
2 (s̄(n))) = (3 − 1

2n
, 1 + 1

2n
) → (3, 1) for n → ∞. Trivially, this implies that

α(n) := (ε3− 1
n
, ε3) converges weakly to (α∗

1, α
∗
2) := (ε3, ε3) in the sense of probability measures

on [0, 3] × [3, 4]. As this paper will show in far greater generality, these two facts mean that the
mixed action profile (α∗

1, α
∗
2), together with the value (3, 1) for the sharing rule q∗ at the point

of discontinuity (s1, s2) = (3, 3), form an equilibrium in the sense of Simon and Zame (1990). Of

course, in the present example this can also be deduced ad hoc from the fact that (s̄
(n)
1 , s̄

(n)
2 ) is a

Nash equilibrium for Γ(n) for every n ∈ N. More precisely, it follows easily from taking limits that
3 ≥ q∗1(s1, 3) for every s1 ∈ S1 and 1 ≥ q∗2(3, s2) for every s2 ∈ S2. So one should set q∗1(3, 3) := 3
and q∗2(3, 3) := 1. Outside the discontinuity we set q∗ = q at any rate, since Qq(s1, s2) is equal to
{q(s1, s2)} there. So the mixed action profile α∗ := (α∗

1, α
∗
2) := (ε3, ε3), together with q∗, meets the

equilibrium conditions of Simon and Zame (1990), i.e.,

q∗1(3, 3) =

∫

S1×S2

q∗1d(α∗
1 × α∗

2) = max
s1∈S1

∫

S2

q∗1(s1, s2)α
∗
2(ds2)
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and

q∗2(3, 3) =

∫

S1×S2

q∗2d(α∗
1 × α∗

2) = max
s2∈S2

∫

S1

q∗2(s1, s2)α
∗
1(ds1).

The intention of this paper is to provide a general, systematic approach to this kind of generalized
equilibrium. Its highlights are as follows:

(i) For N -player games Γ = (S1, . . . , SN ; Qq) of the kind considered by Simon and Zame (1990)
there always exists a sequence {Γ(n)}n of suitably approximating games Γ(n) = (S1, . . . , SN ; q(n))

with continuous payoff profiles q(n) := (q
(n)
1 , . . . , q

(n)
N ).

(ii) At least a subsequence of the sequence {α(n)} of mixed Nash equilibrium profiles of the games
Γ(n) (such equilibria exist by Glicksberg’s theorem) converges weakly to some mixed action profile
α∗ := (α∗

1, . . . , α
∗
N).

(iii) To this limit profile α∗ there corresponds a sharing rule q∗ := (q∗1 , . . . , q∗N ) such that for
α∗

1 × · · · × α∗
N - almost every s ∈ S the point q∗(s) belongs to the convex hull of the set of all limits

limj q(nj)(sj) with sj in the support of the product probability measure α
(nj )
1 × · · ·α

(nj)
N .

(iv) The pair (α∗, q∗) is an equilibrium solution in the sense of Simon and Zame (1990) for the
game Γ, i.e., q∗(s) ∈ Qq(s) for all s and

∫

S

q∗i (s)(α∗
1 × · · · × α∗

N )(ds) = max
si∈Si

∫

S−i

q∗i (si, s−i)(α
∗
1 × · · ·α∗

i−1 × α∗
i+1 × · · · × α∗

N )(ds−i)

for i = 1, . . . , N .

As a corollary, this reproduces the existence result of Simon and Zame (1990). However, the
present continuous approximation scheme can also be used in actual computations, as shown above,
and this would seem not to be directly the case with the discrete approximation scheme followed
by Simon and Zame (observe, for instance, that a discrete scheme allows little or no room for
purification). Below we also show how the approximation scheme of the present paper provides a
systematic approach to the Bertrand duopoly game. Recently, Simon and Zame (1999) and Jackson
and Swinkels (2000) have used endogenous sharing rules to obtain new existence results for games
with incompete information. Although these papers consider models that are considerably more
complicated, it would seem that at least the global features of the approach taken here extend to
such games as well.

2. Main results

Discontinuous games, with their associated problems regarding the formulation and existence of
appropriate equilibrium notions, form a subject of long-standing interest in economics. The oldest
of these, Bertrand’s duopoly game, dates back to 1883. Another example is provided by the psy-
chologists’ game discussed in the introductory section. Such games are characterized by the fact
that they have discontinuities in their payoffs as a function of player’s actions. For instance, in
Bertrand’s duopoly game the firm that sets the lowest price captures the entire market. Several
other examples of discontinuous games can be found in Dasgupta and Maskin (1986a,b). In the face
of such discontinuity, general theorems about the existence of Nash equilibria for such games would
seem to be out of the question. Nevertheless, quite some progress has been made in this direction.
Let us mention in this connection the papers by Dasgupta and Maskin (1986a,b), Simon (1987) and
Reny (1999). The former paper supposes a particular structure of the payoff discontinuities; this was
refined by Simon (1987). In both these papers an approximation by finite games and their associated
mixed Nash equilibria is used. In a far-reaching generalization of this work, Reny (1999) showed
that the entire question of finding Nash equilibria can be transformed by means of his better-reply
security condition. In this way, it is possible to find pure equilibrium existence results as well (this
contrasts notably with the two other papers). In a direction that departs considerably from this
development, Simon and Zame (1990) introduced a new approach to the existence of equilibria by
allowing incomplete determinacy of the payoff function. Using a payoff correspondence, which acts
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as an upper semicontinuous hull of the payoff profile, they manage to restore the essential continuity
properties of the payoff structure. The present paper intends to contribute to this particular devel-
opment. First, we shall make the notions of Simon and Zame (1990) more precise; this is followed
immediately by the main new notions and results of this paper.

Let I := {1, . . . , N} be a set of N players (let us merely remark that the approach followed here
extends easily to the case of countably many players). Each player i ∈ I has a nonempty action
space Si, for which we suppose

Si is metric and compact. (1)

We denote the product space Πj=1Sj by S, which is itself also compact and metric; below dS denotes
a metric on S (e.g., the sum metric). As will be tacitly done for all other metric spaces in the sequel
as well, S is equipped with the Borel σ-algebra. Player i’s mixed actions are formed by the set
P(Si) of all probability measures on Si. The set of all mixed action profiles is ΠN

j=1P(Sj). Let

q := (q1, . . . , qN ) : S → R
N be a profile of payoff functions qi : S → R such that

q is Borel measurable and bounded. (2)

The following definition is classical:

Definition 1 A mixed Nash equilibrium for q is a mixed action profile (α1, . . . , αN ) in ΠN
j=1P(Sj)

such that for every i ∈ I
∫

S

qidα̃ = max
si∈Si

∫

S−i

qi(si, s−i)α̃−i(ds−i).

Here α̃ denotes the product measure α1 × · · ·αN on S and α̃−i stands for α1 × · · · × αi−1 × αi+1 ×
· · · × αN on S−i := Πj∈I,j 6=iSj . Moreover, writing s = (si, s−i), etc. for s := (s1, . . . , sN ), follows
the usual abuse of notation in game theory.

Following Simon and Zame (1990), we define the payoff correspondence Qq : S → 2R
N

, corre-
sponding to q above, as follows:

Qq(s) := co (cl gph q)s = co {z ∈ R
N : (s, z) ∈ cl gph q}, (3)

where “co” means convex hull, “cl” closure, and where gph q denotes the graph {(s, q(s)) : s ∈ S}
of q. Note that it is the section of cl gph q at s that is convexified; this corresponds to what we
previously called “vertical interpolation” for the component functions qi. It is not hard to verify
that Qq is the smallest upper semicontinuous and convex-valued multifunction of which q is a
measurable selection. Observe that by (2) all values of Qq are contained in some bounded subset
of R

N . Therefore, the upper semicontinuity of Qq is equivalent with the evident property that its
graph gph Qq := {(s, z) ∈ S × R

N : z ∈ Qq(s)} is closed. The idea behind the introduction of
the payoff correspondence Qq is that, for the purpose of equilibrium existence, discontinuity of the
payoff profile q is compensated by the freedom to choose the actual payoff function from this upper
semicontinuous hull:

Definition 2 A mixed Nash equilibrium for the correspondence Qq is a mixed action profile α :=
(α1, . . . , αN ) in ΠN

j=1P(Sj) for which there exists a measurable selection q∗ of Qq , called the corre-
sponding endogenous sharing rule, such that α is a mixed Nash equilibrium for q∗.

As the next result shows, in the classical situation with a continuous payoff profile there is essentially
no difference between q and the payoff correspondence Qq. More generally, this proposition shows
that outside any discontinuity point that q may have, the payoff correspondence Qq is single-valued
and coincides with the original payoff profile q:

Proposition 1 At any point s ∈ S the following equivalence holds:

q is continuous at s if and only if Qq(s) = {q(s)}.

In particular, if the function q : S → R
N is continuous, then Qq = {q}; consequently, in that

situation any mixed Nash equilibrium for Qq is a mixed Nash equilibrium for q and vice versa.
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We come now to the main new concept of this paper. A Nash approximation scheme for the
game Γ := (S1, . . . , SN ; Qq) is defined to be a sequence {(q(n), α(n))}n of approximate payoff profiles
q(n) : S → R

N and mixed action profiles α(n) in ΠN
j=1P(Sj), n ∈ N, such that the following hold:

• q(n) : S → R
N is continuous for every n ∈ N.

• α(n) is a mixed Nash equilibrium for the game Γ(n) := (S1, . . . , SN ; q(n)) for every n ∈ N.

• limn→∞ sups∈S dist((s, q(n)(s)), gph Qq) = 0.

The latter property tells us that the graphs gph q(n) of the approximate payoff functions q(n) come ar-
bitrarily close to the graph of the payoff correspondence Qq. Here dist((s, z), Q) := inf(s′,z′)∈Q dS(s, s′)+
|z − z′| defines the distance of a point (s, z) to a set Q in S × R

N in the usual way.

Example 1 From plots of q
(n)
i and (Qq)i in the example from the introductory section (location

game) it is already evident that gph q(n) converges to gph Qq in the above sense. More formally,
the following can be said. We have Qq(s1, s2) = {q(n)(s1, s2)} if s2 6= 3 or s1 < 3 − 1

n
. So to

determine the distance expression in question it is enough to concentrate on the points (s1, 3) with
3− 1

n
≤ s1 ≤ 3. For any such s1 let ((s1, 3), q(n)(s1, 3)) be a point in gph q(n); this point has distance

at most 1
n

to the point ((3, 3), (q(n)(s1, 3)), which lies in gph Qq (because of 2 ≤ q
(n)
1 (s1, 3) ≤ 3− 1

2n

and 1 + 1
2n

≤ q
(n)
2 (s1, 3) ≤ 2). So sups∈S dist((s, q(n)(s)), gph Qq) ≤ 1

n
→ 0. Together with what

was shown in the introductory section about α(n) := (ε3− 1
n
, ε3), it follows that {(q(n), α(n)}n is a

Nash approximation scheme.

Proposition 2 Under (1)–(2) there exists a Nash approximation scheme.

Recall that the limes superior (in the sense of Kuratowski) of the sequence of graphs {gph q(n)}n

is defined as the set of all limit points of {gph q(n)}n, i.e., the set of all (s, z) ∈ S×R
N for which there

exist a subsequence {gph qnj}j and corresponding (sj , zj) ∈ gph q(nj) such that (sj , zj) converges
to (s, z). This set will be denoted by Lsngph q(n). Since S × R

N is a metric space, one has the
following representation for this limes superior:

Lsngph q(n) = ∩∞
p=1cl ∪n≥p gph q(n). (4)

Recall also from Billingsley (1968) or Dellacherie and Meyer (1975) that the weak topology on the
set P(Si) of all probability measures on Si is the weakest topology on P(Si) for which the mapping
ν 7→

∫

Si
c dν is continuous for every bounded and continuous function c : Si → R. By Assumption 1

the set P(Si) is metric and compact for the weak topology. Thus, we can also describe the weak
topology in terms of sequential convergence (and this is what is done in a major part of Billingsley
(1968)): a sequence {νn}n in P(Si) converges weakly to ν0 if the integrals

∫

Si
c dνn converge to

∫

Si
c dν0 for every bounded and continuous function c : Si → R. The set of all mixed action profiles

in our model is the Cartesian product Πi∈IP(Si), and from now on we equip it with the weak
product topology.

Theorem 1 Under (1)–(2) every Nash approximation scheme {(q(n), α(n))}n yields in the limit a
mixed Nash equilibrium α∗ := (α∗

1, . . . , α
∗
N ) for Qq as follows:

(i) There exists a subsequence {α(n′)}n′ of {α(n)}n that weakly converges in ΠN
j=1P(Sj) to some

limit mixed profile α∗.
(ii) This profile α∗ is a mixed Nash equilibrium for Qq with a corresponding endogenous sharing

rule q∗ such that
q∗(s) ∈ co (Lsngph q(n))s for every s ∈ S,

and
q∗(s) ∈ co L(s) for α̃∗-almost every s in S.

Here α̃∗ := α∗
1 × · · · × α∗

N and L(s) is the set of all z ∈ R
N for which there exists a subsequence

{(q(nk)(s(nk))}k of {(q(n)(s(n))}n with s(nk) → s, q(nk)(s(nk)) → z and with s(nk) ∈ supp α̃(nk) for
every k.
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Recall here that the support of a probability measure ν in P(S) is defined by supp ν := ∩{F :
F ⊂ S, F closed and ν(F ) = 1}. Concatenation of Proposition 2 and Theorem 1 gives the existence
theorem on p. 865 of Simon and Zame (1990):

Corollary 1 Under (1)–(2) there exists a Nash equilibrium for Qq.

We conclude this section by demonstrating the effectiveness of Nash approximation schemes for
the computation of the equilibrium in a Bertrand duopoly game. Although such equilibria can,
of course, be determined in an ad hoc fashion, the present approach offers the attraction of being
systematic.

To make our calculations easy, we shall assume linear demand D(si) := a − si and per-unit
production cost c with c < a. More elaborate versions can be produced easily. The profit of firm
i ∈ I := {1, 2} is qi(s1, s2) := (si − c)(a − si) if si < sj and qi(s1, s2) := 0 if si > sj (here j = 2 if
i = 1 and j = 1 if i = 2 and si, sj are the price variables). In addition, for obvious reasons the price
variables must satisfy si, sj ≥ 0 and si, sj ≤ a. A discontinuity occurs when si = sj , that is, when
both firms charge the same price. It is standard in the literature to allocate total demand evenly in
this case: qi(s1, s1) := 1

2 (s1 − c)(a − s1), but note that there is no compelling economic reason for
such a division of the demand. In any case, this is irrelevant for the payoff correspondence, since
(3) gives here

Qq(s1, s1) := {(λ(s1 − c)(a − s1), (1 − λ)(s1 − c)(a − s1) : 0 ≤ λ ≤ 1}.

Here λ, the fraction of the total demand that goes to firm 1, forms an additional parameter of
the model. As follows by Proposition 1, in all other points of S := [0, a]2 the correspondence Qq

coincides with {q}.
We start a Nash approximation scheme by defining the continuous function q(n) : S → R

2 by

q
(n)
i (si, sj) :=

{

qi(si, sj) if si ≤ sj −
1
n

or si ≥ sj + 1
n

vsi + w if sj −
1
n

< si < sj + 1
n

Here v, w are determined by v(sj −
1
n
) + w = qi(sj −

1
n
, sj) and v(sj + 1

n
) + w = pi(sj + 1

n
, sj) = 0

(i.e., v = −n
2 (sj −

1
n
− c)(a− sj + 1

n
) and w = n

2 (sj −
1
n
− c)(a− sj + 1

n
)(sj + 1

n
)). It is easy to check

that this scheme is as specified in Lemma 1: if sj −
1
n

< si < sj + 1
n

then the distance of (si, vsi +w)
to gph Qq is at most 2

n
.

To determine the Nash equilibrium profile (α
(n)
1 , α

(n)
2 ) for each approximating game Γ(n), we

may use purification, since each q
(n)
i (si, sj) is quasi-concave in the variable si (actually, less is

required for such purification; cf. Balder (2001b)). Afterwards, to regain the terms of Theorem 1, we
return to mixed actions by means of point measures. In pure actions the best reply correspondence

B
(n)
i : [0, a] → 2[0,a] for player i in game Γ(n) is given by

Bi(sj) :=







{si ∈ [0, a] : si ≥ sj + 1
n
} if sj ≤ c + 1

n

{sj −
1
n
} if c + 1

n
< sj ≤ a+c

2 + 1
n

{a+c
2 } if sj > a+c

2 + 1
n

The fixed points s̄(n) of this correspondence are easily seen to form the following set S0: the union
of all pairs (s2 + 1

n
, s2) with s2 ∈ (c, c + 1

n
] and all pairs (s1, s1 + 1

n
) with s1 ∈ (c, c + 1

n
]. Evidently,

no matter which pairs of pure actions we choose at stage n, they converge to (c, c) for n → ∞. In

parallel, at stage n every pair (α
(n)
1 , α

(n)
2 ) of point measures α

(n)
i := ε

s̄
(n)
i

is a mixed equilibrium profile

for the approximate game Γ(n) and, regardless of the choice of s̄(n) in S0, these profiles converge
weakly to α∗ := (εc, εc) as n → ∞. By Theorem 1 α∗ is a Nash equilibrium for a measurable profile
q∗ : S → R

2. For this q∗ we have q∗(s1, s2) = q(s1, s2) if s1 6= s2 by Proposition 1. Moreover,
Theorem 1 also implies q∗(c, c) = (0, 0). Together, this tells us the following: 0 = q∗1(c, c) ≥ q∗1(s1, c)
for every s1 ∈ [0, a] and 0 = q∗2(c, c) ≥ q∗2(c, s2) for every s2 ∈ [0, a]. This outcome agrees with the
classical one, even though the precise form of profit sharing when equal prices are imposed was left
unspecified.
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Prompted by this example and the one given in the introduction, we observe that it would be
interesting to find general conditions under which quasi-concavity of the qi can be transferred to the

approximate payoffs q
(n)
i (rather than having to find this out ad hoc in each example).

3. Proofs

Proof of Proposition 1. Fix s ∈ S and suppose q is continuous in the point s. Then
(cl gph q)s = {q(s)}, for if (s, z) ∈ cl gph q then z = q(s) by continuity of q. Conversely, suppose
(cl gph q)s = {q(s)} and let sk → s. By the given boundedness of q (see (2)), the sequence {q(sk)}k

is bounded. It is enough to show that every limit point z̄ of {q(sk)}k equals q(s). But for any such
z̄ the point (s, z̄) belongs to cl gph q, so z̄ ∈ {q(s)}. QED

Of course, boundedness of q is indispensible for Proposition 1 (e.g., for S := [0, 1] consider
q(s) := 1/s if s > 0 and q(0) := 0).

Lemma 1 There exists a sequence {q(n)}n of continuous functions q(n) : S → R
N such that

lim
n→∞

sup
s∈S

dist((s, q(n)(s)), gph Qq) = 0.

This lemma is a direct application of Cellina’s approximate continuous selection theorem (see The-
orem 1 on p. 84 of Aubin and Cellina). This result applies, since Qq is an upper semicontinuous
multifunction with convex values, as we already observed following (3).

Lemma 2 For every n ∈ N there exists a mixed Nash equilibrium profile α(n) for q(n).

Since q
(n)
i is continuous for every i ∈ I , Lemma 2 is the classical existence result of Glicksberg

(1952).

Proof of Proposition 2. Combine Lemmas 1 and 2.

Lemma 3 The sequence {α(n)}n contains a subsequence {α(n′)}n′ such that for every i ∈ I the

following holds: α
(n′)
i converges weakly to some α∗

i in P(Si) for n′ → ∞.

Since each Si is compact metric, we have by Theorem III.60 in Dellacherie and Meyer (1975) that
each space P(Si) is compact and metrizable for the weak topology (for instance, the Prohorov metric
can be used for this purpose; cf. Billingsley (1968)). Hence, each P(Si) is also sequentially weakly
compact, so the result follows with ease. To save on notation, we shall pretend without loss of

generality that the sequences {α
(n)
i }n converge as a whole to α∗

i , i ∈ I .
We now come to the heart of the proof of Theorem 1, which involves the construction of the

sharing rule from a limit product probability measure π∗. Similar constructions are well-known in
Young measure theory and its generalizations; they go back to work of L.C. Young and E.J. McShane
around 1940 – e.g., see Balder (2000, 2001a). Without loss of generality we shall assume that
all graphs gph q(n) have a distance to gph Qq of at most 1; in view of the above Lemma 1 we
can do so. Then q(n) : S → Z for every n ∈ N, where Z := [−‖q‖∞ − 1, ‖q‖∞ + 1]N with
‖q‖∞ := sups∈S |q(s)| < +∞. We form the following probability measures on S × Z, which are a
classical instrument in Young measure theory. For every Borel subset A of S and every Borel subset
B of Z we define

π(n)(A × B) := α̃(n)(A ∩ {s ∈ S : q(n)(s) ∈ B}), (5)

and we remember that this completely determines the product measure π(n) ∈ P(S × Z), because
the measurable rectangles A × B generate the Borel σ-algebra on S × Z.

Lemma 4 The sequence {π(n)}n contains a subsequence {π(n′)}n′ which converges weakly to some
π∗ ∈ P(S × Z).

Since S ×Z is compact and metric, the proof runs just as that of Lemma 3. Again we shall pretend
in the remainder, without any loss of generality, that {π(n)} as a whole converges to π∗. Our next
result can also be obtained as a direct application of Theorem 2.7 in Balder (2000).
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Lemma 5 The support supp π∗ of the probability measure π∗ is contained in the set Lsnsupp π(n)

of all limit points of the supports of the measures π(n), n ∈ N.

Proof. Let Fp := cl ∪n≥p supp q(n), for p ∈ N. This is a closed set, so by the portman-
teau theorem for weak convergence (see Theorem 2.1 of Billingsley (1968)) and Lemma 4 we have
lim supn π(n)(Fp) ≤ π∗(Fp). The left hand side here equals 1, so we conclude π∗(Fp) = 1. Since
Lsnsupp π(n) = ∩pFp by (4, it follows that π∗(Lsnsupp π(n)) = 1. It only remains to note that
Lsnsupp π(n) is closed. QED

Lemma 6 The support of every probability measure π(n), n ∈ N, is given by

supp π(n) = {(s, q(n)(s)) ∈ S × Z : s ∈ supp α̃(n)} ⊂ gph q(n).

Proof. Denote the set in the middle by F̃ . This set is clearly closed and by Proposition III.2.1
in Neveu (1965) it follows that π(n)(F̃ ) = α̃(n)(supp α̃(n)) = 1. So F̃ contains supp π(n). Conversely,
the set F , defined to consist of all s ∈ S for which (s, q(n)(s)) ∈ supp π(n), is a closed set in S. Since
π(n)(supp π(n)) = 1, it follows by Proposition III.2.1 of Neveu (1965) that q(n)(s) ∈ (supp π(n))s for
α̃(n)-almost every s in S. This is to say that s ∈ F for α̃(n)-almost every s in S, so α(n)(F ) = 1. It
follows that supp α(n) ⊂ F , which in turn implies F̃ ⊂ supp π(n). QED

Combining Lemmas 5 and 6, we get:

Lemma 7 The following inclusion holds: supp π∗ ⊂ L := Lsn{(s, q
(n)(s)) ∈ S×Z : s ∈ supp α̃(n)}.

Lemma 8 The probability measure π∗ can be decomposed as follows: there exists a transition prob-
ability η∗ with respect to S and Z such that for every pair of Borel sets A ⊂ S and B ⊂ Z

π∗(A × B) =

∫

A

η∗(s; B)α̃∗(ds).

Proof. We invoke a classical disintegration theorem (see Valadier (1973)). The only observation
still to be made is the following. By weak convergence of π(n) to π∗ it follows that marginal
probabilities of π(n) converge weakly to the corresponding marginal of π∗. Now observe that each
π(n) has α̃(n) as its marginal probability on S, because π(n)(A × Z) = α̃(n)(A) by (5). So it follows
that α̃∗, which we know to be the weak limit of the α̃(n), is the marginal probability of π∗ on S.
The classical disintegration theorem then guarantees the existence of the transition probability η∗

for which the stated identity is true. QED

We note that η∗(s; ·) above can also be interpreted as the distribution of the payoff vector z under
π∗, conditional upon the outcome s of the players’ actions under that same probability distribution.
The previous lemma will now be sharpened:

Lemma 9 There exists a transition probability δ∗ with respect to S and Z such that such that for
every pair of Borel sets A ⊂ S and B ⊂ Z

π∗(A × B) =

∫

A

δ∗(s; B)α̃∗(ds)

and δ∗(s; Gs) = 1 for every s ∈ S, where G := Lsngph q(n). Moreover, δ∗(s; Ls) = 1 for α̃∗-almost
every s in S.

Proof. Of course, Lemmas 5 and 6 imply that L coincides with Lsnsupp π(n). By supp π(n) ⊂
gph q(n) (see Lemma 6), this implies L ⊂ G. Let η∗ be as in Lemma 8. From Lemma 5 we know
π∗(L) = 1. Hence Lemma 8 implies

1 = π∗(L) =

∫

S

η∗(s; Ls)α̃
∗(ds),
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by simple properties of product measures (see Proposition III.2.1 of Neveu (1965)). Since η∗(s; Ls) ≤
1 for all s ∈ S, it follows that the Borel set M := {s ∈ S : η∗(s; Ls) < 1} has α̃∗-measure zero.
By (4) and Lemma 4.1 of Balder (1996), the correspondence s 7→ Gs is measurable in the sense of
Theorem III.2 of Castaing and Valadier (1977). So by the measurable selection Theorem III.6 in
Castaing and Valadier (1977), there exists a Borel measurable function q̂ : S → Z with q̂(s) ∈ Gs

for every s ∈ S. Since L ⊂ G, the desired transition probability δ∗ is now obtained by defining

δ∗(s; B) :=







η∗(s; B) if s ∈ S\M
1 if s ∈ M and q̂(s) ∈ B
0 if s ∈ M and q̂(s) 6∈ B

In words, δ∗ is the modification of η∗ that is obtained by making it equal to the point measure at
q̂(s) for s in the exceptional set M . QED

Clearly, just as with η∗, we can interpret δ∗(s; ·) as the conditional distribution of the payoff
vector, given that s is the outcome of the players’ actions under π∗. In the next lemma we take the
corresponding conditional expectation of the payoff vector.

Lemma 10 For every s ∈ S the integral
∫

Z
z δ∗(s; dz) defines an element q∗∗(s) in co Gs ⊂ Qq(s).

Moreover, q∗∗ : S → Z, thus defined, is a measurable function and q∗∗(s) ∈ co Ls for α̃∗-almost
every s in S.

Proof. Lemma 1 gives G := Lsngph q(n) ⊂ gph Qq by closedness of gph Qq. Hence, co Gs ⊂
Qq(s) by convexity of the set Qq(s). Existence of the integral defining q∗∗(s) is just a consequence
of boundedness of the set Z. Measurability of q∗∗ follows by standard properties of transition
probabilities (see Proposition III.2.1 in Neveu (1965)). By Lemma 9 and a well-known property of
expectations (see Pfanzagl (1974)) the point q∗∗(s), i.e., the expectation of δ∗(s), belongs to the
convex hull of Gs for every s ∈ S and to the convex hull of Ls for α̃∗-a.e. s in S. QED

Lemma 11 For every i ∈ I there exists a Borel set Ni in Si, α∗
i (Ni) = 0, such that for every

si ∈ Si\Ni
∫

S

q∗∗(s)α̃∗(ds) ≥

∫

S−i

q∗∗i (si, s−i)α̃
∗
−i(ds−i). (6)

Proof. Fix i ∈ I . The definition of π(n) gives
∫

S

q
(n)
i dα̃(n) =

∫

S×Z

zi π(n)(d(s, z))

for every n ∈ N. Since the coordinate projection (s, z) 7→ zi is continuous and bounded on S × Z,
it follows by weak convergence of π(n) to π∗ (see Lemma 4) that

lim
n→∞

∫

S

q
(n)
i dα̃(n) =

∫

S×Z

zi π∗(d(s, z)) =

∫

S

[

∫

Z

zi δ∗(s; dz)]α̃∗(ds) =

∫

S

q∗∗i dα̃∗,

where the second identity holds by Lemma 8 and the third by Lemma 10. Let B be an arbitrary
Borel set in Si. Then obviously for every n ∈ N

α
(n)
i (B)

∫

S

q(n)dα̃(n) ≥

∫

B×S−i×Z

q
(n)
i dα̃(n), (7)

because α(n) is a mixed Nash equilibrium profile (Lemma 2). We claim that this implies

α∗
i (B)

∫

S

q∗∗i dα̃∗ ≥

∫

B×S−i

q∗∗i dα̃∗. (8)

It is enough to prove this claim, for (6) follows from it with ease, in view of the arbitrariness of the
Borel subset B of Si. First, suppose in addition that the boundary ∂B of B satisfies α∗

i (∂B) = 0.
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In that case (8) follows immediately from (7) by standard properties of weak convergence, in view
of Lemma 3 (observe that the boundary of B × S−i, that is ∂B × S−i, has α̃∗-measure zero). From
this, it is not hard to extend the validity of (8) to any Borel set B in Si. First, if B is closed we let
Bε be the set of all s ∈ Si whose distance to B is (strictly) less than ε > 0. The boundaries of the
sets Bε, which are all disjoint, can have positive α∗

i -measure for at most countably many ε. So for all
other ε the set Bε is of the type for which (8) was shown to hold. By taking a countable collection
(εn) of these, with εn → 0, the claimed inequality (8) now follows from the fact that the intersection
of all Bεn , n ∈ N is the set B (the latter holds by closedness of B). Second, the probability measure
α∗

i on Si is regular by Billingsley (1968), Theorem 1.1. So for general Borel B in Si there exists for
every ε > 0 a closed subset F ε of B with α∗

i (B\F ε) < ε. Then for each F ε the inequality (8) is valid
by the above; hence its validity for B follows by a simple approximation argument. This concludes
the proof of the claim and of the lemma as a whole. QED

Lemma 12 Let q∗ : S → Z be defined as follows: for i ∈ I and s = (si, s−i) set q∗(s) := pi(s) if
si ∈ Ni and if there is no j 6= i for which s ∈ Nj × S−j; otherwise, set q∗(s) := q∗∗(s). Here pi

is a fixed measurable selection of s 7→ argminz∈Gs
zi Then α∗ is a Nash equilibrium for q∗. Also,

q∗(s) ∈ co Gs for every s ∈ S and q∗(s) ∈ L(s) for α̃∗-almost every s in S.

Proof. A similar modification of q∗∗ was given by Simon and Zame (1990), who used Qq instead
of the present more precise s 7→ Gs. Observe first that pi is well-defined: by Lemmas 4.1 and 4.2 of
Balder (1996) the correspondence s 7→ argminz∈Gs

zi is measurable in the sense of Theorem III.2 of
Castaing and Valadier (1977), so we can again apply the measurable selection Theorem III.6 of that
same reference. Fix i ∈ I and si ∈ Si. We shall argue that (6) remains valid if q∗∗ is replaced by
q∗. If si ∈ Si\Ni, then q∗∗(si, s−i) and q∗(si, s−i) can only differ if s−i belongs to the union of the
sections (Nj ×S−j)si

, j 6= i. But this union clearly has measure zero under the product measure α̃∗
−i

(which contains a factor α∗
j of course), so the right hand side of (6) is not affected if we change q∗∗

into q∗ and for the left hand side this is entirely obvious. If si ∈ Ni, then q∗∗(si, s−i) is only different
from q∗(si, s−i) if there is no j 6= i with (si, s−i) ∈ Nj×S−j . It remains to show that for those points
the change from q∗∗ to q∗ means a change downward, i.e., q∗i (si, s−i) = pi

i(si, s−i) ≤ q∗∗i (si, s−i).
Since q∗∗(s) ∈ co Gs (by Lemma 10) this follows from the elementary identity

pi
i(s) = inf

z∈Gs

zi = inf
z∈co Gs

zi.

We conclude that α∗ is a mixed Nash equilibrium for q∗. Finally, note that pi(s) ∈ Gs by definition
and that by Lemma 10 both q∗∗(s) ∈ co Gs for all s and q∗∗(s) ∈ Ls for α̃∗-a.e. s. It remains to
observe that Ls, the section at s of L := Lsn{(s, q

(n)(s)) ∈ S × Z : s ∈ supp α̃(n)}, coincides with
the set L(s) as defined in Theorem 1. So the modification q∗ is as stated. QED

Proof of Theorem 1. Part (i) follows from Lemma 3 and part (ii) follows by Lemma 12.
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