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Abstract

In this paper we study two degree of freedom Hamiltonian systems and applica-
tions to nonlinear wave equations. Near the origin, we assume that near the linearized
system has purely imaginary eigenvalues: +iw; and +iw,, with 0 < wy/w; < 1 or
wg/wy > 1, which is interpreted as a perturbation of a problem with double zero
eigenvalues. Using the averaging method, we compute the normal form and show
that the dynamics differs from the usual one for Hamiltonian systems at higher order
resonances. Under certain conditions, the normal form is degenerate which forces us
to normalize to higher degree. The asymptotic character of the normal form and the
corresponding invariant tori is validated using KAM theorem. This analysis is then
applied to widely separated mode-interaction in a family of nonlinear wave equations
containing various degeneracies.

Keywords. Hamiltonian mechanics, resonance, normal forms, widely separated frequen-
cies .

1 Introduction

The dynamics of two degrees of freedom Hamiltonian systems near stable equilibrium is
relatively well understood; see for instance [3] pp.258-270, [11] pp.212-226. Resonance is
known to play an important role in the dynamics of a system of differential equations.
The presence of resonance in a system significantly changes the behavior of the system.
Consider for instance the flow on a torus with irrational slope — which corresponds to the
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non-resonant case — compared to the flow on a torus with rational slope. Orbits of the
system in the first case are dense while in the second case, all solutions are periodic.

In two degrees of freedom Hamiltonian systems, one can divide the resonances into three
classes, namely first order resonances (also known as Fermi resonances), second order res-
onances, and higher order resonances (see [24] pp.146-162 for details). For systems in first
order resonance, it is known that they may display parametric excitation. This behavior
is characterized by energy transfer between the degrees of freedom. This energy trans-
fer is already apparent on a relatively short time-scale for almost all solutions (see [26]).
However, the presence of a discrete symmetry may change the situation (see for instance
[22, 27]). The higher order resonances also show some energy exchange but on a much
smaller scale and on a much longer time-scale (see [23, 27]).

In this paper, we consider two degrees of freedom Hamiltonian systems with widely
separated frequencies: the ratio between the frequencies is either very small or very large.
The small parameter ¢ is introduced into the system by rescaling the variables in the
usual way. Such a system can be seen as a Hamiltonian system at an extreme high order
resonance.

One might expect that if the natural frequency ratio is 1 : ¢, then the system behaves
like a non-resonant two degrees of freedom Hamiltonian system. We show in this paper
that this assumption produces somewhat different phenomena than expected. The phase-
space of a non-resonant Hamiltonian system near the origin is foliated by invariant tori.
These tori persist (by KAM theorem) under a Hamiltonian perturbation. In the case of
widely separated frequencies, the phase space is nearly filled up with unbounded solutions,
except for a very small domain near the elliptic equilibrium point.

For ¢ = 0 the system is linear with double zero eigenvalues of the equilibrium at the
origin. Broer et. al. in [5] (or in [6] for more explanation), studied this class of Hamil-
tonian systems in a more general setting. These systems can be divided into two cases,
i.e. the semi-simple case and the non semi-simple case. Using normal form theory and
singularity theory, the above authors give a bifurcation analysis near the equilibrium. The
codimension of the equilibrium point is 1 for the non semi-simple case and 3 for the semi-
simple case. Their paper also describes the universal unfolding of the equilibrium point.
In our paper we consider only the semi-simple case. We extend the normal form analysis
of [5] by considering a number of possible degeneracies arising in applications. We are
also interested in describing the dynamics (in time) of the system which, in a sense, also
supplements the analysis done in [5] or [6].

In applications, this type of problem arises quite naturally. For instance in the analy-
sis of a model for atmospheric ultra-low frequency variability in [9], the author found a
case where one of the natural frequencies in the system is as small as the nonlinear terms.
However, there the system is not Hamiltonian. Nayfeh et. al. [19], [20] and Haller [12]
treat comparable cases in mechanical engineering. For a recent result, see also Langford
and Zhan in [16, 17]. We shall return to such problems in a separate paper.

Lower order resonances produce more spectacular dynamics but higher order resonances



appear more frequently in applications. For instance in wave equations, cases where the
resonances are of the type that we consider in this paper are quite natural. This fact also
motivated our study of this type of Hamiltonian system.

In Section 2 we formulate our problem as one where perturbation theory and normal
forms can be applied to approximate the full system. There are several ways to normalize
a system of differential equations, namely using Lie-series, averaging, or using a generating
function. For details on normalization using Lie-series, see [7, 8, 10], while for averaging
or using a generating function see [2, 24].

We use the averaging method to compute the normal form. To verify the asymptotic
nature of the normal form, the theory of averaging requires that we restrict ourselves to a
domain of bounded solutions. For this, we approximate the locations of the saddle type
equilibria of the system. The distance between these saddle points (if they exist) to the
origin gives an indication of how large the domain of bounded solutions is. This is done in
Section 3. We continue with the normal form computation to analyze the truncated normal
form in Section 4 and 5. For some values of the parameters we have a degeneracy in the
normal form, related to symmetry, which forces us to normalize to second-order. This
situation is analyzed in Section 6 where we still find some nontrivial dynamics. We note
that the assumption of the natural frequency being O(e) affects the domain of bounded
solutions. Keeping this in mind, we use KAM theory to show the validity of the normal
form in Section 7. In Section 8 we discuss systems with widely separated frequencies which
arise from the spectrum of evolution operators with initial-boundary conditions. Examples
of such systems can be found in conservative nonlinear wave equations. It is shown that
although there is no exchange of energy between the modes, there can be a strong phase
interaction.

2 Mathematical formulation of the problem

Consider a two degrees of freedom Hamiltonian (potential) system with Hamiltonian
H :%(pr + ;c2) + %S(pr + y2) _ (%alx:” T aprly + aszy? + %a4y3)

2.1
— (b1t 4 boa®y + bsa*y? + baxy® + 10sy*) + O([|(2, v, pospy)"|P)- (21)

The Hamiltonian system is defined on R* with coordinates (z,y,ps,p,) and symplectic
form dz A dp, + dy A dp,. We assume that ¢ is a small parameter: 0 < ¢ < 1. We also
assume that all of the constants a;,7 =1,... ,4 and b;,j = 1,...,5 are O(1) with respect
to . It is easy to see that for all € > 0, the origin is an elliptic equilibrium. We re-scale
the variables (and also time) using the small parameter to localize the system around the
origin in the usual way (z = ¢z,...). The Hamiltonian (2.1) then becomes (we use the
same notation for the rescaled variables and Hamiltonian)

H :%(PxQ + xQ) + %E(pf + y2) — 6(%@1363 + angy + ag:vy2 + %a4y3)

2.2
— 62(iblx4 + byzdy + bsx?y? + byzy® + ib5y4) + O(e”). (2:2)



Thus, we have a Hamiltonian perturbation of two harmonic oscillators with additional as-
sumption that the basic frequency ratio in the systemis 1 : e.

Remark 2.1 Two types of systems with widely separated frequencies .
Consider a Hamiltonian systems with Hamiltonian

H = %wl (p* +a*) + %Wz (p2® + @2*) + H,. (2.3)

where H, is a polynomial with degree at least three. There are two possibilities for the
system generated by (2.3) to have widely separated frequencies. One might encounter the
situation where wy = O(e) as in the case of Hamiltonian (2.1). By rescaling the variables
the Hamiltonian becomes

H = % (p12 + Q12> + %6 (p22 + QQ2> + €H3 + €2H4 + Cey (24)

where Hs represents the cubic terms, Hy the quartic. etc. We call this situation the first
type of widely separated frequencies.

The other possibility arises when wy = O(1/¢). By rescaling time (and also ¢) we derive
the Hamiltonian of the form

H=1Yp+q?) + Le(p® + %) + eH,.

In general, the Hamiltonian system derived from this Hamiltonian is still too complicated
to analyze as all the nonlinear terms are of the same order. Thus, we localize around the
origin by rescaling the variables. The asymptotic ordering in this case, however, is different
from the one in (2.2) as the nonlinear terms become O(e?):

H=5(p’+a?)+5e(p’+q®) + 2 Hs + P Ho + .. (2.5)

We call this situation the second type. In Section 5, we will return to the relation between
the first and the second type of resonances.

In the unperturbed case, i.e. ¢ = 0, all solutions of the equations of motion derived from
(2.2) are periodic with period 27. Those solutions are of the form

(2,4, Pas Py) = (10 cOS(L + ©0), Yo, —To sIN(t + ©0), Py, ),

where 1, @o, Yo, and p,, are determined by the given initial conditions. Moreover, all
points of the form (0,y,0,p,) € R* are critical corresponding with equilibria which is not
a generic situation in Hamiltonian systems. We expect that most of these equilibria will
be perturbed away when ¢ # 0. Consequently, most of the periodic solutions are also
perturbed away.

We use the averaging method to compute the normal form of the equations of motion
derived from (2.2). Details on the averaging method can be found in [24]. The analysis is
then valid up to order € on the time-scale 1/¢ at first-order, to order £? on the time-scale
1/e at second-order. Before carrying out the normal form computation we first look at the
domain where the solutions are bounded.



3 Domain of bounded solutions

The theory of averaging requires the solutions of both the averaged and the original equa-
tions to stay in the interior of a bounded domain, at least for some time. Only in that
domain, the averaging theorem guarantees the asymptotic character of the approximations.
Thus, the existence of this domain is important.

The equations of motion derived from (2.2) are

T = P
pr = —x+e(arr? 4 2a0zy + aszy?) + e*(biz® + 3byx?y + 2bs2y* + bay®?) (3.1)
y = &Py .

Py = e(—y+ axx® + 2aszy + aqy?) 4 e*(bax® + 2b32%y + 3bszy® + bsy?).

We will approximate the equilibria of system (3.1). To do that, we set & = 2o+ ez, +O0(e?)

and y = yo,+0(¢). It is clear that p, = p, = 0 at the equilibria. Substituting these into (3.1)

we have two equilibria if ay # 0, i.e. (z,y,ps,py) = (0,0,0,0) and (—eaz/a4s®,1/a4,0,0)

while if a4 = 0 up to this approximation we have only one equilibrium, i.e. (0,0,0,0).
Define the potential function of the Hamiltonian (2.2), i.e.

Viz,y) =5(a + ey?) — e(3a12° + az2’y + azzy® + asy®)

. . 5 . . 3.2
- 52651374 + bya’y + bsz’y? + baxy’ + ibsy‘l) + O(&?). (3:2)

It is an easy exercise — by checking the second derivatives of (3.2) — to derive the stability
of those equilibria found above. We conclude that (0,0,0,0) is a center point and in the
case where ay # 0 we have (—cas/as®,1/a4,0,0) is a saddle point.

The fact that we have a possibility of having a saddle point in an O(¢)-neighborhood
of the center point implies the domain of bounded solutions to shrink in measure (at least
as fast as ¢ as ¢ goes to zero). This is in contrast with the cases where all the natural
frequencies are of the same order where the measure of the domain is independent of &.

4 Normal form computation

Consider again the equations of motion in (3.1). The equations for y and p, in (3.1) are
already in the Lagrange standard form. Thus we need only to transform the first two
equations in (3.1).

Putting = = r cos(t + ¢) and p, = —rsin(t + ¢), the equations of motion (3.1) become

¢ = —tcos(t+ ) (e{arr? cos’(t + @) + 2azr cos(t + )y + azy®}
+e? {byr® cos®(t + ¢) 4 3bar? cos?(t + @)y + 2bsr cos(t + ¢)y* + bay°})
r o= — sin(t + Lp) (6 {a17'2 cos2(t + ap) + 2aqr cos(t + go)y + a3y2}

+e? {byr? cosB(t + go) + 3byr? cos2(t + go)y + 2bsr cos(t + 4,9)y2 + b4y3}) (4.1)
y = epy
[3y = 6(—y + a2(7' cos(t + 99))2 + 2asr cos(t + go)y + a4y2)

+€2(62('r cos(t + 99))3 + 263(7' cos(t + Lp))Qy + 3b,r cos(t + go)yQ + b5y3).



The right hand side of (4.1) is 2m-periodic in t. We note that the transformation to (¢, r) is
not a symplectic transformation. However, the averaged equations of motion are equivalent
to the Birkhoff normal form of the equations of motion of (2.2).

For some values of the parameters, first order averaging is not sufficient. For this reason
we compute the normal form up to O(e?) using second-order averaging. After applying the
second-order averaging method to (2.2), we transform [ = %T‘Q, Y =t + . The averaged
equations of motion then read

1@ = 1—cay — ¢&? ((%CLIQ + 251) I+ (%GQQ + araz + ba) y2)

Ir =290
. 4.2
Lo (42)
Py = e(—y+ay’ +al) 4% (2(Fa® + aras + bs) yI + (2a5° + bs5) y°) ,
which i1s a Hamiltonian system with Hamiltonian
7’[ =1 + 57’[1 + 6’27'[2, (43)
where
Hi o= 5 +pt) = axly - oy (44)
HQ % (%d12 + %bl) [2 + (%d22 + aias + bg) y2] + % (2&32 + 65) y4. (45)

This implies that the total energy H can be approximated by H = I + eH, + ¢*H.,.

As expected in such an extreme type of higher order resonance, the interaction between
the two oscillators is weak in the sense that up to this approximation, there is no interchange
of energy between the degrees of freedom. However, there is phase-interaction. In the next
section we will first analyze the O(e)-term of (4.2).

Remark 4.1 As mentioned above, the transformation carrying (z,p,) into (r,¢) is not
symplectic. Nevertheless, after averaging and transformation to coordinates (I,) we re-
gained the symplectic structure. The symplectic form is d) Adl+dyAdp,. In the literature
the pair (1,v) is known as symplectic polar coordinates.

Remark 4.2 It is interesting to note that {H, 7} = 0 where {, } is the Poisson bracket.
The Hamiltonian (4.3) then can be viewed as a normalized H with respect to the S*-action
defined by the flow of the unperturbed Hamiltonian, X;. Dividing out this action from
the system (or equivalently fixing the value of I) leads to a reduced system (for reduction
see [8]) which corresponds with a Poincaré section for the flow X7. This Poincaré section
is an approximation of a section of the original flow Xp. In contrast with the other cases
in this family of Hamiltonian systems, — those in which the frequencies are of the same
order — in this case the reduced space is R* (for non flat reduced spaces, see for instance

7, 21]).

Remark 4.3 In applications, symmetries arise naturally in a system. Omne can con-
sider for instance the discrete symmetry ¢, : (z,y,ps, py)" = (—2,y, —ps, py)" or @y :
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(2,9, psypy)" — (2, =Yy, ps, —py)". If a Hamiltonian system is invariant under a symmetry
¢ then we have ¢*H = H o ¢ = H. The symmetry ¢, and ¢, is symplectic (they preserve
the symplectic form). In [7] it is proved that the normalization can be done such that the
symmetry ¢, or ¢, 1s preserved.

For a y-symmetric Hamiltonian, i.e. a; = a4 = by = by = 0, the normal form (4.2) is
degenerate up to O(e). However, a non-trivial dynamics is achieved as the second-order
terms are included. On the other hands, for an z-symmetric Hamiltonian the normal form
(4.2) is non-degenerate.

5 First order analysis of the averaged equations

In this section we analyze the Hamiltonian system (4.2) up to order ¢. What we mean is
that we drop all terms of O(e?), i.e.

l/} = 1l —cayy

I =0

. 5.1
Yy = &Py (5-1)
py = e(—y+asy’+asl).

The solutions of system (5.1) approximate the solutions of system (4.1) to O(¢) on the
time-scale 1/¢. The result of this section agree with [5, 6].

It is clear that I(t) > 0 for all time and up to O(¢), it is related to the original Hamiltonian
through H = I + eH;. Instead of fixing the value of ‘H we fix I = I, € R. Thus, we are
looking at the flow of Hamiltonian system (5.1), Xy, restricted to the manifold I = I,.
The reduced system (after rescaling time to 7 = ¢t) is

L= p
gr W 5.2
a,%y = (—y+ asy® + a2l,), (5:2)

which is a Hamiltonian system with Hamiltonian (4.4). In this reduced system, we might
expect to have none, one or two equilibria. See also Remark 4.2.

There are four (three independent) important parameters in the Hamiltonian system
(5.2), namely a4, aq, I,, and

D =1- 4(12(14]0. (53)

As mentioned in the previous section, if a4 # 0, in the e-neighborhood of the origin we
have another equilibrium of the saddle type. This equilibrium does not exist if a4 = 0.
Furthermore, the reduced system (5.2) is degenerate if a4 = 0: it becomes a linear oscilla-
tor. Thus, for a4y = 0 we need to include quadratic terms in the normal form. We will do
this in the next section. In this section we assume a4 # 0.



Let I, = 0, the flow X, degenerates to a point. As a consequence, the flow Xy in this
case lives in a two dimensional manifold defined by (0,0) x R? (or just R?). Furthermore,
for I, = 0, we have D = 1 > 0. Thus, the dynamics in the manifold (0,0) x R? is the same
as the dynamics of the reduced system for D > 0.

D>0 D<O

Figure 1: Dynamics of the Hamiltonian system (5.2) for a4 # 0, I, # 0, and ay # 0.

Let us assume that I, > 0. The flow X;, defines a non-degenerate S'-action on the
phase-space of system (5.1). Thus, the flow Xz lives in S x R% 1If ay # 0, there are
three possible phase-portraits depending on the parameter D and they are illustrated
in Figure 1. If D > 0, there are two equilibria in the system (5.2): the saddle point
(y°,0) = ((1 +vD)/(2a4),0) and the center point (y°,0) = ((1 —+/D)/(2a4),0) (they
correspond to Hy = hy and Hy = h, respectively). The center point (y°,0) is surrounded
by periodic orbits with period

dy, (5.4)

va 1
=2
Yo \/h — 592 + 302 Loy + Faqy?

where y; and yJ are found by solving H; = h for y if p, = 0. If by > h. then h, < h < hs.
Orbits in which H; > h, are unbounded '. There exists a homoclinic connection: the
component of H;, ™' (hs) U (y*,0) which forms a closed curve.

To translate this back to the full normalized system, we take the cross product with the
Sl-action generated by X;,. At H; = h., we have the stable periodic solution of the form
(V215 cos((1 = caay®)t + o), y°, V2 sin((1 — cazy®)t + p,),0). The periodic solutions of
(5.2) which are found if b, < h < hg, produce quasi-periodic solutions in the full normal-
ized system. They live in two dimensional tori in R* which are the bounded component of
H,7"(h) cross product with S'. At H, = h,, we have the unstable periodic solution of the
form (/21 cos((1 —eazy®)t + ¢o), y*, /21, sin((1 — eazy®)t + ¢,),0). This periodic solution
has two dimensional unstable and stable manifolds which intersect transversally at the

'We note that the converse does not hold since Hl_l(h) might have two disconnected components.



Figure 2: An illustration for the geometry of the phase space of system (5.1) up to
O(¢) in the case where D > 0 in (5.3). In this picture, the value of [ is fixed. The
thick lines represent the periodic orbits: the upper one is stable and the lower one
is unstable. The unstable periodic solution is connected to itself by a 2-dimensional
homoclinic manifold. In the two dimensional Poincaré section ¥, the dynamics is

determined by (5.2).

periodic orbit, and are also connected to each other to form a two dimensional manifold
in R* homoclinic to the periodic solution. See Figure 2 for illustration.

Let us consider the cases where D = 0 in equation (5.3) (we still assume a; # 0). There
is only one equilibrium in the system (5.2), that is (1/2a4,0). The linearized system of
(5.2) has double zero eigenvalues correspond to a saddle-center bifurcation. As the center
point and the saddle point of (5.2) coincide, the domain where the solutions are bounded
vanishes. For D < 0, the situation is almost the same as the case where D = () except that
there is no equilibrium in the system (5.2). For the full normalized system, the geometry of
the phase-portrait for both D = 0 and D < 0 can be achieved by taking the cross product
of the corresponding phase-portrait in Figure (1) with S*.

Let a; = 0. The system in (5.2) decouples up to O(¢) and the sign of D in the equa-
tion (5.3) is positive. We need only to note the existence of infinitely many periodic orbits
of period T' where T'/2km € N filling up a two dimensional torus (depending on the period)
in phase-space. As we include the higher order terms in the normal form, these periodic
solutions become quasi-periodic. The existence of the invariant manifold homoclinic to the

periodic solution (S; x H;7'(0)) is not affected by the fact that a; = 0.

Another degenerate case occurs when a4 = 0 (think of the y-symmetric Hamiltonian).
In this case, the system (5.2) has one equilibrium for a fixed value of /,. The eigenvalues
of this equilibrium are purely imaginary, i.e. +1; all solutions of (5.2) are 2m-periodic. We



shall discuss this in the next section.

6 Second order averaging if a4, = 0

Let ay = 0. Then the Hamiltonians (4.4) and (4.5) reads
Hi = 3 ((y—ald) +p°) - jasl”
Hy = 5(2a+3b) I* + (Fa2® + aras + bs) y*1 + § (2as” + bs) g,

with corresponding equations of motion (after rescaling time)

g _ " L ) ’ (6.1)
B = —ytagl +e(2(1as® + aras + by) yl + (2a3 + bs) y?)

which is the reduced system for a fixed value of I. We first look for the equilibrium of
(6.1). Consider the equation

vy + 7 =0, (6.2)
where
-1+ 5(@22 + 2a1a3 + 2bs)I asl
e £(2as? + bs) and % = e b
Using Cardano’s formula, we have the discriminant
Ds = (12/2)" + (m/3)”. (6.3)

For (6.1) we have one, two or three equilibria. If D3 > 0, (6.2) has one real root. D3 =0
gives two real roots while D3 < 0 corresponds to three real roots. We describe the phase-
portrait of (6.1) in Figure 3. There are three different regions in the parameter space
71-72 corresponding to how many equilibria (6.1) has. Depending on the stability of each
equilibrium, we have several possibilities for the phase-portraits.

The stability of these equilibria can be derived as following. Let y, be a simple root of
the equation (6.2) and write g = 2a3* + bs. If 1 > 0, then (y,,0) is a stable equilibrium.
On the other hand if ;1 < 0, then (y,,0) is a saddle point of the system (6.1). If y, is a
double root, then (y,,0) is an unstable equlibrium.

Since the Hamiltonian of the system (6.1) is a quartic function, one can conclude that,
if (6.1) has one or three equilibria, then all of them should correspond to simple roots of
(6.2). If it has two equilibria, then one of them corresponds to a simple root while the other
is a double root. From this analysis, we can derive the stability of each of the equilibria
that exist in the system (6.1). We summarize this in Figure 3.

Remark 6.1 In the case where u = 2a3®+bs = 0, the normalized system is again degener-
ate, in the sense that the dynamics is nothing but rotation around an elliptic equilibrium.
We should then normalize to even higher degree. We expect to have more equilibria com-
pared to those we found for the non-degenerate case. Apart from that, we expect no more
complications.

10



H<0 >0

Figure 3: Bifurcation diagram of the system (6.1). The curve depicted in this figure
at the top is the curve (72/2)* 4+ (71/3)® = 0. We draw the possible phase-portraits
of the system (6.1) below this bifurcation diagram. For each region (indicated by
the Roman numbers I, II, and IIT), we have two possibilities depending on the sign
of 4 = 2a3? + bs. The dashed box indicates the location in the reduced space where
the normal form is a good approximation of the full system.
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Remark 6.2 Notes on locations of the equilibria and their bifurcation

One can see that both of 4, and v, are O(1/e). This implies that some of the equilibria
found in this analysis might also be O(1/¢) and this analysis might not be applicable since
it is far away from the domain where the normal form is a good approximation of the
system. In Figure 3 we place a dashed box around a particular equilibrium in the phase-
portraits to indicate the domain where the normal form is a good approximation of the
system.

As stated in the last part of the previous section, in the case where a4 = 0 the first order
analysis shows that the system has only one equilibrium. This equilibrium can be continued
to a equilibrium in the system (6.1) (the one inside the box). During this continuation (by
implicit function theorem) the stability of this equilibrium will not change.

Another way of looking at the bifurcation is the following. It is clear that v, # 0 since
a; and b; are independent of . This fact excludes the possibility of deforming the cubic
equation (6.2) so that it has a single root with multiplicity three.

Remark 6.3 It should be clear that these equilibria of the reduced system (if they sur-
vive), correspond to periodic orbits in the full system by taking the cross product of the
equilibrium (y,,0) with S*. The stability of these periodic orbits is the same as in the
reduced system. Thus Figure 3 also serves as the bifurcation diagram for the periodic
orbit in the full normalized system.

7 Application of the KAM theorem

The celebrated Kolmogorov-Arnold-Moser (KAM) theorem is one of the most important
theorems in perturbation theory of Hamiltonian dynamics. This theorem relates the dy-
namics from the normal form analysis to the dynamics in the full system, under some
non-degeneracy condition. The theorem itself can be stated in a very general way (see
[1] or [3]). As noted previously, the assumption on the frequencies implies that we can
only guarantee the validity of the normal form in a rather small domain around the origin.
However, the normal form of the system displays structurally stable behavior. Using the
KAM theorem, we can validate this behavior.

Consider a Hamiltonian system defined in a 2n-dimensional, symplectic space M in
the action-angle variables (¢, JJ) and symplectic form d¢ A dJ. The Hamiltonian of the
system is H = Ho(J)+eH (¢, J). The unperturbed (¢ = 0) Hamiltonian system is clearly
integrable with integrals J;,1 = 1,... ,n and the equations of motions are

J =0
d = AJ).

The phase space of the system (7.1) is foliated by invariant tori, parameterized by [; =

(7.1)

c,7=1,...,n.
The KAM theorem concerns the preservation of these invariant tori as we turn on
the (Hamiltonian) perturbation ¢H;(¢,J). The theorem guarantees the preservation of
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a large number of the invariant tori under some non-degeneracy conditions. In applying
this fundamental theorem to a general Hamiltonian system with Hamiltonian H, one has
to find an integrable Hamiltonian which is asymptotically close to H. For two degrees of
freedom Hamiltonian systems, the truncated normal form is integrable. The asymptotic
relation between the original and the truncated, normalized Hamiltonian system is also
clear. Thus, 1t remains to see if the non-degeneracy condition is satisfied.

For general two degrees of freedom Hamiltonian systems in higher order resonance, the
non-degeneracy condition is usually satisfied. In contrast, for the extreme type of higher
order resonance, this is not a priori the case. The main difficulty is that the unperturbed
integrable system is degenerate.

The version of the KAM theorem stated below is applicable to these extreme type of
higher order resonance cases. We will follow the discussion in [3].

Consider the Hamiltonian system with Hamiltonian

H = HOO(']I)+€H01(J)+52H11<¢7'I>a (7.2)
where J = (Ji,.J;). The Hamiltonian (7.2) is called properly degenerate if
0H00 aQHOI

d —— .
o # 0 an 8J22 # 0

The system Hoo(J1) + ¢ Hoi (J) is called the intermediate system.

Theorem 7.1 In a properly degenerate system, a large subset of the phase-space of the
system generaled by Hamiltonian (7.2) is filled by invariant tori which are close to the
invariant tori of the intermediate system: J is constant .

Remark 7.2 In a properly degenerate, two degrees of freedom Hamiltonian system, the
situation is more regular in the sense, for all initial conditions, the values of the action
variables remain forever near their initial values. See [3] for details and the reference
therein.

Applying Theorem 7.1 to our system, we define the intermediate system as H = I + ¢H;,
with H,, = I. The action and angle variables for the one degree of freedom, Hamiltonian
system generated by H; can be calculated using the generating function S(.J,y) = fi Pydy.
Thus we construct a symplectic transformation to bring (y,p,) to (J,¢) such that the
equations of motion are of the form (7.1). The non-degeneracy condition on “the frequency”
A(J) follows from the fact that the period function (5.4) in the case D > 0 in (5.3) and
ay # 0, depends nonlinearly on hp. Thus, Theorem 7.1 is applicable to our system.

8 Application to nonlinear wave equations

In this section we consider applications of the theory of widely spaced frequencies to non-
linear wave equations with initial-boundary values. Many studies have been devoted to
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such problems, see for instance the survey [28], also [4, 13, 14, 25].

In most of these studies the solution of the continuous system is expanded in an orthogonal
series and then projected on a finite subspace using the Galerkin truncation method. This
results in a finite set of ordinary differential equations. The next step is then to approxi-
mate the solution of this finite system by averaging, see for instance [14, 25], or multi-time
scale methods, see [4]. Until now the applications have been to low-order resonance cases.

8.1 Formulation of the problem

Let Q@ = [0, u7] and L be a linear, self-adjoint, elliptic differential operator defined on a
dense subset A C H,(Q), i.e. L : A — Hy(Q), where H,(€) is a Hilbert space with an

inner product (_,_). Consider the initial-boundary value problem
vy — Lo = ef(v,v,t)
v(0,1) = o(um,t)=0
v(z,0) = ¢(z)
vi(,0) = ¥(z),
where p e RT, 0 <e < 1,v=wv(z,t)and f:D — H, (D C H, x H,, for a Sobolev space

H;). Important examples to take for L are

(8.1)

0? .
Ly = 922 the perturbed wave equation
x
92
Ly, = E I, the perturbed dispersive wave equation
x
94
Ly = ~ 5 p’I, the perturbed beam equation,
x

with I the identity operator and p € N. In this paper we will be mainly concerned with
the cases . = Ly or L = Ls.

The question of the existence and uniqueness of solutions of problem (8.1) can be set-
tled in a standard way; see for instance for L = Ly and f(u,u;, ¢) = u® in [14, 25]. In [25],
the authors also consider the case where I = Ly. For L = Lz and f(u,u,t) = u?, the same
question is studied in [4]. After applying the Galerkin truncation method an asymptotic
solution of (8.1) is constructed.

Let A\, and V,(z),n = 1,2,--- be the eigenvalues and the corresponding eigenfunctions
of L. One of the implications of the assumptions on L is that the set of eigenfunctions
{Vo,n = 1.2.---} form a denumerable, complete set in A. Thus, we can write for the
solution v(z,t) = Z]‘ a;j(t)Vj(z). Suppose N is a large natural number and consider a
finite eigenfunction expansion of v, i.e. vy(z,t) = Ei\r a;(t)Vi(z). We substitute uy into
(8.1) to obtain

N N N B
S (a4 M\ a) Vi=f (Z ajVj,ZdjVj,t> = f(z,1).

1 1

14



Projecting the last equation to the eigenspace generated by V,,,m = 1,--- | N produces
N

form=1,---,

am(1) + M an(t) = (Un, [)(1), VL. (8.2)

In [13, 25] it was realized that, choosing the initial condition ¢ and 1 to be effective only in
some of the N modes, does not excite the other modes dramatically on a long time-scale.
Thus, the eigenspace acts as an almost-invariant manifold. This observation was analyzed
in [15], pp. 23-24, see also [14], where the author studies and proves the asymptotics of
the manifold.

In this section we will not discuss the approximation character of the truncation and
averaging procedure of wave equations. This can be done, see [28], but it needs a more
detailed analysis which falls outside the scope of the present investigation. Our purpose in
this section is to project (8.1) on a finite-dimensional space spanned by the eigenfunctions
Vi and V), of the operator L corresponding to two widely separated eigenvalues (or modes).
The projected system generated by V; and V), (for M € N) is

i+ Mar = €f1

(8.3)
We have to choose M such that A\ /A, < 1.

8.2 Scaling procedures

We can think of three different scalings applicable to problem (8.1): spatial domain scaling,
time scaling, and scaling by localization.

Spatial domain scaling is effected by putting z = z/u and writing v(z,t) as u(z,t). This
scaling transforms the spatial domain Q = [0, 7] to Q = [0, 7]. Obviously, we also have to
re-scale the linear operator L, the nonlinear function f, and the initial conditions ¢ and
. The nonlinear function f, and the initial conditions ¢ and 1 are transformed as v(z,1):
by writing new functions f. dand ¢. In general they will depend on the parameter p.
With respect to the operator, spatial domain scaling results in scaling the eigenvalues of
the operator. The first and second rescaled operators are Ly = Ly/u? and Ly = Ly /p? — L.
Thus, the transformed initial-boundary value problem becomes (we have dropped the bar)

wy — Lu = ef(u,ut,t)

u(0,1) = u(m,t)=0

u(z,0) = %(:1:) (8.4)
u(z,0) = (),

where I is Zl or Ez.
The time scaling procedure is done by putting 7 = §;(g)t where §; is an order function.
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Time scaling is usually carried out simultaneously with localization scaling: v = §y(¢)v
where 43 1s also an order function. It is easy to see that the scaling in v amounts to scaling
in the amplitude @ and its time derivative.

Our goal is to use these scaling procedures to get widely separated frequencies in sys-
tem (8.3) with main interest in L = Ly or L = L,. Consider the situation where p > 1,
a large domain. Let M € N be sufficiently large such that M/u = O(1), compared to
1/p = 5(6) <1 (the order function 5(6) is to be determined later). Before projecting to a
finite dimensional space by Galerkin truncation, we apply the spatial domain scaling which
then bring us to (8.4). For the non-dispersive wave equation we have A; = O(d(¢)) while
Ay = O(1), which means we have a system with widely separated frequencies. Since this
does not involve the time rescaling, we have the first type of widely separated frequencies.
For the dispersive wave equation this approach does not produce a system with widely

separated frequencies since Ay = (1 + 1/p) and Ay, = (1 + M/p) are both O(1).

If 4 = 1, spatial domain scaling makes no sense. Again we choose M > 1, which im-
plies Ay /A1 > 1. This case is called the second type of widely separated frequencies in
remark 2.1. By rescaling time, 7 = Ay ¢, the projected equations of motion become

i+ (5)a = 5ah (8.5)
ELM_I_QM = /\67fM, ’

in both the dispersive and non-dispersive case. This similarity is interesting. However, one
can see that the nonlinearity in (8.5) is very small (of order O(g/Ay*). The dynamics in
this case, if (8.5) is a Hamiltonian system, would be the same as the usual higher order
resonance describe in [23, 27].

8.3 The Hamiltonian equation uy — Lu = e f(u)

We shall now consider perturbations such that the wave equation can be put in a Hamil-
tonian framework. Note that, starting with a Hamiltonian wave equation, it is not trivial
that Galerkin truncation again leads to a Hamiltonian system.
Considering R* as a symplectic space with symplectic form da; A db; + day, A dby, we
suppose that the right-hand side of system (8.3) is such that

fi= =90 ana gy = O

a1 a(J/M’

for a function H, (sufficiently smooth). Thus, system (8.3) has Hamiltonian H
H = % (CHQ + /\]2b12> + % (CLM2 + )\ZQbMQ) +eH,,

(we may have to re-scale ¢). This Hamiltonian is not in the standard form (2.3). To bring
it to the standard form, define a linear symplectic transformation

F: (al,aM,bl,bM)T — (al/\/x, aM/\/)TQ, \/)\»151, \/)Tng>T. (8.6)
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This transformation is also known as diagonalization in a Hamiltonian system. For poten-
tial problems, the transformation F transform H, to [:Ln which depends on Ay or Ay. This
may become a problem with widely separated frequencies. The coefficients in H, also de-
pend on the small parameter which changes the asymptotic ordering of the nonlinear terms.

In this subsection we will consider the typical perturbation f(u) = u® which corresponds
with a potential problem in the classical sense. It will become clear later that the trans-
formation F simplifies the dynamics.

First consider (8.4) with: L = Ly, p > 1, Ay = 1/p and A, = 1. After some compu-
tations one obtains that f(u) = u® corresponds to the system (8.3) with the right-hand
side functions

]El — SGIB + 3a1aM2 and f2 = %CLMS + SGIQQM. (87)
Transforming by F the Hamiltonian becomes
H =5, (0% +a0”) + 5 (b +an®) —e (FpPa' +an + Jpai’ar?) . (89

Recall that 1/p = §(2). Choosing 6(2)” = &, we can write (8.8) as (we use §(¢) as the small
parameter instead of ¢)

H=15@) (b* + a1?) + 3 (b’ + an?®) — 2ar* 4+ O(3(2)). (8.9)

By rescaling the variables (localization scaling) by 6(¢)a;, §(¢)b;, 7 =1, M (and then rescal-
ing time) we arrive at

H = 36() (b® + a1®) + 3 (ba” + an®) = §0(e)°ar” + O(5(e)"). (8.10)

The theory in the previous section (for the degenerate case) can be applied to this Hamil-
tonian.

The situation for Ly, > 1, Ay = 1/p and A, = 1, need not be considered. The spatial
domain scaling fails to produce widely separated frequencies. The other case, if p =1, for
both I = L or Ly, the same procedure as derived above can be executed. However, look-
ing carefully at (8.5) we can conclude that it behaves as a Hamiltonian system with non
resonant frequencies. The reason for this is that, applying the symplectic transformation
F has the effect of pushing some of the terms in the Hamiltonian to higher order in the
small parameter.

More in general, the dynamics of this extreme type of higher order resonance for the per-
turbation function f(u) with f a polynomial in u will also be trivial as in the example
discussed here.
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8.4 The Hamiltonian equation u; — Lu = eh(x)u?

We will now consider another type of perturbation of the initial boundary value problem
(8.4) by choosing f(u,ut,t) = h(z)u® with h(z) a sufficiently smooth, odd function, 27-
periodic in x. Fourier decomposition yields h(z) = ). a;sin(jz).

Let L = Ly and g > 1. Using this in (8.4) and projecting to the eigenspace as before,
we find for the right-hand side of the equations of motion for mode & (9;; is the Kronecker
delta)

N-1
2

2, (20m = Ompitj = Om—2itj + Omaij) ajai”+

1<5<iEN

N—2

Y (Omyjmith + Om—jritk — Om jtith — Om—j—ithk + Om jtick) Qja;Q%.

T =

=

DO | =

Assuming again that the eigenspace forms an almost invariant manifold, we can isolate
two modes from the full eigenfunction expansion.

If M > (N+1)/2, with N sufficiently large, the right-hand sides of the equations of motion
(8.3) are

fi=e (371(1,12 + 2ypa a5 + 73(1,M2) and f, = ¢ (72(1,12 + 2v3ayay + 374(1,M2) , (8.11)
where 71 = (on — Las), 2 = (om — tous — 2oumy), 13 = (2o 4 Laouor — Toonga),
and 74 = Lay. The system (8.3) together with (8.11) is a Hamiltonian system with
Hamiltonian (after applying transformation F)

H = %55 (b12 + CL12) + % (bM2 + CLMQ) — & (”71(113 + ")72(112(1,1\4 + ’73(1,1(1M2 + 74LLM3) s (812)
where ¥, = v1/v/8.% 42 = 72/ (3.), and 43 = 73/(1/3.) (recall that §. < 1).

We have seen before that a cubic perturbation gives us trivial dynamics due to the fact
that the transformation F eliminates the important term, necessary to get nontrivial dy-
namics. The perturbation that we are considering now depends on the Fourier coefficients
a;j. These coeflicients can be used to keep the important terms in our Hamiltonian (8.12).
To keep as many terms as possible in (8.12), we assume vy = 4. and 73 = §21/.. Finally,
by choosing ¢ = 4., and rescaling the variables (including time) we have the Hamiltonian

H= 30 (57 ) + 1 (b + )
—3e (rar® + Foaran + Faaran?) + 0(8.4/52).
The Hamiltonian (8.13) has the form of (2.1) and hence, the analysis in Section 4.4 is

applicable to it. Furthermore, compared to the cubic (or polynomial) perturbation cases,
the dynamics of the system generated by the Hamiltonian (8.13) is nontrivial.

(8.13)

The choice of a perturbation of the form h(z)u? is not very restrictive; for instance in
[4], the authors consider more or less the same type of perturbation. However, to get
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nontrivial dynamics in the case of widely separated frequencies we have to set some of the
parameters in h to be small. This is in contrast with the perturbation f = u® where we
have not enough parameters to be scaled.

We have mentioned the result in [15] about the asymptotics of the manifolds. The presence
of the parameter «;,7 = 1,..., N,can also be used to improve this asymptotic result by
setting some of the o to be very small. Thus, the function A(x) can be viewed as a filter
for modes which we do not want to be present in the system.

Remark 8.1 Homoclinic solution of the wave equations

In section 5 we have studied several possibilities that could arise when we have a Hamil-
tonian system with widely separated frequencies. In the case of a wave equation with this
special quadratic perturbation, the coefficients of the eigenmodes 1 and M fit in with the
analysis in section 5. Let us now try to interpret an interesting solution found in section 5
in the wave equations setting.

In section 5, we found a homoclinic orbit for some values of the parameter. Sup-
posed we can choose the parameter in the wave equations such that this homoclinic
orbit exists. Recall that the two-modes expansion of the solution can be written as
u(z,t) = ar(t)Us(z) + an(t)Usy(z), where a; and a,, satisfies a Hamiltonian system with
widely separated frequencies.

We conclude that U is a superposition of two periodic wave forms: U; and U,,. Choosing
the initial values at the critical point, we have a; is constant and a,, is oscillating peri-
odically. On the other hand at the homoclinic orbit, we see that the superimposed wave
forms evolve to the critical positions for both positive and negative time. We note that
during the evolution, the amplitude of a, remains constant while the phase is changing.

9 Concluding remarks

In this paper we have analyzed a class of two degrees of freedom Hamiltonian systems
where the linearized system consists of two harmonic oscillators and one of the character-
istic frequencies of these oscillators is of the same magnitude as the nonlinear terms. In
general, the dynamics of this system is shown to be significantly different from Hamiltonian
systems with the usual higher order resonance. We have shown that although there are no
energy interchanges between the degrees of freedom, this system has a nontrivial dynamics.

Comparison with higher order resonance.

The first thing to note is the time-scale. A generic system with widely separated frequen-
cies, shows an interesting dynamics on the 1/¢ time-scale while in higher order resonances
the characteristic time scale is 1/¢? and higher. This results from one of the oscillators
being strongly nonlinear.

The phase-space around the origin of a system with higher order resonance is foliated
by invariant tori. In a system with widely separated frequencies, these tori are slightly
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deformed (see Figure 2). Nevertheless, most of these invariant manifolds contain quasi-
periodic motions which is analogous to the higher order resonance cases.

A system with widely separated frequencies does not have a resonance manifold which is
typical for higher order resonances. However, the phase-space of a system with widely
separated frequencies, contains a manifold homoclinic to a hyperbolic periodic orbit (see
again Figure 2). This is comparable to the resonance manifold in higher order resonance
cases.

The existence of two normal modes in the normal form of Hamiltonian systems in higher
order resonance is typical. For the system with widely separated frequencies, this is not
true in general. An extra condition is needed. This extra condition eliminates the coupling
term between the degrees of freedom from the normal form. Thus, the interaction between
the degrees of freedom in the system with widely separated frequencies is weak in the sense
there are no energy interactions, but strong in the sense of phase interactions.

Applications to wave equations are analyzed in this paper. We have pointed out the
difficulties of having this kind of systems in a generic potential problem. It might be in-
teresting to consider a more general problem, i.e. perturbations of the form f(u,u,,t) or
even f(u,us, uzy,t). In subsection 8.4 we only studied the first type of widely separated
frequencies. For the other type, it can be done in a similar way.
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