ALTERNATIVES TO THE RAYLEIGH QUOTIENT FOR THE QUADRATIC
EIGENVALUE PROBLEM
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Abstract. We consider the quadratic eigenvalue problem A\2Az 4+ ABxz 4+ Cz = 0. Suppose that u is an
approximation to an eigenvector x (for instance obtained by a subspace method), and that we want to determine
an approximation to the corresponding eigenvalue A. The usual approach is to impose the Galerkin condition
r(0,u) = (?A + 6B + C)u L u from which it follows that # must be one of the two solutions to the quadratic
equation (u*Au)6? + (u*Bu)f + (u*Cu) = 0. An unnatural aspect is that if u = z, the second solution has in
general no meaning. When u is not very accurate, it may not be clear which solution is the best. Moreover, when
the discriminant of the equation is small, the solutions may be very sensitive to perturbations in u.

In this paper we therefore examine alternative approximations to A. We compare the approaches theoretically
and by numerical experiments. The methods are extended to approximations from subspaces and to the polynomial
eigenvalue problem.
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1. Introduction. First consider the eigenvalue problem Az = Az, with A a real symmetric
n x n matrix. Suppose that we have an approximate eigenvector u. The usual approximation to
the corresponding eigenvalue is given by the Rayleigh quotient of u
u* Au
(1.1) p = plu) = 2

u*u

This Rayleigh quotient has the following attractive properties:
1. p satisfies the Ritz-Galerkin condition on the residual r(6,u):

(1.2) r(p,u) = Au—pu L u.

2. p satisfies the minimum residual condition on the residual

(1.3) p = argmingcg|[Au — ful|.
(Here and elsewhere in the paper, || - || stands for || - ||2).
3. The function p(u) has as its stationary points exactly the n eigenvectors z;, so
d
(1.4) ﬁ(ﬁ) =0.

(Recall that stationary means that all directional derivatives are zero.) This implies that
a first order perturbation of the eigenvector only gives a second order perturbation of the
Rayleigh quotient: p(z; + k) = p(z;) + O(||A]]?).
REMARK 1.1. When A is nonsymmetric, (1.2) and (1.3) still hold, but (1.4) fails to hold.
One can show that instead of this p(u,v) := ”;TAUU has as its stationary points evactly the right/left
eigenvectors combinations (z;,y;). This suggests to replace the Ritz-Galerkin condition (1.2) by
the Petrov-Galerkin condition

r(f,u) = Au—fu L v,

which is used in two-sided methods such as two-sided Lanczos [{] and two-sided Jacobi-Davidson
[2]. However, in this paper we assume that we have no information about the left eigenvector.
Now consider the quadratic eigenvalue problem

(1.5) Q\)z == Az + ABx + Cz =0,
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where A, B, and C are (complex) n x n matrices. In this paper, we examine generalizations
of the properties (1.2)—(1.4) for the quadratic eigenvalue problem, to derive different eigenvalue
approximations. See [5] for a nice overview of the quadratic eigenvalue problem. For an eigenvector
z we have either one of the following properties:
e Az and Bz are dependent, then Cz is also dependent, and there are two eigenvalues
(counting multiplicities) corresponding to z,
e Az and Bz are independent, C'z lies in the span of Az and Bz, and the corresponding
eigenvalue X is unique.
We will assume in the remainder of the paper that « has the second property. For a motivation
see Remark 2.2 at the end of Section 2.4.

Now let u be an approximation to an eigenvector z, for instance one obtained by a subspace
method. We will also assume that Au and Bu are independent, which is not unnatural in view of
the assumptions that Az and Bz are independent, and u & x; see also Remark 2.2. We study ways
to determine an approximation € to the eigenvalue A, from the information of u. In Section 2.1
we discuss the “classical” one-dimensional Galerkin method, while in Sections 2.2, 2.3, and 2.4 we
introduce new approaches. The methods are compared in Section 3 and extended to subspaces
of dimension larger than one and to the polynomial eigenvalue problem in Section 4. Numerical
experiments and a conclusion can be found in Section 5 and 6.

2. Approximations for the quadratic eigenvalue problem.

2.1. One-dimensional Galerkin. For an approximate eigenpair (6, u) ~ (A, z) we define
the residual r(6,u) by

r(0,u) == Q(0)u = (0>A+ 6B + C)u.

The usual approach to derive an approximate eigenvalue # from the approximate eigenvector u is
to impose the Galerkin condition 7(#,u) L u. Then it follows that § = #(u) must be one of the
two solutions to the quadratic equation

(2.1) ab? 4+ 80+~ =0,

where a = a(u) = v* Au, § = B(u) = u*Bu, and v = y(u) = v*Cu. An unnatural aspect is that if
u = x, the second solution of (2.1) has in general no meaning. If u is close to , we will be able to
decide which one is best by looking at the norms of the residuals. But if u is not very accurate, it
may not be clear which solution is the best. This may for instance happen when we try to solve
(1.5) by a subspace method; in the beginning of the process, the search space may not contain
good approximations to an eigenvector. This problem is also mentioned in [1, p. 282].

Moreover, when the discriminant

(2.2) §=68(u) == p* — day

is small, then the solutions of (2.1) may be very sensitive to perturbations in u (see also Section 3).
Thus the second solution of (2.1) is not only useless, but it may also hinder the accuracy of the
solution that is of interest!

We therefore examine alternative ways to approximate A. We generalize the Galerkin property
(1.2) and minimum residual property (1.3) for the quadratic eigenvalue problem in the following
three subsections. In Section 3 the approaches are compared using a generalization of (1.4).

2.2. Two-dimensional Galerkin. In the standard eigenvalue problem, we deal with two
vectors u and Au, which are asymptotically (by which we mean when u — z) dependent. Therefore
it 1s natural to take the length of the projection of Au onto the span of u as an approximation
to the eigenvalue, which is exactly what the Rayleigh quotient p(u) does. For the generalized
eigenvalue problem we have a similar situation.

In the quadratic eigenvalue problem, however, we deal with three vectors Au, Bu, and C'u,
which asymptotically lie in a plane. Therefore it is natural to consider the projection of these
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three vectors onto a certain plane, spanned by two independent vectors p and ¢. To generalize the
approach of (1.2), define the generalized residual r(u, v, u) by

(2.3) r(p,v,u) = (HA+vB+ C)u.

The idea behind this is that we want to impose conditions on 7 such that y forms an approximation
to A\?, and v an approximation to A\. Then both u/v and v may be good approximations to
the eigenvalue A. A generalization of (1.2) is obtained by imposing two Galerkin conditions
r(p, v, u) L p and r(p, v, u) L ¢ for specific independent vectors p, ¢. This leads to the system

(2.4) W*Z[/;]:—W*Cu, where W=[p ¢, Z=[ Au Bu].

When W*Z is nonsingular, (2.4) defines a unique p and v. A logical choice for p and ¢ is any
linear combination of Au, Bu, and C'u. Specifically, one could take the “least-squares” plane such
that

17 = ) Aul|* + [|(T = ) Bul|* + || (I - T)Cu]”

is minimal, where II is the orthogonal projection onto the plane. Let z be the normal of the sought
plane, then one may verify that |[(7 — IT)Aul|? = ||(2* Au)z||* = |2* Au|*. If D denotes the n x 3
matrix with Au, Bu, and C'u as its columns, then z is the vector of unit length such that ||z*D||*
is minimal. So we conclude that z is the minimal left singular vector of D, and for p and ¢ we can
take the two “largest” left singular vectors. Another choice for p and ¢ as well as its meaning are
discussed in Section 2.4.

2.3. One-dimensional minimum residual. Two other approaches, discussed in this and
the following subsection, generalize the minimum residual approach (1.3). First, we can minimize
the norm of the residual with respect to 6:

¢ . 2
(2.5) min [[(6°A + 0B + C)ul|.

For complex 6, differentiating the square of (2.5) with respect to Re(f) and Im(f) gives two mixed
equations of degree three in Re(#) and Im(), or an equation (the so-called resultant) of degree nine
in only Re(f) or Im(f) (see Section 5). Of course, only the real solutions of these equations are of
interest. We may solve the equations numerically (see the numerical experiments in Section 5). In
the special case that we know that A is real, we would like to have a real approximation #. Then
differentiating the square of (2.5) with respect to 6 gives the cubic equation with real coefficients

(2.6) 4 ||Au|‘263 + 6Re((Au)*Bu)92 +2 (||Bu||2 + 2Re((Cu)*Au)f + 2 Re((Cu)* Bu) = 0,

which can be solved analytically. This is for instance the case for the important class of quasi-
hyperbolic quadratic eigenvalue problems:

DerFINITION 2.1. (Cf. [5, p. 257]) A quadratic eigenvalue problem Q(A)x = 0 is called quasi-
hyperbolic if A s Hermitian positive definite, B and C' are Hermitian, and for all eigenvectors of
Q(X) we have

(x*Bac)Z > 4(z* Ax)(z* Cx).

It is easy to see that all eigenvalues of quasi-hyperbolic quadratic eigenvalue problems are real.
In the next subsection we will also discuss a suboptimal solution of (2.5) that involves the
solution of a resultant equation of degree five instead of nine.

2.4. Two-dimensional minimum residual. Another idea is to minimize the norm of the
generalized residual (2.3) with respect to p, v:

(2.7) (1, v2) = argming, ) cea | (A + v B + C)ul .
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To solve this, consider the corresponding overdetermined n x 2 linear system

with Z as in (2.4). By assumption Au and Bu are independent, so pu, and v are uniquely
determined by

[ /lj* :| =7 Cu=— (Z*Z)_l Z*Clu,
*
where Z*t denotes the pseudoinverse of Z. We see that (2.7) is a special case of (2.4), namely the
case where we choose p = Au and ¢ = Bu,so W = 7.
Returning to (2.5), we can define a suboptimal solution by solving for # € C such that

o I -1l

is minimal. Differentiating the square of (2.8) with respect to Re(f) and Im(6) gives two mixed
equations of degree three in Re(f) and Im(f), or a resultant equation of degree five in only Re(f)
or Im(f) (see Section 5); compare this with the resultant of degree nine for the optimal solution.

The following remark explains why we assumed in Section 2 that both of the pairs Az and
Bz, and Au and Bu are independent.

REMARK 2.2. When Au and Bu are dependent, then the one-dimensional minimum residual
approach reduces to the one-dimensional Galerkin approach, while the two-dimensional methods
are not uniquely determined. When Az and Bx are dependent, then, though the approaches may
be uniquely determined, the results may be bad. For example, the matriz 7 in the two-dimensional
methods 1s ill-conditioned if u is a good approrimation to z.

3. Comparison of the methods. Concerning the cost, all methods require three matrix-
vector multiplications (Au, Bu, and C'u) and additionally O(n) time. In this section, we compare
the quality of the methods by two different means. First, we investigate the influence of pertur-
bations of u to 6, and then we examine backward errors.

A nice property that an approximate eigenvalue can (or should) have is that it is close to
the eigenvalue if the corresponding approximate eigenvector is close to the eigenvector. In other
words, we like the situation where

|0(z + h) — A] = |6(z + h) — 0(z)| is small

for small [|h||. When 6 is differentiable with respect to u in the point x this is equivalent to the
condition

(3.1) |5t

1s small.

We now examine the four approaches from the previous section with this criterion, starting with
the one-dimensional Galerkin approach. Equation (2.1) defines § implicitly as a function of «a, 3,
and v, say f(0,a,B,v) =0, with f(A, a(z), B(z),v(x)) = 0. When §(z) # 0, the Implicit Function
Theorem states that locally 6 is a function of «, 3, and v, say § = ¢(a, 3,7), and that

De(a(z), B(x), () ~((Daf)™" D) A alz), B(z), ¥(2))

= 1 _ (A2 X1).
(A

So when ¢ is small, which means that (2.1) has two roots that are close, we may expect that |6 — A|
is large for small perturbations of z, see the numerical experiments.
REMARK 3.1. As in the standard eigenvalue problem, § = 0(u,v) as solution of

(v*Au)92 + (v*Bu)f 4+ (v*Cu) =0
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is stationary in the right/left eigenvector combinations (z;,y;). We assume, however, that we have
no information about the (approzimate) left eigenvector.

Now consider the two-dimensional Galerkin method (2.4), and the two-dimensional mini-
mum residual method (2.7). In both cases, v and p/v can be taken as approximation to A.
By differentiating (2.4), it can be seen that %(m) = wiQ(A) and %(m) = wiQ(N), where
w1, ws are certain linear combinations of the vectors p and ¢ that span the plane of projec-
tion. From Section 2 it is clear that the plane for the two-dimensional Galerkin method 1is con-
tained in span{Au, Bu, Cu}, while the plane for the two-dimensional minimum residual method is
span{ Au, Bu}. Since span{Az, Bz, Cz} = span{Axz, Bz}, we conclude that 2—5(1:) and g—Z(l‘) are
the same for both two-dimensional methods.

For the second approximation, u/v, we have that

u/v), . 1 Ou ov
du (z) = 3 a—u(f’f) - a—u(f’f)-

(3.2)

This suggests that /v might give inaccurate approximations for small A, which is confirmed by
numerical experiments, see Experiment 5.1.

The effects of perturbations of u for the results of the one-dimensional minimum residual
approach is hard to analyze: amongst other things it depends upon the position of the zeros of
the polynomials (see (5.1)).

A second interesting tool to compare the methods of Section 2 is the notion of the backward
error.

DEFINITION 3.2. (Cf. [7]) The backward error of an approzimate eigenpair (6,u) of Q is
defined as

n(0,u) :=min{e : (6?(A+ AA)+0(B+AB)+ (C+ AC))u =0,
IAAIl < e, [JABI| < Ca, [JACT < eCs }-

The backward error of an approzimate eigenvalue 6 of @) is defined as

n(f) = ||fﬂ|if1’7(9’“)'

In [7, Theorems 1 and 2], the following results are proven:

(3.3) (8, u) = lI7l n(9) Tmin (Q(0))

TR TR e

In the numerical experiments we therefore examine the quality of the computed # by examining ||7]
and opin (Q(#)), which, for convenience, are also called backward errors. Note that the backward
errors are related: omin (Q(F)) < 7]

4. Extensions.

4.1. Approximations from subspaces. We can also use the techniques described in Sec-
tion 2 for approximations to eigenpairs from subspaces of dimension larger than one. Let i be a
k-dimensional subspace, where for subspace methods one typically has & < n, and let the columns
of U form a basis for /. The Ritz-Galerkin condition

0?Au+0Bu+Cu LU, u€el,
leads, with the substitution u = Us, to the projected quadratic eigenvalue problem
(4.1) (0?U* AU 4+ 0U*BU + U*CU)s = 0,

which in general yields 2k Ritz pairs (#,u). For a specific pair, one can “refine” the value 6 by
the methods of Section 2. Although it is not guaranteed that the new g is better, it seems to
be often the case, see the numerical experiments. Moreover, we have knowledge of the backward
error, which we will discuss in a moment.



6 HOCHSTENBACH AND VAN DER VORST

Then, as a second step, one can “refine” the vector u by taking u = U, where
s = the “smallest” right singular vector of 9°AU + 0BU + CU

(For the Arnoldi method for the standard eigenvalue problem, a similar refinement of a Ritz vector
has been proposed in [3].) This step is relatively cheap, because all matrices are “skinny”. Given
5, the vector u minimizes the backward error 77(5, u), see (3.3). It is also possible to repeat these
two steps to get better and better approximations, leading to Algorithm 4.1.

Input: a subspace U
Output: an approximate eigenpair (6, u) with v € U

1. Compute an approximate eigenpair (6, 1) according to the standard Ritz-Galerkin method
for £ =1,2,...

2. Compute a new 6 choosing one of the methods of Section 2

3. Compute the “smallest” singular vector s of 6’£AU + 6, BU + CU

4. U = Usk

ALG. 4.1. Refinement of an approrimate eigenpair (6,u).

During this algorithm, we do not know the (forward) error |6 — A|, but the backward errors
l7|l and omin (02 AU + 05 BU 4+ CU) are cheaply available; they can be used to decide whether
or not to continue the algorithm. When we take the optimal one-dimensional minimum residual
method in each step, we are certain that the backward error ||r|| decreases monotonically. In
Experiment 5.3 we use the two-dimensional Galerkin approach in every step.

REMARK 4.1. For the symmetric eigenvalue problem, the possibility of an iterative procedure to
minimize ||Au— p(u)u|| over the subspace U is mentioned in [6], in the context of finding inclusion
intervals for eigenvalues. Moreover, a relation between the minimalization of ||Au — p(u)u|| and
the smallest possible Lehmann interval is given.

4.2. The polynomial eigenvalue problem. Consider the polynomial eigenvalue problem
WA XA 4 A+ Ag)z = 0.
Define the generalized residual as
(g, pu) = (A o A+ 4 A+ Ao)u.
Both the [-dimensional Galerkin method

r(ula"'aﬂlau) L {pla"';pl}

and the /-dimensional minimum residual method

min ||7°(,u1, sy M U)H
IS ERRRSY 211
lead to a system of the form
i
(4.2) W*Z = —-W*Aqu,
i
where 7 = [ A - Aju ] For the [-dimensional minimum residual method we have W = Z;

for the I-dimensional Galerkin approach with “least-squares” [-dimensional plane, W consists of
the [ largest left singular vectors of [ 7 Agu ] Assuming that the vectors Aju,..., Aju are
independent, (4.2) has a unique solution. In principle we can try every quotient gy /-1, pi—1/ -2,
.., #2/p1, p1, and also some other combinations like g /(f4—2 /1), as an approximationto A. When
A 1s small, gy will probably be the best. The one-dimensional minimum residual approach is less
attractive, as the degree of the associated polynomials (cf. (2.6) and (5.1)) increases fast.



ALTERNATIVES TO THE RAYLEIGH QUOTIENT FOR THE QEP 7

5. Numerical experiments. The experiments are carried out in Matlab and Maple. First
a word on solving (2.5) for the optimal, and (2.8) for the suboptimal one-dimensional minimum
residual approach. Write # = 61 + ifs, g = p1 + ips, and v, = vy + ivy. Differentiating the
square of (2.5) with respect to 61 and 65 leads to two mixed equations (in 61 and 6») of degree
three. With Maple the equations are manipulated so that we have two equations of degree nine
in #1 or #3 only, which are called the resultants. When we know that A is real, then we get the
cubic equation (2.6).

Differentiation of (2.8) with respect to 61 and 65, leads to

{9?%-(9%—/11%-1)91—/1252—%”1 = 0,

5.1
(5-1) 03 + (07 + p1 + 5)02 — paby — %Vz 0.

Because of the missing #? and 6% terms, in the first and second equation respectively, the cor-
responding resultants have degree only five. All equations were solved numerically by a Maple
command of the form
solve(resultant( equation; (x, y), equations (x, y) , y), X).
Of course, we only have to solve one resultant, say for Re(6), then Im(6) can be solved from a cubic
equation. In our experiments, many equations have a unique real solution, making it unnecessary
to choose. When there is more than one real solution, we take the one that minimizes the norm
of the residual.
EXPERIMENT 5.1. Our first example is taken from [5, p. 250]:

0 6 0 1 -6 0
A=|l0 6 0|, B=|2 -7 0], C=Is
00 1 0 0 0

This problem has two eigenvectors for each of which there exist two eigenvalues: [ 110 ]T
corresponds to A = 1/2 and A = 1/3, while [ 0 0 1 ]T corresponds to A = =+i. In line with
our assumptions, we do not consider these. Instead, we focus on the other eigenpairs (A, z) =
(1, [ 0 1 0 ]T) and (A, z) = (oo, [ 10 0 ]T) For the last pair we consider the problem for
A~1 = 0. We simulate the situation of having a good approximation u &~ = by adding a random
(complex) perturbation to x:

u=z+e-w/||lx+e- v,

where w is a normalized vector of the form rand(3,1)+i-rand(3,1). (For all experiments, we take
“seed=0" so that our results are reproducible.) Table 5.2 gives the results of the four approaches
for e = 0.01. The first row of the two-dimensional Galerkin (Gal-2) and two-dimensional minimum
residual (MR-2) approaches represents u/v, while the second gives v as approximation to A. The
first row of the one-dimensional minimum residual method (MR-1) represents the optimal solution,
while the second is the suboptimal solution. For clarity, the meaning of the different rows is first
summarized in Table 5.1.

TABLE 5.1: The rows of Tables 5.2 to 5.4, with their meaning.

row nr. | label | meaning
1 Gal-1 | best approximation (of the two) of the one-dimensional Galerkin method
2 Gal-2 | p/v approximation of the two-dimensional Galerkin method
3 v approximation of the two-dimensional Galerkin method
4 MR-1 | optimal approximation of the one-dimensional minimum residual method
5 suboptimal approximation of the one-dimensional minimum residual method
6 MR-2 | p/v approximation of the one-dimensional minimum residual method
7 v approximation of the one-dimensional minimum residual method

For A = 1, all other approaches (Gal-2, MR-1, and MR-2) give a smaller (forward) error
than the classical one-dimensional Galerkin method (Gal-1). The “v” approximation of the two-
dimensional approaches Gal-2 (row 3) and MR-2 (row 7) is particularly good. The sensitivities
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TABLE 5.2: The approximations of the one-dimensional Galerkin (Gal-1), two-dimensional Galerkin (Gal-2,
u/v and v), one-dimensional minimum residual (MR-1, optimal and suboptimal), and two-dimensional minimum

residual (MR-2, /v and v) approaches for A = 1 and A~™! = 0. The other columns give the (forward) error |§ — )|,
and [|r|| and 61,in(Q(6)) for the backward errors.

Method | appr. for A =1 | error | 7| | Crmin || appr. for A7 =0 | error | |7 l| | Ormin

Gal-1 0.99935-0.001921 0.00202 0.0112 0.00142 0.00117-0.039561 0.03958 0.0399 0.0279

Gal-2 0.99947-0.00159: | 0.00168 | 0.0111 0.00118 1.00009-0.002292 1.00009 2.8285 0.0016
1.00004 0.00004 | 0.0181 0.00002 -0.00069-0.019867 | 0.01987 | 0.0206 0.0140

MR-1 0.99942-0.00173¢ | 0.00182 | 0.0111 | 0.00128 -0.00036-0.02384¢ | 0.02384 | 0.0186 | 0.0168
0.99970-0.00064: | 0.00070 | 0.0217 | 0.00049 0.00009-0.01987¢ | 0.01990 | 0.0206 | 0.0141
MR-2 0.99946-0.00159; | 0.00168 | 0.0111 | 0.00119 1.00005-0.00229: | 1.00006 | 2.8284 | 0.0016
0.99986 0.00014 | 0.0178 | 0.00009 -0.00069-0.01986¢ | 0.01987 | 0.0206 | 0.0140

for the two-dimensional approaches ||0v/0u|| = 0 and ||0(p/v)/0u|| &~ 0.33 also indicate this. The
suboptimal solution of MR-1 has a larger backward error ||r||, but a smaller forward error than
the optimal solution. For the discriminant (2.2) we have § = 25.

For A=! = 0, the “u/v” approximations (rows 2 and 6) are bad, which was already predicted
by (3.2). The sensitivities are ||0v/0u|| ~ 3.0 and ||0(u/v)/du|| = oo, and for the discriminant we
have § = 1.

EXPERIMENT 5.2. For the second example we construct matrices such that the discriminant
d is small and hence the zeros of (2.1) almost coincide. For small { > 0 define

1 10 1 —1-vC 0
A=1I5, B=|0 -2 2|, cCc=]0 1—¢ 2
0 0 1 0 0 1

One may check that z = [ 0 1 0 ]T is an eigenvector with corresponding eigenvalue 1 + +/C.
(The second solution 1 — +/C to (2.1) is close to the eigenvalue, but has no meaning.) The
discriminant is equal to 4¢. We take ¢ = 107%, so A = 1.01. We test the approaches for ¢ = 1072
and ¢ = 1073, see Table 5.3.

TABLE 5.3: The approximations of the one-dimensional Galerkin (Gal-1), two-dimensional Galerkin (Gal-2,
u/v and v), one-dimensional minimum residual (MR-1, optimal and suboptimal), and two-dimensional minimum
residual (MR-2, u/v and v) approaches for A = 1.01, for e = 1072 and e = 1072, respectively. The other columns
give the (forward) error |# — A|, and ||r|| and omin (Q(#)) for the backward errors.

Method | appr. (¢=10"%) | error | |Ir]l | omin | appr. (¢ =10"") | error | |lrll | Omin
Gal-1 1.0317-0.1442¢ 0.1458 | 0.1343 | 0.01326 1.0117-0.0444¢ 0.0444 | 0.0431 | 0.001325
Gal-2 0.9861-0.0249: 0.0345 | 0.0348 | 0.00052 1.0076-0.00257 0.0034 | 0.0034 | 0.000036
1.0050-0.01427 0.0151 0.0274 | 0.00018 1.0095-0.00147 0.0015 | 0.0027 | 0.000018
MR-1 1.0046-0.0150¢ 0.0159 | 0.0274 | 0.00020 1.0094-0.0014¢ 0.0015 | 0.0027 | 0.000018
0.9971-0.0186¢ 0.0226 | 0.0287 | 0.00027 1.0087-0.0018: 0.0022 | 0.0029 | 0.000025
MR-2 0.9857-0.0249: 0.0348 | 0.0350 | 0.00052 1.0076-0.00257 0.0034 | 0.0034 | 0.000037
1.0047-0.0142¢ 0.0152 | 0.0274 | 0.00018 1.0095-0.0014¢ 0.0015 | 0.0027 | 0.000018

The sensitivities for the two-dimensional methods Gal-2 and MR-2 are ||0v/du|| ~ 3.0 and
|0(p/v)/Ou|| &~ 5.0, and |§] &~ 4.0 - 10~*. Because the discriminant is small, and the sensitivities
are very modest, it is no surprise that all other approximations are much better (measured in
forward or backward error) than Gal-1.

EXPERIMENT 5.3. For the last example we take A, B, and C' random symmetric matrices
of size 100 x 100. We try to approximate the eigenvalue X &~ 7.2288 + 2.78031, for ¢ = 1072 and
¢ =10"% see Table 5.4.

The sensitivities for Gal-2 and MR-2 are ||0v/du|| ~ 3.9 - 10% and ||8(p/v)/0ul| ~ 2.0 - 102,
and |§] & 2.4-107°. Indeed, we see that the two “u/v” approximations (row 2 and 6) are the best,
together with the optimal MR-1 solution (row 4). Note that for larger matrices, the computation
of omin (Q(0)) is expensive. In practice, one does not compute it, but it is shown here to compare
the methods.
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TABLE 5.4: The approximations of the one-dimensional Galerkin (Gal-1), two-dimensional Galerkin (Gal-2,
u/v and v), one-dimensional minimum residual (MR-1, optimal and suboptimal), and two-dimensional minimum
residual (MR-2, p/v and v) approaches for A &~ 7.2288 + 2.7803i, and ¢ = 10~ and ¢ = 10™%, respectively. The
other columns give the (forward) error |# — A|, and ||r|| and omin (Q()) for the backward errors.

Method | appr. (e = 107%) | error | 7| | Crmin || appr. (e = 107%) | error | 7| | Ormin
Gal-1 6.8642.711 0.37 2.88 0.185 7.2184-2.738: 0.0428 0.307 0.0221
Gal-2 7.2542.671 0.10 2.90 0.053 7.2304-2.769¢ 0.0110 0.290 0.0057
6.8743.04¢ 0.44 3.15 0.233 7.1894-2.8007 0.0445 0.329 0.0232
MR-1 7.044+2.612 0.24 2.81 0.123 7.22742.769¢ 0.0107 | 0.290 0.0055
5.134+2.082 2.20 5.23 0.822 T.17642.772¢ 0.0529 0.332 0.0247
MR-2 7.2342.651 0.12 2.88 0.063 7.2304-2.769:¢ 0.0112 0.290 0.0058
3.6641.621¢ 3.74 6.33 0.709 7.12342.7751 0.1057 0.436 0.0545

Next, we test Algorithm 4.1. We start with a three-dimensional subspace U, consisting of
the same vector as above (¢ = 1073), completed by two random (independent) vectors. We
determine six Ritz pairs according to (4.1), and refine the one with § approximating the eigenvalue
AR 7.2288 + 2.7803i by Algorithm 4.1, where in every step we choose the u/v- approximation of
the two-dimensional Galerkin method. The results, shown in Table 5.5, reveal that both v and 6
are improved four times, after which they keep fixed in the decimals shown. Note that the smallest
possible angle of a vector in i with z is

LU, x) = ZL((I - UU*)z,z) ~ 6.2809 - 107*.

TABLE 5.5: Refinement of an approximate eigenvalue by Algorithm 4.1 for A & 7.228842.7803:. The columns
give the iteration number, angle between u and z, (forward) error |6 — A|, and ||r||, o1 := o',,,in(t92AU +6BU + CU)
and o3 := omin (Q(0)) = O'min(192A + 6B + C') for the backward errors.

iteration | Z(u, x) (~10_4) | [ | error (-10_3) | [I7l| (~10_1) | o1 (~10_3) | o9 (~10_3)
0 7.1924 7.22284-2.7788i 6.1127 1.2348 1.1667 3.1788
1 6.5423 7.23124-2.78361 4.1139 1.1960 1.1370 2.1425
2 6.5295 7.23124-2.78121 2.6279 1.1374 1.1373 1.3681
3 6.5289 7.23124-2.7811i1 2.5972 1.1374 1.1374 1.3520
Z 4 6.5289 7.23124-2.7811i1 2.5961 1.1374 1.1374 1.3515

We see that in particular the first step of the algorithm considerably improves the approximate
eigenpair. After four steps, the angle of the refined approximate eigenvector with the optimal
vector in If is less than 30% of the angle that the Ritz vector makes with the optimal vector.
The error in 6 is more than halved. Note again that oy := oy (92A + 6B + C) is expensive, but
01 = Omin (02 AU + 0BU + CU) is readily available in the algorithm.

6. Conclusions. The usual one-dimensional Galerkin approach for the determination of an
approximate eigenvalue corresponding to an approximate eigenvector may give inaccurate results,
especially when the discriminant of equation (2.1) is small. We have proposed several alternative
ways that all require the same order of time and that often give better results. Based on our
analysis and the numerical experiments, we recommend the approximations of the two-dimensional
approaches Gal-2 and MR-2, because they are cheap to compute and give good results. For small
eigenvalues, one should take the “v” approximations. The MR-1 method ensures a minimal
residual (backward error).

The approaches are also useful for approximations from a subspace and for polynomial eigen-
value problems of higher degree.
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