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Abstract

Let A = (A1, As, As,...) be a random decreasing sequence of non-negative
numbers that are ultimately zero with E[> A;] = 1 and E[)_ A;logA;] = 0.
The uniqueness and properties of the non-negative fixed points of the associ-
ated smoothing transform are considered. These are solutions to the functional
equation ®(y) = E[[]; ®(¢A;)], where & is the Laplace transform of a non-
negative random variable. The study complements existing results on the case
when E [} A;log A;] < 0.

1 Introduction

Let A = (A, Ay, As,...) be a random decreasing sequence of non-negative numbers that
are ultimately zero, so that there is a finite NV with Ay > 0 and Ax;1 = 0. The sequence
is ordered for convenience only; the formulation does not need this property. For any
random variable X, let {X; : i} be copies of X, independent of each other and A. A new
random variable X* is obtained as

unspecified sums and products will always be over 4, with 7 running from 1 to N. Using A
in this way to move from X to X* is called a smoothing transform (presumably because
X* is an ‘average’ of the copies of X). The random variable W is a fixed point of the
smoothing transform when ) A;W; is distributed like W. Here attention is confined to
fixed points that are non-negative, that is to W > 0. This case, though simpler than
the one where W is not restricted in this way, still has real difficulties; it is intimately
connected to limiting behaviours of associated branching processes. For non-negative
W, the distributional equation defining a fixed point is expressed naturally in terms of
Laplace transforms; it becomes the functional equation (for @)

() =E : (1)
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where ® is sought in £, the set of Laplace transforms of finite non-negative random
variables with some probability of being non-zero.

There is a very extensive literature on the existence and properties of fixed points,
which we do not attempt to review in full; see, for example, Kahane and Peyriére (1976),
Biggins (1977), Durrett and Liggett (1983), Pakes (1992), Rosler (1992), Biggins and
Kyprianou (1997), Liu (1998) and Liu (2000) — the last two references also contain
many others.

The function v, defined by v(#) = log E [Y~ A?], is important in describing the differ-
ent cases that arise. Let Z be the point process with points at {—logA; : i < N} and
intensity measure p then

() = E/eazZ(dac) = /ea’”,u(dx).

Thus €*® is the Laplace transform of a positive measure and, in particular, v is convex.
Durrett and Liggett (1983) study, fairly exhaustively, the case when N is not random,
so that v(0) = log N < oo, and v(7y) < oo is finite for some v > 1; many of their results
are extended to cases where N is also random, but with v(0) = log EN still finite, by
Liu (1998). Here, in a similar, but slightly less restrictive, vein, it is assumed throughout
that:

Al: v(0) > 0, v(#) < oo for some § < 1 and E[>_ A;(log A;)?] < oo.

Note that, although v(0) = log EN may be infinite, the definition of A includes the
assumption that N itself is finite. The last part of Al implies that v(1) < oo and that
v'(1) makes sense when interpreted as E [Y A; log A;]. In fact, as can be seen in Durrett
and Liggett (1983) and Liu (1998), in considering solutions to (1), there are four regimes,
calling for some separate discussion: (i) v(1) = 0 and v'(1) < 0, (ii) »(1) = 0 and
v'(1) =0, (iii) (1) = 0 and v'(1) > 0, and (iv) v(1) # 0. Under the side condition that
1 is in the interior of {# : v(f) < oo}, Theorems 1.3 and 1.5 of Biggins and Kyprianou
(1997) show that under the first regime there is a solution in £ to the functional equation
(1) that is unique up to scaling. The ideas developed there will be important in this
discussion, and so the short citation BK97 will be used. Durrett and Liggett (1983) show
that in the third and fourth regimes the existence of solutions to (1) is related to the
existence of « in (0,1) with v(a) = 0 and v'(a) < 0 and this « links these cases to the
first two. The second regime should be regarded as marking the boundary of the first
one, or, alternatively, the boundary between the first and the third. This can be seen
from their specifications, but there is a further reason. If v(f) < oo for all  and, for a
fixed ¢, A; is replaced by A;(¢) = Af’e‘”(q’) then elementary calculus shows that the first
regime obtains for A(¢) when ¢ lies in an open interval, the second obtains at the end
points of that interval and the third obtains elsewhere. It is also worth pointing out, but
without going into detail, that one continuous analogue of (1) is the equation giving a
travelling wave solution of a particular speed for the partial differential equation know as
the KPP equation; in that context, the boundary case gives the wave of smallest speed.
This last connection, which receives some further comment later, illustrates that case (ii)
is likely to be both subtle and important. It is this case that is considered here and so
the following is assumed throughout, in addition to Al.

A2: v(1) =0 and v'(1) = 0.

With the assumptions laid out, the first main result for this boundary case can now be
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stated. It is easy to use weak convergence to establish that (1) has solutions in £, as
can be seen in Durrett and Liggett (1983) and Liu (1998). Theorem 1.1 of Liu (1998)
covers the case considered here (any many others). The new aspect in the next theorem
is uniqueness without any additional conditions.

Theorem 1 The functional equation (1) has a unique solution in L up to a scale factor.

The functional equation relates in a natural way to certain martingales in the branching
random walk. This relationship and results for the martingales obtained in Biggins and
Kyprianou (2001) lead to rather precise information on the behaviour of a solution to (1)
near zero; the main result of this kind, contained in Theorem 5 in the next section, is
that, under mild conditions, (1 —®(+))/(— log1)) converges to a finite positive constant
as ¥ | 0. Kyprianou (1998) and Liu (2000) exploit a result of this type to obtain
uniqueness; an approach which necessitates extra conditions on A. The relationship with
the branching random walk and the main results stemming from it are described in the
next section. An important precursor to the main proofs is that (1 — ®(¢))/% is slowly
varying; this result and some consequences of it are established in Section 3, drawing on
results in BK97. The final two sections are devoted to the proof of the main results.

2 The associated branching random walk.

There is a natural (one to one) correspondence, already hinted at, between the framework
introduced and the branching random walk, a connection that is the key to some of the
proofs. Specifically, let the point process Z (with points at {—logA4; : i < N}) be
used to define a branching random walk in the usual way, with independent copies of Z
being used to give the positions of each family relative to its parent’s position. Ignoring
positions gives a Galton-Watson process with (almost surely finite) family size N. People
are labelled by their ancestry (the Ulam-Harris labelling) and the generation of u is |u.
Let z, be the position of u, so that {z, : |[u| = 1} is a copy of {—log A; : i < N}. The
assumption A2 corresponds to

E Ze’z“ :/ewu(d:c) =1 and E Zzue"z“ :/ew,u(dac) =0

ul=1 ul=1

and, in a similar way, A1 corresponds to

/,u(dx) > 1, /e‘amu(d:v) < oo for some 6 < 1, /xQe_x,u(d:c) < 00.
Then it is shown in Biggins (1977) that the non-negative martingale

Woy=) e (2)

|u[=n

converges almost surely to zero and that the functional equation (1) has no solutions in £
that have a finite mean. Let B, = inf{z, : |u| = n}, the position of the leftmost person in
the nth generation, which is taken to be infinite when the branching process has already
died out by then; then W,, — 0 implies that B, — oo as n — oo, almost surely. Had
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W, converged to a limit that was positive with positive probability, then splitting on the
first generation and letting n — oo would show that the transform of that limit would
satisfy (1) and be in £. Another related martingale, introduced next, does better in this
respect.

Let

ow,, = Z zye

u[=n

then it is straightforward to check that 0W,, is a martingale. It is called the derivative
martingale because its form can be derived by differentiating Z\u|:n e~07=mv0) which is
also a martingale, with respect to # and then setting # to one. This martingale has been
considered in Kyprianou (1998) and Liu (2000) and its analogue for branching Brownian
motion has been discussed by several authors — Neveu (1988) and Harris (1999), for
example. In the branching Brownian motion context, travelling wave solutions to the
KPP equation are the analogue of solutions to the functional equation and classical theory
of ordinary differential equations easily provides existence, uniqueness and aspects of the
asymptotic behaviour of these; hence, these properties form part of the starting point in
Neveu’s study and earlier ones. In contrast, Harris (1999) seeks properties of the solutions
through arguments based on associated martingales, which is the approach taken here.

The derivative martingale is one of the main examples in Biggins and Kyprianou
(2001), where general results on martingale convergence in branching processes are dis-
cussed. The assumptions Al and A2 are more than enough for the results in the final
section there to apply; in particular, Theorem 12 contains the following result.

Theorem 2 The martingale OW,, converges to a finite non-negative limit, A, almost
surely, and P(A = 0) is either equal to the extinction probability or equal to one.

Splitting on the first generation shows, in the obvious notation, that
W = (2ue™™ (Wnet)u + € (0Wno1)u) -
Ju|=1
Now, letting n go infinity and using that W,, — 0 almost surely, gives

A= Z e A,

ful=1

Hence the transform of A satisfies (1) and will have a transform in £ when A is not
identically zero. Whether the martingale limit A is zero or not is related to the behaviour
of the solution to (1) near the origin. The precise relationship is formulated in the next
theorem, which is the second main result proved in this paper.

Theorem 3 The limit A is not identically zero exactly when one solution to (1) in L

satisfies
1—2(y)
—1plog 1

otherwise this limit is infinite for all solutions.

—1 asvy |0 (3)



Biggins and Kyprianou (2001) also contains information on when A is not zero, and
when it is. Rather a lot of notation is needed to state the conditions accurately, which
may obscure the main message. That message is that, under fairly mild conditions, the
martingale limit is not identically zero, and those conditions are close to necessary in
that the limit is certainly zero if they are relaxed a little. Here is the notation. Let

X; = Zzie_zil(z,- >0), Xo= Ze‘zi and X3(s) = Ze‘z"l(zi > —s).

Since z; = —log A;, the variables X7, X5 and X3(s) could easily be reformulated in
terms of A. Let ¢(z) = logloglogz, L(z) = (logz)é(z), La(z) = (logz)?d(x), La(x) =
(logz)/é(z) and Ly(z) = (logz)?/d(x). Theorem 12 of Biggins and Kyprianou (2001)
contains the following result.

Theorem 4

(a) If both E[X,L1(X1)] and E[XoLo(X2)] are finite then A is not identically zero.

(b) If E[X1L3(X1)] is infinite or, for some s, E[X5(s)L4(X3(s))] is infinite then A =0
almost surely.

This result combines immediately with Theorem 3 to give the next one, which im-
proves the known results about the functional equation and is the third main result of
this paper.

Theorem 5 When the conditions of Theorem 4(a) hold so does (3). When the conditions
of Theorem 4(b) hold the limit in (3) is infinite (rather than being 1).

As has been mentioned already, some results on the relationship between the limiting
behaviour in (3), the limit A, and the uniqueness of the solution to (1), have been obtained
previously, in Kyprianou (1998) and Liu (2000); those studies approach the convergence
of 0W,, and uniqueness through the properties of solutions to the functional equation,
specifically, through (3). By Theorem 5, although (3) holds widely it does not always
hold, limiting that approach to uniqueness.

3 Multiplicative martingales and slow variation.

Much of the account in BK97 is relevant in next three sections; the presentation here
aims to make the discussion and the statements of results self-contained, but accepts that
the proofs draw heavily on results and arguments from BK97.

Just as in BK97, any solution to the functional equation (1) corresponds to a bounded
martingale in the branching random walk given by

I @ (we ™) forn=0,1,2,3,.... (4)
|u|=n

It is natural to call these multiplicative martingales for they arise by multiplying terms.
It turns out that products over other sets of individuals, not just the nth generation ones
used in (4), are important. To introduce these, a few definitions are needed first.

For the branching random walk corresponding to A let

C(t) ={u:z,>tbut z, <t for v < u}
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where v < u means v is an ancestor of u. Hence C(t) identifies the individuals who are
the first in their lines of descent to be to the right of ¢. For simplicity, let C = C(0).

Now let g(t) be the last generation containing an individual with no ancestor, including
itself, in C(t). Then, g(t) < sup{n : B, <t} < oo, because, as was noted in the previous
section, B, — oo. Furthermore, since family sizes are finite, C(¢), which is contained
entirely within the first g(¢) generations, must be finite. These observations combine
with Corollary 3.2 and the first part of Theorem 6.2 in BK97 to give the following result,
which concerns multiplicative martingales like those defined at (4) but with the products
taken over C(?).

Lemma 1 Given ® € L is a solution to (1) let

M) = [ ®(we ).

u€eC(t)

Then, for each v > 0, M(v) is a bounded martingale. In particular,

I1 ‘P(lﬁe_z“)] : ()

u€eC

() = E

Note that solutions to the functional equation (1) are linked, through this lemma, to the
solutions of another functional equation, (5), which has the same form, except that the
A defining (5) does not satisfy A2.

If the members of C are regarded as the children of the initial ancestor, rather than
simply descendants, the resulting point process, which is concentrated on (0,00) by ar-
rangement, can be used to construct a Crump-Mode-Jagers (CMJ) process from individ-
uals, and their positions, in the branching random walk. The individuals in the branching
random walk that occur in the CMJ process are exactly those in C(t) as ¢t > 0 varies;
furthermore C(t) is the coming generation for the CMJ process. This is the content of
Lemma 8.2 of BK97 when applied in this case. Known results for the CMJ, derived by
Nerman (1981), play a central role in proving uniqueness both in BK97 and here.

The next result is known; a rather more involved proof, allowing for solutions that
are not Laplace transforms, is given in Kyprianou (1998). The result is also contained in
Theorem 1.2 of Liu (1998) when v(0) < oo. This proof exploits the connection between
the two functional equations, (1) and (5), derived in Lemma 1.

Lemma 2 For any solution ® to (1), let L(v) = (1—®(v))/v. Then L is slowly varying
as ¥ | 0.

Proof. Since

EZ@’Z” =1 and EZzue’Z“ > 0,

u€eC u€eC
by Theorem 8.3 of BK97 and by definition respectively, Theorem 1.4 of BK97 applies to
the functional equation (5), showing L is slowly varying. O

Note that, once they are proved, Theorems 3 and 5 imply that, typically, the slowly
varying function L in Lemma 2 is equivalent to the logarithm.
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Lemma 3 Let M(v) be the limit of the martingale My(¢)) and W = —log M(1). Then
(i) M) = e"WY; (ii) W has transform V; and, (i)

Jim Y e L(e) =W. (6)

u€eC(t)

Proof. The first two parts are proved, using Lemma 2, in just the same way as parts
(i) and (ii) of Lemma 5.2 in BK97. For the final part, let g(¢) be the first generation
containing a member of C(t) and let 7T}, be the rightmost position occupied in the first n
generations, which is finite because family sizes are finite. Then g(t) > n for ¢t > T,, so
that g(t) — co as t — co. The final part of the result now follows from the second half
of Theorem 6.2 in BK97. O

4 Proof of Theorem 1

The proof is through a sequence of lemmas. The first makes clear that a result similar
to, but different from, (6) is enough to yield the desired conclusion.

Lemma 4 Suppose ® € L is a solution to (1), L(¢p) = (1 — ®(v))/v and

lim L(e Z e v =W, (7)

t—00
u€eC(t)

where W s the limit, which is defined in Lemma 3, corresponding to ®. If this holds for
every solution in L to (1) then the solution is unique up to scaling.

Proof. Suppose we take two non-trivial solutions to (1), ¥; and ¥y. Both of these can be
used to construct martingales as in Lemma 1, with the limits W; and W5 as in Lemma
3; then, using (7),

Wi L€ D™ L Lie!) _
Wo o ttoo La(e™) Yo e €% thoo Lo(e™)

where ¢ must be a constant. Thus W; = ¢W; and so, using Lemma 3(ii), ¥1(¢)) = Wa(ct)).
U

The next result applies to any slowly varying function, a fact which will be important
in proving Theorem 3. It identifies a moment condition, (8), that together with (6)
ensures (7) holds and hence that Lemma 4 applies.

Lemma 5 Suppose that for a monotone decreasing, slowly varying L' (not assumed to
arise from a solution to (1)) there is a random variable A" such that

and

< oo for some e > 0. (8)

E Z e—(l—e)zu

ueC




Then
L'(e™) Z e — A
u€eC(t)

as t — 0o, almost surely.

Proof. The proof of Theorem 8.6 in BK97, with the change that (8) is invoked instead of
Theorem 8.5, produces this result. It is this proof that uses that Nerman’s (1981) ratio
limit theorem. O

In BK97, Theorem 8.5 verified that (8) holds under the conditions there, but it does
not apply here. (The assumption, in A2, that v'(1) = 0 translates to EX = 0 in the
notation used in BK97; Theorem 8.5 assumes —v’(1) = EX > 0.) The corresponding
result under the assumptions in force here is established next.

Lemma 6 For some e > 0

E

< 0.

Z ef(lfe)zu

u€eC

Proof. Recall that  is the intensity measure of Z and that the assumption that v(1) =0
means that [ e ®u(dz) = 1. Let S, be the sum of n independent identically distributed
variables with law e~*u(dz) and let 7 be the first index n with S,, > 0, so S; is the first
strict increasing ladder height of the random walk S,,. Then, much as in Lemma 4.1(iii)
of BK97,

Ze(le)z“] = ZE Z I{u:z,>0but z, <0 for v < u}e 1=

ueC

E

|u|=n

= ZE Z I{u:z, >0but z, <0 for v < ujee

u[=n

= ZE [I{Sn >0 but S, <0 forr < n}ees"}

= FEer

Thus the required finiteness reduces to the ladder height S, having an exponential tail.
Now, by A1, for € small enough,

oo > 'm0 = /e(le)w,u(dx) = /e“e‘”,u(dx) = E[e]

and so the tails of the increment distribution of the random walk decay exponentially.
This implies, by standard random walk theory, in particular, XII(3.6a) in Feller (1971),
that the same is true of S,. O

It is worth noting that this proof also works when assumption A2 is replaced by
v(l) = 0 and v'(1) < 0. This would allow the condition labelled A4 in Biggins and
Kyprianou (1997), that 1 is in the interior of {6 : v(f) < 0o}, to be relaxed in the proof
of uniqueness in that context (Theorem 1.5). It can be relaxed to: v(0) > 0, v(f) < oo
for some § < 1 and E [Y A;log" 4;] < oc.

Now, Lemmas 3 and 6 show that Lemma 5 applies. Hence Lemma 4 applies and
Theorem 1 is proved.



5 Proof of Theorem 3

It is shown in Theorem 2.5 of Liu (2000) that when (3) holds A is not identically zero;
see also Theorem 3 of Kyprianou (1998). The essence of the argument is that, by using
(3) and B, — oo, the logarithm of the L'-convergent martingale (4) is asymptotically
equivalent to OW,,.

To go the other way, let A be the limit of OW,, and let

GWC(t) = Z zye v,
)

u€eC(t
Then Corollary 5 of Biggins and Kyprianou (2001) establishes that
OWe — A almost surely

as t — oo. Hence, taking L'(x) in Lemma 5 to be —logz, Lemmas 5 and 6 together give

lim ¢ e — Al 9)
t—00
u€eC(t)

Now, taking a non-trivial solution to (1),

3 —t —Ruy —
tlggoL(e ) Z e =W.

u€eC(t)
Hence, just as in the proof of Lemma 4,
A o tZweew @t g tet
W tteo L(et) > uec() € o L(et) oo 1 — ®(et)’

which must be a (non-random) constant. The constant is only zero when A is identically
zero; otherwise, by scaling the solution to (1), it can be made equal to one. O

The idea that the convergence in (9) produces information on the asymptotics of the
functional equation occurs, in the branching Brownian motion context with non-trivial
A, in Kyprianou (2001). It is also worth noting that (9) is a Seneta-Heyde norming for
the Nerman martingale associated with the particular CMJ process arising here. The
existence of such a norming in general is covered by Theorem 6.1 of Cohn (1985) and
Theorem 7.7 of BK97. The special structure here means that the slowly varying function
in the general theorem is the logarithm. Following on from this, in the same spirit as
Theorem 1.2 in BK97, it is natural to wonder whether there are constants ¢, such that
W, /cn converges, where W,, was defined at (2). In BK97, the approach to this question,
which we have not been able to settle in the present context, needs a ‘law of large numbers’
which would say, roughly, W,,1/W,, — 1 in probability.
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