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Abstract

We obtain the Plancherel decomposition for a reductive symmetric space in
the sense of representation theory. Our starting point is the Plancherel formula for
spherical Schwartz functions, obtained in part I. The formula for Schwartz functions
involves Eisenstein integrals obtained by a residual calculus. In the present paper
we identify these integrals as matrix coefficients of the generalized principal series.
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1 Introduction

In this paper we establish the Plancherel decomposition for a reductive symmetric space
X = G/H, in the sense of representation theory. Here G is a real reductive group of
Harish-Chandra’s class and H is an open subgroup of the group G? of fixed points for
an involution o of GG. This paper is a continuation of the paper [12] in the sense that we
derive the Plancherel decomposition from its main result [12], Thm. 23.1, the Plancherel
formula for the space C(X: 1) of 7-spherical Schwartz functions on X. Here (7,V}) is a
finite dimensional unitary representation of K, a o-stable maximal compact subgroup of
(G. At the end of the paper, we make a detailed comparison of our results with those of
P. Delorme [20].

The results of this paper were found and announced in the fall of 1995, when both au-
thors were visitors of the Mittag-Leffler Institute in Djursholm, Sweden. At the same time
P. Delorme announced a proof of the Plancherel theorem. For more historical comments,
we refer the reader to the introduction of [12].

Before giving a detailed outline of the results of this paper, we shall first give some
background and describe the main result of [12], which serves as the basis for this paper.
The space X carries an invariant measure dz; accordingly the regular representation L of G
in L*(X) is unitary. The Plancherel decomposition amounts to an explicit decomposition
of L as a direct integral of irreducible unitary representations of G. These representations
will turn out to be discrete series representations of X and generalized principal series
representations of the form

TQewy = Indg(f RQr R 1), (1.1)
with Q = MgAgNg a of-stable parabolic subgroup of GG with the indicated Langlands

decomposition, ¢ a discrete series representation of the symmetric space Xg:= Mg /Mg N
H, and v a unitary character of Ag/AgNH. To keep the exposition simple, we assume here,
and in the rest of the introduction, that the number of open H-orbits on Q\G is one. In
general, there are finitely many open orbits, parametrized by a set W of representatives,
and then ¢ should be taken from the discrete series of the spaces Xg ,: = Mg /MgNvHv™",
for v € QW.

Let 6 be the Cartan involution associated with K; it commutes with o. Let a4 be
a maximal abelian subspace of the intersection of the —1 eigenspaces for  and o in g,
the Lie algebra of G. We denote by P, the collection of fo-stable parabolic subgroups
of G containing Ay:= expay. For Q € P, we put agqe:= ag N aq. In [12] we defined
a spherical Fourier transform Fg in terms of a so called normalized Eisenstein integral
E2(Q:v) = E°(Q: v). The latter is a function in C*°(X) ® Hom(A; g, V;), depending
meromorphically on a parameter v € ag . Here Ay g = Az g(7) is defined as the space
of Schwartz functions Xg — V; that are 75:= 7'|KnMQ—spherical and behave finitely
under the algebra D(Xg) of invariant differential operators on Xg. The space A, g is
finite dimensional, and inherits the Hilbert structure from the bigger space L*(Xg: 7g).



Without the simplifying assumption, Ay o is defined as a finite direct sum of similar
function spaces for Xg.,, as v € W,

The Eisenstein integral F°(Q: v) is 1 ® 7 spherical and behaves finitely under the
algebra D(X). In view of the vanishing theorem of [11], the Eisenstein integral can be
uniquely characterized in terms of its annihilating ideal in D(X) and its asymptotic be-
havior towards infinity on X; see [12], Def. 13.7 and Prop. 13.6. Let P, be a fixed minimal
element of P,. Then for ) = Fy the Eisenstein integral is obtained as a sum of matrix
coefficients of the representations (1.1) with @) = Py, the so called minimal principal series
for X. See [5] and [6].

For non-minimal () the Eisenstein integral is obtained from FE°(Fy: ) by means of a
residual calculus in the variable A € ia, see [12], Equn. (8.7) and Lemmas 13.15 and 13.9.
In particular, for such @ it is a priori not clear that the normalized Eisenstein integral
E°(Q: v)is a sum of matrix coefficients for the generalized principal series representations
(1.1). It is one of the goals of the present paper to establish this. In terms of the Eisenstein
integral, the spherical Fourier transform is defined by the formula

Foflv) = / E(Q: —v:x) f(z) de € Ay,
X
for f € C(X:7)and v € iay; see [12], § 19. The star indicates that the adjoint of
an endomorphism in Hom(A; g, V;) is taken. The transform Fg is a continuous linear
map from C(X: 7) into the space S(ia),) @ Az q of Euclidean Schwartz functions on
a5, with values in the finite dimensional Hilbert space A g. The wave packet transform
Jo is defined as the adjoint of the Fourier transform with respect to the natural L*-
type inner products on the spaces involved; see [12], § 20. It is a continuous linear map

S(iap,) @ Az — C(X: 7), given by the formula

Tor(e) = [ E(Q:vi o) plo) oy
iag,
for ¢ E S(iag,) ® Agq and = € X. Here dv is Lebesgue measure on iap,, suitably
normalized.
Two parabolic subgroups P, ) € P, are called associated if their o-split components
apq and agq are conjugate under the Weyl group W of the root system of aq in g. The
notion of associatedness defines an equivalence relation ~ on P,. Let P, be a choice of

representatives in P, for the classes in P,/ ~ . Then the Plancherel formula for functions

in C(X: 7) takes the form

F=Y W W5lJoFof, (feC(X:T)),

QEPs

with W5 the normalizer in W of agq. The operator [W: Wj5|JpFq is a continuous pro-
jection operator onto a closed subspace Cq(X: 7) of C(X: 7). Moreover,

C(X:7)=&gep, Co(X:T),
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with orthogonal summands. It follows from the above that [W : Wé]l/ZFQ extends to a
partial isometry from L*(X: 7) to L*(iag,) ® Asq. Its adjoint extends [IW: Wé]l/ZJQ to
a partial isometry in the opposite direction.

In the present paper, we build the Plancherel decomposition for (L, L*(X)) from the
above for all 7. The first step in this direction is to show that the Eisenstein integrals give
rise to intertwining maps from the principal series to (L, C*(X)).

In Section 3 we show that the discrete part L3(X: 7) of L*(X: 7) is finite dimensional.
This fact can be derived from the description of the discrete series by T. Oshima and
T. Matsuki in [28]. We show that it can be obtained from [12] and weaker information
on the discrete series, also due to [28], namely the rank condition and the fact that
the D(X)-characters of L3(X) are real and regular. The mentioned result implies that
the parameter space Ay o(7) of the Eisenstein integral equals L3(Xq: 7¢). Accordingly,
it may be decomposed in an orthogonal finite dimensional sum of isotypical subspaces
As.o(T)e, where € € Xé\g,dsa the collection of discrete series for Xg.

In Section 4 we formulate the connection of the Eisenstein integrals with the principal
series. Let K be the unitary dual of K, i.e., the collection of equivalence classes of
irreducible unitary representations of K. If V' is a locally convex space equipped with a
continuous representation of K, then by Vik we denote the subspace of K-finite vectors;
for 9 C K a finite subset we den(z:ce by Vi the subspace of Vi consisting of vectors whose
K-types belong to ¥. Let ¢ C K be a finite subset. We define V4 to be the space of
continuous functions K — C that are left K-finite with types contained in the set 9.
Moreover, we define 75 to be the restriction of the right regular representation of K to
Vy. Let §.: Vy — C be evalutation in e. Then F'+— §,0 I is a natural isomorphism from
L*(X : 79) onto L*(X)y. Its inverse, called sphericalization, is denoted by .

For ¢ € X&ds, we denote by V(&) the space of continuous linear Mg-equivariant
maps He — L*(Xg). This space is a finite dimensional Hilbert space. We denote by
L*(K : £) the space of the induced representation Indﬁ:nMQ(ﬂmeQ)- It is well known
that the induced representation (1.1) may be realized as a v-dependent representation in
L*(K : ), which we shall also denote by mg ¢ ,; this is the so-called compact picture of
(1.1).

If Y C K is a finite subset, there is a natural isometry from V(£) @ L*(K: £)y into
As.q(19), denoted T' +— 7. We show in Section 4 that we may use the Eisenstein integrals
to define a map Jg ¢, V(f) @ L*(K: §)x — C=(X)k by the formula

Jen(T)(2) = 6 [Eg(Q: v x)dr]. (1.2)

Here 9 C K is any finite subset such that T € V(£) @ C®(K : £)y and ES denotes
the Eisenstein integral with 7 = 73. The map Jg ¢, is a priori well-defined for v in the
complement of the union of a certain set H(Q, ) of hyperplanes in A5 This union is
disjoint from iag).,.

The main result of the section is Theorem 4.6. It asserts that H(Q), &) is locally finite
and that, for v in the complement of its union, the map Jg ¢, is (g, K)-equivariant for the
infinitesimal representations associated with 1 @ mg ¢ _, and L. The proof of this result is



given in the next two sections. In the first of these we prepare for the proof by showing
that mg ¢, 1s finitely generated, with local uniformity in the parameter v, see Proposition
5.1. This result is needed for the proof of the local finiteness of H(Q, ).

In Section 6 the (g, K')-equivariance of the map Jg ¢, is established. The K-equivarian-
ce readily follows from the definitions. For the g-equivariance it is necessary to compute
derivatives of the Eisenstein integral of the form LxE2(Q: v)y, for ¢v € Ay q(7) and
X € g. The computation is achieved by introducing a meromorphic family of spherical
functions F:ap . x X — g @ V7 by the formula

Fula)(2) = LoEAQ: v: - ))(a),

for v € ajy,, + € X and Z € gc. The function F, is 7-spherical, with 7:= Ady. @ 7
and Adg:= Ad|g. It has the same annihilating ideal in D(X) as the Eisenstein integral
E2(Q: v)y. Moreover, its asymptotic behavior on X can be expressed in terms of that
of E2(Q: v). By the mentioned characterization of Eisenstein integrals this enables us
to show that F) equals an Eisenstein integral of the form E2(Q: v)dg(v)y, with dg(v)
an explicitly given differential operator Az o(7) — A2o(7), see Theorem 6.12. The g-
equivariance of Jg ¢, is then obtained by computing the action of dg(v) on ¢z, for T €
V(€) @ C®(K : £)g; see Lemma 6.13 and Proposition 6.15. At the end of the section
we complete the proof of Theorem 4.6 by establishing the local finiteness of H(Q,¢),
combining the results of Sections 5 and 6; see Proposition 6.16.

In Section 7 we define a Fourier transform f f(Q ¢:v) from C*(X)k to V(6) ®
L*(K : &)k by transposition of the map Jg ¢ —5. It is given by the formula

WQ@wHDzLﬂﬂh&ﬂW@w

and intertwines the (g, K')-module of L with that of 1 ® mg¢ _,. In view of (1.2), the

transform f +— f is related to the spherical Fourier transform by the formula

(f(Q: €:)|T) = (Folss )W) [¥r), (1.3)

for f € CX(X)y.
The established relation (1.3)A combined with the spherical Plancherel formula implies
that the Fourier transform f+— f(Q: £: v) defines an isometry from L?(X) into the direct

integral
oy [W:W(jg]/ 1® 7mgey dv, (1.4)
g,

m =
QEP, (X)),

realized in a Hilbert space £2. The continuous parts of this direct integral are studied in
Section 8. In Section 9 it is first shown, in Theorem 9.5, that the Fourier transform f f
extends to an isometry § from L?(X) into £%. Moreover, its restriction to C°(X)g is a
(g, K)-module map into £27. By an argument involving continuity and density, it is then
shown that § is G-equivariant, see Theorem 9.6. At this stage we have established that §



maps the regular representation I isometrically into a direct integral decomposition. For
this to give the Plancherel decomposition, we need to show that the image of §§ is a direct
integral with representations that are irreducible and mutually inequivalent outside a set
of Plancherel measure zero. This is done in Lemma 10.5 and Proposition 10.8. In the
process we use results of F. Bruhat and Harish-Chandra on irreducibility and equivalence
of unitarily parabolically induced representations, see Theorem 10.7. The Plancherel
theorem is formulated in Theorem 10.9. Finally, in Theorem 10.11 a precise description
of the image of § is given.

By the nature of our proofs it is a priori not clear that our description of the Plancherel
decomposition makes use of the same parametrizations as the one in P. Delorme’s paper
[20]. Tt is the object of the last section to show that this is indeed the case. Here the
key idea is to use the automatic continuity theorem, Theorem 11.1, due to W. Casselman
and N.R. Wallach, see [17] and [31]. It allows us to show that the map Jge, has a
continuous linear extension, hence can be realized by taking the matrix coefficient with an
H-fixed distribution vector of Indg(f ®@v®1). By means of the description of such vectors
in [15], combined with an asymptotic analysis, it is shown that our Eisenstein integral
E°(Q: v: 1) coincides with Delorme’s normalized Eisenstein integral F°(Q: ¢ : —v), see
Corollary 11.18.

Finally, the constants [W: Wj] occurring in our formula (1.4) differ from the similar
formula of Delorme. This is due to different choices of normalizations of measures, as is
explained in the final part of the paper.

2 Notation and preliminaries

Throughout this paper, we use all notation and preliminaries from [12], Sect. 2. In
particular, G is a group of Harish-Chandra’s class, o an involution of G and H an open
subgroup of G, the group of fixed points for o. The associated reductive symmetric space

is denoted by
X =G/H.

All occurring measures will be normalized according to the conventions described in [12],
end of Section 5.

Apart from the references just given, we shall give precise references to [12] for addi-
tional notation, definitions and results. Some of these references will seem to depend on
the requirement that occurring parabolic subgroups from P, be of residue type. We recall
that this condition was introduced in [12] for purposes of induction, see [12], Rem. 13.3.
In the end it is shown, in [12], Thm. 21.2, that every parabolic subgroup from P, is
of residue type. Thus, the imposed requirement of being of residue type will always be

fulfilled.



3 A property of the discrete series

In this section we discuss an important result on the discrete part of L?(X), which is a
consequence of the classification of the discrete series by T. Oshima and T. Matsuki in
[28]. In our approach to the Plancherel formula via the residue calculus, we obtain it as
a consequence of the rank condition and the regularity of the infinitesimal character, also
due to [28], see [12], Rem. 16.2.

In the rest of this section we assume that (7,V}) is a finite dimensional unitary rep-
resentation of K. A function f:X — V; is called 7-spherical if f(kx) = 7(k)f(z), for all
z € X and k € K. The Hilbert space of square integrable 7-spherical functions is denoted
by L*(X: 7). Its discrete part, denoted L3(X: 7) is defined as in [12], § 12. The Fréchet
space of T-spherical Schwartz functions, denoted C(X: 7), is defined as in [12], Eqn. (12.1).
The subspace of D(X)-finite functions in C(X: 7) is denoted by Ay(X: 7).

Proposition 3.1 Let (7,V;) be a finite dimensional unitary representation of K. Then
LA(X: 1) = Ay(X: 7). (3.1)
Moreover, each of the spaces above is finite dimensional.

Proof: It follows from the reasoning in the proof of [12], Lemma 12.6, that the space on
the right-hand side of (3.1) is contained in the space on the left-hand side.

First assume that the center of (7 is not compact modulo H. Then it follows from [12],
Thm. 16.1, that X has no discrete series; hence, L3(X) = 0 and we obtain (3.1).

Now assume that the center of G is compact modulo H. Denote by °G the intersection
of the kernels ker |x|, for x: G — C* a character. Let Ag be the split component of G,
then G = °GAg and Ag C H. Put °X:= °G//°G' N H. Then it follows that the natural
map °X — X is a diffeomorphism. Therefore, it suffices to prove the lemma with °X in
place of X. By [12], Thm. 21.2, the pair (°G,°G'N H) is of residue type. Hence, the result
follows by application of [12], Lemma 12.6. O

If (§,H¢) is an irreducible unitary representation of G, let Homg(He, L?(X)) denote
the space of G-equivariant continuous linear maps from H¢ into L*(X). This space is
non-trivial if and only if (the class of) ¢ belongs to X7, the collection of equivalence
classes of discrete series representations of X. If ¢ € X/, then the mentioned space is
finite dimensional, by the finite multiplicity of the discrete series, see [1], Thm. 3.1.

For any irreducible unitary representation ¢, the canonical map from the tensor prod-
uct Homg(He, L*(X)) @ He to L*(X) is an embedding, which is G-equivariant for the
representations 1 @ € and L, respectively. We denote its image by L*(X)¢ and equip the
space Homg(He, L?(X)) with the unique inner product that turns the mentioned embed-
ding into an isometric G-equivariant isomorphism

me: Homg(Hg,Lz(X))@'Hg = LZ(X)‘E. (3.2)

Obviously the space on the right-hand side of (3.2) depends on & through its class [¢], and
will therefore also be indicated with index [£] in place of £.
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With the notation just introduced, it follows that
L?I(X) = @weXgéLz(X)w’ (3'3>

with orthogonal summands. Here and elsewhere, the hat over the summation symbol
indicates that the closure of the algebraic direct sum is taken.

If w is an equivalence class of an irreducible unitary representation of G, we write
LA*(X: 7)y:= L*(X: 1) N [L*(X), @ V;]. Tt is readily seen that this space is non-trivial if
and only if w belongs to X/, and has a K-type in common with the contragredient of 7.
The collection of w with this property is denoted by X7, (7).

Lemma 3.2 The collection X}, () is finite. Moreover,
Li(X:71)= Buex) () L*(X: 1)y, (3.4)
where the direct sum is orthogonal and all the summands are finite dimensional.

Proof: That the direct sum decomposition is orthogonal and has closure L3(X: 7) follows
from the similar properties of (3.3). The space on the left-hand side of (3.4) is finite
dimensional, by Proposition 3.1. Since all summands on the right-hand side are non-
trivial, the collection parametrizing these summands is finite. O

Remark 3.3 Tt follows from Proposition 3.1 that the spaces L*(X: 7),, for w € X},
are contained in Ay(X: 7); we therefore also denote them by A,(X: 7),. Note that
L*(X: 1), = 0 for w an irreducible unitary representation of GG that does not belong
to X7,. Accordingly, we put Ay(X: 7), = 0 for such w. In view of what has been said, the
decomposition (3.4) may be rewritten as

"42(X: 7-) = GBWEXQS(T) AZ(X T)w- (35)

Let C(K)k denote the space of right K-finite continous functions on K. If ¥ is a finite
subset of K, the unitary dual of K, then by C'(K); we denote the subspace of C'(K)g

consisting of functions with right K-types contained in the set ¢. If § € K, then §¥ denotes
the contragredient representation. Accordingly, we put 9V:= {6 | 6 € ¥}. We define

ngi = C(I()ﬁv (36)

and equip this space with the restriction of the right regular representation of K this
restriction is denoted by 75. We endow V, with the L?(K)-inner product defined by
means of normalized Haar measure. By . we denote the map Vy — C, ¢ — ¢(e).



Lemma 3.4 Let F be a complete locally convex space equipped with a continuous rep-
resentation of K. Then the map I ® 6. restricts to a topological linear isomorphism from
(E @ V)X onto Ey. If E is equipped with a continuous pre-Hilbert structure for which
K acts unitarily, then the isomorphism is an isometry. In particular, this yields natural
isometries

L2(X: 7'79) ~ LZ(X)g, CEO(X 7'79) ~ C?(X)ﬁ,

where the last two spaces are equipped with the inner products inherited from the first
two spaces.

Proof: This is well known and easy to prove. O

The inverse of the isomorphism I ® §. will be denoted by ¢ = ¢y; see [6], text before
Lemma 5, for similar notation. Given a finite subset ¢ C K we shall write X4, (0) for
X%, (79), the set of discrete series representations that have a K-type contained in ¢. The
following result is now an immediate consequence of Lemma 3.2.

Corollary 3.5 Let 9 C K be a finite set of K-types. Then X/ (¥) is a finite set.

We end this section with two simple relations between ¢y and ¢y, for finite subsets
J,9" C K with 9 C ¥'. Let E be a complete locally convex space equipped with a
continuous representation of K. We denote by iy ¢: £y — Fg the natural inclusion map
and by Py g Eg — Ey the K-equivariant projection map. Likewise, the inclusion map
Vs — Vg and the K-equivariant projection Vg — Vy (relative to 74/, 79) are denoted
by 1g/,5 and Py g, respectively. By K-equivariance, the maps [ @1y and [ ® Py 4 induce
maps

[Rigg: (E@V) 5 (E@ V), 1@ Pyg: (E@Ve) = (E@Vy)F.

Lemma 3.6 Let notation be as above. Then
Qgt o ([ & iglﬁ) = ig/ﬂ; 0 G, Qg o ([ & Pgﬁ/) = Pg’g/ o Qyr.
Proof: The first identity is immediate from the definitions. The second identity follows

from the first by using that the maps Py g Ey — Ey and Py g9: Vg — V3 may both be
characterized by the identities Py g oigrg = I and Py g oigr gng = 0. O

4 Eisenstein integrals and induced representations

Let @) € P,. We denote by Xé\g,*,ds the collection of equivalence classes of unitary irreducible
representations £ € Mg such that { is a discrete series representation of Xg ,, for some
v E N[{(aq).



In this section we describe the relation of the normalized Eisenstein integral £°(Q : v)
with the induced representations Indg(f ®v @ 1), where v € a5, and £ € Xé\),*,ds' In the
rest of this section we assume £ € X3, ;. to be fixed.

Let ®W C Ni(aq) be a choice of representatives for Wo\W/Wgnm, see [12], text
after Eqn. (2.2). For v € ®W, we equip Xg, with the left Mg-invariant measure dzg.,,
specified at the end of [12], Section 5. Moreover, we define V(Q, ¢,v) = V(£,v) by

V(f,v):: HomMQ(Hg,LZ(XQ,U)). (4.1)

As mentioned in Section 3, this space is finite dimensional. In accordance with the
mentioned section, we equip it with the unique inner product that turns the natural map

mes: V(Ev)@H: — L*Xgu)e, (4.2)
into an isometric Mg-equivariant isomorphism. We define the formal direct sums
V(€):= Gueaw V&),  Loe= Dueaw L (Xow)e (4.3)

and equip them with the direct sum inner products. The first of these direct sums will
also be denoted by V(Q,¢). The second of these direct sums is a unitary Mg-module.
The direct sum of the maps mg,, as v ranges over W is an isometric isomorphism

me: V(f)@%g = LZ),& (4.4)

that intertwines the natural Mg-representations.

Remark 4.1 If @ is minimal, then X7 _ ;. coincides with the set M\ps, defined in [4],
p. 368. Moreover, QW = W is a choice of representatives for W/Wgnm in Ni(aq). If
v e W, and n € Hé\Jﬁ“H“_l, then the map j,: He — L*(M/M NvHv™'), defined by
Jn(v)(m) = (v]€&(m)n)), is an M-equivariant map. Moreover, n — j, defines an anti-
linear map from V(&, v) onto Hompy(He, L*(M/M NvHv™")). This gives an identification
of V(€,v) with V(& v). We recall from [4], p. 378, that we equipped V(& v) = Hé\/[m’H”_l
with the restriction of the inner product from H,. By the Schur orthogonality relations this

on V(£,v). Let V(£) be defined as in [4], Eqn. (5.1). Then V(£) ~ V(£) and the inner
product on V() coincides with dim(¢) times the inner product on V/(§).

implies that the inner product on V/(£,v) coincides with dim(€) times the inner product

For v € ap, let L*(Q: ¢: v) denote the space of measurable functions G — H,
transforming according to the rule

@(manl’) = a’tre E(m> 5‘9(:6)’ (:E € Ga (maaan> € MQ X AQ X NQ)?

and satisfying [, lp(E)|IZ dk < oc. As usual we identify measurable functions that are
equal almost everywhere. The space L?(Q: £: v) is a Hilbert space for the inner product
given by

(1) = [ (o) 6()e . (4.5)

K
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The restriction of the right regular representation of G to this space is denoted by Indg(f’@
v ® 1), or more briefly by mg ¢, = m¢ .

Let C*(Q: ¢: v) denote the subspace of L*(Q: ¢: v) consisting of functions that are
smooth G — H:°. This subspace is G-invariant; the associated G-representation in it is
continuous for the usual Fréchet topology.

Remark 4.2 It follows from [13], § IT1.7, that the Fréchet G-module C*(Q: ¢ : v) equals
the G-module of smooth vectors for the representation mg ¢ ., equipped with its natural
Fréchet topology.

It will be convenient to work with the compact picture of the induced representa-
tion m¢,. Let L*(K : £) denote the space of square integrable functions ¢: K — H, that
transform according to the rule

w(mk) = &(m)p(k), (ke K,m e Kg). (4.6)

Multiplication induces a diffeomorphism () X -, K ~ 7. Hence, restriction to K induces an
isometry from L*(Q: £: v) onto L*(K : £). This isometry restricts to a topological linear
isomorphism from C(Q: £: v) onto the subspace C*(K : €) of functions in L*(K : §)
that are smooth K — Hg°, where the latter space is equipped with the usual Fréchet
topology. Via the isometric restriction map we transfer m¢, to a G-representation in
L*(K : €), also denoted by mg ¢, = m¢ .

Let (7,V;) be a finite dimensional unitary representation of K. We define

LAK: €:r):=[LY(K: &) @ V]~ (4.7)

By finite dimensionality of 7, the space in (4.7) is finite dimensional and contained in
C(K,He) @ V.

Let ev, denote the evalutation map C(K,H¢) = He, ¢ — p(e), and let ev, @ I denote
the induced map L*(K: £:7) = He @ V.

Lemma 4.3

(a) The map ev.® I defines an isometric isomorphism from L*(K : £ : 7) onto the space

(He ® V7)Re.
(b) The space L*(K : €: 7) equals its subspace C*®(K: £: 7):= [C®(K : £) @ V;]X.

Proof: Observe that L?(K : £) is the representation space for Indﬁ:Q(ﬂKQ). Hence (a)
follows by Frobenius reciprocity. It is readily checked that ev, ® [ maps C™(K: £: 1)
onto (Hgo ® VT)KQ. The latter space equals (HgKQ ® V-r)KQ = (He ® VT)KQ; hence (b)
follows. d
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Given T € V(f) ® L*(K : &: 1) we may now define the element ¢y € Lg?é ® V. by
Yr =[me @ I]o[I ®ev. @ I](T).

We agree to denote the map ev, @ I: L*(K: £:7) — (He @ V;)N also by ¢ — ¢(e).
With this notation, if T'=n ® ¢, with n € V(&) and ¢ € L*(K: {: 7), then

Yro=[m @ I)(¢(e), (v €IW). (4.8)

We recall from Remark 3.3, applied to the space Xg, in place of X, for v € ®W, that
[L3(Xg.a)e @ Vi]Me ~ Ay(Xg.,: 7g)e, naturally and isometrically. The space

Azq(T)e:= Tueow  A(Xgw: 79)e (4.9)

is a subspace of the space Ay (1), defined in [12], Eqn. (13.1), as the similar direct sum
without the indices ¢ on the summands. It follows from the above discussion combined
with (4.3) that summation over W naturally induces an isometric isomorphism

(Lie ® V2)'e = Agg(r)e, (4.10)

via which we shall identify.

Lemma 4.4 The map T + r is an isometry from V(€) @ L*(K : £: 1) onto Ay g(7)e.

Proof: It follows from Lemma 4.3 that
IT®ev.® I: ‘_/(f) ® LQ(K: E:7) — ‘_/(f) ® [He ® VT]KQ (4.11)

is an isometric isomorphism. The map m¢ @ I is an isometry from V() ® He @ V; onto
LZ),& ® V:, which intertwines the Kg-actions 1 & §|KQ ® 1 and L|KQ @ 1g. Therefore, it
induces an isometry between the subspaces of Kg-invariants, which by (4.10) is identified
with an isometry

me @ I: V() @ [He @ Va]Re =5 Ay o(7)e. (4.12)
Since T' + g is the composition of (4.11) with (4.12), the result follows. O
It follows from Lemma 3.4 that

LQ(K: £:79) ~ L2(K1 £)v,

with an isometric isomorphism. The latter space is equal to C™(K: £)y, in view of
Lemmas 4.3 (b) and 3.4. Accordingly, the map 7' — tr, defined for 7 = 74, may naturally
be viewed as an isometric isomorphism

T +— L/JT, V(Q,f) ® COO(I(Z f)g i) AZQ(Tﬁ)&. (413)
Moreover, it is given by the following formula, for T =n ® ¢ € V(Q,£) @ C®(K : £)y;
prpgr = n(ee)),  (v€ W)
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We now come to the connection with the normalized Eisenstein integral E2(Q: v) =
E°(Q: v), defined as in [12], Def. 13.7. The Eisenstein integral is meromorphic in the
variable v € ap, as a function with values in C'*(X) ® Hom(Asq, V). If ¥ € Aagq,
we agree to write E°(Q: ¢ :v: - )= FE°(Q:v: - ). Then E°(Q: ¢ :v) € C*(X: 1), for
generic v € -

We need a ‘functorial” property of the normalized Eisenstein integral that we shall now
describe. Let (7', V;/) be a second finite dimensional unitary representation of K, and let
S: V. — V. be a K-equivariant linear map. Then via action on the last tensor component,
S naturally induces linear maps C¥(K: {:7) — C®(K: £: 1), Aygo(T)e = Az(T')e
and C*(X: 1) — C°°(X: 7') that we all denote by I ® S.

Lemma 4.5 Let S: V. — V., be a K-equivariant map as above.
(a) Let T € V(§) @ C*(K : &: 7). Then ¢ugrgsyr = [I @ Slr.
(b) Let ¢ € Ay (7). Then

@ SIEQ: v+ v) = B(Q: [[® S v),

as a meromorphic C%(X: 7)-valued identity in the variable v € aj) .

Proof: (a) is a straightforward consequence of the definitions. Assertion (b) follows from
the characterization of the Eisenstein integral in [12], Def. 13.7. More precisely, it follows
from the mentioned definition and [12], Prop. 13.6 (a), that the family f = E°(Q: ¢)
belongs to Egyp(X: 7). See [12], Def. 6.6, for the definition of the latter space. Moreover,
still by [12], Prop. 13.6, for v in a non-empty open subset Q) of a3, each v € W and
all X € agq and m € Xg, 4,

qu—pQ(vi | fquam) = ¢U(m) (4'14>

It readily follows from the definitions that g: (v, z) — S(f(v,z)) belongs to Egyp(X: 7);
moreover, (4.14) implies that

Guepg (@50 | guy Xym) = St (m)) = [pr,[I @ S]p](m),

for all v € O, each v € ®W, and all X € agq and m € Xg,,,+. In view of [12], Def. 13.7
and Prop. 13.6 (a), this implies that ¢ = E°(Q: [ ® S]y). D
If ¥ C K is a finite subset and Y € Azq(7s), we denote the associated normalized
Eisenstein integral £ (Q: ¢ : v) also by E§(Q : ¢ : v). This Eisenstein integral is a smooth
mg-spherical function, depending meromorphically on the parameter v € aj).

Lemma 4.5 implies an obvious relation between the Eisenstein integrals E(Q): ¢ : v)
for different subsets 9. If ¥ C ¥’ are finite subsets of [A(, then Vy C V. The associated
inclusion map is denoted by iy g; it intertwines 73 with 79/. From Lemmas 3.6 and 4.5 (a)
it follows that

Pligig 1 = Ploisiy les]T
= [U@ipsldr, (T eV(E@CT(K: o). (4.15)
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Moreover, from Lemma 4.5 (b) it follows that

ES(Q:[I®igslv:v)=[IRigy|Ey(Q:v:v), (Y € Ay g(Ts)). (4.16)

We have similar formulas for the K-equivariant projection operator Py g: Vg — V.
From Lemmas 3.6 and 4.5 it follows that

¢[I®I®Pﬁﬂ,]T = [[@ Pﬁﬁ/]lﬁT, (T € V(f) & COO(B’: 6)19/), (4.17)
E;(Q: [[ & P797,l9/]77b: I/) = [[ & Pg’ﬁl]E;/(Q: ?7/)2 I/), (?7/) € A2’Q(T;ﬁ1)). (418)

We recall from [12], § 4, that a X,.(Q)-hyperplanes in ap,. is a hyperplane of the
form (at)e + &, with a € ¥,(Q) and € € a5 The hyperplane is said to be real if ¢
may be chosen from ag . If J C K is a finite subset, then by [12], Prop. 13.11, there
exists a locally finite collection H of real Y, (Q)-hyperplanes in a5 such that for each
T eV(€)RC®(K: )y the function v — ES(Q: r: v) has a singular locus contained in
UH. We denote by H(Q, £, 9) the minimal collection with this property. It follows from
the definition just given that ¥ C 0" = H(Q, &, V) C H(Q,E, V). Let H(Q, ) denote the
union of the collections H(Q), ¢, ), as ¥ ranges over the collection of finite subsets of K.
Then

iah, N UH(Q,€) = 0, (4.19)
by the regularity theorem for the normalized Eisenstein integral, see [12], Thms. 18.8 and
21.2 (a).

For v € afy . \ UH(Q, €), we define the linear map

Josw="Je: V(IO @C¥(K: &g — C*(X)k

by
Jeo (T)(2) = ES(Q: Y v: x)(e), (z € X), (4.20)

for 9 C K a finite subset and T € V() @ C®(K : €)y. This definition is unambiguous in
view of (4.15) and (4.16).

Theorem 4.6 Let () € P, and £ € Xé)mdS' The collection H(Q), ) consists of real ¥,(Q)-
hyperplanes and is locally finite. Its union is disjoint from iag,. Let v € aj,. be in
the complement of this union. Then Jg¢, is a (g, K)-intertwining map from V(£) ®
C*(K: )k, equipped with the induced representation 1 ® mg ¢ _,,, to C*°(X)g, equipped
with the (g, K')-module structure induced by the left regular representation of G in C'*(X).

The proof of this theorem will be given in the next two sections. In Section 5 we
investigate uniformity of generators for mg ¢, relative to the parameter v. In Section 6 we
shall investigate the effect of left differentiations on left spherical functions.
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5 Generators of induced representations

In this section we show that that the parabolically induced representations, introduced
in Section 4, are generated by finitely many K-finite vectors, with local uniformity in the
continuous induction parameter.

Proposition 5.1 Let ) € P, and let { be a unitary representation of Mg of finite length.
Assume that § C ag. is a bounded subset. Then there exists a finite subset 9 C K such
that, for all v € §,

raenU(@)C=(K s €)s = C=(K: £)rc (5.1)

Remark 5.2 In particular, the result holds for ¢ = 6; then () is an arbitrary parabolic
subgroup of G and agq equals its usual Langlands split component ag.

Proof: It suffices to prove the result for ¢ irreducible. We shall do this by a method
given for ¢ tempered in [30], § 5.5.5. Let

wi={v €| (Rev—pg,a)>0, VaeA(Q))

Then for v € w we may define the standard intertwining operator Alv) = AQ:Q: &:v)
from C°(Q: &:v) to C®(Q: £: v), by

AW f(z) = [ [flaz)dn,  (z€G),
Ng
where dii denotes a choice of Haar measure on Ng. The integral is absolutely convergent;
this follows by an argument that involves estimates completely analogous to the ones
given for @ minimal in [5], proof of Lemma 15.6. It also follows from these estimates
that, for f € C*(K : €), the function A(v)f € C°(K : €) depends holomorphically on

Vv Ew.

Lemma 5.3 Let f,g € C*(K: ¢),v € w and X € aj. Then

7flim et(_”+pQ)(X)<7rQ7§,y('rrL exptX)f|g) = (E(m)[A(v)f](e) | g(e))e. (5.2)
— 00
Proof: See [31], Lemma 10.5.1. O
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Completion of the proof of Prop. 5.1: From (5.2) it can be deduced, by an argument
due to Langlands [25], Lemma 3.13, see also Milicic [26], Proof of Thm. 1, that if f €
C(Q: &: v)kand A(v)f # 0, then fis a cyclic vector for m¢ , in the sense that the (g, K)-
module generated by f equals C*(Q: : v)k. See also [31], Cor. 10.5.2. We can now prove
the result in the case that the closure of 2 is contained in w. Indeed, assume this to be the
case and let 1o € (2. Since f — A(1)f(e) can be expressed as a convolution operator with
non-trivial kernel, there exists a finite set ¥ C K and a function [ € C®(K: &)y such
that A(vp)f(e) # 0; by continuity in the parameter v there exists an open neighborhood
wp of vy in w such that A(v)f(e) # 0 for all v € wy. From what we said above, it follows
that (5.1) holds for all v € wy. By compactness of the set Q, the result now readily follows
in case Q is contained in w.

We shall now use tensoring with a finite dimensional representation to extend the
result to an arbitrary bounded subset Q C a7

Let P € PM" be such that P C Q. Let Ag(P):= {a € A(P) | als,, = 0} and put
A(Q) = A(P)\ Ag(P). We fix n € N such that (Rev — pg, a)/(a, a) > —8n for all
veQand a € A(Q). We fix u € a’ with the property that (1, a)/(a, a) equals 8n for
all o € A(Q) and zero for all o € AQ(P). Then u + Q) C w. Hence there exists a finite
subset ¥ C K such that e viu(U(9)C(K: &)y = C®(K : §)k, for all v € Q.

It follows from the condition on g that (u, a)/2(a, a) € 4Z for all « € A(P). Since
¥ is a possibly non-reduced root system, this implies that (u, a)/2(a, a) € 2Z for all
a € Y. According to [5], Cor. 5.7 and Prop. 5.5, there exists a class one finite dimensional
irreducible G-module (F,7) of A(P)-highest a,-weight p; the highest weight space F),
is one dimensional, and M, = Mp, acts trivially on it. Since Mg, centralizes agg, it
normalizes F},. By compactness it follows that (Kg). acts trivially on F),. Since p vanishes
on *agq = a4 N Mg, it follows that *Agq also acts trivially on F),. Finally, since Mg, is
generated by M,, (Kg). and *Agq, it follows that My, acts by the identity on F,.

Let €, € F, be a non-trivial highest weight vector. Then the map m: F* — C*(G)
defined by m(v)(z) = v(w(z71)e,) is readily seen to be an equivariant map from F™*
into C*°(Q: 1: —p). The map M,:C®(Q: &é:v 4+ p) @ F* — C®(Q: £: v) given by
M, (¢ @ v) = m(v)yp is G-equivariant, for every v € aj).

Let v € F™* be a non-trivial K-fixed vector, then, since G = QK the function m(vk)
is nowhere vanishing. From this we see that M, is surjective, for every v € aj) . It
follows that the U(g)-module generated by V,:= M, (C™(Q: &: v + p)g @ F*) equals
C(Q: €: vk, for all v € Q. Let ¥ C K be the collection of all K-types occurring in
6 @ F* for some § € ¥'. Then ¥ is a finite set and V,, C C*(Q: £: v)y, for all v € af).
Hence, (5.1) follows for all v € €. O

6 Differentiation of spherical functions

In this section we assume (7, V;) to be a finite dimensional unitary representation of K.
We shall investigate the action of Lz, for Z € g, on the Eisenstein integral E°(Q: v).
Here I denotes the infinitesimal left regular representation. As a preparation, we shall
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first investigate the action of Lz on functions from the space C*™(Xy : 7), defined in [12],
§ 6. Secondly, we shall investigate the action of Lz on families from Sgyp(X: 7), defined
n [12], Def. 6.6.

Given a function F' € C*®(Xi: 1), we define the function ﬁ:X.,. = gV, ~
Hom(gc, V-) by

F(z)(Z) = LzF(z), (v €Xy4, Z € ge).
One readily checks that
F(kx)(Z) = 7(k)F(2)(Ad(k™))Z), (zeXy, keK, Z€ge).

Hence, Fisa spherical function of its own right. In fact, let Ad}. denote the restriction
to K of the coadjoint representation of GG in g% and put 7: = Ad}. @ 7. Then

FeC®(X,:7).

Our first objective is to show that if /' has a certain converging expansion towards infinity
along (Q,v), for @ € P, and v € Nk(ay), then F' has a similar expansion, which can be
computed in terms of that of F. As a preparation, we study sets consting of points of the
form mav, where v € Nk(ay), m € Mg, and a — oo in qu. They describe regions of
convergence for the expansions involved, in the spirit of [11], § 3. We will also describe
decompositions of elements of g along such sets, in a fashion similar to [11], § 4. These

will be needed to compute the expansion of F.

Let @ € P,. We define the function Rg ,: M1g —]0,00][ as in [11], Section 3. Recall
that Rg, is left K- and right Mg N vHv™'-invariant; thus, it may be viewed as a
function on Xyq .. If @ = G, then Rg , equals the constant function 1 and if @ # G, then
according to [11], Lemma 3.2, it is given by

Rg(au) = ag%)a‘a,

for a € Aq and v € NKQ(aq). The inclusion map Mg — Mg induces an embedding via
which we may identify Xg , with a sub Mg-manifold of X;q . From [11], Lemma 3.2, we
recall that Rg, > 1 on Xg .

Lemma 6.1 Let v € Ng(aq) and put Q' = v='Qu. Then
Rqu(m) = Rgra(v™'mv),  (m € Myg).

Proof: This follows immediately from the characterization of Rg , given above. O
In accordance with [11], Eqn. (3.7), we define, for v € Ng(ay) and R > 0,
Mg [R]:={m € Miq | Rg.(m) < R},

and Mg, ,[R]: = Mg, N M1g,,[R]. Note that M;¢ 1[R] and Mg, 1[R] equal the sets Mq[R)]
and Mg, [R], defined in [11], text preceding Lemma 4.7, respectively. Finally, for R > 0
we define

Ab(R):={a€ Agq|a™™ <R forall acA,.(Q)}. (6.1)
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Lemma 6.2 Let v € Ni(a,) and put Q' =v~'Qu. Let R > 0.

a) Mig,[R] = oMo [Rlv™Y, Mg,.[R] = vMg,[R]v1L.
Q, Q Qo, Q
(b) qu(R) = UAg,q(R)v_l.

Proof: Assertion (a) follows readily from combining Lemma 6.1 with the definitions of
the sets involved. Assertion (b) is clear from (6.1). O

We define the open dense subset Mj, of Mig as in [11], Eqn. (4.3). Write gt =
ker(—1 & 0o) and put g¥:= g, Ng*, for a € ¥. Write Hig:= Mg N H. Then by [11],
Cor. 4.2,

MiaNAqy = {a€ Aq|a®#1foralla € X(Q)with gF # 0}. (6.2)

In particular, M{g is a left K- and right Hig-invariant open dense subset of Miq. If
v € Nk(ay), then by Mg, we denote the analogue of the set M|, for the pair (G,vHv™").

Lemma 6.3 Let v € Ng(aq) and put Q' =v~'Qu. Then M{g := oM 0™".

Proof: This readily follows from the definition. O

Lemma 6.4 Let v € Ni(a,).
(a) Mig.[l] C Mig ..
(b) Let Rl, RQ > 0 Then MQO’,’U[RI]AE(I(R2> C MIQ’U[RIRQ].

Proof: For v = 1, the results are given in [11], Lemma 4.7. Let now v be arbitrary and
put Q" = v~ 'Qu. Using Lemma 6.2 (a) with R = 1 and Lemma 6.3 we obtain (a) from the
similar statement with @', 1 in place of (), v. Likewise, assertion (b) follows by application
of Lemma 6.2. O

We now come to the investigation of decompositions in g, needed for the study of the
asymptotic behavior of F. Write ¢@):= €N (ng + ng). Then I +60: X — X + 60X is a
linear isomorphism from ng onto €@). For a € ¥ we put €£:= (T + 9)(g:fa) Then Q) is
the direct sum of the spaces €, for a € £(Q).

Lemma 6.5 Let v € Ng(aq). If m € M, ,, then ng C £@Q) @ Ad(muv)h.

Proof: For v = 1 this follows from [11], Lemma 4.3 (b), with @ in place of Q. If
v is arbitrary, put Q' = v='Quv. Then for m € Mg, we have v imo € Mg, hence
Ad(v™"ng = ng C 8@) & Ad(v~"mu)h, and the result follows by application of Ad(v).
0
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By the above lemma, for m € M|, , we may define a linear map ®(m) = ®q ,(m) €
Hom(ng, £@)) by
X € &(m)X 4+ Ad(mv)b, (X €ng). (6.3)

It is readily seen that ®g , is an analytic Hom(ng, (@))-valued function on Mig .,

Lemma 6.6 Ifm e M,, ,k € Kg and h € Mig NvHv™", then

Q.
O(kmh) = Ad(k) o ®(m)o Ad(k)_l.

Proof: Since Mg normalizes ng and K¢ normalizes Q) the result is an immediate
consequence of the definition in equation (6.3). O

Lemma 6.7 Let v € Ni(ay) and put Q' = v~'Qu. Then, for all m € Mg,
Qg..(m) = Ad(v)o CIDQ:J('U_lm'U) o Ad(v)_l,

Proof: This follows from (6.3), by the same reasoning as in the proof of Lemma 6.5. [
Let W = Ug: M{, — Hom(ng, £Q)) be defined as in [11], Eqn. (4.4). Then, for X € ng

and m € Mg,
X € Ad(m)_lql(m)X +b. (6.4)

Lemma 6.8 Let m € M{Q. Then
g (m) = —W¥(m)ooo Ad(m™"). (6.5)

Proof: If X € ng and m € M{,, then cAd(m™")X € fig, so that cAd(m™")X belongs to
Ad(m=")¥(m)ocAd(m™")X + §. Since Ad(m™")X € —cAd(m™")X + b, this implies that

Ad('m_l)X c —Ad(m_l)\I/(m)aAd(m_l)X +b.

Comparing with the definition of ®¢ 1(rm) given in (6.3) with v = 1, we obtain the desired
identity. O

In the formulation of the next result we use the terminology of neat convergence of
exponential polynomial series, introduced in [11], § 1.

Proposition 6.9 Let v € Ni(a,). There exist unique real analytic Hom(ng, ¥(@))-valued
functions ®, = &g, , on Mg,, for p € NA,(Q), such that, for every m € Mg, and all
a € qu(RQ,U(m)_l),
bou(ma) =D a"®,(m), (6.6)
HENAL(Q)
with absolutely convergent series. Moreover, ®, = 0. Finally, for every R > 1 the se-
ries in (6.6) converges neatly on qu(R_l) as a A,(Q)-power series with coefficients in

C*(Mgos.[R]) ® Hom(ng, £@)).
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Proof: We first assume that v = 1. Let U,: My, — End(ng) be as in [11], Prop. 4.8.
Then it follows from combining the mentioned proposition with (6.5) that, for m € Mg,
and a € qu(RQJ(m)_l),

®(ma)=—(I+0)o Z a "W, (m) oO'oAd(ma)_l,
HENAAQ)

with absolutely convergent series. We now see that the restriction of ®(ma) to g,, for

a € ¥(Q), equals
—(I+0)e Y a™ U, (m)oooAd(m)lg,.
HENAL(Q)

Put &, = 0 and, for v € NA,(Q) \ {0}, define ®,(m) € Hom(ng, £@)) by
D, (m)|ga:=—(IT+0)oV,_y(m)oooAd(n)

o

if v —a € NA,(Q), and by ®,(m)|s, = 0 otherwise. Then (6.6) follows with absolute con-
vergence. All remaining assertions about convergence follow from the analogous assertions
n [11], Prop. 4.8.

We now turn to the case that v is general. Let Q' = v~='Qu, and define
CQuu(m) = Ad(v) o @1 aa()=1(v ™ mv) 0 Ad(v) ™,

for p € NA,(Q) and m € Mg,. Then all assertions follow from the similar assertions with
@', 1 in place of @, v, by application of Lemmas 6.7 and 6.2. O

We now come to the behavior of Lz, for Z € g, at points of the form mav, with
v € Ng(aq), m € Mg, and @ — oo in qu. We start by observing that

g =g B agqd (Mg, Np) BE (6.7)
as a direct sum of linear spaces. Accordingly, we write, for 7 € g,
7 ="Tn+ Zat Zm + 7, (6.8)

with terms in the complexifications of the summands in (6.7), respectively. If [ is a real Lie
algebra, then by U(l) we denote the universal enveloping algebra of its complexification,
and by Ug(l), for & € N, the subspace of elements of order at most k. For Z € g, we define
the element Do(Z) = Dg v0(Z) of Ui(mg,) @ Ur(agq) @ End(V;) by

Dy(Z):=Im@IQ T+ TR Z, 01+ 101 71(7Z), (6.9)

where X — X denotes the canonical anti-automorphism of U (g). If, moreover, m € Mg,,
we define, for ¢ € NA,(Q) \ {0}, the element D,(Z,m) = Dg.(Z,m) of Ui(mg,) ®
Ui(agq) © End(V7) by

Du(Zm):=101@7(Pga.,(m)Zy).
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Finally, if m € Mg, and a € qu(RQ,U(m)_l), we define the element Dy, (Z,a,m) €
Ui(mgs) @ Ur(agq) @ End(V7) by

Dg(Z,a,m) = Z a "D, (Z,m), (6.10)
LENAL(Q)

where we have put Do(Z, m) = Do(Z). We also agree to write
DaU(Z, a,m):= Dg.(Z,a,m) — Do(Z).

It follows from Prop. 6.9 that, for each R > 1, the series (6.10) is neatly convergent
on qu(R_l) as a A,(Q)-exponential series with values in C*(Mgos|R]) @ Ui(mgs) @
Ui(agq) ® End(V;). Moreover,

D&U(Z,a,m) =I®I® T(@Qw(ma)Zn). (6.11)

In the formulation of the following result we use the notation of the paper [11], Sections
1-3. Via the left regular representation, we view U(mg,) ® U(agq) ® End(V;) as the

algebra of right-invariant differential operators on Mg ~ Mg, X Agq, with coefficients in
End(V;).

Proposition 6.10 Let F € Ci"(X.;.: 7). Then Fe C?(X;: 7). Moreover, if ) € P, and
v € Ng(ay), then Exp (Q,v | F') C Exp(Q,v | F) — NA,(Q). Finally, for every Z € gc,
the A,(Q)-exponential expansion

F(mav)(Z) = a*q¢(Q,v | F,loga,m)(Z) (6.12)
3
along (Q,v) arises from the similar expansion
F(mav) = Zcf q:(Q,v | Floga,m) (6.13)
3

by the formal application of the expansion (6.10). In particular, if £ is a leading exponent
of F' along (Q,v), then, for every Z € g,

Ge(Q, v | Filog(+), - )(Z) = [Dguo(Z) = £(Za)] qe(Q,v | Flog(-), -). (6.14)

Proof: Tt is obvious that F € C°(X4: 7). We shall investigate its expansion along
(Q,v), for Q € P, and v € Ni(ay). We start by observing that, for R > 1, the expansion
(6.13) converges neatly on Ag(R_l) as a A,(Q)-exponential polynomial expansion in the
variable a, with coefficients in the space C*(Xg . +[R]: 7g), see [11], Thm. 3.4.
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If ¢ is a smooth function on a Lie group L, with values in a complete locally convex
space, then for X € [and € L we put o(X;z):= d/dt p(exp tXx)|i=o. Accordingly, it
follows from (6.8) that for Z € g, and m € Mg, and a € Agq with mav € X4, we have

F(mav)(Z) = F(Z, mav)
= T(Zk)F(mav) + F(Zm; mav) + F(Za; mav) + F(Zn; mav). (6.15)

The sum of the first three terms allows an expansion that is obtained by the termwise
formal application of Dg,0(Z) to the expansion (6.13), by [11], Lemmas 1.9 and 1.10.
Moreover, the resulting expansion converges on A;(R_l) as a A,(Q))-exponential polyno-
mial expansion in the variable a, with coefficients in the space C*(Xq , +[R], V7). Thus, it
remains to discuss the last term in (6.15). Since F'is right H-invariant and left 7-spherical,
we see by application of (6.3) and (6.11) that the mentioned term may be rewritten as

F(Zn; mav) = F(@Q,U(ma):n; mav)
= 7(®g(ma)Z,)F(mav)
= DZQ"U(Z,CL,m)F(-'U)('ma).

It follows from Proposition 6.9 that the series for D;S’U(Z) converges neatly on A;';(R_l)
as a A,(Q)-exponential polynomial expansion in the variable a, with coefficients in the

space C*(Mg ,,[R]) ® End(V;). From [11], Lemma 1.10, it now follows that F/(Z,; mav)
admits a A, (Q)-exponential polynomial expansion that is obtained by the obvious formal
application of the series for DE’U(Z, a,m) to the series for F(mav). The resulting series
converges neatly on qu(R_l) as a A, (Q)-exponential polynomial expansion in the vari-
able a with coefficients in C*(Mg, ,[R], V;). It follows that F(ma’u)(Z) has an expansion
of the type asserted along (@, v), with exponents as indicated.

In particular, if @) is minimal, it follows that F(ma’u) allows a mneatly converging
A(Q)-exponential polynomial expansion in the variable a € A;(Q), with coefficients in
C*(Xg,y) @ g @ V;. This implies that F belongs to the space CP(X, : 7), defined in [11],
Def. 2.1.

It remains to prove the assertion about the leading exponent ¢ for F along (@, v). From
the above discussion we readily see that the term in the expansion (6.12) with exponent
¢ is obtained from the application of the constant term Dg ,o(Z) of Dg (7, a,m) to the
term in the expansion (6.13) with exponent £. This yields

a*qe(Q,v | F.loga,m)(Z) = Dg,o(Z)[(m,a) = a*qe(Q,v | F,loga,m)].

Now use that a=¢o Dg ,0(Z)oa® = Dg.o(Z) + E(Za) to obtain (6.14). O

We can now describe the action of Ly, for 7 € g., on families from the space

c‘:gyp(X: 7), defined in [12], Def. 6.6.
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Theorem 6.11 Let F' € Shyp(X 7). Then the family F UHqc X X — g @ Vi, defined by

(F)y = (F,)~ belongs to & yp(X 7). Moreover, for every Z € g. and all v in an open
dense subset of aj).,

Gumpg (Qsv | y: log(+): -)(Z)
= [PouolZ) = (v = pa)(Za)l Gu=pg (@50 | F i log(+): -). (6.16)

Proof: There exist § € Dg and a finite subset ¥ C *aj,. such that F' € c‘:hyp (X7 d).
Let H = Hp,d = dp and k = deg, I be defined as in the text following [12], Def 6.1. Then
F satisfies all conditions of the mentioned definition. It follows from the characterization
of the expansions for Fin Proposition 6.10 that F satisfies the hypotheses of [12], Def. 6.1.
with 7 in place of 7, with the same Y, H, d, k. In particular, I belongs to Cep’hyp(X+ 1 T).

Since F), is annihilated by the ideal /s, for generic v € ap, the same holds for ﬁ,,

and we see that F € Ehyp v (X4 7 6), see [12], Def. 6.3.

Let now s € W, P E ’Pl such that s(ag,) ¢ apq and v € Nk(a,). Then there exists an
open dense subset ) C a7 . such that F' satisfies the condition stated in [12], Def. 6.4.
It follows from Propositon 6.10 and the fact that the functions m — Dp, ,(Z,m) are
smooth on all of Mp,, for Z € ge,u € NA,(P), that F also satisfies the condition of [12],
Def. 6.4, with the same set 2. We conclude that Fe ghyp v(X4 1T 8)glob. In view of []2]
Lemma 6.8, v — F), is a meromorphic C*°(X: T)—Valued function on ap.. Hence, v — F,
is a meromorphic C*(X: 7)-valued function on ap .. In view of [12], Def. 6.6, we now
infer that F € Sgyp(X: ).

Finally, for v in an open dense subset of aj., the element v — pg is a leading exponent

for F along (@Q,v). Thus, (6.16) follows from (6.14). O

Next, we apply the above result to the normalized Eisenstein integral E°(Q: ¢ : v),
defined for ¢ € A, q. Let v € QW. Given a function ¥, € A3(Xg,: 79) and an element
v E Uhye We define the function

Og.u(v)w: Xou—8c @V (6.17)

by
Ig.W)u(a)(Z) = [Lz,, — (v = pg)(Za)]t0u(x) — 7(Zk)[Y0u(2)],

for z € Xg, and Z € gc. Clearly, the function dg ,(v)v, is a D(Xg , )-finite Schwartz func-
tion with values in g¥ ® V;. Since Kg normalizes the decomposition (6.7) and centralizes
agq, one readily checks that the function is Tp-spherical, with 75: = 7|k, . Hence,

0.0 (V)y € A2(Xgu: To).

We define the map dg(v): Az.0(7) = A o(7) as the direct sum, for v € “W, of the maps
Og(V): As(Xgu: 1g) = A(Xgu: Tg).
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Theorem 6.12 Let ¢ € Ay o(7) and let the family F::af, . x X — V. be defined by
Flv,2) = EX(Q:v¢:v: x).
Then the family F AHqc X X = gr @ V7, defined by (ﬁ)y = (F,)", is given by

Flv,z) = E2(Q: dg(v)Y: v: x).

Proof: It follows from [12], Def. 13.7 and Prop. 13.6, that the family F belongs to
c‘:gyp(X: 7) and that the family G:= E°(Q: dg(v)y) belongs to Sgyp(X: 7). Let v € @W.
Then it follows from the mentioned proposition, combined with [11], Thm. 7.7, Eqn. (7.14),
that, for v in an open dense subset of aj . and all X € agq and m € Xq,, +,

ql,_pQ(Q,v | o, X,m) = v,(m), (6.18)
qV—PQ(Q7U | GU7X7m) = aQﬂJ(V)wﬂ(m)' (619)

From Theorem 6.11 we see that I € ggyp(X: 7). Moreover, combining (6.18) and (6.16) we
infer that, for 7 € g¢, v in an open dense subset of aj),. and all X € agq and m € Xg, 1,

Q1o (Q,v | F, X,m)(Z) = [DouolZ) = (v = po)(Za)]l(m, @) = dhu(m)].

From (6.9) we see that the expression on the right-hand side of this equation equals

[0g.0(V),(m)](Z); hence

Qupo (@, 0 | ﬁy,X, m) = Jg . (V)hu(m). (6.20)
Comparing (6.20) with (6.19) we deduce that the family F-Ge Egyp(X: 7) satisfies the
hypothesis of the vanishing theorem, [12], Thm. 6.10. Hence, F=da. g

Given v € aj, and ¢ € C(K: £: 7) we define the function
d(Q,&v)p e C(K: ) @ge@ Vs

by
[d(Q, & v) ¢l(k, Z) = ([me,~u(Z) @ I] @)(K), (6.21)

for k € K and Z € g. One readily verifies that d(Q,&,v)p € C°(K: £: 7).

Lemma 6.13 Let T € V(§) @ C®(K : £: 7). Then, for all v € g

Ylrea@emr = Jo(v)Yr.
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Proof: By linearity it suffices to prove this for T = n @ ¢, with n € V(£) and ¢ €
C(K:€¢:7). Let v € W and Z € ge. Then combining (6.21) with the decomposition
(6.8) we infer that

[d(Q, & v)el(e)(2) = [€(Zm) @ T = T @ T(Z)lp(e) — (v = po)(Za)p(e).

By equivariance, 7, maps Hg° into L*(Xoq, W) C O%(Xq,), intertwining the (mq, Kq)-
actions. Using formula (4.8) we now obtain that

Plsa@evre( - )(Z) =

= [ @ I([€(Zm) @ Ip(e)) = (v — pe)(Za)I @ T + 1T @ 7(Z)](n. @ I)((€))

= [Lz. — v = p)(Za)|(¥1) () — T(Z)[¢r( -]

= (9( )YT)e (- )(Z). O

Corollary 6.14 Let T € V(£) @ C®(K : £: 1) and let the family F: AHqe X X — Vi be
defined by

F,=FE(Q: ¢r:v).
Then the family Fiv s (F,)~ is given by

F, = B°(Q: dusiq.enr: v)- (6.22)

Proof: This follows from Theorem 6.12 and Lemma 6.13. O

As a consequence of the above, we can now express derivatives of the normalized
Eisenstein integral in a form needed for the proof of Theorem 4.6.

Proposition 6.15 Let ¢ C K be a finite subset, and let ¢ C K be the union of the
collections of K-types occurring in Adx @ 8, as § € 9. Let T € V(§) @ C=(K : £)y. Then
(I @ meen(Z2))T € V() @ C2(K : €)gr, for all Z € g and v € a7 Moreover, for all
ZeE€g,reXandk € K,

Laagy-1zE5(Q: ¥ v)(2)(k) = E5(Q: g, _,(zr: v)(2)(k), (6.23)
as a meromorphic identity in v € a7,

Proof: Let 7 = 75. We shall use the natural identification C*(K : £)y ~ C®(K: {: 1)
of Lemma 3.4, so that 7 may be viewed as an element of V(§) @ C*°(K: £: 7).
Define the family F' as in Corollary 6.14. We shall derive the identity (6.23) from

(6.22) by using the functorial properties of Lemma 4.5.
Fix Z € gc. We define the matrix coefficient map my: g% — C*°(K) by

mz(Q)(k) = C(Ad(E™)7),  (C€gz k€ K)
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The map my intertwines the representation Ady- of K in g with the right regular repre-
sentation of K in C'(K). In particular, it maps into the finite dimensional space C(K)yy,

with 9y C K the set of K-types in Adg. We define the equivariant map
Sii=mz® 11 gi®@Vy — C([()ﬁ(\)/ ® V.
On the other hand, we define the map Sy: C'(K)gy®@Vyg — C(K) by ¢®@1) — ¢ep. This map

intertwines 75, ® 75 with the right regular representation of K in C'(K'), hence maps into
C(K)gv. The space C(K)g(\)/ ® Vg may be naturally identified with a finite dimensional
K-submodule of C(K x K), the latter being equipped with the diagonal K-action from
the right. Under this identification the map Sy corresponds with the restriction of the
map A*: C(K x K) — C(K) given by A*¢(k) = ¢(k, k).

The map S = 53051 g ® Ve, — Vy is K-equivariant. We shall apply I ® S to
both sides of the identity (6.22). Application of I ® Sy to the left-hand side yields (I &
51)[ L()](k) = F( ,Ad(k=")Z), which in turn equals Laq(-1)zF,. By application of
I ® S, to the latter function we find

([®S)[ﬁ,()](k) = LAd(k—l)ZFu(')(k)
= Laaw)zE°(Q: vr: v)(-) (k). (6.24)

On the other hand, from Lemma 4.5 we see that application of I ® S to the expressions
on both sides of (6.22) yields

(1®8)F, = E°(Q: dusrssiioi@enr: v). (6.25)
We observe that (I ® 5).d(Q,&,v) is a linear map from C°(K: £: 79) to C(K: & 1)

and claim that the following diagram commutes, for every v € ag) .,

Co(K: €1 mg) —2NMQEY) oo ¢ 1)
! } (6.26)

me,—u (%)

C®(K: &)y ’ —  C®(K: &)y

Here the vertical arrows represent the natural isomorphisms of Lemma 3.4. We denote
both of these isomorphisms by ¢ — ¢'. It suffices to prove the claim, since its validity
implies that m¢ _,(Z) maps C*(K: {)g into C*°(K : £)g and that the expression on the
right-hand side of (6.25) equals the one on the right-hand side of (6.23). Combining this
with (6.24) we obtain (6.23).

To see that the claim holds, let p € C®(K: £: 75) = (C*°(K: £) @ V). The asso-
ciated element ¢’ € C*(K : 5)79 is given by

P(k)=w(k)(e), (ke k)
The element (I ® S1)d(Q, &, v)p of [CF(K: &) @ C(K)gy @ V]! is given by

[(1®5)d(@, & v)el(k) (k) = [dQ,& v)e(k)](Ad(k)Z)
= [T@me o (Ad(kT") Z)] o (k);
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see (6.21). Hence, the element (I ® S)d(Q,&,v)p € [C°(K : €) @ Vg]X is given by

(1® 8)d(Q, &, v)p(k)(kr) = (1@ me o (Ad(kT) Z))p (k) ().

The natural isomorphism from [C*(K : £) @ Vg]® onto C*(K : £)y is induced by the
map [ ® &, where §.: Vg — C denotes evaluation at e (see (3.6)). Hence,

(1@ 9)d(Q. & v)p) (k) = [(I @ me—u(2))p](k)(€) = [me, o (2)¢'] ().
This establishes the claim. O

We shall apply the above result in combination with Proposition 5.1 to obtain the
assertion of Theorem 4.6 about finiteness. If H C aj. is a X,(Q)-hyperplane, we denote
by ag the shortest root of X,(Q) such that H is a translate of (af)e. Thus, (ag, -)
equals a constant ¢ on H; we denote by [ the linear polynomial function (ag, <) —c. In
accordance with [12], Eqn. 4.3, given a locally finite collection H of X, (Q)-hyperplanes in
a5y and a map d: H — N, we define, for every bounded subset w of a3, the polynomial
Ty.d by

Tud(v) = H liI(H) (6.27)
HeN
HNw#0
Proposition 6.16 Let Q € P,, { € X3, 4,- Then H(Q,¢§) is a locally finite collection
of real ¥,(Q)-hyperplanes. Moreover, there exists a map d: H(Q, &) — N such that, for
every finite dimensional unitary representation 7 of K, every T € V(£) @ C®(K : £: 1)
and every bounded open subset w C a7, the C°(X: 7)-valued function

v mea(v)E(Q: Yr:v) (6.28)
is holomorphic on w. Here m, 4 is defined by (6.27) with H = H(Q, §).

Proof: Select any bounded open subset w C ap .. Let 9 C K be a finite set associated
with @, &, —w as in Proposition 5.1. According to [12], Prop. 13.11, there exists a map
d:H(Q, €,9) — N with the property that, for every T' € V(§) @ C®(K : £)4, the map
v = E§(Q: ¢r:v) belongs to M(ah,, H(Q, & 7),d,C>(X: 75)). See [12], § 4, for the
definition of the latter space.

Let ¥ C K be an arbitrary finite subset. Fix vy € w. Then by Proposition 5.1 there
exists k € N such that the map

M,: Uglg)@C(K: &)y — C(K: 8k, u®p > me_y(u)p

has image containing C(K: §)y for v = vy. On the other hand, let 9" C K be the
finite collection of K-types occurring in §; ® d2, with §; € K a K-type occurring in
the adjoint representation of K in U(g) and with d, € 9. Then the image of M, is
contained in C*°(K : {)gn for all v € agye. Let Py gn denote the K-equivariant projection
from C(K: &)gn onto C(K : €)g. Then Py gno M, is surjective. Hence there exists a
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finite dimensional subspace E C U(g) @ C(K : £)y such that R,:= Py gvoM,|p: E —
C(K: £)g is a bijection for v = 1. By continuity and finite dimensionality, there exists
an open neighborhood wy of 1 in w such that R, is a bijection for all v € wy. By Cramer’s
rule, the inverse S,: = R;' € Hom(C(K : )y, E) depends holomorphically on v € wy. Let
(u; | 1 <1 <) be a basis of Ug(g) and (¢; |1 <7 < .J) a basis of C(K: €)g. Then there
exist holomorphic [C®(K : §)g]*-valued functions s;; on wp, for 1 <1 <1, 1 <5 <,
such that

Su(p)= Y symp)u @), (v E€wo),

1<i<T
15527

for p € C¥(K: &)gr. Let ¢ € C(K: )y Then p = Py g1 oM, 0S,(p), hence

= Z $ij (v, ) Porgnme, (i) ;.

]
Let € V(£). Then it follows from the above by application of (4.17) and (4.18) that

Tud(VVEG(Q: Yyap: v) = Y sij(0,9)Tua(V) B (Q: Yuapy yume —ou)e, * V)
i
= D i) ® Poron)[maa () Egn(Q s Ynome (e, : V)]-
i

Applying I @ 6, = <" and using Lemma 3.6 and Proposition 6.15 we infer that

Tod(V) B3 (Q tyap: v +)(e)
= > si(1,9) Py o [T a(W) Eu(Q: g o (uiye, v ()]
1,5
= Y sij(0) Poron L [mu aW) B3 (Q 2 by, s v - )(e)] (6.29)
]
From this we conclude that the expression on the left-hand side of the above equation
depends holomorphically on v € wy, as a function with values in C'*°(X). Since vy was
arbitrary, it follows that the expression on the left-hand side of (6.29) in fact depends
holomorphically on v € w. Hence, every H € H(Q,&,9') with H Nw # () must be
contained in H(Q,&,9). This shows that the collection H(Q, &) is locally finite. The
argument also shows that there exists a map d: H(Q,£) — N such that the assertion of

the proposition holds for every 7 of the form 7 = 745, with ¥/ C K a finite subset. The
general result now follows by application of the functorial property of Lemma 4.5. O

Corollary 6.17 Let d: H(Q,{) —+ N be as in Proposition 6.16. Then, for every T €
V(€) ® C®(K: £)k and every bounded open subset w C aj, the function
v mua(v)Jgen(T)

extends to a holomorphic C*°(X)-valued function on w.
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Proof: This follows from Proposition 6.16 and the definition of Jg ¢ ., see (4.20). O
We can now finally give the promised proof.

Proof of Theorem 4.6: The properties of H(Q, £) have been established in Proposition
6.16 and (4.19). Let v € aje. That Jge, is a g-equivariant map follows from formula
(4.20) combined with formula (6.23) with & = e. It remains to establish the K-equivariance
of Jg ¢ Let ¥ C K be a finite subset and let T = nRe € V(f) @ C®(K: €)g. We denote
the natural isomorphism C*(K: §)y — C®(K: £: 1) of Lemma 3.4 by ¢ = ¢45. Let
ki € K. Then one readily checks that <o Wg,_y(kl) = ([@ S) o<, with .S the endomorphism
of Vy = C(K)gv given by restriction of the left translation Ly, . In particular, S intertwines
19 = R|v, with itself. By the identification discussed in the text before (4.13) we have

Vltgme _,:)IT =  Vll@cre _ (k)T
= Y(10Ies)(Ie)T-

By Lemma 4.5 (a), combined with the identification mentioned above, the latter expres-
sion equals

(I @ S)biregr = (I @ S)pr.
Applying Lemma 4.5 (b) we now find that

Joes([I @ me -y (k)]T) = EJ(Q: Yran,_,eyr: v)(-)(€)
= [[1@SIEHQ: ¢r:v)(-)l(e)
= Ey(Q:¢r:v)(-)(k")
= Ly Jge(T). O

7 The Fourier transform

Let @ € P, and £ € Xé\? We will use the map Jg ¢, introduced in (4.20), to define a
(g, K')-equivariant Fourier transform for functions from C2°(X)k-.
We define the collection HY(Q, €) of hyperplanes in ap) . by

HY(Q,§):={-H | H e H(Q,)}

Since H(Q, £) is a locally finite collection of real ¥, (Q)-hyperplanes, see Theorem 4.6, the
same holds for HY(Q,¢). It also follows from the mentioned theorem that UHY(Q), &) is
disjoint from iag),,.

Since H(Q, ) consists of real ¥,(Q)-hyperplanes, every hyperplane of H(Q,¢) is in-
variant under the complex conjugation A — X in a5qe> defined with respect to the real

form a, . Hence, H"(Q, &) = {—H | H € H(Q,&)}. This justifies the following definition.

*,ds*

29



Definition 7.1 Let f € C*(X)k. For v € aj,. \ UHY(Q,§), the Fourier transform
f(Q ¢: v) is defined to be the element of V(£) @ C*(K : £)x determined by

(F(Q:€:0)|T) = / F(2)Taen(T)(#) d, (7.1)

forall T € V(€) @ C*(K : ).

Lemma 7.2 Let v € afy. \ UHY(Q,§). Then the map f f(Q £:v) from C°(X)k
to V(£) ® C(K : )k intertwines the (g, K')-module structure on C*°(X)x coming from
the left regular representation with the (g, K')-module structure on V(§) @ C®(K : )k
coming from 1 @ mg ¢ ..

Proof: The spaces C°(X)x and V() @ C*°(K : €) are equipped with the natural L%
type inner products. The first of these inner products is equivariant for the (g, K')-module
structure coming from the left regular representation. The second induces a sesquilinear
pairing of V(€)@ C>(K : £) with itself that is equivariant for the (g, K')-module structures
coming from 1 ® mg ¢ _, and 1 ® mg ¢ 5, respectively. On the other hand, it follows from

(7.1) that the map f f(Q,f,V) is adjoint to the map Jg ¢ 5, with respect to the given
inner products. Therefore, the (g, K)-intertwining property of f +— f(Q,&,v) follows by
transposition from the similar property for Jg ¢ _,, asserted in Theorem 4.6. O

If d: H(Q,€) — N is a map, we define the map dV: HY(Q,¢) - N by dV(H) =d(—H),
for H € HY(Q,¢).

Lemma 7.3 Let d,d" be as above and let w C aj,. be a bounded subset. Then

T_wd(—0) = (=) N7 av(v), (v € ahqc); (7.2)
with N =%, d(H), for H € H(Q,v), HNw # 0.

Proof: In the notation of the text preceding (6.27), we have, for H € HY(Q,¢),
ln(-0) = —(ag, —v) —cg = {acm,v) +c_g = —l_p(v). (7.3)

Moreover, since H is real, —w N H # @ is equivalent to w N (—=H) # 0. In view of the
definition in (6.27), the identity (7.2) follows from (7.3) raised to the power d"(H) =
d(—H), by taking the product over all H € HY(Q,&) with w N (—=H) # 0. O

Lemma 7.4 Let d: H(Q,£) — N be as in Proposition 6.16 and define d": HY(Q,€&) — N
by d¥(H) = d(—H). Then, for every bounded open subset w C af., every finite subset

9 C K and every [ € C*(X)y, the function

A

vi—= 7Tw7dv(l/>f(Q7 57 V)7 (74)
originally defined on w\ UHY(Q, €), extends to a holomorphic V(&) @ C*°(K : £)g-valued

function on w.
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Proof: Let f be fixed as above. It follows from Lemma 7.2 that the function (7.4) has
values in the finite dimensional space V(£) @ C®(K : €)s. Hence, it suffices to establish
the holomorphic continuation of the function that results from (7.4) by taking the inner
product with a fixed element T from V(§) @ C*°(K : €)g. In view of (7.1) the resulting
function equals

v muav (V)| Jge-o(T)) = ([ |7—z,a(=7)Jg,¢,-o(T)),

see Lemma 7.3. We may now apply Corollary 6.17, with —& in place of w, to finish the
proof. d

The following result gives the connection between the present Fourier transform and
the spherical Fourier transform, defined in [12], § 19.

Lemma 7.5 Let ¥ C K be a finite subset, let f € C*(X)y and let F' = ¢(f) €
C*(X: m9) be the corresponding spherical function, see Lemma 3.4. Let FoF' be the
tg-spherical Fourier transform of F. Then, for every T € V(£) @ C*(K : §)g,

A

([(Q: &) T) =(FoF(v)[¥r), (v € agee \UH(Q,)).

Proof: It follows from (7.1) and (4.20) that

(fs(Q: &:v)|T) = /Xf(:c)E:;(Q: br: —)(x)(e) dx.

One may now proceed as in [6], p. 539, proof of Prop. 3, displayed equations, but in

reversed order. O

8 A direct integral

In this section we assume that () € P, and ¢ € Xé\? are fixed. We will define and study
a direct integral representation mg ¢ that will later appear as a summand in the Plancherel
decomposition.

*,ds

We equip
H(Q,&):=V(§) @ L*(K: §) (8.1)
with the tensor product Hilbert structure and the natural structure of K-module. More-
over, we define
£(Q,8): = L*(iag,, H(Q, &), [W: W5l dug),

the space of square integrable functions iaj, — $H(Q, &), equipped with the natural L?-
Hilbert structure associated with the indicated measure. Recall that dug 1s Lebesgue
measure on idg,, normalized as in [12], end of § 5.

By unitarity of the representations mg .., for v € 1a5,,, the prescription

(mqe(2)p)(v):= [T @ moe—u(@)](v), (¢ € L£YQ,€), z € G),
defines a homomorphism mg ¢ from G into the group U(£%(Q,§)) of unitary transforma-
tions of £2(Q,¢).
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Lemma 8.1 The homomorphism mg¢: G — U(L*(Q,€)) is a unitary representation of GG
in £2(Q,¢).

Remark 8.2 It follows from the result above that mg, provides a realization of the
following direct integral

D
TQ / Iy ey @ mQ e~ [W: W3] dug(v).

%Qq

For the proof of Lemma 8.1 it is convenient to define a dense subspace of £*(@Q, ) by
£0(Q,8):= Ce(iag)y V(€)@ C®(K:€)). (8.2)

This space is equipped with a locally convex topology in the usual way. Thus, if A C 1a3,

is compact, let £ 4(Q,¢) denote the space Cu(iag,, V(§) @ C(K : §)) of continuous
functions from (8.2) with support contained in A. This space is equipped with the Fréchet
topology determined by the seminorms

@ — sup s(p(v)),
veA

where s ranges over the continuous seminorms on V(£) @ C*°(K : ). Moreover,

83(@75) = U.A 2?)/\(@75)

is equipped with the direct limit locally convex topology. Thus topologized, £3(Q,£) is a
complete locally convex space.

Lemma 8.3

(a) The space £3(Q, ) is G-invariant.

b) The restriction of ¢ to £ is a smooth representation of (G. Moreover, if
Qv‘g 0 9N p ,
p € L2(Q,¢) and u € U(g), then mg ¢(u)y is given by

[mqe(u)el(v) = [I @ mg¢,—n(u)] p(v). (8.3)

Proof: Let A C iap, be compact. Then it is a straightforward consequence of the
definition that the space £24(Q, &) is G-invariant. In particular, this implies (a).

For (b) it suffices to prove that the restriction of mg ¢ to £ 4(Q,€) is smooth and that
(8.3) holds for ¢ € £24(Q, €).

Let ¢ € £2,4(Q,&). We consider the function ®: A x G x K — V(§) @ H® defined by

(v, 2, k): = [ @ evi)([mqe(z)el(v) = [T @ evimg¢—(2)](v),
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where ev; denotes the map C*°(K : {) — H induced by evaluation in k. We recall that
the multiplication map Ng x Ag xexp(mgNp) x K — G is a diffeomorphism. Accordingly,
we write

z = nq(z)ag(z)mg(z)kg(z), (v € G), (8.4)
where v, ag, mg and kg are smooth maps from G into Ny, Ag, exp(mg N Pp) and Ky,
respectively. Applying (8.4) with kz in place of z, we find that

b(v, 2, k) = ag(kz)™" ¢ (mq(kz))p(v, kg (k).

From this expression we see that the function @ is continuous, and smooth in the variables
(z,k). Moreover, for every C'* differential operator D on G x K, the V/(£) @ Hg-valued
function

(v, 2, k) — D[®(v)|(z, k)

is continuous. This implies that the C4(iaf, V(§) @ C°(K : {))-valued function z
®(-, x,-) is smooth on G; hence ¢ is a smooth vector for mg ¢. Let D be any C*° differential
operator on G and let v € A. Then evaluation in v induces a continuous linear operator

L2 = V() @ C®(K : £). Hence, for all z € G,

Dlmqe(-)¢l(z)(v) = Dlevu(mq.e(- )@)l(x) = D(mq.e—v( - )p(v)) ().
Applying this with D = R, and 2 = e we obtain (8.3). O

Proof of Lemma 8.1: Put m:= mg . It suffices to show that the map G x £*(Q,¢) —
£2(Q,¢), (z,p) — w(z)p is continuous. Since 7 is a homomorphism from the group G
into U(£%(Q,¢)), it suffices to show that for any fixed ¢ € £*(Q), &) we have

limm(z)p=¢ in £(Q,¢). (8.5)

r—e

Moreover, again because m maps into U(L*(Q,¢)), it suffices to prove (8.5) for ¢ in a
dense subspace of £2(Q,¢). Let v € £2(Q,£). Then 7(z)p — ¢ in £5(Q,£), as x — ¢, by
Lemma 8.3. By continuity of the inclusion map £2(Q, &) — £*(Q, &), this implies (8.5).
]

We end this section by establishing some other useful properties of the invariant sub-
space £5(Q,&). If 9 C K, then one readily verifies that
L5(Q,6)s = Celingy, V(E) @ CF(K : £)y). (8.6)

The space of K-finite vectors in £3(Q, £) equals the union of the spaces (8.6) as ¢ ranges
over the collection of finite subsets of K. The natural U(g)-module structure of £3(Q, &)k
is given by formula (8.3).

Lemma 8.4 Let (p, W) be a continuous representation of GG in a complete locally convex

space, and let U be a dense G-invariant subspace of W. If U is contained in W then it
is dense in W for the C'*°-topology.
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Remark 8.5 For W a Banach space, this result is Thm. 1.3 of [29]. The following proof
is an adaptation of the proof given in the mentioned paper.

Proof: Replacing U by its closure in W if necessary, we may as well assume that U is
closed in W*°. Fix a choice dg of Haar measure on G. If ¢ € C°((), then the map

o) = / o(9)plg) do

is continuous linear from W to W™, as can be seen from a straightforward estimation.
Moreover, since U is closed in W, the map p(¢) maps U into itself. Let W; be the
collection of vectors in W of the form p(¢)wo, with ¢ € C°(G) and wo € W, Then W,
is dense in W, Hence, it suffices to show that W is contained in U. Select wy € W and let
Ni be an open neighborhood of 0 in W*°. Then it suffices to show that U N (wy + Ny) # .

Write wy = p(g)wo, with wg € W and ¢ € C°((). By the mentioned continuity of
p(¢), there exists an open neighborhood Ny of 0 in W such that p(¢)Ny C N;. By density
of U in W, the intersection U N (wg + Np) is non-empty. Hence,

0 < p(@)U N (wo + No)l
C UnNp(p)(wo + No)
C UN(w + M) -

Lemma 8.6 The space £3(Q, &)k is dense in £(Q,£)™ with respect to the natural
Fréchet topology of the latter space.

Proof: The inclusion map j: £3(Q,&) — £2(Q,€) is continuous, intertwines the G-
actions and has dense image. From Lemma 8.3 it follows that £5(Q,&)>* = £3(Q,%).
By equivariance of j it follows that £3(Q,£) is contained in £2(Q, ). By application of
Lemma 8.4 we see that £3(Q, &) is dense in £*(Q,£)*. The conclusion now follows since

£5(Q, &)k is dense in £3(Q,§). O

9 Decomposition of the regular representation

Up till now, for @ € P, the expression £ € X§ , ,, meant, by abuse of language, that ¢ is
an irreducible unitary representation of Mg with equivalence class [{] contained in X7 , ;..
From now on it will be convenient to distinguish between representations and their classes.
For every ) € P, and allw € Xé\g,*,ds we select an irreducible unitary representation £ = &,
in a Hilbert space H,:= He, with [£] = w. Moreover, we put H(Q,w):= H(Q, &), see
(8.1).

For ¥ C K a finite subset, let X5 .45(?) denote the collection of w € X5
a Kg-type in common with 7.

that have

*,ds
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Lemma 9.1 Let Q € P, and let 9 C K be a finite subset. Then X5 x.as(¥) is finite.
Moreover,

A2.0(7m9) = Buexn

Q,*x,ds

) A2,0(79)w,

where the direct sum is finite and orthogonal.

Proof: The collection Xé\g,*,ds(ﬂ) is finite by Lemma 3.2, applied to the spaces Xg ,,
for v € W, Put 7 = 7y and fix v € @W. We note that A (Q,v: 1) = 0 for w €
X(/,\g,*,ds(ﬂ) \ M'Ij\Hv_l,ds(TQ>’ by Remark 3.3, with X¢) ,,, 79 in place of X, 7. Moreover, by the
same remark,

Ax(XqQu: 7q) = Duexs

Q,x,ds

@) A2AXQu: 7Q)w,

with orthogonal summands. The result now follows by summation over v € @W, in view

of (4.9), and [12], Eqn. (13.1). O

Lemma 9.2 Let Q) € P,, § C K a finite subset and w € X5 wdse Then H(Q,w)s # 0 if
and only if w € Xé\g,*,ds(r‘%-

Proof: We have that H(Q,w)s = V(Q, &)@ L*(K : £,)g, with non-trivial first component
in the tensor product. Hence, (Q,w)s is non-trivial if and only if L*(K : £, ) is. Since
L*(K : &) is the representation space for Indﬁ:Q(fw), the assertion follows by Frobenius
reciprocity. d

If ) € P,, we define the Hilbert space

5(Q):= Buexy, 9(Q.w), (9.1)

where the hat over the direct sum symbol indicates that the natural Hilbert space com-
pletion of the algebraic direct sum is taken. Let ¥ C K be a finite subset. In view of
Lemmas 9.1 and 9.2 it follows that we may define a map

Uy =Ug s H(Q)s — Aso(Ts)

as the direct sum of the isometries T +— 7: H(Q,w)s — Azq(79)w, for w € Xé\g,*,ds(19>a
see (4.13). The following result is immediate.

Lemma 9.3 Uy is an isometric isomorphism from $)(Q)g onto Az o(7g).

If fe Cr(X)k then for Q € P,, w € Xa’*’ds and v € ia(fgq we define the Fourier
transform f(Q w:v) € V()R C®(K: &)k by

A A

fQ:w:v):= f(Q: & v).

This definition is justified since it follows from (4.19) that v ¢ UHY(Q, §).
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Proposition 9.4 Let 9 C K be a finite set of K-types, let f € C*(X)y and let F =
so(f) € C(X: 79) be the associated spherical function, see Lemma 3.4. Then for each
Q € Py and every v € 1a5,,

FQF(V) = Z 77Z)‘)?(Q:w:y) jﬂ A27Q(7-79)' (92)
WEX%,*,ds
If f(Q w: v) Is non-zero, then w € X(i\g,*,ds(ﬁ>5 in particular, the above sum is finite.
Finally,
IFaFIP = Y 1@ w: )} enyorepico

WGX/Q\,*,ds

Proof: It follows from Lemma 7.2 that f(Q w: v) is an element of H(Q,w)s, for every
w € X§ . 4o Hence, if this element is non-zero, then w belongs to the finite set X3 _ ; (7).

The identity (9.2) follows from Lemma 7.5, since Wy is a surjective isometry. The final
assertion follows by once more using that Wy is an isometry. a

The following result will turn out to be the Plancherel identity for K-finite functions.
We recall from [12], Def. 13.4, that two parabolic subgroups P,Q € P, are said to be
associated if their o-split components apq and agq are conjugate under W. The equiv-
alence relation of associatedness on P, is denoted by ~ . Let P, C P, be a choice of
representatives for P,/ ~ . If Q € P,, then W}, denotes the normalizer of agq in W.

Theorem 9.5 Let f € C(X)x. Then

=3 3 gl [ Qs ws v dug(v)

QEPG wEXg,*,ds e

Proof: This follows from [12], Thm. 23.4, combined with Proposition 9.4. O

Our next goal is to show that the above indeed corresponds with a direct integral
decomposition for the left regular representation L of G in L*(X).

Let Q € P,. For w € Xé\g,*,dsa the direct integral representation mg ,:= mg ¢, of G in
£2(Q,w): = £*Q,£,) is unitary, see Lemma 8.1. We define

£4(Q): = @WEXQQ,W 22(Q,w), (9.3)

where the hat over the direct sum sign has the same meaning as in (9.1). We note that

£2(Q) is naturally isometrically isomorphic with the Hilbert space of $(Q)-valued L*-

functions on iaf), relative to the measure [W: Wj|dug. Let mg be the associated direct

sum of the representations mg . Then mg is a unitary representation of G in £*(Q).
Finally, we define

222 = @erc, SQ(Q) (94)
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and equip it with the direct sum inner product. The direct sum being finite, £* be-
comes a Hilbert space in this way. The associated direct sum © = @Ggep,mg is a unitary
representation of G in £2.

For Q € P, and w € X3, ;, we denote the natural inclusion map £2(Q,w) — £* by
iQ,w; its adjoint prg £2 — £*(Q,w) is the natural projection map. If ¢ € £2, we denote
its component prg ¢ € L£2(Q: w) by ¢(Q:w: -). Thus,

ol = 3 S g / lo(Q: w: )| dug.

A Tk
QEPU UJGXQ ¥ ds Qq

It follows from Theorem 9.5 that the Fourier transform f of an element f € CX(X)x
belongs to £2. Moreover,

[ flz2x) = |1 fl g2

Theorem 9.6 The map [ f has a unique extension to a continuous linear map
§: L*(X) — L% The map § is isometric and intertwines the G-representations (L, L*( X))
and (m, £2).

Proof: The first two assertions are obvious from the discussion preceding the theorem.
It remains to prove the intertwining property. Fix @ € P, and w € X§ | ,,; then it suffices
to prove that §g.:= prg,, o§ intertwines L with mg . We will do this in a number of
steps. For convenience, we write £ = £,.

Lemma 9.7 Let [ € C*(X).

(a) Ifk € K, then §g (L1 f) =m0 u(k)Fouf-
(b) Ifu € U(g), then
Baw(luf) l9) = Sauw(f) [ m(d)e) (9-5)
for all p € £(Q,w)™.

Proof: We first assume that f is K-finite. Assertion (a) is an immediate consequence of
the K-equivariance asserted in Lemma 7.2.

In view of Lemma 8.6 it suffices to prove assertion (b) for ¢ € £3(Q,w). In view of
Lemma 8.3 we may as well assume that © = X € g. Then the expression on the left-hand

side of (9.5) equals

| AE07(@: €50 [e0oia duolv)

e

The integrand is continuous and compactly supported as a function of v. By the g-
equivariance asserted in Lemma 7.2 and unitarity of the representations mg ¢ _, for all
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v € iap,, we see that the integral equals

/* <f(Q Ev) I @mge—o(X)]e(v)) dug(v)

_ / (F@Q: €: 1) [rau(X)el(v) dug(v),

i@,

see also Lemma 8.3. The expression on the right-hand side of the latter equality equals
the one on the right-hand side of (9.5). This establishes the result for f in the dense
subspace C2°(X) g of C°(X). The idea is to extend the result by an argument involving
continuity.

For assertion (a) we proceed as follows. Fix & € K. Then the map f — L;f is
continuous from C(X) to L*(X). Since Fg, is continuous L*(X) — £*(Q,w), by the
first part of the proof of Theorem 9.6, whereas mg ., is a unitary representation, it follows
that both f — FgpuLif and f +— mgu(k)Fg.f are continuous maps from C°(X) to
£%(Q,w). Hence, (a) follows by continuity and density.

Finally, for the proof of (b) we fix u € U(g) and ¢ € £*(Q,w)*. Then the map
f > Ly f is continuous from C2°(X) to L*(X), whereas Fg,, is continuous from L*(X) to
£2(Q,w) as said above. It follows that the inner product on the left-hand side of (9.5)
depends continuous linearly on f € C2°(X). Since mg ()¢ is a fixed element of £*(Q,w),
the same holds for the inner product on the right-hand side of (9.5). Thus, (b) follows by

continuity and density from the similar statement for K-finite functions. O

Lemma 9.8 Let f € C*(X). Then

SQ,w(fo> = WQ,w(x>SQ,w(f)
for all v € .

Proof: By Lemma9.7 (a) it suffices to prove the identity for « in the connected component
of (¢ containing e. Hence it suffices to establish the identity for z € exp(g). Write 7 = mg .,
and fix X € g. Then it suffices to show that m(exptX)™'Fgu(Lexpexf) is a constant
function of ¢ € R with value §g . (f). For this it suffices to show that, for every ¢ €
£2(Q,w)™, the function

Ot (m(exptX) T Fou(Lexpex f) | ©)
is differentiable with derivative zero. We observe that
O(t) = (Bou(Lexpex f) [ m(exptX)e).
The L*(X)-valued function ¢ — Lexpex f is C' on R, with derivative ¢ — Lx Lexpix f.

Moreover, since ¢ is a smooth vector, the £3(Q,w)-valued function ¢ — w(exptX)y is
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also C' on R, with derivative ¢ — 7(X)m(exptX). By continuity of g, and the inner
product on £*(Q,w), it follows that ®(¢) is C' with derivative given by

(1) = Bou(Lx Lespix f) | 7(expt X)) + ($guw(Lexpex f) [ T(X)7(exp X)),

The latter expression equals zero by Lemma 9.7 (b), applied with Leg,:x [ and m(exp t X )p
in place of f and p, respectively. O

End of proof of Theorem 9.6: In the beginning of the proof of the theorem, we
established that Fg , is a continuous linear map from L?(X) to £*(Q,w). By density of
C>(X)g in L*(X) and continuity of the representations L and 7g,, the G-equivariance
of §g .. follows from Lemma 9.8. O

Let Q) € P, and let ¥ C K be a finite subset. We recall from [12], Thm. 23.4, that the
spherical Fourier transform Fg associated with 7 = 74, originally defined as a continuous
linear map C(X: 7y) — S(iaaq) ® Ajz,0(7), has a unique extension to a continuous linear
map L*(X: 15) — LQ(iaaq) ® Az(7s), denoted by the same symbol. For application in
the next section, we state the relation between the extended spherical Fourier transform
Fq and § in a lemma. Let prg denote the projection operator £2 — £2(Q) associated
with the decomposition (9.4).

Lemma 9.9 Let ) € P, and let ¥ C K be a finite subset. Let [ € L*(X)y and let
F =g(f) € L*(X: 79) be the associated spherical function, see Lemma 3.4. Then

FolF(v) = Vqu(prgoSf(v)), (9.6)
for almost all v € 1ag),. Here W 4 is the isometry of Lemma 9.3.

Proof: For f € C(X)s we have prgo§f(v) = f(Q -1 v), so that (9.6) follows from
(9.2) and the definition of W g before Lemma 9.3. The general result follows from this by
density of C*(X)g in L*(X)y and continuity of the maps Fqogg and (1 @ W g)oprgoF
from L*(X)y to L2(ia*Qq)®A2,Q(Tg), see [12], Thm. 23.4, and Lemmas 3.4, 9.3 and Theorem
9.6. O

10 The Plancherel decomposition

Our goal in this section is to establish the Plancherel decomposition. For this we need
to characterize the image of the transform §, defined in the previous section. To achieve
this we shall first decompose § into pieces corresponding with the parabolic subgroups
from P,.

Let Q € P,. For ¥ C K a finite subset, we defined in [12], text before Thm. 23.1, a
subspace Cq(X: 75) of C(X: 7y), as the image of the wave packet transform Jg. In [12],
text before Cor. 23.3, we defined Lé(X: 79) as the closure of Co(X: 75) in L*(X: 7).
Accordingly, we denote by Lé (X)y the canonical image of Lé (X: 7) in L*(X)y, cf. Lemma
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3.4. Finally, we denote by Lé (X)) the L*-closure of the union of such spaces for all . Then
it follows from [12], Cor. 23.3, that

L}(X) = Boer, L5(X), (10.1)

with orthogonal K-invariant direct summands.

Lemma 10.1 Let ) € P,. The space Lé(X) is G-invariant. Moreover, § maps Lé(X)
into £*(Q).

Proof: We shall first prove the second assertion. Fix P € P,, P # @ and assume that
¥ C K is a finite subset. Then it follows from [12], Cor. 23.3 and Thm. 23.4 (c), that
Fp =0on Lé(X: 79). In view of Lemma 9.9 this implies that prpoF(f) = 0 for every
I e Lé(X)g; here prp denotes the orthogonal projection £2 — £*(P). By density of
LH(X)x in L{H(X) and continuity of the map prpoF: L*(X) — £*(P), see Theorem 9.6,
it follows that prpo§ vanishes on Lj(X), for every P € P, \ {Q}. The second assertion
now follows by orthogonality of the decomposition (9.4).

Since § is an isometry, its adjoint §* is surjective from £* onto L*(X). Moreover, since
§ is compatible with the decompositions (10.1) and (9.4), it follows by orthogonality of
the mentioned decompositions that

L5(X) = §°(£4(Q)).
By G-equivariance of § and unitarity of the representations L and 7, the map §* is
GG-equivariant. If follows that Lé (X) is G-invariant. O
We denote by §g the restriction of § to LQQ (X), viewed as a map into £*(Q).

Corollary 10.2 The map § is the direct sum of the maps §q, for () € P,.

If H is a Hilbert space, we denote by End(#) the space of continuous linear endo-
morphisms of H, equipped with the operator norm. By U(H) we denote the subspace of
unitary endomorphisms. If P € P,, we define W(apy) = W(apq | apq) as in [12], § 3.
Then by [12], Cor. 3.5,

W(Clpq) ~ W;/WP (10.2)

Proposition 10.3 For each s € W(agq) there exists a measurable map €q ;105 —
End($(Q)), which is almost everywhere uniquely determined, such that v — ||€q s(v)|| is
essentially bounded, and such that for every [ € C(X),

Sof(sv) = Co.(v)So f(v), (10.3)

for almost all v € iaj,. For almost every v € iag, the map €q ;(v) is unitary. Moreover,
for all s,t € W(ag,),

Cost(v) = €qs(tr) o o(v). (10.4)
In particular, € 1(v) = I and €q 4(v)™' = Cos-1(sv), for all s € W(agq).
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For @) minimal this result is part of Prop. 18.6 in [8]. In the present more general set-
ting, we initially reason in a similar way. For () C iaj), a measurable subset, we denote by
£3(Q) the closed G-invariant subspace of £2(Q) consisting of square integrable functions
a5, —+ N(Q) that vanish almost everywhere outside . The orthogonal projection onto
this subspace is denoted by ¢ — ¢q.

The uniqueness statement of Proposition 10.3 follows from the following lemma, which
generalizes [8], Lemma 18.7. We denote by ag;g the collection of elements H € ag,, whose
parabolic equivalence class relative to (aj,¥) is open in ag,. The set a,.e consists of
finitely many connected components, called chambers. The group W (ag,) acts freely, but
in general not transitively, on the collection of chambers; therefore, there exists an open

*reg

and closed fundamental domain for W(aQq) in Agq -

Lemma 10.4 Let Q C ta,.® be an open and closed fundamental domain for W(agq).
Then f — (proS/f)a maps CF(X) onto a dense subspace of £§(Q), and C°(X)y onto a

dense subspace of £5(Q)s, for every finite set ¥ C K.

Proof: The proof is similar to the proof of Lemma 18.7 of [8]. Fix a finite subset ¢ C K;
then it suffices to prove the statement about C°(X)y, by density of the K-finite vectors.
Let T € £4(Q)s, and suppose that (pro8f|T) =0 for all f € CX(X)g. Then it suffices
to show that 7' = 0. Put T(v) = > T(w: v) with T(w: v) € H(Q,w)s. Note that this
sum is finite by Lemmas 9.1 and 9.2. Let 7 = 7y, then ¢r(,.,) € Az (7). We put

V(w):=Uy(T(W) = > trwn) € Ag(7).

wexg,*,ds

Note that for @) minimal, the constants d,, that occur in [§] are absent here, see Remark
4.1. Let F' € C*(X:7), and let f = F(-)(e), then f € CX(X)y and F' = ¢3(f), see

Lemma 3.4. Moreover, as in [8], proof of Lemma 18.7,
(FoF | W) = (F(Q)|T) = (prg8f | T) = 0. (10.5)

Let the space [L*(ia5),) ® Ay o(7)]W(@24) he defined as in [12], text before Cor. 22.3. Tt
follows from the definition of this space that the restriction map ¢ — p|q is a bijection
from it onto L*(Q) @ Az (7).

The image of C2*(X: 7) under Fy is dense in the space [L*(iag,) @ Az o(7)]W (2,
by [12], Thm. 23.4 (¢). Combining this with (10.5) we see that ¥ is perpendicular to
the mentioned space. Since ¥ = 0 outside {2, we infer that ¥|g is perpendicular to

L3 Q) @ Ay (7). We conclude that W, hence T, is zero. O
Proof of Proposition 10.3: We fix a finite subset 9 C K and put 7 = 5. We will first
prove that there exists a measurable map &g 91105, — End($(Q)s), such that (10.3) is
valid with €g 4 in place of &g 4, for every f € C*(X)s. We define

Cosu(v) = \1151005@(5: v)oWy, (10.6)
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where Uy is the isometry from $(Q)g onto A, o(7) defined in the text preceding Lemma
9.3 and where the C-function is defined as in [12], Def. 17.6, with 7 = 73. We note that
the End(£)(Q)s)-valued function €q ;s is analytic on iap,, by [12], Cor. 18.6. It follows
from Lemma 9.3 combined with the Maass-Selberg relations for the C-function, see [12],
Thm. 18.3, that €q () maps H(Q)s unitarily into itself, for v € 1a3,. From (10.6) and
[12], Lemma 22.2 with P = R = (), we deduce that (10.4) is valid with everywhere the
index 1 added.

In view of Lemma 10.4, the function €g 4 g is uniquely determined by the requirements
in the beginning of this proof. If ¥’ C K is a second finite subset with @ C ¥/, let 1.9
denote the inclusion map $(Q)s — $H(Q)g:, and let pry 5 denote the orthogonal projection
H(Q)s — H(Q)s. Then it follows from the uniqueness that

Pry 910 €@ 01 (1) olorg = € s0(v),

for every v € iaj),. By unitarity of the endomorphisms €q ; s(v) and €q ;9 (v) this implies
that €q .9/(v) leaves the subspace $(Q)ys of H(Q)s invariant, and equals €g 5 4(v) on it.
Thus, we may define the endomorphism €g s(v) of h(Q) by requiring it to be equal to
Co.s0(v) on h(Q)y, for every finite subset O C K. The endomorphism defined depends
measurably on v has essentially bounded norm and satisfies (10.3). We asserted already
that it is uniquely determined by these properties, in view of Lemma 10.4. The remaining
asserted properties of €g ;(v) follow from the discussion above. a

Lemma 10.5 Let () € P, and let Q@ be an open and closed fundamental domain for
the W(agq)-action in iag;g. Then the map f — |W(agq)|"/*(Fof)a defines an isometric
isornorphism from Lé (X) onto £*(Q)q, intertwining the restriction of L to LQQ (X) with
the direct integral representation

~

@D
EBWEX%,*@S [) 1V(Q,w) R TQ.¢,—v [W: Wé] dluQ(y). (10_7)

of G in £2(Q)q.

Proof: In view of Theorem 9.6 and Lemma 10.1, the map §g 1s an isometry from
Lé(X) into £2(Q), intertwining the restriction of L to Lé(X) with 7g: = 7|g). The
map p — g from £*(Q) to £2(Q)q intertwines mg with the direct integral (10.7). Thus,
it remains to show that the map T: f — |[W(agq)|"*(Sof)a from Lé(X) to £2(Q)q is
isometric and onto.

To establish the first property, we note that, for f € LZ) (X) and s € W(agq),

IBo/(s)ll = 1€0,s(V)B S (W)l = S/ (W),

for almost every v € 1af),, by Proposition 10.3. Hence,

1A = I8/ = 18/l
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[ 18af WP W: W) dug ()

> ok
%Qq

= X 1Bt Wl do

sEW (agq)

W (agq)| / 1ol )I? [W: W5l duo (v).

It follows that T'is an isometry. On the other hand, 7" has dense image in view of Corollary
10.2 and Lemma 10.4. We conclude that T' is surjective. O

We shall now investigate irreducibility and equivalence of the occurring representations

ﬂ-vavy'

Lemma 10.6 Let w € X/,. Then 7 has a real infinitesimal Z(g)-character in the following
sense. Let j be a Cartan subalgebra of g, W(j) the Weyl group of the root system (j)
of jo in ge. Let [A] € j%/W(j) be the infinitesimal character of m. Then (A, ) is real for
every a € X(j).

Proof: Let b a #-stable Cartan subspace of g, let ¥(b) be the root system of b in g¢, W(b)
the associated Weyl group and I(b) the algebra of W(b)-invariants in S(b), the symmetric
algebra of b. Let v5: D(X) — I(b) be the associated Harish-Chandra isomorphism. Let
L*(X), be defined as in (3.2) with 7 in place of {. We may fix a non-zero simultanous
eigenfunction f for D(X) in [L*(X);]®. Let A € b} be such that Df = v (D: X)f for
D € D(X). Then in particular, for each element Z of 3, the center of U(g),

Rzf =~v(Z: N f. (10.8)

On the other hand, Rz f = L;f may be expressed in terms of the infinitesimal character
of 7 as follows. Let j be a #-stable Cartan subalgebra of g, containing b, let £(j) and W (j)
be as in the lemma, and let /(j) denote the algebra of W(j)-invariants in S(j). We denote
the canonical isomorphism 3 — I(j) by ;. Let A € j. be as in the lemma, then

Rzf =Lzl =%(Z: N)f =~(Z: =N)/]. (10.9)
From (10.8) and (10.9) we obtain that
Y(Z:—=A) =w(Z:X), (Z €3). (10.10)

Let [ be the centralizer of b in g, let X(I,j) be the root system of j in [, ¥ (I, j) a choice
of positive roots and d; € jX the associated half sum of the positive roots. By a standard
computation in the universal enveloping algebra, involving the definitions of v and ~,
it follows that v (Z: X) = %(Z: X = §), for all Z € 3. Combining this with (10.10) we
obtain that —A and A — §; are W(j)-conjugate.

Now (X, a) is real, for each a € ¥(b), by [28], see also [12], Thm. 16.1. It readily
follows that A is real. d
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The following result is due to F. Bruhat [14] for minimal parabolic subgroups and to
Harish-Chandra in general. A proof is essentially given in [24].

Theorem 10.7 For j = 1,2, let P, = M;A;N; be a parabolic subgroup of G, with the
indicated Langlands decomposition. Moreover, let £; be an irreducible unitary represen-
tation of M; with real infinitesimal character and let v; € ia} be regular with respect to

the roots of a; in P;. Let 7; denote the unitarily induced representation IndIGDJ (& @v;al).

(a) The representation 7; is irreducible, for j = 1,2.

(b) The representations m; and my are equivalent if and only if the data (a;, v}, [¢;]), for
7 = 1,2, are conjugate under K. The latter condition means that there exists k € K

such that Ad(k)a; = ay, vy 0 Ad(k)™! = vy and £F ~ &, where £F: = E (K7 )k) |y

Proof: Taking into account the actions of the centers of M; and G, one readily checks
that it suffices to prove this result for G connected semisimple and with finite center.
Thus, let us assume this to be the case.

Assertion (a) follows from [24], Thm. 4.11. Thus, it remains to prove assertion (b).
We first establish the ‘if’ part. If in addition to the hypothesis, P, = kPk™!, then the
equivalence of w1, 7 is a trivial consequence of conjugating all induction data. Thus, by
applying conjugation we may reduce to the case that a; = ay, 11 = vy and & ~ &. Then
P, and P, have the same split component. It now follows from [23], Prop. 8.5 (v), that
there exists a unitary intertwining operator from m; onto my. Hence my ~ .

We shall now prove the ‘only’” if part. Assume that m; ~ my. By conjugating all
induction data of m; with an element of K, we see that we may restrict ourselves to the
situation that P; and P, contain a fixed minimal parabolic subgroup Fy of GG, with split
component Ag. In particular, a; C ag for j = 1,2. It now follows from [24], p. 94, text
under the heading ‘Equivalence’, that there exists a k € Nk (ag) such that Ad(k)a; = ay
and v 0Ad(k)™' = vp. Conjugating all data of m; with & we see that we may as well
assume that a; = ay and 14 = vy. Moreover, applying [23], Prop. 8.5 (v), as in the first
part of this proof we see that in addition we may assume that P, = P,. We now claim that
£ ~ &. This assertion is essentially proved in [24], proof of Thm. 4.11, but not explicitly
stated as a result. We shall indicate how to modify the mentioned proof. We use the
notation of [24]. In particular, {; = °o;. We follow the proof of [24], Thm. 4.11, after
the heading ‘equivalence’, but with P, = P, = P and vy = v = v. From i(my,73) > 0 it
follows, by application of [24], Thm. 4.10, that

(M” @ (FY& ) © C)"er)

has positive dimension. Now MI(O) equals C'°(P), equipped with the left times right
action of P (see [24], Eqn. (2.6)). Hence the above space is naturally isomorphic with the
space of diag(P x P)-invariants in (E?@Egl)’ which in turn is naturally isomorphic with
Homp(EY, EY) = Homyps(°0q,°0y1). It follows that the latter space is non-trivial, hence
°g1 ~ °0y, since the representations involved are irreducible. d
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Proposition 10.8 For j = 1,2, let Q; € P,, w; € Mg, g, v; € Lageg Then the rep-
resentations m; = mQ, ., ., are irreducible. Moreover, they are equivalent if and only if
(1 = Q2 and there exists s € W(ag,q) such that v, = svy and wy = swy.

Proof: Put §{ = £, and Q = (. There exists v € @W, such that w; belongs to
the discrete series of MQ/MQ NovHov™" Tt follows from Lemma 10.6 that w; has a real
infinitesimal character for the center of U(mg). A similar statement holds for @2, w,.

If o is a root of ag in @, then its restriction oy to agq belongs to ¥,(Q). Moreover,
(a, 1) = (alay, » 1) # 0. Thus, it follows that v, is regular with respect to the ag-roots
in (). A similar statement holds for v,.

Thus, Theorem 10.7 is applicable and we conclude that m; and 7, are irreducible.

Assume that 7 ~ 7. Then by Theorem 10.7 (b) we conclude that there exists k € K
such that Ad(k)a; = ay, 10 Ad(k)™" = vy and & ~ &,. Since ov; = —v;, for j = 1,2, it
follows by application of o that also vy 0 Ad(ck)™ = vy. We infer that Ad((ck)™'k)™!
centralizes v, hence belongs to the centralizer M;¢ of agq, by regularity of v4. The men-
tioned element therefore centralizes ag, from which we see that Ad(k) = Ad(ck) on ag.
This implies that oo Ad(k) = Ad(k)oo on ag, hence Ad(k) maps agq onto ag,q. We
conclude that (); and (), are associated, hence equal. Put () = Q)1 = Q5.

It follows from the above that Ad(k) normalizes agq. Hence, s: = Ad(k)la,, belongs to
W (agq), see [12], § 3. Finally, it follows that svy = vy and s[&] = [£7] = [&]. O

Theorem 10.9 Let, for each () € P, an open and closed fundamental domain Q¢ for
the action of W(agq) on iay.® be given. The Fourier transform § induces the following
Plancherel decornposition of the regular representation L of G in L*(X):

@
L EBQEPUEBWEX/‘%,*,GH /S; 1V(va) ® TQuw,y |I/I/||I/I/Q|_1 dluQ(V)? (1011>
Q

and

Iz=> > /HSQf —V)|I* W[[Wa ™ dpug(v), (10.12)

QEPU WEXA

for every f € L*(X). In part1cu]ar for each Q € P, and every w € X3, ,,, the induced
representation mq,,, occurs with multiplicity mg . = dim V(Q,w), for almost every v €

Qg.

Proof: The fact that § induces the isometric isomorphism of L with the direct integral
as expressed by (10.11) and (10.12) follows from Lemma 10.5 applied to —{g in place of
1, combined with Corollary 10.2 and (10.2). The occurring representations g, are all
irreducible, by Proposition 10.8. It remains to exclude double occurrences. For j = 1,2,
let Q; € Py, w; € M) Lo Vi € iag5,°, and assume that 7g, w,m ~ TQ,w,u,- Then it
follows from Proposition 10.8 that ¢); = Q2. Moreover, there exists s € W(ag,q) such
that (svq,sw;) = (v2,w2). Since Qg, = Qg, is a fundamental domain for the W(ag,q)-

action, it follows that s = 1. d
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We finish this section with a description of the image of the isometry §: L*(X) — £°.

Lemma 10.10 Let Q € P, and s € W(agq). Then for almost every v € 1aj), the unitary
endomorphism €q ,(v) of $(Q) maps the subspace $(Q,w) onto H(Q, sw), forw € X3 , 4.,

intertwining the representations mg ., and m¢ s .

Proof: Let s € W. We will first show that, for almost every v € iap,, the unitary
endomorphism &g ((v) of H(Q) intertwines the direct sum g, of the representations
1 @ mg -y, for w € Xa,*,ds’ with the similar direct sum mg, of the representations
1 ® TQu,—sv- Let © be an open and closed fundamental domain for the W (agq)-action
on iang - Then the map Foa: [ = Fg(f)a is an equivariant isometry from L (X) onto
£%(Q)q, by Lemma 10.5. Similarly, the map §gsq is an intertwining isomorphism from
L3 (X) onto £2(Q)sq. Moreover, by (10.3), for every f € L3(X) we have

s*(8qsaf)(v) =Fqsaf(sv) = €qo(v) Foaf(v),

for almost every v € Q. It follows that the map ¢ — s*7'[€q (- )p] is an equivariant
isometry from £%(Q)q onto £*(Q)sq. Let z € G. Then

s"mo(2)s" [€q,s( - )p] = €o.( - )m(x)e,
for every ¢ € £3(Q). Tt follows that

7Q,5(7)€q,s(v) = €q,s(v)mg () (10.13)

for almost every v € Q. Since ) was arbitrary, (10.13) holds for almost every v € 105,
Select a countable dense subset Gy of G. Then there exists a subset A C iag;g with
complement of measure zero in iap,, such that Co.s(-) is represented by a function on
A with values in U(£)(Q)), satisfying (10.13) for all z € G and v € A. By continuity of
€q.s(v) and of the representations g, and 7g s, it follows that (10.13) holds for all v € A
and all € G. In view of Theorem 10.7, the representation 1 @ 7qz,-s, for @ € Xg | 4
and s € A, is not disjoint from 1 ®@mg .-y, if and only if © = sw. All assertions now follow

for all v € A. O

It follows from the above result that for each s € W(ag,), we may define a unitary
endomorphism T'g(s) of £2(Q) by

[To(s)el(v) = Cq.ls™ w)e(s™ ),
for p € £2(Q) and almost every v € 10~ Moreover, the map T'g(s) intertwines mgp with
itself. It follows from Proposition 10.3 that s — I'g(s) defines a unitary representation

of W(agq) in £2(Q), commuting with the action of G. Accordingly, the associated space
£2(Q)"(52a) of invariants is a closed G-invariant subspace of £2(Q).

Theorem 10.11
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(a) For each Q € P,, the image of Fo equals £2(Q)W (32a).
(b) The image of the Fourier transform § is given by the following orthogonal direct

Suin

im (§) = @gep, £(Q)"9.

Proof: From Proposition 10.3 it follows that Fg maps into £2(Q)"(#@d), Thus, for (a) it
remains to prove the surjectivity. Let € be an open and closed fundamental domain in
iay, for the action of W(agq). Then the map ¢ — ¢lq is a bijection from £2(Q)"(ea)
onto £2(Q)q. The surjectivity now follows by application of Lemma 10.5.

Finally, assertion (b) follows from (a) combined with Corollary 10.2. O

11 H-fixed generalized vectors, final remarks

In this section we compare our results with those obtained by P. Delorme in [20]. This
comparison relies heavily on the automatic continuity theorem, due to W. Casselman and
N.R. Wallach, see [17], Cor. 10.5 and [31], Thm. 11.6.7. We shall therefore first recall
this result. The group decomposes as GG ~ °G X exp ¢p, where, as usual, °G; denotes the
intersection of all subgroups ker ||, with x a continuous homomorphism G — R* and

where ¢, = center(g) N p. Accordingly, we define the function || - ||: G = ]0,00] by
lw exp H|| = [|Ad(x)|lop !, (11.1)
for x € °G and H € cp; here || - ||op denotes the operator norm on End(g). Let a, be a

maximal abelian subspace of p containing ag, and let ¥X(a,) be the root system of a, in g.
Then one readily checks that

lkraks]| = max . o, (11.2)
for ki, ky € K and a € A, N°G. In particular, it follows that || - || > 1 on G. Note that it
follows from (11.1) and (11.2) that

2]l =1l="" (= € G). (11.3)

We recall from [31], 11.5.1, that a smooth representation m of G' in a Fréchet space V
is sald to be of moderate growth if for each continuous seminorm s on V there exists a
continuous seminorm p; on V and a constant d; € R such that

s(m(z)o) < |lz]|%ps(v),
forallv € V and z € G.

Theorem 11.1 (The automatic continuity theorem) Let (7;,V}), for j = 1,2, be smooth
Fréchet representations of G of moderate growth, such that the associated (g, K')-modules
(Vi)x are finitely generated. Then every (g, K)-equivariant linear map (Vi)x — (V2)x
extends (uniquely) to a continuous linear G-equivariant map Vi — Vi. Moreover, the
image of the extension is a closed topological summand of V5.
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Remark 11.2 A proof of this theorem, due to W. Casselman and N.R. Wallach, is given
in [17], Cor. 10.5 and in [31], Thm. 11.6.7, but for a somewhat different class of real
reductive groups. In [18], §1, it is shown that the result is valid for groups of Harish-
Chandra’s class.

For any function f: G — C and any non-negative real number r > 0 we define
[f]lr: = sup [f(z)]. (11.4)
r€G

Moreover, we define C,.(G) to be the space of continuous functions f: G — C with || f]|, <
oo. Then C,(G), equipped with the norm || - ||, is a Banach space. We define C°(G)
to be the space of smooth functions f:G — C with L,f € C,.(G) for all u € U(g). If
F C U(g) is a finite subset, we define the seminorm vg, on C°(G) by

vro(f): = max Lol

We equip C°((G) with the locally convex topology induced by the collection of seminorms
vir, for F' C U(g) finite. It is readily seen that the space C2°((), thus topologized, is a
Fréchet space.

Proposition 11.3 Let r > 0. The space C°((G) is left G-invariant. Moreover, the left
regular representation L of G in C2°(() is a smooth Fréchet representation of moderate
growth,

The Fréchet module C°(G) is denoted Aymg, (G) in [17], p. 424. Moreover, it is
asserted without proof that the module is continuous and of moderate growth. Both
Casselman and Wallach have told us that the smoothness statement was known to them.
However, the result seems not to have appeared in the literature. We have therefore
decided to include a proof of Proposition 11.3 in an appendix at the end of this paper,
for convenience of the reader.

Corollary 11.4 Let r > 0. Every closed G-submodule of C°((G) is a smooth Fréchet

module of moderate growth.

Proof: The result follows from Proposition 11.3 by application of the Hahn-Banach
theorem. See [31], Lemma 11.5.2, for a similar reasoning. O

Proposition 11.5 Let (m,V) be a smooth Fréchet representation of (G of moderate
growth, such that Vi is finitely generated. Let r > 0 and let T:Vx — C(G) be a
(g, K)-equivariant linear map. The map T has a unique extension to a continuous linear
Gi-equivariant map V — C*((G). The image of this extension is closed.
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Proof: Let W be the closure of the image of 7' in C°(G). Then W is a closed G-
submodule of C°((G), hence a smooth Fréchet module of moderate growth. Moreover,
Wk = T(Vk) is finitely generated. By Theorem 11.1, T' has a unique extension to a
continuous linear G-equivariant map T:V — W. The image of this extension is closed
and contains a dense subspace of W, hence equals WW. g

Lemma 11.6 Let r > 0. Then the space C°(() is right G-invariant. Moreover, ify € G,
then the right regular action R, restricts to a continuous linear operator of C°(().

Proof: For any function f:G — C, we define fV:G — C by fY(z) = f(z7"). Tt follows
from (11.3) and (11.4) that f — fY is an isometry from the Banach space C,.(G) onto
itself, intertwining R, with L,. It now follows from Lemma 12.1 that R, is a continuous
linear endomorphism of C,(G) with operator norm at most ||y||". Since the action of R,
on C°((G) commutes with that of L, for every u € U(g), it readily follows that R, leaves
the space C7°(() invariant and restricts to a continuous linear endomorphism of it. O

Let » > 0. We define
C(X): = C(G) N C(G/ ),

the space of right H-invariant functions in C2°(&).

Lemma 11.7 Let r € R. The space C°(X) is a closed G-submodule of C°(G). In

particular, it is a smooth Fréchet G-module of moderate growth.

Proof: For every h € H, the map Rj, — [ restricts to a continuous linear operator of
C°(G), by Lemma 11.6. The space C2°(X) equals the intersection in C°(G) of the kernels
of the operators Ry, — I, for h € H. Therefore, C*°(X) is closed. The remaining assertion
follows by application of Corollary 11.4. O

If V' is a locally convex space, we denote its continuous linear dual by V’. Unless
otherwise specified, we equip it with the strong dual topology.

Corollary 11.8 Let (m,V) be a smooth Fréchet representation of G of moderate growth,
such that Vi is finitely generated. Let r € R and let T: Vi — C(X) be a (g, K)-

equivariant linear map.

(a) The map T has a unique extension to a continuous linear (G-equivariant map T:V —
C(X).
(b) The linear functional eveoT:v — Tv(e) has a unique extension to a continuous

linear functional nyp € V.

(¢) The functional ny is H-invariant and T may be represented as the generalized matrix
coefficient map given by

T(o)(x) =nr(n(z)"'v), (2 €G/H).
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Proof: From Proposition 11.5 it follows that 7" has a unique extension to a continuous
linear G-equivariant map T:V — C(G). The image of T is a closed subspace W of
C°(G) which contains the image of T' as a dense subspace. In view of Lemma 11.7 it
follows that W C C°(X). The extended functional is given by nr = ev. oT:iv s Tv(e).
The assertions of (¢) readily follow by G-equivariance. 4

Using the above result we shall be able to express our Eisenstein integrals as matrix
coefficients of principal series representations. As a preparation we need to relate the
function || - ||, defined in (11.1), to the G = KA, H-decomposition. Following [12],
Equ. (10.1), we define the distance function Ix: G — [0, 00 [ by

Ix(kah) = |log al,
for ke K,a € Ayand h € H.

Lemma 11.9 There exists a constant s > 0 such that

X e, (€ @).

Proof: One readily sees that it suffices to prove this in case G = °G. Moreover, since
the functions of = on both sides of the equality are left K-invariant, we may reduce to
the case that G is connected and semisimple, with finite center. From [3], Lemma 14.4,

we deduce, using the equality ||z|| = ||=7Y|, that ||| < ||ah]|| for all @ € A, and h € H.
Hence, by the G = K AqH decomposition, it suffices to prove the estimate
el < lalI* (a € A), (11.5)

for some s > 0 independent of a. Let m be the minimal value of the continuous function
max{a | @ € ¥(a,)} on the unit sphere in a,. Then m > 0. Using (11.2) we see that the
estimate (11.5) holds for s > m™". O

Let Q € P, and £ € Xa,*,ds be fixed throughout the rest of this section.

Lemma 11.10 Let ¢ C K be a finite subset, let ¢ € Ay o(7s)e and let vy € a5 be a
regular point for the Eisenstein integral E°(Q): v : v). There exist an open neighborhood
U of vy and a constant r > 0 such that v — E°(Q: ¢ : v) is a function on U with values
in C2°(X) ® Vy. Moreover, the mentioned function is locally bounded.

Proof: It follows from [12], Prop. 13.11, combined with Lemma 11.9, that there exist
an open neighborhood Q of vy and a polynomial function p € HZT(Q)(a’éq), such that the
function v +— p(v)E°(Q: v) is holomorphic on Q as a function with values in C2°(X) ®
Hom(A; (75), V) and such that for every continuous seminorm g on the latter tensor
product space, the function v — p(p(v)E°(Q: v)) is a bounded on €.

Select an open neighborhood U of vy with compact closure contained in  such that
E°(Q: ¢: -)is holomorphic on an open neighborhood of I. Then it follows by a straight-
forward application of Cauchy’s integral formula in the variable v, see, e.g., [5], proof
of Lemma 6.1, that for every continuous seminorm g’ on C(X) ® Vg the function

v ' (E°(Q: t: v)) is bounded on U. O
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Lemma 11.11 Let v € ap,.. The representation mq ¢, of G in C®(K : {) is a smooth
Fréchet representation of moderate growth. Moreover, the associated (g, K)-module
C*(K : )k is finitely generated.

Proof: It follows from Remark 4.2 that V:= C*°(K : £), equipped with mg¢,, is the
space of C'*-vectors for the Hilbert representation Indg(f @ v @ 1). It now follows from
[31], Lemma 11.5.1, that V' is a smooth Fréchet G-module of moderate growth. The last
assertion is well known, see also Proposition 5.1 for a stronger assertion. O

Proposition 11.12 Let v € aj,. \ UH(Q,¢).
(a) There exists a constant r € R such that Jg ¢, maps V(Q,£) @ C=(K : £)k into the
space C°(X).
(b) Letr € R bea constant as in (a). The map Jg ¢, has a unique extension to a contin-
uous linear map from V(Q, &) @ C™(K : £) into C°(X). The extension intertwines
the G-representations I @ mg ¢, and L.

Proof: Fix v as above. By Lemma 11.11, there exists a finite subset ¢ C K such that
C*(K : £)s generates C°(K : )k as the (g, K')-module associated with mg ¢ _,. Let r € R
be associated with § as in Lemma 11.10. Then it follows from (4.20) that Jg ¢, maps
V(Q,6)@C>®(K : &)y into C*(X). The map Jg ¢, is (g, K )-equivariant, by Theorem 4.6.
Since C°(K : €)g generates C*(K : §), whereas C°(X) is (g, K')-invariant, assertion (a)
follows.

Assume that r is a constant as in (a). Then it follows from Theorem 4.6 that the

map Jg ¢, is (g, K)-equivariant. In view of Lemma 11.11 and assertion (a), we may apply
Corollary 11.8 with 7" = Jg¢,,. Assertion (b) follows. O

If v € ajye \ UH(Q, &), we denote the continuous linear extension of Jg¢, by the
same symbol. We denote the conjugate of the topological linear dual of C*(K : £) by
C=®(K : ). The G-representation on the latter space induced by dualization of m¢ ,, is
denoted by m; .

The sesquilinear pairing C*(K : £) x C*(K : £) — C, given by (4.5) induces a contin-
uous linear embedding C*°(K : £) — C7°(K : £), intertwining the representations m¢ _
and 7z °. The latter may therefore be viewed as the continuous linear extension of m¢ .
Accordingly, we shall sometimes use the notation m¢ 5 for the representation m; .

We denote by V(Q,€) the conjugate space of V(Q,¢), and define the linear map
J(Q: € 7): V(@,€) > O-(K - €) by

(p7°(Q: & v)(n) = Jo.en(n @ @)(e). (11.6)

Then by Proposition 11.12 and Corollary 11.8, the image of j°(Q: £: v) is contained in
the subspace of C~*°(K : £) consisting of H-invariants for the representation m¢ ;;; we agree
to denote this subspace by C=>°(Q: £: )",

We may now represent the Eisenstein integral as a matrix coefficient. The following
formula generalizes the similar formula for () minimal, see [6], Eqn. (53).
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yemma 11.13 Let v € aquc\U”H(Q,E), let 9 C K be a finite subset and let T' = nRe €
V(Q,§) @ C®(K: &)g. Then

Eg(Q:¢r: v)(@)(k) = (¢l moen(ka)i®(Q: E: 0)n) (v X, ke K).

Proof: This follows from (4.20) and (11.6), by application of Corollary 11.8 (c). O

To identify our Eisenstein integral with the one introduced by P. Delorme in [18], we
recall some results from [15], §2.4.

For each v € @W, we denote by V(Q,&,v) the space of Mg N vHv™'-fixed elements
in H; ™, the conjugate of the topological linear dual of Hz°. The space V(Q, &, v) is finite
dimensional by [1], Lemma 3.3. We introduce the formal direct sum

V(Q7 5) = 697JEQVV V(Q7 57 U)-

Ifu e C™(Q: £: v)P, then on an open neighborhood of any v € W in K, the func-
tional v may be represented by a unique continuous function with values in H; ™, via
the sesquilinear pairing (4.5). Its value ev,(u) in v is therefore a well defined element of

V(Q,&,v). See [15], § 3.3, for details. The direct sum of the maps ev,, for v € W, is
denoted by
ev = Dpeay evy: C72(Q: &: ) = V(Q, ).

We have the following result, due to [4] for minimal @ and to [15] in general.

Theorem 11.14 There exists a unique meromorphic function j(Q,&, -) on aj,. with
values in Hom(V(Q, &), C~(K : £)) such that the following two conditions are fulfilled.
(a) For regular values of v, the image of (Q: £ : v) is contained in C=*°(Q: £: v)7.

(b) For regular values of v, we have evoj(Q: £: v) = Iy(q.e).
There exists a locally finite collection H = H(j,Q, &) of hyperplanes in aj,. such that
each v € aj \ UH is a regular value for j(Q: §: -) and the associated map j(Q: §: v)
is surjective from V(Q, €) onto C==(Q: £: v)7.
Finally, each v € af) . with Rev + pq stricly ¥.(Q)-anti-dominant is a regular value

for j(Q: &: ). Moreover, for such v and every n € V(Q,€), the element j(Q: £: v)n €
C=(K : &) is representable by a continuous function u: K — Hg ™, in the sense that

(@ 15(Q: € v)) = / (k) [u(k)) d, (g € C=(K: ).

K

Proof: This follows from [15], Prop. 2, Thm. 1 and Thm. 3. O
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The Eisenstein integrals of Delorme are built in terms of matrix coefficients coming

from a subspace Vgs(Q,€) of V(Q,€), which is defined as follows, see [18], §8.3. Let
v € W. An element n € V(Q, ¢, v) naturally determines the Mg-equivariant embedding
i HE — C®(Mg /Mg NvHv™"), given by

t(v)(m) = (E(m)""v|n)  (m € My).

We denote by Vys(Q, &, v) the subspace of n € V(Q,§) with the property that ¢, maps
into L2(Mg /Mg NvHv™1)*. Note that for such n the map ¢, extends to a continuous
linear map He — L*(Xg,); see [16], Lemma 1. Moreover, the map 1 + ¢, defines a linear
isomorphism from V5(Q, &, v) onto V(Q, €, v), via which we shall identify.

We define the subspace Vy (@, €) of V(Q, €) as the direct sum of the spaces Vy,(Q, €, v),
for v € YW. Via the direct sum of the above isomorphisms, we obtain the natural iso-
morphism

Vas(Q,€) = V(Q,€).

Accordingly, the map j° introduced in (11.6) may be viewed as a linear map
Q1 & v) Vas(Q,6) = C™(Q: £: ),

defined for v € aj . \ UH(Q,§).

To relate this map with the map j7(Q: &: v) of Theorem 11.14 we need standard
intertwining operators. We recall from [31] and [15] that for a parabolic subgroup P € P,
with split component equal to Ag, the standard intertwining operator A(Q: P: &: v)
between the representations mpe, and mge, on C(K : ) is given by an absolutely
convergent integral for v € ag) . with (Rev—pgq, a) > 0 for every a € ¥,(P)NE,(Q), and
allows a meromorphic continuation in v. Its adjoint is a continuous linear endomorphism
of C=°(K : §), intertwining the representations Toe, and mp° It extends the standard
intertwining operator A(P: @Q: ¢: —0), and is therefore denoted by the same symbol.
Thus,

AQ:P: & v)"=AP:Q: & —D). (11.7)
We also recall that

A(P5Q1§1V>°A(Q1P1§1 )—U(Q P:¢: >[C°°Ix§)

with (@ : P: §: +) anon-zero scalar meromorphic function on ap . = a5 In particular,
it follows that the standard intertwining operator is invertible for v in an open dense subset

*
of A5 qc-

Lemma 11.15 Let v € aj,. be such that Rev — pg is strictly ¥,.(Q)-dominant. Then,
for every n € V(Q,€) and p € C®(K : £)x, and for each v € ®W, all m € Mg and all
X e,

lim a7 (| mg e o(macv) (Q: €5 7)) = (A(Q: Q: €5 —v)p(e) | E(m)n),

where a; = expt X.
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Proof: The result is equivalent to Lemma 16 in [18]. We refer to the proof given there.
O

Theorem 11.16 Let n € Vi,(Q,&). Then j°(Q: £: -)n is holomorphic as a function on
A5 qc \UH(Q, &), with values in C~>°(K : £). Moreover,

7(Q: & vy = A(Q: Q: & V>_1j(QZ £:v)n,

as an identity of meromorphic C~°°(K : €)-valued functions in v € A e \UH(Q,§). In
particular, 3°(Q: §: - )n extends to a meromorphic C=*(K : £)-valued function on aj.

For the proof of this result we need the following lemma.

Lemma 11.17 Let 9 C K be a finite subset. There exists an open dense subset € of the
set of points v € ap,. with Rev strictly ¥,(Q)-dominant, such that the following holds.
Let o € Ayo(ms), v €W, m € Xguq, X € agq and put a; = exptX, (t € R). Then, for
every v € {1,

lim 07" E2(Q: v v)(marw) = (). (m).

Proof: Let w be the set of regular points for £°(Q): -), and w, the subset of v € w with
Rev strictly ¥,.(Q)-dominant.

Fix a minimal parabolic group P from P,, contained in Q). Then, by [12], Prop. 13.12,
the family f:(v,z) — E°(Q:v: z)y belongs to Sgyp(X: 7). Moreover, for each u €
Nx(aq), the set of exponents Exp (P,u | f,) is contained in the collection WFI? (v +
A(P|Q)) — pp — NA(P), for v € w.

Fix v € w; and let £ be an exponent in Exp (Q,v | f,). Then it follows by application
of [11], Thm. 3.5, that £ = w(v + A)|a,, — pg — p, for certain w € WPI?, A € A(P|Q)
and p € NA,(Q). It follows from the definitions preceding [12], Prop. 13.12, that wA €
—R*A(P). Hence Re{(X) 4 po(X) < wRer(X), with equality if and only if wAla, =0
and g = 0. Now Rev is strictly ¥,(@)-dominant and X € agq, Hence, by a well known
result on root systems, Rev(X) > Resv(X), for each s € W, with equality if and only if
s centralizes agq. Since WFI® N Wy = {¢}, we conclude that

Re£(X) < (Rew = pg)(X)
for every exponent £ € Exp (Q,v | f,), different from v — pg. It follows that

Jim a2 f,(maw) = Jim q,-,0(Q, v | f,,1X)(m), (11.8)

for every v € w, for which the limit on the right-hand side exists. It follows from [12],
Def. 13.7 and Prop. 13.6, that there exists a non-empty open subset )y of a). such that

Gp (@, 0 | fuy X)(m) = by (m) (11.9)
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for all v € Qy, v € QcW, m € Xg, 4+ and X € agy. On the other hand, by [11], Thm. 7.7,
there exists an open dense subset (1) of ap . such that the expression on the left-hand
side of (11.9) depends holomorphically on v € 4, for all v,m, X as above. By analytic
continuation it follows that (11.9) is valid for v € Q. This implies that the limit on the
right-hand side of (11.8) has the value ¥, (m), for every v € wy N Q. O

Proof of Theorem 11.16: Fix ¢ € C*(K : {)x with p(e) # 0 and put T =n ® ¢.
Select a finite subset ¥ C K such that @ € C®(K:¢§)g. Then, in the notation of ,
Yr € Ay(rg). Fix v € @W. Then the preimage Mg+ of Xg.+ under the canonical
map Mg — Xg,, is open dense in Mg. Fix m € Mg and X € agq. We agree to write
a; = exptX. Let A be the open dense subset of af .\ UH(Q, &) consisting of points v
where both intertwining operators v = A(Q: Q: £ : —v)* are regular. By Lemma 11.13
we may write, for v € A,

ES(Q: 7 v)(maw)(e) =
= (plmoen(maw)i®(Q: £: 1)) )
= (AQ:Q:¢&: —v) | mges(maw)A(Q: Q: &: 1)j°(Q: £ v)n).
Replacing A if necessary, we may in addition assume that the conjugate A of A has empty

intersection with the set UH, where H = H(j, Q,¢) is as in Theorem 11.14, with Q in
place of (). By the mentioned theorem it then follows, for v € A, that

A(Q:Q: €:9)°(Q: & v = j(Q: €: D)(D), (11.10)

for n(v) € V(Q,£) given by n(v) = evo A(Q: Q: £: 1)5°(Q: £: v)n. Using Lemma 11.15
we now conclude that, for v € A4 with Rev — pg strictly ¥, (Q)-dominant,

lim a,

t—00 e ES(Q: Yr: V)(m(lﬂ))(e)

= (ple)[&(m)ev, o A(Q: Q: £: 7)5°(Q: €: P)n)
= (w(e) [n(@)o)- (11.11)

In particular, this holds for v contained in the non-empty open set AN Q, with Q as in
Lemma 11.17. For such v it follows by the mentioned lemma that the limit in (11.11) also
equals (Y1), (m) = (p(e) | £(m)n,). We deduce that, for v € AN, where the bar denotes

conjugation,
(ple) [E(m)n(v)y) = (p(e) [E(m)m), (11.12)

for all m € Mg, +. By continuity and density it follows that the identity (11.12) holds
for all m € Mg. Since p(e) € HE \ {0}, it follows by irreducibility of the G-module Hg
that n(v), = n,, for all v € AN Q. This identity holds for every v € @W, since the sets A
and Q are independent of the element v € ®W. Combining this with (11.10) we deduce
that, for every v € AN Q,

j°(Q: £: 1/)77 = A(Q: Q: & I/>_1j(QZ £: 1/)77. (11.13)
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Let f(v) denote the expression on the left-hand side and g(v) that on the right-hand side
of the above equation. Then g is a meromorphic C~*(K : {)-valued function on aj, by
Theorem 11.14 and meromorphy of the intertwining operator. If ¢ € C*°(K : €)k, then
v = (f(v) | ) is a holomorphic function of v € af) .\ UH(Q, ), by Lemma 11.13. On the
other hand, v — (g(v)|¢) is a meromorphic function on aHqc- By analytic continuation

we deduce that
(fW) ) = (9v)]¢), (11.14)

as an identity of meromorphic functions in the variable v € aj,. \ UH(Q,§). From the
holomorphy of the function on the left-hand side it follows that the function on the right-
hand side is actually regular on ap) . \ UH(Q,§), for every p € C~°(K : {)x. The latter
space is dense in C*°(K : ) and v — g f(v) is a meromorphic C~*(K : £)-valued function.
It follows that ¢ is regular on aaqc\UH(Q, ¢). It now follows from (11.14) that the element
f(v) € C=2(K: €) equals g(v), for every v € aj . \ UH(Q, €). This implies all assertions
of the theorem. O

It follows from the above result that the distribution vector j°(Q: £: v)n, defined
for n € V4s(Q, €), coincides with the similarly denoted distribution vector defined in [6],
(3.13).

Corollary 11.18 Let (7,V;) be a finite dimensional unitary representation of K, let
P € P, and ¢ € Ay(P, 7). Then the Eisenstein integral E°(P:v: ), for A € ap,
coincides with the normalized Eisenstein integral E°(P, v, —)) defined in [16], § 5.1.

Proof: By the functorial property of Lemma 4.5, which is satisfied by both Eisenstein
integrals, it suffices to prove the result for 7 = 75, with 4 C K a finite subset. By
linearity it suffices to prove the assertion for ©» = 9,5y, where { € X?’,*,ds’ n € Vas(P,€)
and f € C°(K : €)y. The associated normalized Eisenstein integral is denoted E°(P, ), v)
in [16], §5.1. Tt is represented as a matrix coefficient in [16], Prop. 4. This representation
coincides with the one given in Lemma 11.13. O

It follows from the equality of the normalized Eisenstein integrals stated above, that
the Plancherel theorems formulated in [12], § 23, and Section 10, coincide with the ones of
P. Delorme formulated in [20], Sections 3.3 and 3.4. However, the chosen normalizations
of measures are different, resulting in different constants. We shall finish this section by
relating the various constants. The normalization of measures for the present paper is
described in [12], § 5. The normalization given in [20], §0, follows essentially the same
conventions of interdependence, with one crucial difference. A choice of invariant measure
dz for X, determines the same choice of Haar measure da for A, in both papers. In our
paper we fix the Lebesgue measure dA on a’ that makes the Euclidean Fourier transform

q
an isometry from L*(Aq,da) onto L2(ia(’;, |[W|dX). On the other hand, in [20], §0, the
convention is to fix the measure d)\: = |W|dX instead.

If @ € P,, the same convention applies to the normalizations of invariant measures
dzg. on Xg., for v € W, versus a choice of normalization of dag on the group *Aq,,
which is ‘the Aq of (Mg, Mg NvHv™").” This determines a normalization dAg of Lebesgue
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measure on i *ag,. The corresponding measure of [20] is given by dAj, = [Wg|dAg. In
both papers, one chooses the measure on iap,, to be the quotient of the chosen measures
on ia; and 7*ag,. This results in a choice of Lebesgue measure dug on iag, in the present
paper. The similar measure dpug in [20] is then given by duy = [W:Wq]dug. For the
constants in the Plancherel formula, see e.g. [12], Thm. 23.1 (d), this means that [W: W]
should be replaced by

[W: W™ [W: W] = [W5: Wol™" = [W(agq)| ™"

The latter is indeed the constant occurring in, e.g., [20], Thm. 3 (iii).

12 Appendix. A module of moderate growth

We adapt the notation introduced in the beginning of Section 11 and fix a real number
r > 0. The goal of this section is to give a proof of Proposition 11.3.

Lemma 12.1 Forevery g € (3, the left regular action L, leaves the space C,.(G) invariant;
its restriction to the mentioned Banach space has operator norm at most ||g||".

Proof: In view of (11.1) it follows from the multiplicative property of the operator norm
that ||gz| > |l¢g7Y|7 ||z|| for all x,¢g € G. Applying this inequality to the definition of
| Lyfll-, for f € C.(G) and g € G, we see that L, acts on C,(G) with operator norm at
most ||g7"||". The lemma now follows by application of (11.3). O

We note that the left regular representation L of G in C,(G) is not continuous if G is
not compact. In fact, in that case there exists a function f € C,.(G) such that L, f has
no limit for g — e. However, L. does induce a continuous representation in the subspace
C°(G). We will establish this in a number of steps.

Lemma 12.2 Let y be a continuous seminorm on C°(G). There exists a continuous
seminorm v on C°((G) and a constant s > 0 such that

pLof) < gl v (),
for all f € C*(G) and g € G.

Proof: Fix u € U(g). It suffices to prove the lemma for pp = || - ||, with F' = {u}. Let
f€C>(G) and g € G. Then

plgf) = 1ulg [Nl = 1Ls Daagg=yuf -

Let V be the G-submodule of U(g) generated by u. Then V is finite dimensional, hence of
moderate growth. Let U be a basis for V. For v € ¥, let ¢,(g) be the coefficient of Ad(g™")
with respect to v. Then it follows that there exist constants C' > 0 and s > 0 such that
leu(9)] < CllgY* = Cllg]|*, for all v € ¥ and g € G. Combining these estimates with
Lemma 12.1, we obtain the result with v = Cry,,. O
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Lemma 12.3 Let y be a continuous seminorm on C2°((). Then there exists a continuous
seminom v on C°(G) such that

p(Lespx [ = f) < [ X v (f),
for all f € C(G) and all X € g with || X]| < 1.
Proof: We will first prove the assertion under the assumption that 4 = || - ||,. Let X € g,

f € C>x(G). Then

1
LeXpr("L.) - f('L> = / LexthLXf(-r> dt (.f € G)
0
From this equality, combined with Lemma 12.1, one readily sees that

[ expx | = fll» < sup [lexp(tX)[" [[Lx []]-
0<t<1

We now observe that the function Z — | exp Z|| is bounded on the unit ball of g,, say
by a constant C' > (. Let ® be a basis of g such that all elements of the dual basis have
operator norm at most C'~". Then by linearity of Lx in the variable X € g, the desired
assertion follows with the continuous seminorm vy: = vg, in place of v.

To complete the proof it suffices to establish the assertion for p = vg, with F' consisting
of a single element u € U(g). In that case we have

f(Lespx f = f)

Lulexpx [ — Luf||;

[ Lexp x Le=saxy f = Lemaaxty fllr + || Lpemsaxos f1|-

|X 7/0<Le—aqu ) + I‘L[e—aqu_u]er, (12.1)

with 14 as in the first part of the proof.
Let V be the (finite dimensional) G-submodule of U(g) generated by u. Then X —

e~2X 4 is a locally bounded V-valued function on g. Hence, there exists a continuous

<
<

seminorm v; on C°((), only depending on v and u, such that

Vo(Le—aaxy f) < un(f), (12.2)
for all f € C*(G) and all X € g with ||X|| < 1. Equip V with any norm || - ||. Then
le=23Xu — u|| = O(]| X||), for | X|| < 1. Hence, there exists a continuous seminorm v, on

C>°(G), only depending on u, such that
| Lie=saxt e fll < N X v2(f), (12.3)

for all f and X as before. The lemma follows by combining (12.1) with (12.2) and (12.3).
O
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Corollary 12.4 The left regular representation L of G in C2°(() is continuous.

Proof: It follows by application of Lemmas 12.2 and 12.3 that the representation L is
separately continuous. Since C°(() is a Fréchet space, it is barreled. The continuity
follows by application of the Banach-Steinhaus theorem. O

It follows from the definition of C°(G) that Lx restricts to a continuous linear endo-
morphism of C°((G), for every X € g. We will actually show that the Fréchet G-module
C°(@) is smooth. A first step in this direction is the following.

Lemma 12.5 Let y be a continuous seminorm on C2°(G). Then there exists a continuous

serninorm v on C2°(() such that for all f € C*(G), X € g with || X|| < 1andt € [-1,1],
M(t_l[Lexthf - f] - LXf) S |t| y(f)
Proof: We shall first prove this under the assumption that p = || - ||,. From the identity

t_l[Lexthf('r> - f<$>] — LXf('r> - /0' [LexthXLXf<'r> - LXf(;C)] dTa

for f € C*(G), © € G, and X € g, we obtain that

/u(t_l[LeXPtXf - f] - LXf) S OS<uI<)1 HLexthXLXf - LXf“r (124)
< X vo(Lxf) < (), (12,5

for f € C>(G) and X € g with || X|| < 1. Here 1y is the seminorm associated with y as in
Lemma 12.3. Moreover, 14 is a suitable continuous seminorm on C°((G) only depending
on vy.

To complete the proof it suffices to establish the assertion for a continuous seminorm

p of the form vp,, with F' consisting of a single element v € U(g). We then have, for
f€Cx(G), X € gwith | X]| <1andte[-1,1], that

M(t_l[Lexthf - f] - LXf)
= Ht_l[LuLeXthf - Luf] - Lqu”r
< Ht_l[LeXthLe—taquf — Lo—taax, f] — LXLe—taquer
+ HLt—l[e—tadxu—u]-l-[X,u]fHT + HLXL[e—taqu—u]f”r
< |t| Vl(Le—taquf) + HLt—l[e—baqu_u]_l_[X’u]er + HLXL[e—Caqu—u]er- (12.6)

Here v is the seminorm of (12.5). Let V' be the G-submodule of U(g) generated by u,
equipped with a choice of norm || - ||. Then e="4Xy is a locally bounded V-valued function
of X and t. Tt follows that there exists a continuous seminorm vy, only depending on vy,

such that, for all f € C(G),
(Limwaxf) <malf) (X €, X[ <1, t€ [-11)) (12.7)
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Moreover,
[t e u —u] + [X, ]l = O(t]), (It < 1),

locally uniformly in X € g. It follows that there exists a continuous seminorm v3, only
depending on u, such that, for all f € C°(G),

| Li=1pe=taax ), Sl < |t vs(f) (X €g, | X|| <1, te€][-1,1]). (12.8)
Finally, using that |e~"2dX
obtain that there exists a continuous seminorm vy, only depending on w, such that, for
all f € Cxr(G),

[Lx Lig-vaxu—u fll- < [tla(f), (X €g [ X]| <1t €[-11]) (12.9)

Combining (12.6) with (12.7), (12.8) and (12.9), we obtain the desired assertion with the
continuous seminorm v = vy + 3 + 4. O

u — ully = O(|t]), for |t| < 1, locally uniformly in X, we

Corollary 12.6 Let X € g. Then, for every [ € C2(G),
lim Lexthf - f

t—0 t

= Lxf in C2(G).

Lemma 12.7 Let V be a Fréchet space, and let m be a continuous representation of GG
in V. Suppose that there exists a linear map g — End(V'), X +— 0x, such that for every

veVandall X €g,

m(exptX)v —wv

lim = Oxv.
t—0

Then V = V™. Moreover, for every X € g, we have m(X) = 0x.
Proof: For v € V, we define the function ®,: G — V by ®,(g) = 7(g)v. Then ®:v — @,

is a continuous linear map from V onto a closed subspace of C'(G, V). We will show that
® maps into C*(G, V). Let v € V. Then from the hypothesis it follows that the function
t — m(exptX)v is differentiable at ¢ = 0 as a function of ¢ with values in V, with derivative

dxv. For g € GG we have
®,(gexptX) = n(g)[r(exptX)v].

Since 7(g) is a continuous linear endomorphism of V/ it follows that the V-valued function
®, has a directional derivative in the direction of the vector field Ry, with derivative

Rx®, = ®,,.

The right-hand side of the above expression belongs to C(G, V), for every X € g. Hence,
®, is C'. Tt follows from repeated application of this argument that the function @, is
smooth. Hence v € V. Moreover, it follows that dx = n(X) for all X € g. O

Proof of Proposition 11.3: It follows from Corollary 12.6 combined with Lemma
12.7 that every vector in C°(() is smooth. Hence C°(() is a smooth Fréchet module.
The assertion about moderate growth follows from Lemma 12.2. d
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