COMPUTATION OF PERIODIC SOLUTION BIFURCATIONS IN
ODES USING BORDERED SYSTEMS *

E. J. DOEDEL !, W. GOVAERTS !, AND YU. A. KUZNETSOV §

Abstract. We consider numerical methods for the computation and continuation of the three
generic secondary periodicsolution bifurcationsin autonomous ordinary differential equations (ODEs),
namely the fold, the period-doubling (or flip) bifurcation, and the torus (or Neimark-Sacker) bifur-
cation. In the fold and flip cases we append one scalar equation to the standard periodic boundary
value problem (BVP) that defines the periodic solution; in the torus case four scalar equations are
appended. Evaluation of these scalar equations and their derivatives requires the solution of lin-
ear BVPs, whose sparsity structure (after discretization) is identical to that of the linearization of
the periodic BVP. Therefore the calculations can be done using existing numerical linear algebra
techniques, such as those implemented in the software AUTO and COLSYS.
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1. Introduction. We consider parameterized ODEs of the form

(1.1) — =2 = f(z,0),

where * € R™ is the state variable, a € R™ represents parameters, and where
f(x,a) € R™ is a (usually nonlinear) smooth function of z and a. Examples of sys-
tems of the form (1.1) are ubiquitous in mathematical models in physics, engineering,
chemistry, economics, finance, etc.

The simplest solutions of (1.1) are the equilibria, that is, solutions of the equation

(1.2) flz,a) = 0.

An equilibrium (2o, ag) is asymptotically stable if all eigenvalues of the Jacobian
matrix fz (2o, @g) have a strictly negative real part, it is unstable if there is at least
one eigenvalue with a strictly positive real part. In generic one-parameter problems,
i.e., when m = 1, eigenvalues on the imaginary axis appear in two ways: as a simple
zero eigenvalue, or as a conjugate pair iw, w > 0, of purely imaginary eigenvalues.
The first case corresponds to a fold, where two solutions coalesce and annihilate each
other under parameter variation. The second case corresponds to a Hopf bifurcation,
from which periodic solutions emerge. Early papers on the numerical computation of
bifurcations of equilibria are [14], [20], and [18].

Periodic solutions are solutions for which z(T') = 2(0), for some number 7' > 0.
The minimal such T 1is called the period. In generic one-parameter problems, periodic
solutions can bifurcate in several ways that can be characterized by the properties of
the monodromy matriz. The monodromy matrix is the linearized T-shift along orbits
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of (1.1), evaluated at the point 2(0) on the periodic solution. The eigenvalues of this
matrix are called the Floguet multipliers of the periodic solution [12], [15].

A periodic solution always has a multiplier equal to 1. If this multiplier has ge-
ometric multiplicity 1 then we call the periodic solution regular. The corresponding
eigenvector of the monodromy matrix is the tangent vector to the periodic solu-
tion at the point where the monodromy matrix is computed. If all other multipliers
are strictly inside the unit circle in the complex plane, then the periodic solution is
asymptotically stable. If at least one multiplier has modulus greater than 1, then
the periodic solution is unstable. Three generic bifurcations; determined by the mon-
odromy matrix, can occur along a one-parameter family (“curve” or “branch”) of
periodic solutions, namely the fold, the period-doubling (or flip) bifurcation, and the
torus (or Neimark-Sacker) bifurcation. At a generic fold, the multiplier 1 has alge-
braic multiplicity 2 and geometric multiplicity 1. Generically, a fold corresponds to
a point on the periodic solution branch where the curve turns with respect to the
free parameter. At a period-doubling bifurcation there is a simple multiplier equal
to —1. Generically this indicates a period-doubling of the periodic solution, i.e., there
are nearby periodic solutions of approximately double period. At a torus bifurcation
there is a simple conjugate pair of complex eigenvalues with modulus 1. Generically
this corresponds to a bifurcation of an invariant torus, on which the flow contains
periodic or quasi-periodic motions.

The aim of this paper is to formulate the computation and continuation of the
three generic periodic solution bifurcation curves as minimally extended BVPs, to
which standard numerical approximation methods as well as convergence theory ap-
ply. Fully extended BVPs for continuing periodic solution bifurcations have been
implemented in AuTO [5] (see also [6], [13]). The latter approach doubles the num-
ber of function components in the case of the period-doubling and fold bifurcations,
and triples it in the case of the torus bifurcation. Fully extended BVPs also yield a
more complicated Jacobian sparsity structure (after discretization) than that corre-
sponding to the underlying periodic BVP. There are efficient solution techniques for
such sparse linear systems; see, for example, [9]. However, these are not very easy
to implement and they are specific for each bifurcation. By contrast, the minimal
BVPs proposed in this paper for the period-doubling and fold bifurcations have the
same number of function components as the periodic solution problem. In the torus
case the number of BVP function components is only doubled. The most important
numerical advantage is that only one type of sparse system needs to be solved, namely
that corresponding to the underlying periodic BVP. Conceptually, the approach used
in this paper is similar to the bordering technique for equilibrium bifurcations [11],
[15].

The paper is organized as follows. Section 2 is devoted to the computation and
continuation of one-parameter branches of periodic solutions to (1.1). Classical results
on regularity of BVPs defining the branches of periodic solutions are proven here for
completeness. Sections 3 and 4 present the main results of the paper. Here we
construct functionals that vanish at points of bifurcations of the periodic solutions
and we prove that they are well-defined and regular. Section 5 deals with various
computational issues, including efficient computation of the defining systems and
their derivatives. A numerical example is given in Section 6.

2. Computation and continuation of periodic solutions. Numerical con-
tinuation is a technique to compute solution curves to an underdetermined system of
equations. Details can be found in, for example, [1], [3], and [11]. Tt is a basic ingre-
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dient of the numerical bifurcation algorithms implemented in AuTO [5] and CONTENT
[16]. In this paper we restrict our discussion to issues that are specific to the case of
periodic orbits.

To compute a periodic solution of period 7' of (1.1), one first fixes the period by
rescaling time. Then (1.1) becomes

(2.1) #'(t) =Tf(=(t), o),
and we look for solutions of period 1, that is,
(2.2) z(0) = z(1).

The period T is one of the unknowns of the problem. In a continuation context we as-
sume that a solution (zx—-1(-), Tk-1, ak—1) is known, and we want to find (zx(-), Tk, ax)
that we denote by (z(-),T, ). The equations (2.1) and (2.2) together do not fix the
solution completely, since any solution can be translated freely in time, that is, if 2(¢)
is a solution then so is z(¢ 4+ o) for any o. To fix the solution it is necessary to add a
“phase condition”. Tn AuTo [5] and CONTENT [16] the integral constraint

1
(2.3) /(; ¥ (t)a),_y (1) dT = 0.

is used to fix the phase. (We use “*” to denote transpose.)

The periodic solution is now determined by the equations (2.1), (2.2), (2.3), which
together form a boundary value problem with an integral constraint.

In our continuation context, the periodic orbit (¢) and the scalars 7" and « vary
along the solution branch. In the setting of Keller’s pseudo-arclength continuation
method [14] the continuation equation is

(2.4) /0 (z(7) — wk—1(7))* Tp_a(7) d7 + (T — Tk_l)Tk_l + (@ — ag_1)dg_1 = As,

where the derivatives are taken with respect to arclength in the function space, and
should not be confused with the time derivatives in, for example, Equation (2.3).

A widely used method to discretize the above boundary value problem is the
method of orthogonal collocation with piecewise polynomials. Tt is used in coLsys
[2], as well as in AuTO and cONTENT. The method is known for its high accuracy [4],
and it 1s particularly suitable for difficult problems, due to its known optimal mesh
adaptation techniques [19]. The numerical continuation of the discretized equations
leads to structured, sparse linear systems [8]. To describe these systems it is convenient
to formulate the boundary value problem in terms of operators on function spaces.

Denote by C*([a, b], R™) the space of k times continuously differentiable functions
defined on [a, b] and with values in R™. Let D be the differentiation operator acting
from C!([a,b], R™) to C%([a,b], R"). Any n x n matrix M (t) smoothly depending on
t € [a, b] defines an operator from C*([a, b], R™) into itself by the matrix multiplication:
(M) (t) = M(t)y(t). The Dirac evaluation operator at the point ¢ is denoted d;.

For a given ¢ € C°([0,1],R") we denote by Ints the linear functional from
C°([0,1], R") into R defined by

Inty(v) = (o,v) = /0 ¢*(7)v(r) dr.
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Suppose we want to compute a periodic solution of (1.1), i.e., we want to solve
the system (2.1), (2.2), (2.3) and (2.4) for (2(¢),T, &) by a Newton-like method. The
Fréchet derivative operator corresponding to this problem has the form

D-Th(t)e) - f@t)a) —Thale(t)a)
_ 3o — &1 0 0
(2'5) Intx;_l(,) 0 0

Intn_l(A) Tk_1 k1

The discrete version of these linear operators is a square matrix that has a large
matrix corresponding to D — T'fy((t), ) in the upper left corner, bordered on the
right by two extra columns and at the bottom by n + 2 extra rows. The big matrix
in the upper left corner is a block band matrix. Systems of this form are solved in
AuUTO by a specially adapted elimination algorithm that computes the multipliers as
a byproduct [§].

Consider the fundamental variational equation

(2.6) X' —Tfy(z(t),a)X =0,
and the adjoint equation
(2.7) X' +Tfr(z(t), )X = 0.

Denote by ®(¢) the fundamental matrix solution to (2.6), for which ®(0) = I, where
I = I, xn, is the n-dimensional identity matrix. Then ®(1) is the monodromy matrix
of the periodic solution. The eigenvalues of ®(1) are the Floquet multipliers, and
there is always at least one multiplier that is equal to 1. A corresponding eigenvector
is '(0). For a regular periodic solution the multiplier 1 has geometric multiplicity 1.
Similarly denote by ¥(t) the fundamental matrix solution to (2.7), for which ¥(0) = I.
One has ¥(t) = [(®(t))~']*.

If v(t) is a vector solution to (2.6) with initial values v(0) = vy and w(t) is a vector
solution to (2.7) with initial values w(0) = wq then the inner product w* (t)v(t) = wjvg
is independent of time t.

The left and right eigenvectors of the monodromy matrix ®(1) for a geometrically
simple eigenvalue 1 will be denoted po, go respectively. It is easily seen that pg (respec-
tively, qo) is also the right (respectively, left) eigenvector of ¥(1) for the eigenvalue 1.
Furthermore, qq is a scalar multiple of 2/(0).

We now state some basic facts about the linear operator (2.5) when linearized
about a regular periodic solution (z(¢), 7T, «).

ProrositioN 1. If (z(t),T,a) is a regular periodic solution of (2.1) then the
operator

D —Tfa(x(t), )

(2.8) il

:C'([0,1],R") = C°([0,1],R") x R"
has a one-dimensional kernel spanned by ®qq. Its range has codimension 1; if { €
C°([0,1],R™), r € R™ then (¢,7)* is in the range if and only if (¥po,() = pir. In
particular, if r = 0 then ({,0)* is in the range if and only if (¥pg, () = 0.

Proof. First, let v(¢) be in the kernel of (2.8). Then v must have the form
v(t) = ®(t)vo for a vector vg. Since 0 = (61 — dg)v = v(1) — v(0) = (®(1) — I)vg, we
infer that vy must be a right eigenvector of ®(1) for the eigenvalue 1.
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Next, let ¢ € €°([0,1],R"), r € R™ be given. If ({,r)* is in the range of (2.8)
then there must exist a v € C'([0, 1], R") for which

v'(t) = Tfe(2(t), a)v(t) = ((1).

The general solution of this linear differential equation is

v(t) = ®(t) [vo -|-/0t T*(1)¢(7) dr] ,

where vg = v(0) is an initial vector. Also, we must have v(1) — v(0) = r, that is,

(MU—UW+¢U%ﬂWﬂﬂdﬂdr:n

Such a vector vy can be found if and only if

" (@(1) / W (7)) dr ) —0,

that 1s, if

1
pg/o *(r)¢(7) dT — pir =10,

from which the second result follows.
CoroLLARY 1. If (2(t),T,a) is a regular periodic solution of (2.1) then the
operator

D —Tfa(x(t), )
(2.9) 8 — &
Int¢

from C([0, 1], R™) into C°([0, 1], R™) x R™ x R. is one-to-one if and only if (¢, ®qo) #
0.

ProrosiTioN 2. If (z(t),T,a) is a regular periodic solution of (2.1) then the
operator

D+Tf;(z(t), @)

(2.10) 5 g

:C'([0,1],R™) — €°([0,1],R") x R"

has a one-dimensional kernel spanned by ¥py. Its range has codimension 1; if { €
C°([0,1],R"), r € R™ then ({,r)* is in the range if and only if (®q0,() = ¢ir. In
particular, if r = 0 then (¢,0)* is in the range if and only if (®qo,{) = 0.

Proof. Similar to the proof of Proposition 1. {

CoRroLLARY 2. If (z(t),T,«) is a regular periodic solution of (2.1) then the
operator

D+ Tf; (x(t), )
(2.11) 8 — &
Intw

from C'([0, 1], R™) into C°([0, 1], R™) x R™ x R. is one-to-one if and only if (1, Upo) #
0.
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ProrositioN 3. Let (z(t),T, ) be a regular periodic solution of (2.1), and let
B0, %0 € C°([0, 1], R") be such that (o, ®qo) # 0, (Yo, ¥po) # 0. Then the operator

D —Tf(x(t), ) o

(2.12) d1 — do 0

Intg, 0

from C'([0,1],R"™) x R into C°([0,1],R") x R™ x R is one-to-one and onto.
Proof. To prove that the operator is one-to-one, suppose that

D —Tf(x(t),a) o y 0

)= (0.

Intg, 0

for v € C'([0,1],R™), G € R. In particular, it follows that

D~ Tfo(z(t), a) ]v: ( —Gvo >

So—d01 0

Since (o, ¥po) # 0, it follows from the last statement in Proposition 1 that G = 0.
By Corollary 1 and the assumption that (¢o, ®qo) # 0, it follows that v = 0 as well.
To prove that the operator is onto we consider the equation

D-Tfu(z(t)o) o], ¢
(213) (51 —60 0 < G > = r y

Inty, 0 s

where ¢ € C°([0,1],R™),r € R™,s € R.. In particular, the first two equations can be
written

(2.14) D _glfx_(gggt.)aa) ] v — < C—TG% ) .

By Proposition 1 this equation is solvable for v, say, v = v,, if
<\I’p0a C - G¢0> = para
that is, if we choose

(¥po, () — por
(¥po, o)

where, by assumption, the denominator does not vanish. Now

G=G, =

v(t) = vp(t) + c®(¢)qo,

is also a solution of (2.14), for any constant ¢. The third equation in (2.13) can now
be written as

-/0 o5 (7)[vp(7) + c®(7)qo]dT = 5.

By the assumption that (¢g, ®qq) # 0 it follows that the third equation is satisfied if
we take

_ s Jy $5(Dup(n)dr
Jo #5(1)® (7)o dr
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ProrositioN 4. Let (z(t),T, ) be a regular periodic solution of (2.1), and let
B0, %0 € C°([0, 1], R") be such that {¢o, ®qo) # 0, (o, ¥po) # 0. Then the operator

D+Tf(x(t),a) o
(2.15) 1 — &g 0
Int% 0

from C'([0,1],R") x R into C°([0,1],R") x R™ x R. is one-to-one and onto.
Proof. Similar to the proof of Proposition 3. ¢

3. Test functionals for bifurcations of periodic solutions. For the fold and
Hopf bifurcations of equilibria, several minimally extended systems are discussed in
[11] and incorporated in CONTENT [10].

To obtain similar systems in the case of periodic orbits we construct functionals
that vanish at codimension-1 bifurcations of periodic solutions, i.e., at the fold (limit
point), at the period-doubling (flip), and at the torus bifurcation, respectively.

3.1. A test functional for the fold bifurcation. Let (z(t),7,«) define a
periodic solution of (1.1), i.e., it satisfies (2.1), (2.2) and (2.3). If the solution corre-
sponds to a fold then the monodromy matrix ®(1) has an eigenvalue +1 with algebraic
multiplicity 2 and geometric multiplicity 1. (A geometrically double eigenvalue +1
corresponds to a higher degeneracy.)

Let pg and ¢¢ denote the corresponding left and right eigenvectors, which satisfy

(®(1) = Ngo =0,  (¥(1) = I)po =0,

(®(1) = I)"po =0, (U(1) =I)"q0 = 0.
with
Popo = qogo = 1.

At a generic fold, where the multiplier 1 has algebraic multiplicity 2, we also have
generalized eigenvectors p; and ¢ satisfying

(®(1) = Dg1 =qo0,  (¥(1) = I)p1 = po,

where ¢1 and p; can be chosen so that

4790 = pipo = 0.

Note that in the multiplicity-2 case we also have pfqo = p7(¥(1) — I)*qo = 0.
ProposITION 5. If (2(t),T,a) is a regular periodic solution of (2.1) then the
operator

D—sz(a:(t),a) —f(a:(t),a)
(3.1) d1 — do 0
Mnts(a(),0) 0
from C'([0,1],R™) x R — C°([0,1],R™) x R™ x R. is one-to-one if the multiplier 1

has algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e., at a
fold, then the operator has a one-dimensional kernel, spanned by the vector

(3.2) ( | > € C'([0,1],R") x R,
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where v(t) = CT(](I)(t)(CQQO — (g1 — tq0)), c2 is determined by the condition that

1
qSA @*(7)®(7)[cag0 — (q1 — Tq0)] dT7 =0,

and cq is determined by the condition that x'(0) = coqo.
Proof. Consider the homogeneous equations

s D_z;fw(:g(t),a) —f(;%(t)aa) < v ) . 8
. 1= 0 S/ \o )

Ints(z(.),a)

From the first equation in (3.3) we have

v(t)

S
—_
~
S

v+ S fy W (1) (w(r), ) dr]

(1) [vo+ 5 fo W (r)a'(r) dr |
v+ § [y ¥ ()@(r) dr /(0)]

®(t) [vo + F2'(0)],

i
—_
o~
)

where we used the facts that ¥*(7)®(7) = I and z'(t) = ®(¢)2'(0). Above, vo = v(0)
is an initial vector. By the second equation in (3.3) we have

0=wv(1) —v(0) = (®(1) — Tvo + ;m'(m,

that is,
S
(®(1) = Nwvg = —fx/(()).

Now (®(1) — Iz'(0) = 0, so that 2'(0) = coqo, for some ¢g € R, ¢g # 0. Thus we
must solve

(3.4) (@(1) = T)vo = —60;(]0;

where ¢o spans the kernel of ®(1) — 1.
If the multiplier 1 has algebraic multiplicity 1 then we must have S = 0, vg = ¢14o,
and hence v(t) = ¢1®(t)qo. By the third equation in (3.3)

0= [ Fatrhape) dr= 7 [ oot dr= 7 [ (e 0] 0 dr

coc1 qp (/01 Q% (7)P(7) dT) q0 =0,

from which it follows that ¢4 = 0. Thus v(¢) = 0. It follows that the operator (3.1) is
one-to-one.

At a fold the multiplier 1 has algebraic multiplicity 2. In this case (3.4) is also
solvable if S is nonzero, namely

vo = —Cormq + ¢2q90,
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where ¢3 € R is arbitrary. The third equation in (3.3) then implies

0 = q z™*(r)v(r) dr
= fy #*(1)®(7)[vo T ' (0)] dr
= f01 () ®(7)[~ COTQ1 + CQQO + —cnqo] dr
= [, [®(r)z'(0)]*®(r)[- CoTlh + eaqo + SFeoqo] dr

coqd fol O* (1) (7)[ cqu1 + caqo + —coqo] dr,
from which it follows that

oy~ 05 Jy O (DDl = Tl dT
d T g5 fy @*(1)®(7) dr g

ProPosITION 6. Let (2(t),T, ) be a regular periodic solution of (2.1) and con-
sider the operator

(3.5)

d1 — do

|: D —Tfy(z(t),a) — f(z(t),a)
M, = 0
It (a(),e) 0

from C'([0,1],R™) x R — C°([0,1],R") x R™ x R. If the multiplier 1 has algebraic
multiplicity one, then My is onto. If it has algebraic multiplicity two, i.e., at a fold,
then the range of My has codimension 1 and the vector

Upo
(3.6) ( —po ) eC’([0,1,R") x R" x R
0

is complementary to the range space.
Proof. Consider a vector (&,n,w)* in C°([0, 1], R") x R™ x R. This vector is in
the range of M; if and only if there exist (v, S)* in C1([0, 1], R") x R such that

()

The first equation in (3.7) implies that

v(t) = ®(t) [1)(0) +/0 U (1) (&(7) + Sf(z(7),a)) dT:| .

The second equation in (3.7) then implies

n=uv(l) —v(0) = (®(1) — I)v(0) + @(1)/0 U (r)(€(7) + Sf(z(r), @)) dr.

Now
] * _ 1 ! * ’ _ 1 ! % _ co
| wsamair= 1 [ v @) ar= 5 [ 8 @at dr= L.
So

(3.8) 1= (@(1) ~ 1)e(0) + Sgy @(1)/0 ¥ (r)e(r) dr.
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If 1 is an algebraically simple eigenvalue of ®(1) then ¢q is not in the range of (®(1)—1I).
For given &, 7 (3.8) can be solved for v(0), S. Moreover, the solution is unique up to
the addition of a scalar multiple of ¢q to v(0). Since

1 1
/0 (2" (1)) ®(r)q0 dT = co/o (®(7)q0)*®(7)q0 dT # 0,

the scalar is determined uniquely by the third equation in (3.7).
If 1 is an algebraically double eigenvalue of ®(1), i.e., at a fold point, then (3.8)
is solvable if and only if

1
P30 = 1} / U (r)é(r) dr.

If so, the third equation in (3.7) again determines the solution uniquely. ¢
ProPosITION 7. If (2(t),T,a) is a regular periodic solution of (2.1) then the
operator

D+Tf(z(t),0) = f(z(t)0)
(3.9) 81 — & 0
Mt (o)) 0

from C1([0,1],R") x R — C°([0,1],R") x R™ x R. is one-to-one if the multiplier
1 has algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, 1.e.,
at a fold, then the operator has a one-dimensional kernel, spanned by (¥*pg,0)* €

¢([0,1],R") x R.
(0)-|

Proof. Consider the homogeneous equations
d1 — g 0
R t
w(t) = W(t) [wo + ?/ (1)’ (7) dr] ,
0

Intf(I(A)’a) 0

{D+Tf;(l'(t),a) — f(a(t),0)
(3.10)

From the first equation in (3.10) we have

where wg = w(0) is an initial vector. The second equation in (3.10) implies

0= w(l) — w(O) = (\Il(l) - [)’wo + g\ll(l) /01 (I)*(T)CL"(T) dr,

(T(1) = Nwy = —%\Il(l)/0 &*(1)®(7) dr 2'(0).

Given R, this equation is solvable for wq if
1
—Rq(’;\Il(l)/ @* (r)®(7) dr 2'(0) = 0,
0
that is, recalling that #'(0) = coqo, co # 0, and ¢g¥(1) = ¢, if

1
coRqS/ D*(1)®(7) d7 90 = 0.
0



PERIODIC SOLUTION BIFURCATIONS 11

It follows that R = 0, independently of the algebraic multiplicity of the eigenvalue 1.
Thus w(t) = ¥(¢)wg, where (¥(1) — Iwy = 0, so that wy = e3pg, for some ¢3 € R.
From the third equation in (3.10) it follows that

0 :/0 w*(r)a!(7) dr :/0 [ca¥(r)po]™ ®(7)2'(0) dr

1
=cp c3 pé/ U*(7)®(7) dr g0 = cg ¢3 Pjqo-
0

If the multiplier 1 has algebraic multiplicity 1 then pqo # 0. In this case ¢z = 0 and
hence w(t) = 0, that is, the operator (3.9) is one-to-one.

If the multiplier 1 has algebraic multiplicity 2 then p§go = 0, and we can choose
c3 # 0. In this case wg # 0, hence w(t) #Z 0. It follows that the operator (3.9) has a
one-dimensional kernel.

ProprosiTION 8. If (2(t),T,a) is a regular periodic solution of (2.1) then the
operator

81 — & 0
Ity (), 0

|: D+Tf;(‘v(t)aa) —f(;r(t),oz) :|
(3.11) M, =

from C([0,1],R") x R — C°([0,1],R") x R™ x R is onto if the multiplier 1 has
algebraic multiplicity one. If the multiplier 1 has algebraic multiplicity two, i.e., at a
fold, then its range has codimension 1 and the vector (0,0, 1)* € C°([0,1], R")xR"xR.
1s complementary to the range space.

Proof. Consider a vector (&,n,w)* in C°([0, 1], R") x R™ x R. This vector is in
the range of M5 if and only if there exist (w, R)* in C!([0, 1], R") x R such that

3
O w p—
(3.12) M ( R > =1 7
The first equation in (3.12) implies that
¢
w(t) = ¥(t) [w(O) —I—/ @*(7)(€(T) + Reo®(7)qo) dr| .
0
The second equation in (3.12) then implies

n=w(l)—w(0)=(¥(1) — NHw(0) + 111(1)/0 & (7)(&() + Reg®(7)qo)dr.

We so obtain the equation

1 1
(¥(1) — Nw(0) =n— RCO\I’(l)/U O* (7)®(7)q0 dT — \Il(l)/o @*(7)&(7) dr.

This equation for w(0) is solvable if and only if

1 1
5 = Reod; / &* (r)() dr + g / &* (r)é(r)dr.
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The latter equation is solvable uniquely for R, so the previous one is solvable for w(0)
and defines it up to the addition of a scalar multiple of py.

Now suppose that (w, R)* solve the first two equations in (3.12) where w(0) =
wg + rpo and 7 is arbitrary. The third equation in (3.12) then requires

(3.13) g5 (wo + rpo) dt = wT.

If the eigenvalue 1 of ®(1) has algebraic multiplicity 1, then this equation has a unique
solution in r and so M3 is one-to-one and onto. If it has algebraic multiplicity 2, then
the range of My has codimension at most 1. In this case, for £ = 0,7 = 0,w = 1 we
have wg = 0 and (3.13) has no solution. So the range of M5 has codimension 1 and
(0,0,1)* is a vector complementary to that range. ¢

ProrosITION 9. Let (z(t),T,a) be a regular periodic solution of (2.1) where
®(1) has eigenvalue 1 with algebraic multiplicity 2. Then there exist vgy, wo, v11, W11
€ C°([0,1], R™), wo2,v12 € R™, wos, voa, v13, w12 € R such that

D-Thx()a) - fa)0)  un
N1 _ (51 — (50 0 wo2
Intf(x(A)}a) 0 wo3

Intym Vo2 0

and

DETR M) - fa()ha) o

Ny = d1— &g 0 V12

Intf(x(,)y,x) 0 v13

Intwu w19 0

from C'([0,1],R") x R™ x R. to C°([0, 1], R") x R™ x R x R are one-to-one and onto.
For any such choice of the bordering elements we define v,w € C'([0,1], R™) and
S,G,H,R e R by the equations

. 0

(3.14) S N I
p 0

1

and

. 0

(3.15) vl rR=| "
1

Then in a neighborhood of (x(t),T,a), G = 0 if and only «f H = 0. Moreover, this
happens if and only if the reqular periodic solution corresponds to a fold bifurcation.

Proof. We choose
U(n(i) _ U(t_)
Vo2 - 1 !

where v is given in the statement of Proposition 5. Further we set
woy (t) ™ (t)po
Wo2 = 0
wos 0



PERIODIC SOLUTION BIFURCATIONS 13

By Propositions 5 and 6 Nj is one-to-one and onto. We further set

(20)-(74).

Ull(t) 0
V12 =10
V13 1

By Propositions 7 and 8 N3 is one-to-one and onto. The last statement in the Propo-
sition is proved by standard arguments.

3.2. A test functional for the period-doubling bifurcation. At a generic
period-doubling bifurcation there is an algebraically simple Floquet multiplier equal to
—1. The left and right eigenvectors of the monodromy matrix ®(1) for the eigenvalue
—1 will be denoted by p2 and g, respectively. They are also the right and left
eigenvector, respectively, of ¥(1) for the eigenvalue —1.

ProposiTiON 10. If (x(t), T, @) corresponds to a period-doubling bifurcation then
the operator

D —Tf(2(t), )

3.1
(3.16) do + 01

:C'([0,1],R") — C"([0,1], R") x R"
has a one-dimensional kernel spanned by ®qy. Its range has codimension 1; if { €
C°([0,1],R"), r € R™ then (,r)* is in the range if and only if (¥ps, () = —pir. In
particular, if r = 0 then (¢,0)* is in the range if and only if (¥ps,{) = 0.

Proof. Similar to the proof of Proposition 1. ¢

CoroLLARY 3. If (2(t),T,a) corresponds to a period-doubling bifurcation then
the operator

D —Tfx(x(t), o)
(3.17) 8o + &
Int¢

from C([0, 1], R™) into C°([0, 1], R™) x R™ x R is one-to-one if and only if (¢, ®q2) #
0.

ProprosiTION 11. If (2(t),T, e) corresponds to a period-doubling bifurcation then
the operator

D+Tf;(x(t), @)

(3.18) 5

:C'([0,1],R™) — C°([0, 1], R™) x R"

has a one-dimensional kernel spanned by Wpy. Its range has codimension 1; if { €
C°([0,1],R"), r € R™ then ({,r)* is in the range if and only if (®q2, () = —qbr. In
particular, if r = 0 then ({,0)* is in the range if and only if (®qs,{) = 0.

Proof. Similar to the proof of Proposition 2. {

CoRroOLLARY 4. If (2(t),T, @) corresponds to a period-doubling bifurcation then
the operator

D+ Tfy(x(t), a)
(3.19) 8o + 01
Intw
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from €1 ([0, 1], R™) into C°([0, 1], R™) x R™ x R. is one-to-one if and only if (1, Ups) #
0.

ProrositioN 12. Let (z(t), T, o) correspond to a period-doubling bifurcation and
let ¢o,v0 € C°([0, 1], R™) be such that (¢o, ®q2) # 0, (Yo, ¥ps) # 0. Then the operator

D —Tf(2(t),) o
(3.20) do + 41 0
Int¢n 0

from C1([0,1],R™) x R into C°([0,1],R") x R"™ x R. is one-to-one and onto.

Proof. Similar to the proof of Proposition 3.

ProPosITION 13. Let (2(t), T, ) correspond to a period-doubling bifurcation and
let ¢o,v0 € C°([0, 1], R") be such that (¢o, ®qs) # 0, (o, Ups) # 0. Then the operator

D+Tf(x(t),a) o
(3.21) dg + 61 0
Int% 0

from C1([0,1],R"™) x R into C°([0,1], R") x R™ x R is one-to-one and onto.

Proof. Similar to the proof of Proposition 4.

ProPoOsSITION 14. Let (2(t),T, ) be a periodic solution close to a period-doubling
bifurcation, so that the operators Mz and My (defined below) from C([0,1],R") x R
into C°([0, 1], R™) xR™ xR, are both one-to-one and onto. Letv,w € C'([0,1],R"), G,
H € R be defined by the equations

( ) ( v ) D—?fx(a;;(t),oz) Yo v 0
322) M = s 0 < ): 0.
\e ?nt¢01 0 G 1
N [ PATEGO. 6], 0
(323) M ( )z Jo + 6 0 ( ): 0
) H ;)nt%] 0 H -1

Then G = H. Furthermore, G = 0 if and only if the periodic solution corresponds to a
period-doubling bifurcation. If so, then v(0) is the right eigenvector of the monodromy
matriz for the eigenvalue —1.

Proof. Multiplying the first equation in (3.22) on the left with w*(¢), integrating
over the interval [0, 1], and using the last equation in (3.23) we obtain

/Olw*v'(T) dr — T/O1 w*(7) fo (2(7), a)v(r) dr — G = 0.

Partial integration of the first term, using the second equations in (3.22) and (3.23),
gives

1 1
—/ v*(r)w'(7) dr — T/ v (1) [ (z(7), 2)w(r) dT — G = 0.
0 0
Using the first equation in (3.23) we get
—(v,(—H¢o)) — G = 0.

Using the third equation in (3.22) we obtain G = H. The other statements in the
Proposition are now obvious. {
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3.3. A test functional for the torus bifurcation. Let et 0 < # < 7 be the
conjugate pair of complex multipliers with modulus 1. Furthermore, let p;,ps € R”
(respectively, ¢1,92 € R") be such that p; + ipy (respectively, q1 + iqq) is a left
(respectively, right) complex eigenvector of the monodromy matrix ®(1). So

(p1 + ip2) " ®(1) = € (p1 + ip2)”
®(1)(q1 + ig2) = € (1 + ig2),
U(1)(p1 +ip ) = ¢ (p1 +ipa),

(g1 +ig2) (1) = € (q1 + ig) ™

where (p1 +ip2)™" = p} —ip5, (g1 +iq2)" = qf —ig5.
In this section it is convenient to extend the definition of z(t), ®(¢), and ¥(¢) to
the interval [0, 2] by periodicity with period 1, and to redefine

Inty(v) = (o, v) = /0 ¢*(r)v(r) dr.

We start with the following result.

ProposiTioN 15.  Let (2(t),T,a) define a periodic solution that is, it satis-
fies (2.1), (2.2) and (2.3). Let (x(t),T, ) corresponds to a torus bifurcation through
multipliers e*®, 0 < § < 7. Let k = cos and consider the operator

D —Tfy(x(t), )

from C*([0,2], R") — C°([0,2],R™) x R™. Then
(1) The operator (3.24) has a two-dimensional kernel spanned by ®(t)q1 and

®(t)qa.
(#3) The operator (3.24) has a range with codim 2. The vectors

( s )( s ) € C([0,2], R") x R"

span a two-dimensional subspace that is complementary to the range of (3.24).
Proof. Let v be in the kernel of (3.24). Then v must have the form v(t) = ®(¢)vg
with vg € R™. We further have

0= (Jo — 2661 + &2)v = v(0) — 26w (1) + v(2) = (®(1) — " I)(D(1) — e~ I)uy.
We infer that it is necessary and sufficient that vg is in the span of ¢1, g2.
As a first step in the proof of (ii) we consider ¢ € €°([0, 2], R™), r € R™ and give

a necessary and sufficient condition in order that (¢,r)* be in the range of (3.24).
First, there must exist a v € C'([0, 2], R") for which

V' (t) = Tha((t), a)u(t) = ((t).

The general solution of this linear differential equation is

v(t) = B(2) [vo +/0t U*(1)¢(7) dr] ,
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where vg = v(0) is an initial vector. Also, we must have v(0) — 2xv(1) + v(2) = r,
that is,

. . 1 2
(q>(1)—629[)(q>(1)—e—”1)v0—2,@(1)/0 T* (7)¢(7) dr+q>(1)2/0 U* (7)¢(r)dr =7

This is an equation for vg which is solvable if and only if

orp" (1) / W () dr+ 7o) [ ) dr =y

or, equivalently,

1 2
“awe® [ ) ek [T () dr =

If we define the linear functional L by setting

(3.25) L) = —2/{6”/ pH\Il*(T)C(T) dr + 621'9/ pH\Il*(T)C(T) dr,

0 0

then we infer that (¢, r)* is in the range of (3.24) if and only if L(¢) = p™r.
As a second step in the proof of (i) we compute L(Up;) and L(¥ps). We have

1 2
L(¥py) = —2cos fet? / lell*(T)\II(T)pl dr + % / lell*(T)\II(T)pl dr
0 0

= ¢ (=2 cos f+cos f4isin 6) /1PH\I’*(T)‘I’(T) dr+e? /1PH‘I’*(1+T)‘I’(1+T)p1 dr.
0 0
Now we note that
(1 +7)p1 = U(r)¥(1)pr = ¥(r)(cos fp; — sin Ops)
and
PV (14 7) = [W(r)w(1)p]" = [ (r)p]" = = ptu(r).

Hence

1 1
L(¥py) = isin e’ / pHU* (1)U (7)p dr = (—sin + i cos 6) sin@/ @ (7)p||? dr.
0 0

By a similar argument we find that
1
L(¥py) = (cosf + isinf) sin 6/ ||\I/(T)p||2d7'.
0

As a third step in the proof of (i) we show that the range of (3.24) has codimension
2 by proving that every (£, 7)* can be written in a unique way as

20 ()=(0)+ () ()
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with (&, ro)* in the range of (3.24) and «, § € R.
Obviously &y = & and 7 has to satisfy the conditions

pHTO = L), ro=r—ap — PBps.

These conditions imply

( pirL pip ) ( o ) _ ( pir — Re [L(€)] ) .

pip1 Pipa B par +1Im [L(£)]

This nonsingular linear system defines o, 8 in a unique way. Next, rq is obviously
defined by the requirement rq = r — ap; — Bps and with this choice we have pfry =

L(§)

As the fourth and last step to prove (i¢) we will show that

(5 )0%)

also span a two-dimensional space complementary to the range of (3.24). To this end

we decompose
Upr \ _( ¥p 0 0
()= ) () ().
Up _{ p 0 0
()= ) ()2 ()

in the decomposition of (3.26). Then ay, 1, ag, B2 are defined by the matrix equation

( pip1 DPip2 ) ( ap oy > _ ( —Re [L(¥p1)] —Re [L(¥po] ) _

pip1 Phip2 B Pa Im [L(¥p1)]  Tm [L(¥ps]

The proof of (if) is complete if we show that

(5 5)
B P
is a nonsingular matrix, or equivalently that

< —Re [L(¥p1)] —Re [L(Up] )
Im [L(¥p))]  Tm [L(Tps]

is nonsingular. By the second step this matrix is equal to

sinff —cosf . ! 9
(3.27) < cos 0 sin @ )smﬁ/o [|¥(7)p||"dT.
Since sin§ # 0 (3.27) the proof is complete.
ProposITION 16. Let (x(t),T,«) define a periodic solution, that is, it satis-
fies (2.1), (2.2), and (2.3). Let (2(t), T, a) correspond to a torus bifurcation through
multipliers e¥®, 0 < § < 7. Set k = cos § and consider the operator

D+ Tf(z(t),a)
2 [ ]
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from C'([0,2],R") — €°([0,2],R") x R™. Then

(t) The operator (3.28) has a two-dimensional kernel spanned by ¥(t)p; and
U(t)ps.

(73) The operator (3.28) has a range with codimension 2. The vectors

< o ) ( e ) € C([0,2], R") x R"

span a two-dimensional subspace that is complementary to the range of (3.28).
Proof. Similar to the proof of the preceding Proposition. ¢
CoRrOLLARY 5. Let (z(t),T,a) correspond to the torus bifurcation point of a
periodic solution. If k = cos @ then the operators

D—=Tf:(x(t),a) Upi Ups
(50 - 2/461 + (52 0 0

Intq%)q] 0 0 ’
Int¢(,)q2 0 0
and
D+Tfi(x(t),a) Pq1 Pgo
0o — 2Kkd1 + 92 0 0
Intq;(A)pl 0 0
Intq;(A)p2 0 0

from C'([0, 2], R") x R? into C°([0,2], R™) x R™ x R? are both one-to-one and onto.
Proof. Standard.
ProposITION 17. Let (x(t),T,a) be close to a torus bifurcation point of perio-
dic solutions and k close to the value cos of the torus bifurcation point so that the
operators

D—=Tfe(z(t),a) to th

0o — 2Kkd1 + 09 0 0
Int¢0 0 0 ’

Int¢1 0 0

(3.29) M; =

D+Tf(x(t),a) ¢0 ¢
0o — 2Kkd1 + 92 0 0
Intwo 0 0

Intzp1 0 0

—

(3.30) Mg =

from C'([0,2], R") x R? into C°([0,2],R") x R™ x R? are both one-to-one and onto.
Let vy, va, wy,wy € C'([0,2], R™), G, H € R**? be defined by the equations

v v 0 0

(3.31) My| Gu G |=|1 0
Ga1 G

2 0 1

w w 0 0

) 1 2 0 0

(332) Mg Hyy Hoy = 1 0

Hyis His
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If (z(¢),T, @) is a periodic solution, then G = 0 if and only if H = 0. Moreover,
this happens if and only if (z(t), T, «) corresponds to a torus bifurcation of periodic
solutions with the multipliers e*'® | where k = cos ().

Proof. Standard.

4. Regularity of the defining systems. In this section we prove that, under
natural nondegeneracy and transversality conditions, the test functionals constructed
in the previous section are regular (with respect to the arclength parameter along the
periodic solution branch). This implies regularity of defining systems consisting of the
periodic BVP (2.1), (2.2), (2.3), and the vanishing condition for the corresponding
functional, for the two-parameter continuation of the bifurcation.

4.1. Regularity at a fold bifurcation. The prove the regularity of the test
functional G for the fold bifurcation in Proposition 9, we proceed as in the case of the
fold bifurcation of equilibria [11].

The computation of periodic orbits is based on the equation

(4.1) F(X,a)=0
where X = (z(-),7) € C}([0,1],R) x R, and F(X) € C°([0,1],R) x R™ x R is given
by
() —Tf(z(t), )
(4.2) F(X)=| =(1)—=(0)
. , V7
fo & (T)zg_y(7) dr
(see (2.1), (2.2), and (2.3)). The Fréchet derivative Fx (X, a) of this operator (with
x_1 substituted by  upon differentiation) is M; as defined in (3.1). By Propositions

5 and 6 the periodic orbit is a fold point'if and only if Fx is singular; the left and
right singular vectors are then

Upo
—Po
0

(1)

given in (3.2) and (3.6) respectively. The fold point is regular if and only if

and

*

(4.3 \fgﬁ (1) (7) %0

Now let a be a scalar parameter, such that [Fx F,] is onto at the fold point. Let
s denote arclength along the branch of periodic orbits. We think of X and « as
functions of s so that (4.1) is an identity in s. By (3.14) this also defines G as a
function of s. Suppose that the fold bifurcation occurs at s = sg. We will prove that
(4.3) is equivalent to G4(so) # 0.

Taking derivatives of (3.14) with respect to s we find

Uy v
(44) N1 Ss (FXXX5+Fonas) < S >
G 0
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(5)

is a right singular vector of Fx. Furthermore, at the fold point a; = 0. Since
FxX; + Foas = 0 1t follows that X is also a right singular vector of Fx. Now by
(4.4) we have G4(sq) # 0 if and only if

P (1) (1)

is not in the range of Mj; this is equivalent to (4.3).

In this expression

4.2. Regularity at a period-doubling bifurcation. We have seen that lo-
cally, near a period-doubling bifurcation, the system consisting of (2.1), (2.2), (2.3),
and G = 0 (where G is given by (3.22)), defines the set of period-doubling bifurcations
in (z(-), T, a)-space, if the conditions (¢g, ®go) # 0, (Yo, ¥po) # 0 hold. We will now
prove that this is a regular system if the appropriate nondegeneracy and transversality
conditions for the period-doubling bifurcation hold.

Let s denote arclength along the curve of periodic orbits so that (z(s)(t), T'(s), a(s))
is a solution of (2.1), (2.2), and (2.3) for all s near the bifurcation value sg. Non-
degeneracy implies that —1 is algebraically simple eigenvalue of ®(sg)(1), so that it
can be continued smoothly, together with its left and right eigenvectors, for nearby
values of s. Specifically, we denote by A(s) an eigenvalue of ®(s)(1), with left and
right eigenvectors p(s), ¢(s), that is,

®(s)(1)q(s) = Als)q(s),  p*(s)@(s)(1) = A(s)p*(s),
(4.5) (s)(Dp(s) = A7 (s)p(s), q*(5)¥(s)(1) = A" (s)q™(s),
' p(s0) = po, q(s0) = 9o,
)\(80) =—1.

The nondegeneracy condition implies that
(4.6) p*(s)a(s) # 0,
for all s sufficiently close to sg. By standard arguments, (4.5) implies
(4.7) P (5)q(s)Xs (5) = P (5)@s (5)(1)q(s).
To get an explicit formula for ®,(sg)(1) we start from the observation that
(D =T(s)fe(2(s),a(s)))® =0.
Taking derivatives, and using somewhat simplied notation, we obtain
(D=Tf)®s = (Tfs)sP.
Multiplying on the right by an arbitrary vector £ € R”, we have
(D =Tf)P:& = (Tf)s PE.

This is a linear differential equation for ®,& with solution

B, (s)(1)€ = D(s)(2) [C+/Ot U (s)()(Tfz)s () (T)®(s) (7)€ dr]|
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for some ¢ € R™. For ¢ = 0 this reduces to

@, (s)(0) = @(s)(0)¢.
Since ®(s)(0) = I, ®,(s)(0) = 0, this implies that ¢ = 0, so that

(4.8) @,(s)(1)€ = ‘1>(5)(1f)/0 U (s)(T)(Tfz)s(5)(T)@(s)()¢ dr,

for all £ € R”. From (4.7) we get

(4.9) P (s)a(s)As(s) = A(S)p*(S)/O U (r)(Tfz)s(5)(r) @ (s5)()q(s) dr.

The natural transversality condition for the period-doubling bifurcation is A;(sg) # 0.
We now show that this is equivalent to G(so) # 0, thus establishing regularity.
ProrosiTioN 18. The conditions As(so) # 0 and Gs(so) # 0 are equivalent.
Proof. The equations (3.22) are to be considered as identities in s; by taking
derivatives we obtain

(4.10) (D =Tfe)vs = (Tfr)sv — oG,
(4.11) (b0 +d1)v, =0,
(4.12) Intg v, = 0.

The solution of (3.22) at s = sg is given by G(so) = 0, v(so)(t) = ®(s0)(¢)g0. Now,
at s = so (4.10) is a linear differential equation for v, (sg)(t) with solution

vs(50)(t) = ®(s0)(?) [C+/0 U™ (50) (M) ((T'f)s (s0) (T)v(50) () — %0 Gis(s0)) dr |,

for some vector ¢ € R”. Using (4.11) we find

0= ([+<1>(50)(1))¢+<1>(50)(1)/0' U™ (50) () (T )5 (50)(T)@(50) (T) g0 — Y0 G (50)) dr-

This equation in ¢ has a solution if and only if

P*(Sn)¢>(80)(1)/0 U (50) () ((T'f)s (50) (T)@(50) (T) g0 — o Gs(s0)) dT =0,

that is,

ps/o U™ (50)(7) ((T'f )5 (50) (T) @ (50) (T) g0 dT = (tho, ¥pa)Gis(s0).
By (4.9) this implies

—(p5g0)As(s0) = (Yo, ¥po)Gis(so).

Since pjqo and (o, ¥po) are nonzero, this completes the proof. &
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4.3. Regularity at a torus bifurcation. Again, let s be arclength along the
curve of periodic orbits, so that (z(s)(t),T(s), a(s)) is a solution of (2.1), (2.2), and
(2.3) for all s near the torus bifurcation value sg. We assume that ®(sq)(1) has
algebraically simple eigenvalues e, Let A\(s) = A1 (s) +i)a(s), p(s) = pi1(s) +ip2(s),
q(s) = q1(s) +iga(s) be the smooth continuations of the critical multiplier ¢'® and the
corresponding left and right eigenvectors. The natural transversality condition is the

requirement that A(s) crosses the unit circle in the complex plane transversally, i.e.,

(413) )‘1(50)A15(50) + AQ(S())AQS(SQ) ;é 0.
PROPOSITION 19. The system consisting of (2.1), (2.2), (2.3), and the conditions

G =
G
Gt
Gaz =

(4.14)

cooo

)

where the G;; are defined in Proposition 17, together form a defining system with
full linear rank for the torus bifurcation points of periodic solutions if the natural
transversality condition (4.13) s satisfied.

Proof. To prove that the system (2.1), (2.2),(2.3),(4.14) is a defining system
with full linear rank we consider the implicit solution (x(s)(t),T(s), a(s)) of (2.1),
(2.2),(2.3). So G11, G2, Ga1, Gas are functions of s, k only and we have to prove that

Glls Gllﬂ
G12s G12ﬂ
G2ls G215
G22s G22h1

has rank 2. Assume that ¢y, cs € R are such that
(4.15) c1Gijs + ¢2Gijs = 0, (1, =1,2).

We start by noting that p(s)q(s) # 0 in a neighborhood of s = sy. By standard
arguments

(4.16) (" )A =p"®,(1)q,

where for simplicity of notation we have suppressed the dependence on s. To get an
expression for @, (1) we start from the identity

(D-Tf:)®=0.
Taking derivatives with respect to s and multiplying with any vector ¢ € R™ we find
(D=Tf:)®:( = (Tfs)sDC.

The solution of this linear differential equation in ®,( is

B.C(1) = B(s) (1) [5 +f W (5)(7) (T£2). () () 0(5) (F)C dr] |



PERIODIC SOLUTION BIFURCATIONS 23

where ¢ is determined by the initial conditions. Since for ¢ = 0 we have ®(0) =

I,®,(0) =0, it follows that ¢ = 0. Choosing ¢ = ¢ we obtain from (4.16) that

1
(4.17) ("9 = /\PH/O U (s)(T)(Tfz)s (5)(T)@(s)(T)q dr.
From (3.31) we infer that

(Tf:c)svl (fo)SUZ

Uls U2s 0 0

(4.18) Ms | Gus Gl2s | = 0 0 :
Gars  Gaas 0 0
Ule o V2w 21)10(1) 21)20(1)
(4.19) Ms | Giix Gras | = 0 0
Gan G22.‘c 0 0

Combining (4.15),(4.18) and (4.19) we obtain

T T
e I
(4.20) Ms; 0 0 = 201 : 202 ,
0 0 0 0

Hence

Cl(Tf:c)svl Cl(fo)sv2
2621)1(1) ’ 2621)2(1)
are both in the range of (3.24). As an essential step in the proof of Proposition 15 it
was shown that this implies

aL((Tfz)sv) = 2(32pH1)1(1),

C]L((fo)SUZ) = QCZPHUZ(l)J

where the linear operator L is defined in (3.25). Since v, vy are in the kernel of (3.24)
we have

v1(7) = ®(7)v1(0), v2(7) = ®(7)v2(0).
Combining the last four formulae we find
(4.21) 1 L((Tfx)s®q) = 2cap" ®(1)q = 2¢2¢™ (p" q).

Now,

L(Tf),®q) = — 2 / P (7)(T1,),®(r)q dr + % / P (7)(Tf,),®(r)q dr

= eig(cosﬁ—l-isinﬁ— 2cos€)/ pH\I/*(T)(sz)SCD(T)q dr
0

1
+ e%g/ pH\I’*(l + )T fs)s ®(L 4+ 7)q dr.
0
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O(1+47)g = B(r)®(1)g = " ®(7)q.

Hence
. 1
L((Tfy)s®q) = 6“922'sin9/0 pH\II*(T)(Tfﬁ)S@(T_)q dr.

By (4.17) this implies
L((Tf,)s®q) = 2isin 8(p™ q) ).
Using (4.21) we further obtain
2icy sin (p )Ny = 2e0¢™ (pT¢q).
Dividing by 2(pf¢) we obtain
(—sin A5 + isinOAq;)cr = (cosf + isin B)cs.

Taking real and imaginary parts of this complex equality we find

—sinfAy, —cosf ecr \ _ (0
sinfA;;, —sinf ca /) L0 /)~
The determinant of the 2 x 2 matrix in this expression is equal to

sin f(cos A5 + sin fAa,) = sin (A1 A1s + Aadas).
By (4.13) and sin @ # 0 this implies that ¢; = ¢3 = 0, which completes the proof. $

5. Computational issues. In this section we discuss computational issues re-
lated to the implementation of our defining systems; namely the computation of
the derivatives of the test functionals with respect to the unknowns of the system,
z(t), o, T, as well as the problem of adapting the defining systems along the bifurcation
branch. We also explicitly show the BVPs that must be solved.

5.1. Fold bifurcation. Proposition 9 implies that locally, near a fold bifurcation
of periodic solutions, the system consisting of (2.1), (2.2), (2.3) and

(5.1) G=0,

defines the set of fold bifurcation points in (z(:), 7, a)-space; here G is defined by
(3.14). Under natural nondegeneracy and transversality conditions, the regularity of
this system was proved in §4.1.

We need the derivatives of G with respect to the unknowns of the system, i.e.,
with respect to (), a,T.

Denoting by z any component of o or T' we infer from (3.14) that

(Tfe(z(t), al,v + [f(z(t), ®)].S
0

02 "\ Mty (e ¥
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Numerically we solve a discretized version of this equation, say

([T fe(2(t), al:v + [f(2(?), @)]:S)q

Uy 0
5.3 NEL oS, | =
3 "\ 4 (Int[f@(o),a)]zv)d

where N{ is the discretized version of Ny, i.e., a large square matrix with a structure
that can be efficiently factorized, for example, as in AuTO.

Note that a large number of linear systems having the same structured matrix
N{ must be solved. Moreover, all right hand sides are known before the factorization.
Thus the solution be done in a single factorization process, without storing the factors.

(N#)T has a block structure that is very similar to N¥. If an efficient solution
strategy for (N{)7 is also developed, then it is possible to avoid solving (5.3) for all
relevant z. Instead, a single system with (N{)7 is to be solved. In transposed form
it is given by

(5-4) (wf, w3, ws, wy) Vi = (0,0, 1).
Combining (5.3) and (5.4) we find

= wi([T'fa(x(t), ofzv + [f(2(t), @)]=S)a + ws(Intys(a(),a)). v)d-
Notice that (3.14) is equivalent to the system

V(t) = Tfe(2(t), a)v(t) — Sf(z(t), @) +Gw01( ) =0,
(5 5) (1) 'U( + Guwoy = 0,
- fo v (M f(@(7),0) dr + Gwes = 0,
fo (T)vo1(7) dT7 4+ Sves = 1,
while (3.15) can be explicitly written as
w'(t) + Tfr(z(t), a)w(t) ((a:()t),a (-l—)Hvu( ) = 0,
1 -|- Hl)12 - 0,
(5.6) fo f(z(7),a) dT+ Hviz = 0,
fo w* T)w11 7) dr+ Rwis = —1.

Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

In practice we need to adapt the auxiliary variables (i.e., wo1, wo2, Wos, vo1, Yoz, V11,
v12, 13, w11, and wis) along a computed branch of fold bifurcations of periodic or-
bits. For the bordering rows in Ny and Ns the natural choice is to take the kernel
vectors of M7 and M, respectively, at a previously computed solution point. These
kernel vectors are obtained as a byproduct of solving (5.5) and (5.6). For the column
bordering of N1 we need a vector not in the range of M;. By Proposition 6, a possible
choice is

w1 Upo
wez | = 0 ;
w3 0
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which by Proposition 7 can be derived from the solution of (5.6). Finally, a bordering
column for Ny is given in Proposition 8:

v11 O
U132 = 0 .
v13 1

Therefore, problems (5.5) and (5.6) actually take the following simplified forms:
v (t) = Tfo(x(t), a)v(t) — Sf(x(t), @) + Gwoi(t) = 0
S =)

f? v (7) f(x(7), ) dr

Jo v (T)vor (1) dT + S

(5.7)

Il
- o o

and

w @)+ T (), a)w(t) — Rf(z(t),a) =
w(l) —w(0) =

fol w*(T)fl(l‘(T),a) dT-I— H —

Jo wr(r)wn(r) dr = —1.

5.2. Period-doubling. By Proposition 14 period-doubling bifurcations are de-
termined by (2.1), (2.2), (2.3), and the condition G = 0, where G is given by (3.22);
assuming the conditions (¢o, ®go) # 0, (o, ¥po) # 0 hold. To solve such systems
numerically, we need the derivatives of G with respect to the unknowns of the sys-
tem, i.e., with respect to z(t), @, T". These can be approximated by finite differences,
using (3.22). As in the fold case, they can be obtained exactly by solving an “adjoint
problem” to (3.22). In this case the adjoint problem is (3.23).

ProposITION 20. Let z denote a component of the problem parameter vector «,
or let z denote the period T, on both of which the quantity G in (3.22) depends. Let v
and w be obtained from (3.22) and (3.23), respectively. Then the derivative of G with
respect to z can be written as

(5.8)

(===

G, = —/(; w* (7)1 fo(z(7), a)];v(7) dT,

while the linear part of the variation of G with respect to x v~ x + dz is given by

1
G =~ [ (Tl (e) ) ()0)()

Proof. By differentiating (3.22) we obtain

59) " ( gzz ) _ ( [fo(l’(gt):a)]zl’ ) |

Multiplying the first equation in (5.9) from the left with w*, integrating over the
interval [0, 1] and using the third equation in (3.23) we get

/0 w*(r)vl(r) dr —A w* (1)1 fz (2(7), @)vs(7) dT — G, =
/0 (D)L fo(2(r), a)L.v(r) dr.
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By partial integration of the first term in this expression and using the second equa-
tions in (3.23) and (5.9) we obtain

—/0 vl (T)w'(7) dT—/O v (T)Tfr(z(7), )w(r) dT — G, =
/0 w* (1) [T fo(2(7), @) v(7) dr.

Using the first equation in (3.23) we get

_/0 vi(7T)(—¢o(T)H) dT — G, :/0 w*(T) [T fo(z(7), a)]sv(T) dT.

By the last equation in (5.9) the first part of the Proposition follows.
The linear parts of the variations of G and v under variation of x satisfies

ov wa(l’(t);a)v ox
0

Similar to the derivation above, this implies the second part of the Proposition. {
Notice that (3.22) is equivalent to the system

V(t) = The(a(t), a)o(t) + Gbolt) =
(5.10) v(0) 4+ (1) =
Jo h(r)o(r) dr =1

while (3.23) can be explicitly written as

w'(t) + Tfr(x(t), ))w(t) + Héo(t) = 0,
(5.11) w(0) + w(1) = 0,
fol Y (r)w(r) dr = —1.

Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

The natural choice for starting values of ¢q, g is

do(t) = ®(t)q0,  o(t) = ¥(t)po.

In a continuation context, it is necessary to regularly update ¢o and . Specif-
ically, v obtained from (3.22) can be used to update ¢o, and w obtained from (3.23)
can be used to update . Indeed, after convergence to a period-doubling bifurcation,
v spans the kernel of

o O

( D—?Of:(gft),a) )

and similarly, w spans the kernel of

(PR,
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5.3. Torus bifurcation. We have proved in Proposition 17 that the matrix
equation G = 0 can be used to continue numerically curves of torus bifurcation points.
Some issues require further attention.

First of all, we mention that the BVP for G is defined on the interval [0, 2] and
that 3-point boundary conditions are involved (at ¢t = 0,1, and 2).

To solve the system (2.1), (2.2), (2.3), (4.14) efficiently by a Newton-like method,
one needs the derivatives G;;., where z is T or a component of a. From (3.31) we
infer that

[T fa(2(t), alovn [Tfale(t), a)]svs

U1z Vaz 0 0

(5.12) Ms Gi1: Gios =
0 0
Ga1z Gaas 0 0

One also needs the derivatives with respect to «; for this we find

0 0

Vg V2k ¢
(5.13) Ms | Guie Guoe | = | 20 202(1)
/ 0 0
Gerc G225 0 0

Numerically we solve the discretized versions of these equations, say
v (Tfe(z(t),al;v1 [Tf(z(t), a)l.ve
1z V22 0 0
(5.14) MI| Gi: Gz | =
0 0
G2lz G222 0 0

One also needs the derivatives with respect to «; for this we find

0 0
V1g Vog ¢
(515) Méi G]]R GlZn = 2”5(1) 21)%(1) )
GZ]R GQZK, 0 0

where Mg is the discretized version of Ms, i.e., a large square matrix of the same
structure as that factored efficiently in AuTO.

We again note that a large number of linear systems with the same structured
matrix M has to be solved. All right hand sides are known when the factorization
is done. Thus the solution of all systems can be done during a single factorization
process of Mg without storing the factors.

(MZ)* has a block structure that is very similar to that of MZ. If an efficient
solution strategy for (Mg)* is also developed, then it is possible to avoid solving (5.14)
for all relevant z and (5.15). Instead, a single system with (Mg)*
transposed form it is given by

1x 2%
w* wi* G111 Gia ia_(0 0 1 0
(5.16) < wi* w2 G Gao >M5 o ( 0 0 0 1 >
Combining (5.14) and (5.16) we find
< G111z Gia: ) _ ( wi*[Tfe(x(t), @)]zv1 wi*[Tf(2(t),a)].vs >

1s to be solved. In

G, Gao, 11)%*[sz(1:(t),oz)]zv1 ’!l)%*[sz(l‘(t),Oz)]ng



PERIODIC SOLUTION BIFURCATIONS 29

if z is T or one of the components of z,a. For k we find
Giin Ghraw ) _ [ 2wi*vi(1) 2w va(l)
Gotn Gaaw )~ \ 2wivi(l) 2w3*va(1) )

Next notice that (3.31) is equivalent to the system

vi = Tf(z(t),0)vy + Guipo + Garn = 0,
vh — Tfy(z(t), ®)va + Gratho + Gaan = 0,
v1(0) — 2601 (1) + v1(2) = 0,
v2(0) — 26v2(1) + v2(2) = 0,
(5.17) foj é5(m)v(r) dr = 1,
i 63(r)ualr) dr -
Ji 63(rpa(r) dr _
Jo di(m)va(r) dr 1,
while (3.32) can be explicitly written as
wi +Tfr(x(t), 0)wy + Hi1¢o + Hudr = 0,
wh + Tfr(x(t), a)ws + Hisgo + Hosdpr = 0,
wi(0) — 26wy (1) + wi(2) = 0,
w2 (0) — 2kwo (1) + wa(2) = 0,
(5.18) foj v (T)wi (1) dr = -1,
fy ¥i (ua(r) dr - o,
f02 ¥y (T)wi(r) dr = 0,
fo Py (m)wa(r) dr -1

Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

In a continuation context the vector-functions ¢g, ¢1, 1g, 11 should be updated.
This can be done by solving both (5.17) and (5.18). Indeed, vi,vs span the two-
dimensional space in which ¢g, ¢1 should be chosen and wi, ws similarly span the
space in which g, 11 should be chosen (some orthogonalization and scaling may be
appropriate).

Finally recall that we compute the torus bifurcation points by using essentially
an overdetermined system. This should necessitate some changes in the elimination
strategy when solving the linear systems.

6. Numerical example. In this section we illustrate the proposed techniques
on a test example: a simple feedback control system of Lur’e type:

'fbl = Ty,
(61) i‘? = I3,
3 = —awxz— Prs—x1+ x%,

where « and  are positive parameters. It is well known (see, for example [15], Section
5.4) that the equilibrium 21 = z2 = 23 = 0 of (6.1) exhibits at
1

g = —

g
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a supercritical Hopf bifurcation generating a stable periodic solution that exists for
a < ag. This periodic solution undergoes a supercritical period-doubling bifurcation

at @y = 0.630302. ..

A discretized continuation problem (2.1), (2.2), and (2.3) for the periodic solu-
tion is coded for the MATLAB Continuation Toolbox [17]. The method of orthogonal
collocation with piecewise polynomials is used, which is similar to one implemented
in AUTO and is characterized by the number NTST of mesh points and the number
NCOL of collocation points. At each computed point in the solution curve, a discrete
version of (5.10) is set up and solved. This gives a value of the test function G to
detect period doubling. A constant bordering function g is used, while the computed
approximation to v is used to update the bordering function ¢q. Figures 1 and 2 are
produced with NTST=10 and NCOL=4.

Figure 1 shows the behavior of G as a function of a for # = 1. For this value
of 3, Hopf bifurcation occurs at g = 1. In the same figure, the function p1 + 1 is
plotted, where py is a nontrivial Floquet multiplier of the periodic solution for which
p1(a1) = —1. The multipliers are computed via a specially adapted elimination
algorithm from AuTo. Clearly, G vanishes together with p; + 1. Moreover, close
examination of numerical data gives the above bifurcation value ay with 7 correct
decimal places. Figure 2 shows a family of computed profiles v(¢) along the solution

80
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—20
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—-60 -

-80

-100 L L L L L I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

@

Fia. 1. Test function G(a) and p1(a)+1 for 8= 1.

curve. A dashed solution corresponds to the bifurcation parameter value a1. Finally,
Figure 3 presents a two-parameter continuation of the period-doubling bifurcation
curve, which is closed. The continuation is started at one of the PD points in the
one-parameter path of periodic solutions discussed above.

Let us briefly address an important question of comparison of the proposed
method to continue the period doubling bifurcation and the algorithm based on the
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15r

Fi1G. 2. Solutions v(t) at different a-values for 3 = 1.

Fi1a. 3. Cycle and period-doubling branches.

fully extended system, i.e. (2.1), (2.2), and (2.3), augmented by

V'(t) = Tfe(2(t), @)v(t) = 0,
v(0) + v(1) = 0,
f01 é5(r)u(r) dr = 1,

that is implemented in AuTO. The corresponding discretized system is nearly twice
the size as the discretized minimally extended system composed of (2.1), (2.2), (2.3),
and G = 0, where G is to be computed from (5.10). However, one has to solve an
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extra BVP (5.11) to calculate the Jacobian matrix of the discretized bordered system.
To make a comparison, both methods were similarly implemented using the standard
sparse matrix solver in the Continuation Toolbox [17], and tested for different number
of mesh and collocation points. The following table shows the execution times required
by the two methods to compute on a 350 Mhz PC the same number (300) of points
along the period-doubling curve shown in Figure 3.

NTST | NCOL | minimally extended system | fully extended system
10 4 101,8 s 122,3 s
10 5 1349 s 159,4 s
20 4 269,9 s 358,6 s
20 5 3719s 558,2 s
30 4 529,8 s 808,0 s
30 5 751,0 s 1260,3 s
40 4 886,0 s 1528,8 s
40 5 1376,8 s 2528,6 s

Clearly the bordered system is indeed faster and the difference gets bigger when the
number of mesh and collocation points increases. More extensive comparisons will be
reported elsewhere.
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