Parametric Excitation in Nonlinear Dynamics
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Abstract

Consider a one-mass system with two degrees of freedom, nonlin-
early coupled, with parametric excitation in one direction. Assuming
the internal resonance 1:2 and parametric resonance 1:2 we derive con-
ditions for stability of the trivial solution by using both the harmonic
balance method and the normal form method of averaging. If the triv-
ial solution becomes unstable a stable periodic solution may emerge,
there are also cases where the trivial solution is stable and co-exists
with a stable periodic solution; if both the trivial solution and the pe-
riodic solution(s) are unstable we find an attracting torus with large
amplitudes by a Neimark-Sacker bifurcation. The results of the har-
monic balance method and averaging are compared, as well as the
results on the Neimark-Sacker bifurcation obtained by the numerical
software package CONTENT and by averaging. In all cases we have
good agreement.

1 Introduction

Nonlinear vibrating systems often consist of two - or even more - subsystems,
where one of them is excited, the Primary System, and the other ones are
coupled through nonlinear terms; they are forming the Secondary System or
Excited System. The Primary System is an oscillator which can be excited
externally, parametrically or by self-excitation, while the Secondary System
is excited indirectly through the nonlinear coupling.

In particular autoparametric systems [1,3,4] represent an important exam-
ple. A typical property of autoparametric systems is the existence of a semi-
trivial solution of the differential equations of motion in which the Primary
System oscillates while the Secondary System is at rest. In such problems it
is essential to study the boundary limits of the stability region for the trivial
solution and to establish whether they are determined by the stability limits
of the Primary System, i.e., whether they are changed by the action of the
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Figure 1: Single mass systems with kinematic excitation in case of a) simply
parametric excitation and b) combined parametric and external excitation.

(excited) Secondary System [4].

In the case where the nonlinear coupling terms do not allow for the exis-
tence of a semitrivial solution, the Secondary System must oscillate when
the Primary System is oscillating; the system is sometimes called hetero-
parametric. In [5] a hetero-parametric example of an externally excited
single-mass system having two degrees of freedom was analysed.

Also in the present paper we shall consider a single-mass system, but with
parametric excitation in the Primary System and a nonlinear coupling ex-
pressed by second degree terms in the differential equations. The paramet-
ric excitation acts, for example, due to kinematic excitation of the supports
through nonlinear springs; see figure 1. The system is simply parametric
when both nonlinear springs are identical and two kinematic excitations are
simultaneously acting, having the same amplitude and frequency but oppo-
site phase.

The equations of motion are
i+ 8x%i + doi + (1 +eccos2nt)z + v + azy = 0, (1)
i+ K5y + ¢*y + b2’ = 0.

For the damping coefficients we have §, §g, k > 0, furthermore ¢ > 0,7 > 0,¢
is a small positive parameter. Apart from linear damping we have assumed
the presence of progressive damping to ensure a limited vibration amplitude,
even at parametric resonance.

In the case of a single kinematic excitation the system is subjected to a com-
bination of parametric and external excitation, see [6]. A one-mass system
with two degrees of freedom with parametric excitation in one direction is
treated in [7].

Note that nowadays the parametric excitation can be provided by modern
actuators in mechatronic and smart structures, e.g., in actively controlled
magnetic bearings. In this way the elastic mounting with periodically vary-
ing stiffness can practically conceived.

In the next section we present a harmonic balance calculation which gives us



the response and resonance curves for certain sets of parameters. In section
3 we perform a scaling and first order averaging to the equations of motion.
This leads to explicit results on the stability of the trivial solution. Also
we find families of periodic solutions of which we determine the stability;
because of the complexity of the expressions this is quite surprising. A com-
parison of quantitative results obtained by harmonic balance and averaging
calculations is given in section 4. A particular situation arises in section 3
when both the trivial solution and the periodic solution(s) are unstable. In
section 5 we find that this instability is triggered off by a Neimark-Sacker
bifurcation (secondary Hopf bifurcation) of the periodic solution. This re-
sults in an attracting torus with fairly large amplitudes.

The Neimark-Sacker bifurcation was first pinpointed by using the numerical
bifurcation program CONTENT. An unusual feature is that this bifurcation
can also be identified and analysed using the averaging method.

2 Harmonic balance calculations

The nonlinear coupling terms play an important role in determining the
frequency tuning so as to produce significant effects. For example, in the
considered system, both coupling terms are of second degree and therefore
it can be judged that the optimal tuning into internal resonance is of 1:2
type, i.e. , the strongest deflection can be expected for ¢ ~ 2.

A periodic solution of equation (1) in the internal resonance 1:2 can be
approximated using the harmonic balance method; when inserting the term
cos 2(nt — 1) for cos 2nt in order to facilitate the computations, we look for
a solution of the form:

x = Rcosnt
y =Yy + Acos2nt + Bsin2nt.

(2)

where 9 is the initial phase, representing the shift of the time origin suitable
for simplifying the analytical solution. Equating corresponding terms of the
Fourier series yields the following algebraic equations:

(1 —-n?+ %7]%2) R+a (YO + %A) R= —%ECRCOSQ‘L/),
_%577]%3 + (%aB _ 5077) R= —%8CRSin 2,

(¢* — 4n*)A+ 26mB + 1bR? = 0, (3)
—2knA+ (¢* = 49*)B =0,

q2Y0 -|— %bRQ == 0




From the third, fourth and fifth equation of (3) the following relations are
obtained:

Yy=— —bR?
0 S¥E R
1, q* — 4n?
A=— —bR?
2 i A
_ _pp2hh
B=—-bR A (4)
where
A= (" — 4 + 469, (5)

In particular, the vibration amplitude of the Secondary (excited) System is
given by:

r=+/A?4+ B? = %szA‘l/Z. (6)

Squaring and adding the first two equations of (3) and using (4), we obtain
the frequency response amplitude of the Primary System:

, 3 1 2 ¢ — 4n? 2
[1—7}2%—17}22—5@()((]_2_}_%) RQ] +

2
(507] + %57}1%2 + %ab%RQ) — %5202 =0, (7)
which can be used for determining R in dependence on 7. Then, by means
of equation (6), the vibration amplitude r in dependence on 7 can also be
determined. It is interesting to see that R depends only on the product ab,
i.e. the case when a and b are both positive or negative yields the same
result, if the absolute values of @ and b are the same.

The results of this harmonic balance approach are presented in terms of
resonance curves showing the oscillation amplitude R (in z-direction), r
(in y-direction) and constant deflection Y, in dependence of 75, the half-
frequency of parametric excitation. The following parameter values are used
in this section: e¢c = 0.2, § = 0.4, kK = 0.1 & = 0. The relatively high
progressive damping coefficient ensures rather limited vibration amplitudes
at parametric resonance. For reasons of comparison, in figure 2 (v = 0) and
figure 3 (v = 0.2) we show the resonance curve R(n) for the case of zero
cross-coupling (¢ = b = 0). The full line denotes the stable solution, the
dashed line the unstable one.

Figure 4 shows the analytically predicted amplitudes R, r and the con-
stant deflection Yp in dependence on the frequency 7 for thecaseqg =2, v =0
and cross-coupling (¢ = b = 0.5), as determined by equations (2). We can
see that the resonance curves for the motion in the z—direction exhibit two
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Figure 2: Resonance curve R(n) corresponding to the parameters ¢ = 2, v =
0 without coupling (¢ = b= 0).

peaks, having maxima smaller than the corresponding maxima for the case
where a = b = 0 (see figure 2). In the same figure the results of the analy-
sis have been supplemented by direct numerical solution of the differential
equations (1). We can see that there is a good agreement between analyti-
cal and numerical results, also due to the relatively small value of constant
deflection.

In a further analysis, the numerical solution was obtained when increas-
ing and decreasing the excitation frequency n by small steps in suitable time
intervals. The extreme values (maxima and minima) of the oscillation am-
plitudes along z and y directions, denoted [z] and [y], were recorded and are
shown in figure 5. The arrows indicate the direction of jumps in vibration
amplitude due to the continuous change of excitation frequency. As a result,
one can observe a noticeable bilateral hysteresis effect.

Two sets of similar diagrams show the effect of detuning from internal
resonance: ¢ = 1.8 (figures 6 and 7) and ¢ = 2.2 (figures 8 and 9). In
both cases, the amplitudes R are higher than for the case ¢ = 2 while the
amplitudes r are smaller than for ¢ = 2 (see figures 4 and 5). The shape of
the resonance curves does not exhibit the double peak form anymore: for
q = 1.8 the resonance curve is bended towards the higher values of n and
towards the smaller values of 5 for the alternative ¢ = 2.2. The vibration
character is close to a harmonic one because for both [z] and [y] the scatter
of the record points is small, although the solution can not be considered as
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Figure 3: Resonance curve R(n) corresponding to the parameters ¢ = 2,y =
0.2 without coupling (@ = b = 0); the dashes refer to the unstable solution.

a periodic solution in the strict sense but rather as a transient vibration with
slightly changing frequency. The hysteresis effect is reduced for ¢ = 1.8, but
becomes more pronounced for ¢ = 2.2.

3 Scaling and first order averaging

We shall now use a normal form method (averaging) which enables us to
obtain more detailed information about the solutions and for which precise
error estimates are known. As before we consider system (1) in the vicinity
of the origin. To make this more explicit we introduce the following general
scaling.

r=e""z, y=¢e"y, a =c""a, b=ec"b, Kk =c"k, §=¢c"4,
v :gy%?’ and 50 = 81/60 50

where, as before, ¢ is a small, positive parameter. Balancing the terms in
the first equation of system (1) yields:

Vs + 20 =y + 20, =V H vy =15, =1
Balancing the terms in the second equation of system (1) yields:
Ve =+ 20, —vy =1

We have here 6 equations with 8 unknowns, hence the scaling is not unique.
Solving these equations yields:

Vso =V =1, vy =vs =1=2uz, vy =1 -1y, h =1+ v, — 20;.
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Figure 4: Resonance curve R(7n),r(n) and constant deflection Y correspond-
ing to the parameters ¢ = 2,y = 0 with coupling (¢ = b = 0.5); numerical
results are indicated by dots.

The third and fourth equation yield:

0<v, <12 (%)
0 <y, <1 (9)

We can freely choose v, as well as v,. However one should first examine the

magnitude of the physical parameters involved in system (1) before fixing

the values of v, and v,. Here, we base our choice on the parameters of

section 2. We decided to take the parameter § to be O(1). This immediately

means v, = 1/2. The parameter a was taken to be equal to b. This implies

Vy = Vg = Vs =1, = 1/2 and thus:

v ="z, y=e"ya=c"a,b=e"?b,k=ck, 6 =5,7 =7 and & = £do.

Introducing this scaling into system (1) and omitting the bars yields:

i+ (14 eccos2nt)x + doi + cazy + e(dz?s + yz3) = 0, (10)
i+ q*y + exy + ebz? = 0.

The next steps are the usual ones in averaging approximations; see for in-

stance [10], chapter 11.
We introduce the following transformation:

z(t) = z1(t) cost + z(t) sin ¢,
@(t) = —z1(t) sint + x2(t) cost,
y(t) = y1(t) cos gt + Lya(t) sin gt,
y(t) = —qyu(t) sin gt + ya(t) cos qt.
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Figure 5: Numerically computed extreme values [z] and [y] of oscillation
amplitudes along z and y directions versus excitation frequency 7 in case
ec = 02,80 =0,6§ =04,k =0.1,a =b=0.5,vy=0,¢g =2. The arrows
indicate the direction of the jumps in vibration amplitude when increasing
or decreasing the frequency.

Averaging the resulting system of differential equations for zy o, 31 2 yields:

1o = e{(=§a(0)y20 — 300)7a1 + (a(q)y1a + ca(2n)) w20 + O(IX )}

P90 = —e{(—aa(q)yia — ca(2n))z1a + (_Tao‘(‘])yh + %50)@& +O(1X %)}
Vg = 2(—2b0&(q>$1a$2a - %qula)
Joo = —e(=ba(q)a}, +ba(g)zd, + Sryza)

(11)

where the subscript « indicates "approximation’ and

—Lif g =42,
04((1)={ 4

0 otherwise

3.1 Stability of the trivial solution (the general case)

Linearising system (11) around the origin yields:

i) =)

where :
—10e  ca(2n)e 0 0
4 ca(2n)e  —18oe 0 0
- 0 0 —1ke 0
0 0 0 —KE
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Figure 6: Oscillation amplitudes R, r and constant deflection Yy versus ex-
citation frequency 7 in case ec = 0.2,00 = 0,86 = 04,k = 0.1,a = b =
0.5,y = 0,¢ = 1.8. Comparison between analytical predictions (full line
stable solution, dashed line unstable solution) and numerical solutions.

The eigenvalues of the matrix A are:

>\1 = (_CO‘(QU) - 550)57 >\2 - (CO&(QT/) - 550)5, )\3 = >\4 = —5,14;5

Conclusion

According to this linear analysis we can distinguish between the following
cases:

e 1 # £1: In this case, all the eigenvalues have a negative real part. The
averaged trivial solution is asymptotically stable. This result holds also
for the original system (10).

e n = £1 and Jy > 3: This case yields asymptotic stability as well for
the averaged system (11). The result also holds for the original system
(10). This is remarkable as we have resonance and energy transfer to
the system.
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Figure 7: Numerically computed extreme values [z] and [y] of oscillation
amplitudes along z and y directions versus excitation frequency 7 in case
ec=02,00=0,0=04,k=0.1,6a =b=0.5,7v=0,¢g =1.8. The arrows
indicate the direction of the jumps in vibration amplitude when increasing
or decreasing the frequency.

e 7= *£1 and dp < 5: One eigenvalue has in this case a positive real
part. This implies the instability of the averaged trivial solution. The
result also holds for the original system (10).

e 7 = =+1 and &, = 5: In this case one of the four eigenvalues of the
matrix A is zero, whereas the other three are eigenvalues with negative
real parts. Linear analysis is, in this case, not conclusive regarding the
stability properties of the averaged trivial solution. We must there-
fore examine more closely the flow in the centre manifold. See the

appendix.

3.2 The near resonance case ¢° =4+¢co, n=1+¢cu

Let’s assume that the half-frequency of parametric excitation 7, is not ex-
actly equal to £1. We shall instead allow a margin of detuning of magnitude
ep with g a constant not dependent on €. We also allow a margin of detuning
in ¢ of magnitude 0. In this way system (10) becomes:

(12)

i+ (14+eccos2(1+ep)t)r + ot + caxy + (8222 + v2®) = 0,
i+ 4y + exy + coy +ebaz? = 0.

Transforming 7 = (1 4 eu)t and differentiating with respect to 7 yields the
following:

i+ (1+eccos2r)a — 2epz + €6 + caxy + (8223 + v23) + O(e?) = 0,
i+ 4(1 —2ep+e0/4)y +ery + eba? + O(e?) = 0.
(13)

10
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Figure 8: Oscillation amplitudes R, r and constant deflection Y, versus ex-
citation frequency 7 in case ec = 0.2,00 = 0,86 = 04,k = 0.1,a = b =
0.5,y = 0,¢ = 2.2. Comparison between analytical predictions (full line
stable solution, dashed line unstable solution) and numerical solutions.

Applying the method of averaging as before produces:

P = e{(§Y2a — 3 — %( fot i)z + (v —§—p+ 3”( to T 23,))72.}
o0 = —e{(4va+§ —p+ F@l +23)via+ (Gyoa + 3 + 52}, + 23,)) 724}
Yla = —(—bwmwga — KY1a + TY24 — 20424)
o bp2 _ ba2 o 1 _4
You = —€(527, — 523, + SV1a + 5KY20 — 4pay1a)-

(14)

11



| v |

-1 | -1 |
0.9 1.0 r] 1.1 0.9 1.0 r] 1.1

Figure 9: Numerically computed extreme values [z] and [y] of oscillation
amplitudes along z and y directions versus excitation frequency 7 in case
ec=102,00=0,0=04,xk=01,a =b=0.5,7v=0,¢g =2.2. The arrows
indicate the direction of the jumps in vibration amplitude when increasing
or decreasing the frequency.

Linearising system (14) around the origin yields:

i) =)

where
e (GHwe 0 0
A | —G-we e 0 0
0 0 —SKE (& —pe
0 0 (—30+4p)e  —ike

The eigenvalues of the matrix A are:
\ 200 + /% — 162 \ —280 + y/c? — 162
1= = &, A2 = €
4

ke (0 —8u)e ke (0 —8u)e
s T M= i

)\3:—

Conclusion

We introduce the quantity z, = p/c to analyse the eigenvalues of the matrix
A. z, will play in the sequel an important role in the study of the periodic
solutions. This will be the main subject of the next subsection. According
to linear analysis, we can distinguish between the following cases:

o |z, > %, c? — 16p? < 0: this case encloses two subcases namely:

1. do > 0: This case yields asymptotic stability of the averaged
trivial solution as all the eigenvalues have negative real part. The
result holds also for the original system (13).

12



2. 6o = 0: In this case two of the four eigenvalues are purely imag-
inary, whereas the other two are eigenvalues with negative real
parts. Linear analysis is, in this case, not conclusive regarding
the stability of the averaged trivial solution. We therefore must
examine more closely the flow in the centre manifold. See the
appendix.

o |z, <t 7, ¢ —16p% > 0: this case encloses three subcases namely:

1. 89 > 1/24/¢c? — 16u2: This case yields asymptotic stability of the
averaged trivial solution as all the eigenvalues have negative real
part. This result holds also for the original system (13).

2. 8 < 1/24/c? —16p2: In this case Ay > 0 which immediately

implies the instability of the averaged trivial solution. This result
holds also for the original system (13).

3. 0g = 1/24/¢? — 16p%: According to whether |z,| = 1/4 or not,
we have (A = Ay = 0) or (A2 = 0 and Ay < 0). The rest
of the eigenvalues has in both cases negative real parts. Linear
analysis is, in this case, not conclusive regarding the stability of
the averaged trivial solution. We therefore must examine more
closely the flow in the centre manifold. See appendix 1.

Remark

The case (|z,] > 1/4 and &y = 0) corresponds to a Hopf-bifurcation, with
respect to the parameter &y, of the averaged trivial solution as two of the four
eigenvalues cross the imaginary axis with nonzero speed. The introduction
of the detuning parameter p has a clear influence on the stability properties
of the trivial solution.

3.3 The periodic solutions

We look in this section for periodic solutions of system (13). We introduce,
for this purpose, the phase-amplitude transformation:

z(t) = Ry(t) cos(t + ¢(t))

#(t) = =Ry (t) sin(t + ¢(t))

y(t) = Ra(t) cos(2t + (1))
(t)

y(t) = —2Rq(t) sin(2t 4 ()

13



Averaging the resulting system yields:

Ria= eRia{§Rosin(2¢ — ¢) + §sin 20 — §RY, — 3}
$o = {FH2008(2¢ — V) + §cos 20 + Y RY, — p}

. _n2 i

foon = § Ranf Tyt sin(26 = ¢) = )

c (bR? ,
o= 5{gRecos(20 — ) + 3(0 — 8u)}

(15)

Equating the right-hand side of system (15) to zero yields the nontrivial
critical points of these equations which correspond with 27-periodic solutions
of the original system (13). Without loss of generality we assume Ry, > 0.
For notational simplicity, we introduce the following quantities:

- 37(4/12 + ai) + abo,

|blcy/4K? + o
:5(4FL2 + O'Z) + 2abk

|blcy/4K? + o

W
z2=—,2,=—,and o, =0 -8y
c c

The results for the non-trivial critical points corresponding with periodic
solutions are summarised:

la |b| 2a (]6)

con(2 — ) =210 (17)
452 4 O'i

(26— ) —2sgn(b) k (18)
sin(2¢ — ¥) =————-—
’ \/4K? + o},

cos 2¢ = Raq + 22 (19)

sin 2¢ =aRy, + 42, (20)

RE — - (2pz+4az,) + ;/2&_7_ —ng —4(za — 22,3)? S0 (1)

o (26z +4az,) — ;/Z(yj_ ;2[32 —4(za — 22,3)? o0 (@)

14



3.4 Stability of the periodic solutions in the case of exact
resonance i.e. c =0, y =10

Linearising system (15) around the nontrivial critical points yields:

i(r)=()

where
_55’?(1 —3'yR‘i’a _aRlasgn(b) 0
1 T 1
3'YR1a _5 _ 6R1a 0 _aR?aS’gn(b)
A= 4 0 4 4
Bl R1a 0 _k 0
4 ol 72 ’ o 72
- la _ 71" "la
O 4 RQ(L O 8R2a

The eigenvalues of this matrix are unfortunately too complicated to write
down explicitly. In appendix 2 we prove the following results for the stability
of the periodic solutions.

1. Suppose ab > 0, z < 1/2, then the periodic solution with amplitude
along the y-direction equal to R;’a will be stable no matter what the
other parameters are.

2. The periodic solution with amplitude along the y-direction equal to
R, will, if it exists, always be unstable.

3. Given the parameters ¢, &g, 6, v, b and &, suppose that ab < 0 and z <
1/2 then there exists a; > 0 such that the periodic solution with
amplitude R,ja along the y-direction will be stable provided |a| < as.

4. Given the parameters ¢, 8§, v, b and k, suppose that § < 0 then
there exist agy, aso both positive and z; > 1/2 such that the periodic
solution with amplitude R;’a along the y-direction will be stable for all

1/2 <z <min(1/2+/1 4 (8/a)?, z5), provided as < |a] < ass.

5. Given the parameters ¢, g, 8, v, b and &, suppose that ab < 0 then
there exists 0 < @, < oo such that the periodic solution with amplitude
R} along the y-direction will become unstable provided |a| > a,.

15



3.5

Stability of the periodic solutions in the case o = 0, v = 0.

Linearising system (15) around the nontrivial critical points yields:

4
dt

X A X
=&
Y Y
where
_JR?G 2uR1, —akRigsgn(h) aRis Rogoysgn(b)
4 4 2D 4D
0 _SR?G —a o, sgn(b) —a £ Ry, sgn(d)
A= , 4 4D 2D
- £ Ria [b] Rigoulbl _k —Ri,ou b
2D 4D 2 8D
—Riaou || KRT, B R:, oulb] -k R7, |b]
4D Raq 2D Raq 8DRZ, 4D Ry,

D =,/4k% + O'ﬁ

The analysis in appendix 3 of the Routh-Hurwitz system of conditions for

the st

1.

ability of the periodic solutions yields:

Suppose ab > 0 and |o| < 4v/2k then the periodic solution with am-
plitude along the y-direction equal to R;’a will, if it exists, be stable
no matter what the other parameters are.

. Suppose ab > 0 and |u| < 1/2k then the periodic solution with ampli-

tude along the y-direction equal to R}, will, if it exists, be stable no
matter what the other parameters are.

. The periodic solution with amplitude along the y-direction equal to

R, will, if it exists, always be unstable.

. Given the parameters ¢, 1, 4, o, band k, suppose that ab < 0 and |z,| <

1/4 then there exists a;, > 0 such that the periodic solution with am-
plitude R along the y-direction will be stable provided |a| < as,.

. Given the parameters ¢, u, 6, o, b and &, suppose that ab > 0, |z,| <

1/4 and |p| > 1/2k then there exist oy, o2 and a, > 0 such that the
periodic solution with amplitude RJ along the y-direction will become
unstable provided |a| > @, and o < ¢ < o3.

. Given the parameters ¢, y, 6, o, b and &, suppose that ab < 0, |z,| <

1/4 and |p| < 1/2k then there exists a, > 0 such that the periodic
solution with amplitude R}, along the y-direction will become unstable
provided |a| > a,.

. Given the parameters ¢, y, 6, o, b and &, suppose that ab < 0, |z,| <

1/4 and |o| < 44/2k then there exists a, > 0 such that the periodic
solution with amplitude R, along the y-direction will become unstable
provided |a| > a,.

16



4 Harmonic balance versus Averaging method

The harmonic balance method, which is essentially a Fourier projection, and
the averaging method are classical methods but they are seldom compared;
see also the discussion in [3], chapter 9.

In figures 10-11, we have a superposition of the results obtained by both
methods in terms of resonance curves showing the oscillation amplitudes in
z— and y—direction. There is good agreement between the results of both
methods. Making € smaller and keeping the parameters @ and b constant in
the averaged system does improve this agreement, as expected. See figures
12-13.
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Figure 10: Oscillation amplitude R versus excitation frequency n by su-
perposition of the results from the Harmonic Balance (bold line) and the
first order Averaging Method corresponding to the parameters e = 0.1, ¢ =
2, a=b=05/\, 5 =0,5=04, k=1, vy =0, 0 =0(q = 2). The
dashes refer to the unstable solutions.

5 The Neimark-Sacker bifurcation

We know from the propositions above that the periodic solution with am-
plitude along the y-direction equal to Rja becomes at some point unsta-
ble. This is an interesting situation as also the trivial solution is unstable.
The solutions show then a very different behaviour as they are attracted
to a torus on which we have quasi-periodic dynamics. One of the possible
causes for this behaviour can be a Neimark-Sacker bifurcation, also known
as a Secondary Hopf bifurcation. We have made use of the special soft-
ware CONTENT to pinpoint this bifurcation; see [2], appendix 3. We first

17
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Figure 11: Oscillation amplitude R versus excitation frequency n by su-
perposition of the results from the Harmonic Balance (bold line) and the
first order Averaging Method corresponding to the parameters e = 0.1, ¢ =
2, a =b=05/\e, 6 =0,6=04, k=1, v=0, 0 =0(q =2). The
dashes refer to the unstable solutions.

found a periodic solution when ab < 0 with b < 0 and small. When run-
ning CONTENT, we used the method of continuation with, this time, b as
a control parameter and monitored the multipliers of the periodic solution.
CONTENT’s results are presented below.

5.1 Numerical data generated by CONTENT

The following parameters, with respect to system (10), have been used in
our numerical analysis. ¢ = 0.1, c =1, ¢ = 0.5/, n =1, 6o =0, kK =
1, 6 =104, y=10.2, and 0 = 0.8(¢ = 2.02). System (10) has to be made au-
tonomous to be able to spot the bifurcation with CONTENT. Its dimension
becomes therefore of the sixth order:

1= T2,

3= —(14ecz)zy —cazyy; —e(dzizg + ya?),

noom (23)
o= —(4+e0)y — eryy — eba?,

= oz -2z — 2z (224 22),

Z9= 2+ 2z — 29(2F + 22)

A Neimark-Sacker bifurcation has been found at the critical value b. =
—0.179576/+/2. Note that, because of the scaling introduced in section 3,
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Figure 12: Oscillation amplitude R versus excitation frequency 7n by super-
position of the results from the Harmonic Balance (bold line) and the first
order Averaging Method corresponding to the parameters ¢ = 0.025, ¢ =
2, a=b=025/\c, 8=0,6=04, k=1, y=0, 0 =0(q =2). The

dashes refer to the unstable solutions.

to obtain the original values of b corresponding to system (1), we have to
multiply with /.

The corresponding multipliers computed by CONTEN'T, presented in the
modulus-argument form, are as follows:

=1 é1 = 0.207607,
pa=1 ¢y = —0.207607,
p3=1 ¢3 =0,

pa = 0.623983 ¢4 = —0.163293,
ps = 0.623983 é5 = 0.163293,
pe = 3.4873 107 ¢4 = 0.

We conclude that when the control parameter b goes below the threshold
value b, = —0.179576/1/c a Neimark-Sacker bifurcation takes place, see
figure 14. Numerical results shown in figures 15-17 confirm this very clearly.
We can see from these figures that as the parameter b decreases, it takes
longer for the periodic solution to stabilise. When b drops below b, the
periodic solution looses its stability in the bifurcation.
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Figure 13: Oscillation amplitude R versus excitation frequency n by super-
position of the results from the Harmonic Balance (bold line) and the first
order Averaging Method corresponding to the parameters € = 0.025, ¢ =
2, a=b=025/\e, 5 =0,0=04, k=1, y =0, 0 =0(¢ = 2). The
dashes refer to the unstable solutions.

5.2 Averaging method results

Remarkably enough, one can also track down the Neimark-Sacker bifurca-
tion by looking for a Hopf bifurcation of the nontrivial critical points of the
averaged system (15). This way, we will be able to locate this bifurcation
without use of sophisticated software like CONTENT. We have done this in
the case 9 = 0 and compared the averaged results with the more accurate
data obtained by CONTENT. Starting at b = —0.1/4/¢ the averaged system
has a nontrivial critical point which undergoes a Hopf bifurcation at the crit-
ical value b, ~ —0.171//z. This is a rather good first order approximation
of the more accurate value b, = —0.179576/+/c computed by CONTENT.
The relative error in b is as follows:

bc_E

. ~ 5%.

The averaging method predicts with satisfactory precision the bifurcation
point b.. This precision will improve if we take € smaller.

6 Conclusions

1. The instability intervals in parameter space of the trivial solution of
the parametrically excited Primary System are not changed much by
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Figure 14: Figure generated by CONTENT; for the case under consideration
see subsection (5.1). The cycles (prior to the bifurcation) are projected on
the (z/v/2,y/+/) plane. The outer cycle with dots is the one that bifurcates.
NS stands for Neimark-Sacker bifurcation.

the presence of the nonlinear coupling to the secondary oscillator.

2. In the examined system we chose the prominent resonance 1:2 both
for the internal and the parametric resonance. For other resonances
the effect of nonlinear coupling to the stability of the trivial solution
is expected to be even weaker.

3. Nontrivial solutions become important when the trivial solution is un-
stable. In particular the attracting torus which we found and which
is characterised by fairly large amplitudes can be undesirable from an
engineering point of view.

4. There are not many comparisons of the harmonic balance method and
other analytic approximation methodsin the literature. We have found
good agreement between the periodic solution results of harmonic bal-
ance and averaging.

5. In most cases Neimark-Sacker bifurcations are studied by numerical
means. Interestingly we can also analyse this bifurcation in our prob-
lem by using the normal form method of averaging. The results are in
good agreement with the numerics.
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Figure 15: Case b > b, with vibration records showing attraction to a peri-
odic solution of z(t) (left) and y(¢) (right) corresponding to the parameter
values e = 0.1, ¢ = 1, a = 0.5/y/2, b = =0.1/y/2, &6 =0, n =1, § =
04, v=02, k=1, 0 =0.8(¢ = 2.02).

g P a

I 2006

g P a

Figure 16: Case where b is just above b. with vibration records showing
'slow’ attraction to a periodic solution (just before bifurcation) of z(t) (left)
and y(t) (right) corresponding to the parameter values e = 0.1, c =1, a =
0.5/, b= —-0.15/\/c, 6 =0, n =1, 6 =04, vy =02, k =1, 0 =
0.8(¢ = 2.02).

Appendix 1: Study of the centre manifold

When the trivial solution is nonhyperbolic, the problem of stability becomes
much more complicated as the stability of the trivial solution in the centre
manifold of the averaged system doesn’t have to imply the stability in the
original system. There is not much known on the relation between centre
manifolds in (averaging) normal forms and the original system. In spite
of this, we shall study the flow in the averaged centre manifold and check
numerically whether this suggests that the result holds for the original sys-
tem. In the following, we present the results of section 3 with details for one
interesting case. For the background see [2] and the references there.

e The case n= +£1, § = ¢/2.
In this case one of the four eigenvalues was equal to zero. Study of
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Figure 17: Case b < b, with vibration records of attraction to a torus of z(t)
(left) and y(t) (right) corresponding to the parameter values ¢ = 0.2, ¢ =
1, a=0.5/\e, b=-02/\e, 60=0,n1=1,8=04, v=02, k=1, 0 =
0.8(¢ = 2.02).

the averaged centre manifold reveals that the flow is governed by the
following differential equation:

2
_gaba(q) ,u3+0(,u4).
Kq

0=
The averaged trivial solution is stable provided ¢ = +2 and ab > 0.
Using numerical data, we conjecture that these results hold for the
original system as well.

e The case |z,| < 1/4, 6o = 1/24/c? — 16p2.
In this case one of the four eigenvalues equals zero. Study of the aver-
aged centre manifold reveals that the flow is governed by the following
differential equation:

eabe(Sok + p(o — 8#)), 3 25
_ 250(4K2+ (O__&u)g) (2 +O(U )

We see from this equation that the trivial solution can be both stable

U =

and unstable depending on the parameters involved in the system.
Numerical analysis suggests this holds for the original system as well.

e The case |z,| = 1/4, 6y = 0.
In this case, we are dealing with a two-dimensional centre manifold.
This case is of such complexity that even the restriction of the flow
to the averaged centre manifold does not yield a differential equation
which can be studied easily. We shall therefore draw our conclusion
from numerical analysis only. We find the trivial solution in this case
to be unstable.

o The case |z,| < 1/4, 6o = 1/24/c? — 162,

This case will be studied in detail below.
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Study of the centre manifold |z,| > 1/4, §o =0
We first apply the following transformation:

1
72(6 — 4#) T2a,
-1

x a N ———0 a
BT

After which, we restrict the flow to the centre manifold and introduce the
complex coordinates:

T1g =

y = 571& + ZliQa, g = jéla - Z.EQQ-
The resulting system is then normalised using the complex transformation:
y=z+ hy(z2)

where hsy(z) denotes a polynomial in z of degree m > 2. This normalisa-
tion eliminates all third order terms except z?Z. The system can then be
transformed back into Cartesian coordinates. Omitting the tildes yields:

#1a = Re(M)z1a — Im(A)220 + (a(d0) 210 — B(d0)224) (2, + 23,)+
O(|za1|; [224[%)
T2o = Im(A)z1a 4+ Re(A1)z2a + ((d0)z24 + B(d0)214) (27, + 23,)+
O(lzar”, [224]°)
(24)

The parameters a(dg) and 3(dp) will be specified later. We find it more
convenient to work in polar coordinates. The system transforms to:

{7: = Re(A1)r+ a(d)r® 4+ O(r) (25)

0= Im(\) 4+ B(8)r2+ 00

We are especially interested in the dynamics of the flow near g = 0. It is
therefore natural to Taylor expand the coefficient around &y = 0 so that:

{1‘ = —hop 4 a(0)r® + 083, rP) (26)

. 2_o2
6= VI%ZT 4 5(0)r2 + O(dor?, 1)
Taking dy = 0 and neglecting the higher order terms in the system produces:

r=«a(0)r’
{9= VIZ 4 (o) .

4
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where

_ 2abr(c— 4p)(c*(0 — 16p) + 2u(46* + (o — 16p)?))

a(0) = (4c? — (4k* —o(o0 — 16p)))? + 16K%(0 — 8p)*? (28)
5(0) = —ab(c—4p)%
44/16p% — c2(16¢* — 8¢%(4k? — o(0 — 16p)) + (462 + 02) (42 + (0 — 161)?))
with

¥ =(32¢%(8u — o) — 4¢*(15364° + 4K% (561 — 5a) + 64pc — 56pa® + 30°) —
32u20 (166 4 (12842 — 24puo + 02)? + 8k2(160p* — 24u0 + %)) + ¢?
(1310721° 4 165* (24 — o) — 16384u'e — 512u°0? — 64p*0” 4 24pc*

— 0”4+ 8k*(33281° — 416p°0 + 24puc® — 0°)))/(4K° + (0 — 16p)%)
(29)

The sign of a(0) is decisive for the stability of the trivial solution. If a(0) < 0
the trivial solution will be stable, if a(0) > 0, the trivial solution will be
unstable. After a detailed study of the numerator we came to the following
conclusion. The sign of @(0) depends strongly on all the parameters involved
in this system. Some cases will yield stability and others will give instability.
This result holds of course for the averaged system. Numerical analysis
suggests the stability results hold for the original system as well.

Remark

From the study above, we can state that when &y is near zero and «(0) is
positive, the averaged system has an unstable cycle. The ‘averaged’ trivial
solution is in this case asymptotically stable. If, for some values of the pa-
rameters, the flow in the centre manifold is stable or unstable, then reversing
the sign of the parameter a or b will make the flow respectively unstable or
stable. Numerical results suggest this holds also for the original system.

Appendix 2: Stability of the periodic solutions in
the case of exact resonance i.e. 0 =0, u=0

The results of section 3.4 can be obtained using the Routh-Hurwitz criterion
to study the stability of the periodic solutions. A necessary and sufficient
condition for the stability of the periodic solution translates in our case,
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after some simplifications, to the following:

26k Raq
So+ 5+ 2,

|0
88 (824 99%) k* R, + 4k (907> + 6% (380 +4k)) RE, [b]+
28 Raq |b)? (2 (53 + 480k + 2/62) +ak Raq sgn(b)) +
6P ((260+ k)2 +a (8 + k) Ragsgn(b)) > 0,

86 (824 9+%) kPR3, +4k* R3,1b| (980v%+ 6% (380 +2k) + ad? Ryysgn(b)) +
20k Roa [b]* (2802 + 480k + k2 +2a (60 + k) Raqsgn(b)) +
16 (0 k (200 + k) + a (8 + k)* Raasen (b)) > 0,

4 (02 +97%) k? Rya + 46k |b| (60 + a Raqsgn (b)) +
a|b|* sgn(b) (280 + a Raqsgn(b)) > 0.

(30)

Proposition 1 Suppose ab > 0, z < 1/2, then the periodic solution with
amplitude along the y-direction equal to R, will be stable no matter what
the other parameters are.

Proof
This can easily be seen from the Routh-Hurwitz equations. The condition
z < 1/2 guarantees the existence of the periodic solution as 3 is positive. O

Proposition 2 The periodic solution with amplitude along the y-direction
equal to RS, will, if it exists, always be unstable.

Proof
The fourth equation of the Routh-Hurwitz system can be rewritten as fol-
lows:

(a® + 3*)b%c® Ry + 46|b|So + 2alb|bdy > 0. (31)
Having done this, it is now easy to see that R;, will always yield a negative
number. a
Remark

From equation (31) we see that R}, will always satisfy the fourth inequality
of the Routh-Hurwitz system.

Proposition 3 Given the parameters ¢, 8y, 6, v, b and K, suppose that
ab < 0 and z < 1/2 then there exists a; > 0 such that the periodic solution
with amplitude R}, along the y-direction will be stable provided |a| < as.
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Proof

When «a tends to zero, the parameter 3 becomes positive. One can easily
see that the periodic solution with amplitude R}, still exists because z <
1/2. Taking @ = 0 in the Routh-Hurwitz system of conditions, we can
see that the positivity condition is met. As R} and the Routh-Hurwitz
system of conditions depend continuously on the parameter a, we can use
the continuity principle to prove the existence of a; > 0 such that the
positivity conditions will still be met provided |a| < as. O

Proposition 4 Given the parameters c, §, v, b and , suppose that § < 0
then there exist as1, asy both positive and zs > 1/2 such that the periodic
solution with amplitude R}, along the y-direction will be stable for all 1/2 <

z <min(1/24/1+ (B/a)?, z;), provided ag < |a| < ass.

Proof
Define a1 as follows:

lim g=0.
la|—as
Taking z = 1/2, we find:
lim Rga =0.
la|—as1
Putting |a| = a5 and z = 1/2 in the Routh-Hurwitz system, we can see

that the positivity condition is met. Using the continuity principle, we can
prove the existence of an open region U around (1/2,|as])in the za-plane
such that the positivity condition will still be satisfied provided the point
(z,a) lies in this region U. Defining the parameters a5y and z, such that:

[1/2’ ZS] X (as'l 9 asQ) C U

concludes the proof. The condition z < min(1/24/1+ (3/a)?, z5) guaran-

tees the existence of the periodic solution. a

Proposition 5 Given the parameters ¢, dy, 8, v, b and k, suppose that
ab < 0 then there exists 0 < a, < oo such that the periodic solution with
amplitude R}, along the y-direction will become unstable provided |a| > a,.

Proof

When |a| tends to infinity (keeping the other parameters constant), the
parameter 3 will tend to —oo. The parameter « is not affected by a (exact
resonance). The threshold value z = 1/24/1 + (8/a)? will hence never be
exceeded. The periodic solution with amplitude R}, will consequently still
exist. Its magnitude is as follows:

lim aRj, = (260 + ¢)sgn(a)

|a|—c0
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In other words RJ, becomes insignificant when |a| increases. Bearing this in
mind and looking at the third condition of the Routh-Hurwitz system, we
find that as |a| increases, the last term of this equation will become decisive
for its sign. As

JimJof (0% (280 + k) + a (30 + K)* Raasen(b) ) =

a|—r oo

—[6]> (e(do + K)* + 80(262 + 260k + K*)) < 0

we can prove, using the continuity principle, the existence of 0 < a, < o0
such that the third expression of the Routh-Hurwitz system will remain
negative or become zero as |a| > ay. O

Appendix 3: Stability of the periodic solutions in
the case o =0, v=0.

After some simplifications, the Routh-Hurwitz system of conditions based
on section 3.5, becomes in this case:

0D Ry,

>0
|6]

K+

483 DRy, 4+ 1682 Dk RE, b+ £ [6]* (D +2a Rayysgn(b)) +
26 Ryq |b]? (8 k24 aD Ry, sgn(b)) >0

166° D'k Ry + 2aw* (D? — 8 pa,) |b]>sgn(b) + 854 D3 R}, |b]

(8 k%4 aD Ry, sgn(b)) + 8683 D?k Ry,> |b|2 (D2 +8k%2+4a DRy, sgn(b)) +
§Dr[b]* (D> +4aRy, (D*+4k*—8po,) sgn(b)) +

262 D? Ry, |b[* (8 Dk? 4 a Ry, (D2 +20K% — 8;“7#) sgn(b)) >0

82 Ryg D? +4abdk Ry D+ alb]*sgn(b) (4po,+ aRaq Dsgn(b)) > 0
(32)

Proposition 6 Suppose ab > 0 and |o| < 4v/2k then the periodic solution
with amplitude along the y-direction equal to R, will, if it exists, be stable
no matter what the other parameters are.

Proof The condition |o| < 4v/2k implies D? — 8ua, > 0. It is now easy to
see that under this condition, the Routh-Hurwitz system of conditions will
be satisfied. |

Proposition 7 Suppose ab > 0 and |p| < 1/2k then the periodic solution
with amplitude along the y-direction equal to R3, will, if it exists, be stable
no matter what the other parameters are.
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Proof The condition || < 1/2k implies D? — 8uo, > 0. It is now easy to
see that under this condition, the Routh-Hurwitz system of conditions will
be satisfied. O

Proposition 8 The periodic solution with amplitude along the y-direction
equal to R, will , if it exists, always be unstable.

Proof
The fourth equation of the Routh-Hurwitz system can be rewritten as fol-
lows:

(@ + B%)b*c* DRoy + 4po,ab’sgn(b). (33)
Having done this, it is now easy to see that R;, will always yield a negative
number. |
Remark

From equation (33) we easily see that R;’a will always satisfy the fourth
equation of the Routh-Hurwitz system of conditions.

Proposition 9 Given the parameters ¢, u, 6, o, b and k, suppose that
ab < 0 and |z,| < 1/4 then there exists as > 0 such that the periodic solution
with amplitude R;a along the y-direction will be stable provided |a| < as.

Proof

When a tends to zero, the parameter o becomes zero. One can easily see
that the periodic solution with amplitude R, still exists because |z,| <
1/4. Taking ¢ = 0 in the Routh-Hurwitz system of conditions, we can
see that the positivity condition is met. As R;’a and the Routh-Hurwitz
system of conditions depend continuously on the parameter a, we can use
the continuity principle to prove the existence of ag; > 0 such that the
positivity conditions will still be met provided |a| < as. O

Proposition 10 Given the parameters ¢, u, 8, o, b and k, suppose that
ab > 0, |z,| < 1/4 and |p| > 1/2k then there exist oy, 05 and a, > 0
such that the periodic solution with amplitude R, along the y-direction will
become unstable provided |a| > a, and o1 < 0 < 0.

Proof
When |p| > 1/2k then there are oy and o5 such that

D? — 8uo, <0, Vo € (01,0,) .

When |a| tends to infinity, the periodic solution with amplitude B3 will still
exist as |z,| < 1/4. For its amplitude we have:

| 1|im la| R}, = positive constant.
a|—00
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RT becomes consequently insignificant when |a| increases. Bearing this in
mind, we can see that the third condition of the Routh-Hurwitz system
becomes negative as |a| tends to infinity. We can now prove, using the con-
tinuity principle, the existence of 0 < a,, < oo such that the third equation
of system (25) will become negative or zero provided |a| > a,,. O

Proposition 11 Given the parameters ¢, u, 8, o, b and k, suppose that
ab < 0, |z,] < 1/4 and |u| < 1/2k then there exists a, > 0 such that
the periodic solution with amplitude R;’a along the y-direction will become
unstable provided |a| > a,.

Proof

When |p| < 1/2k then D? —8uo, will always be positive. When |a| tends to
infinity, the periodic solution with amplitude R}, will still exist as |z,| < 1/4.
For its amplitude we have:

| 1|im la| R}, = positive constant.
a|—0o0

RI becomes consequently insignificant when |a| increases. Bearing this in
mind, we can easily see that the lefthand side of the third condition of
the Routh-Hurwitz system becomes negative as |a| tends to infinity and
ab < 0. We can now prove, using the continuity principle, the existence
of 0 < a, < oo such that the third equation of system (25) will become
negative or zero provided |a| > a,. O

Proposition 12 Given the parameters ¢, u, 8, o, b and k, suppose that
ab < 0, |z,| < 1/4 and |o| < 4v/2k then there exists a, > 0 such that
the periodic solution with amplitude R}, along the y-direction will become
unstable provided |a| > a,.

Proof
The proof runs similar to the previous one. a
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