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Abstract

A surface z : M — S™ is called a Willmore surface if it is a critical surface
of the Willmore functional f,,(S — 2H?)dv, where H is the mean curvature and S
is the square of the length of the second fundamental form. It is well-known that
any minimal surface is a Willmore surface. The first non-minimal example of a flat
Willmore surface in higher codimension was obtained by Ejiri. This example which
can be viewed as a tensor product immersion of S!(1) and a particular small circle
in $?(1), and therefore is contained in S”(1) gives a negative answer to a question by
Weiner. In this paper we generalize the above mentioned example by investigating
Willmore surfaces in S™(1) which can be obtained as a tensor product immersion
of two curves. We in particular show that in this case too, one of the curves has
to be S1(1), whereas the other one is contained either in S$?(1) or in $3(1). In the
first case, we explicitly determine the immersion in terms of elliptic functions, thus
constructing infinetely many new non-minimal flat Willmore surfaces in $°. Also in
the latter case we explicitly include examples.
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1 Introduction

Let  : M — S™ be a surface in the n-dimensional unit sphere S™. If A denotes the
components of the second fundamental form of M, S denotes the square of the length of
the second fundamental form, H denotes the mean curvature vector and H denotes the
mean curvature of M, then we have

1
S = (%)}, H=Y H%,, H*=-) h°
ZZ ! Z 32 H=|H],

k kk»

<a< al normal vector fields of M in S”.
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We define the following non-negative function on M
p’=S—2H? (1.1)

which vanishes exactly at the umbilic points of M.
The Willmore functional is then the following non-negative functional (see [1], [4] or

[23])

W(x)z/Mp?dv:/M(S—QHQ)dv. (12)

It was shown in [4] (see also [22] and [24]) that this functional is invariant under conformal
transformations of S™. The Willmore conjecture states that W(z) > 4n? for all immersed
tori  : M — S3. The conjecture has been proved in some conformal classes by Li and
Yau [17], Montiel and Ros [19]. The conjecture is also known to be true for flat tori (see
Chen [5]) and tori whose images under stereographic projection are surfaces of revolution
in R® (see Langer and Singer [13], Hertrich-Jeromin and Pinkall [12]). Tt is a natural
idea to approach the Willmore conjecture by studying the critical surfaces of the Willmore
functional W(z). A surface in S is called a Willmore surface if it is a critical surface of
the above Willmore functional.
Let M be a surface in S”, it was proved by R. Bryant in case n = 3 (see [1]) and by J.
Weiner in [23] in the general case n > 3 that M is a Willmore surface if and only if
AH+ Y hehHPeq —2PH =0, 3<a<n, (1.3)

"y
o, By,5

where At is the Laplacian in the normal bundle N M.

Note that every minimal surface in S™ is trivially a solution of (1.3). Therefore, Will-
more surfaces are a generalisation of minimal surfaces in a sphere. We note that Pinkall
[20] constructed some compact non-minimal flat Willmore surfaces in S®. and that in [11]
the authors studied the geometry of m-dimensional Willmore submanifolds in S™. One
of the first examples of a flat non-minimal Willmore surface in higher codimension was
obtained by Ejiri in [10]. He showed that the following surface:

z(t,s) = (\/gcos t, \/gsint, \/gcos(\/?:s) cost
\/gcos(\/%) sint, \/%Sin(\/gs) cos t, \/gsin(\/gs) sint).

is a Willmore surface. Note that the above immersion can be seen as a tensor product
a ® 3 of the curve

a(t) = (cost,sint)

B(s) = (\/g, \/gcos(\/gs), \/gsin(\/gs)).

with the curve



The main purpose of this paper is to investigate in a systematical way when a tensor
product of two curves is a Willmore surface. A systematic study of the geometric properties
of a tensor product was started in [6] and [7]. Further properties were obtained in amongst
others [8] and [9]. The paper is organized as follows. In Section 2, we recall some basic
facts about tensor product immersions of curves and the condition for the tensor product
imemrsion to be a Willmore surface in terms of the curves @ and 3. A further investigation
of the obtained condition is done in Section 3. Amongst others we show that:

Theorem 1. Let o : R — S' C R*: ¢+ (cost,sint) and let 3: 1 C R — S?(1) C R* be
an arclength parametrized reqular curve whose Frenet curvatures (considered as a curve in

S3(1)), satisfy
[ ] kgkf = C,
[ J ki’—k1+%kf—k1k§:0,

where ¢ is an arbitrary constant. Then o @ 3 is a flat Willmore surface in S”. Moreover,
the mean curvature H and p* satisfy

W= (b(s) 0* =24 S (s))" (1.4)

Conversely, let M — S™ be a Willmore surface which can be written as a tensor product
of 2 curves. Then, either

(i) n =3 and M is congruent with the surface oblained by taking o : R — S' C R?:
t — (cost,sint) and B : 1 CR — S'(1) C R? : s + (coss,sins), i.e. by assuming
ki = ke = 0 in the above differential equations;

(ii)) n = 5 and M is congruent with a surface obtained by taking o : R — S' C R?:
t — (cost,sint) and : T C R — S*(1) C R® an arclength parametrized reqular curve
whose curvature ky is a positive function salisfying

kY — ki 4+ 1k =0,
i.e. by assuming ko = 0 in the above differential equations;

(iii) n =7 and a : R — ST C R?*: ¢+ (cost,sint) and let 3 : T C R — S*(1) C R*
be an arclength parametrized reqular curve whose curvalures are nowhere vanishing
solutions of the above differential equations;

(iv) n > 7 and M is obtained as the composition of a totally geodesic immersion of S”
into S™ together with one of the previous examples.

Note that the Clifford torus, which is the only minimal example corresponds to the case
that n = 3, whereas Ejiri’s example which lies in S® corresponds to the case that ky = 0
and k; = v/2. The above differential equation for a curve has already been studied (see
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[14], with parameter A = 4). Using their results, we explicitly solve the above system of
differential equations for the curvatures k; and k; in terms of elliptic functions. We then
show, in the case that n = 5, how to obtain the curve explicitly in terms of elliptic functions
and their integrals. As a consequence we obtain infinitely many new examples of Willmore
tori in S°(1) which generalise Ejiri’s example. In particular we show the following:

Theorem 2. Let a: R — S' C R*: L+ (cost,sint) and

2—k?
(3—(3]€2+)]~:4) dn<\/2 k2 7k)
(83=3k24k*)—4(2—k?) dn?( *_ ——=15,k) ‘
B:R—=S*CR>: s+ (3—3k2+k") = cos(¢(s))
(3=3k2+ k1) —4(2=k?) dn2(———ss5,k)
\/ (3=3k2+k?) = sin(¢(s)),

where

k2 2 U
* AR I+ 35z (\/W’k> du
1-k2 E2(2-k%) 2(_u__ ) ’
V2—-k2’
where sn and dn are Jacobi elliptic function, see [2], and the parameter k with 0 < k < 1
1s chosen such that
Ti(k) = 4\/(3 —3k% 4+ k) (2 — E?)K (k) + 2m(1 — Ag(arcsin(1 — kQ), k)),
is a rational multiple of 27, where Ay denotes the Heumann Lambda function and K(k) 18
the complete elliptic integral of the first kind. Then o ® (3 is a Willmore torus which lies
linearly full in S°(1).
Theorem 3. Let a: R — S' C R*: t + (cost,sint) and

k (2> —1) cn( 1_ s k)

(3kT=3k241)

—WSH

(3K —3kZ+1)

(3K4 —3k241) —k2 (2k2 =1) en?(—m—s,k) ,
B:R—S*CR?: s \/ 2=l — cos(¢(s))

(3KT—3k2+1)

| ST ) )

where ) ) .,
o s (1—-Fk*)—k SH(W) "

_ | J1_3k2 L k4
A A T e — e ()

where sn and cn are Jacobi elliplic function, and the parameter k with % < k< 1is

chosen such that

(2k2 —1)%/2 g
Ty(k) =4 s K(k) —2m(1 — Ao(arcsm(m), k))

is a rational multiple of 2m. Then a ® B3 is a Willmore torus which lies linearly full in

S3(1).




We also show that all flat tori in S°(1) which can be obtained as a tensor product
immersion of curves can be obtained in this way. Finally, in Section 5, we include some
explicit examples of flat Willmore tori in S7(1).

We would like to remark that in [15] and [16], the first author proved the following
pinching result

Theorem 4. ([15],[16]) Let x : M — S™ be a compact Willmore surface in S™. Then we

have

/M P(c(n) — p*)dv <0,

e(n) = {

0 < p* < e(n),

where
ifn=3
ifn> 4.

Wik DN

If

then either p* = 0 and x(M) is totally umbilical, or p* = ¢(n). In the latter case, either
n =3 and (M) is the Clifford minimal torus; or n = 4 and (M) is the Veronese surface.

2 Preliminaries

First, we recall some elementary properties of the tensor product. Let v = *(vy,...,v,) € R?
and w = (wq,...,w,) € RY then v @ w is the element of R?? 2 R?*? defined by

. =1 tepy = (141 D Doy P
VRQwW =v.w= (Ulwl,...,Ulwq,Ule,...,Upwq>,

where we identify RP*? and R?? in a natural way. If we denote by {e,...,e,} and
{fi,---, [y} the standard basis for respectively R? and R? it immediately follows that
the vectors ey = €; @ f;, where i = 1,...,pand j = 1,...,¢ form a basis for R??. We
denote by A;;) the component of a vector A € R in the direction of e; @ f;.

It then follows that

p q
<v@w @ >=3 ¥ (v. )0 W)

i=1 j=1

p q
= E E vz-wjvz'-w;-

i=1 j=1

= (> v (> wiw))

=1 7=1
! !
=<v,v ><w,w >.



Note that if A and B are linear transformations of R? and R? respectively, we have
Av @ Aw = (Av). 75(Bw)
= Av.'w'B
=Cv®w,

where C' is the linear tranformation of R?? determined by

p q
= Z Z Aiknge(M).

k=1 {=1

In particular, we see that if A and B are orthogonal matrices, then so is the matrix C.
Indeed, denoting by C'(;;)xs) the component of Ce(;;y in the direction of e, we have that

p q p q
Z Z ClipwoCrinm Z Z AirBjeAin By

P
= ZAZ ik ZBJZB 1

As a consequence the tensor product behaves nicely with respect to orthogonal tranforma-
tion in the base spaces.

Now, let r : M? — S™ C R™! be an immersion of a surface into the n-dimensional
sphere with radius 1. We say that r is a tensor product immersion if there exists curves
a: ] = RPand B:J — RY with pg = n + 1, such that, if necessary after applying an
orthogonal transformation, r(M) = a(I) ® 3(J). Throughout this paper we will denote
by ¢ the variable on I and by s the variable on .J. As there is no confusion possible, we
denote by o, o', o} derivatives of a (or its components) with respect to t. Similarly, we
denote by 3, 3", 3} derivatives of 3 (or its components) with respect to s. Note that as

a(l) @ B(J) C 5,
we have for all ¢ and s that ||a(t) ® 8(s)||* = 1, which implies that
< a(l),a(t) >< B(s),B(s) >= 1.

Hence there exist positive constants ¢; and ¢; with ¢jc2 = 1 such that



Therefore replacing o and 3 by

1
c1 ?

1
_gﬂa

[of}

o

it still follows that r(M) = a(7) ®B(J). Moreover a andNﬁ~ satisfy <a,a>=1=< B, B
As M is a surface, it also follows that the vectors (a ® (); = &' ®@ f and (A ® () = a ®

are linearly independent. This implies in particular that
<&, & >£04< 36 > .

Hence & and 3 are regular curves and can therefore be arc length parametrized. Thus, the
following lemma follows immediately:

Lemma 2.1. Let r : M* — S™ C R" be a tensor product immersion of 2 curves. Then
there exist arclength parametrized curves a : T — SP7Y(1) and 3 : J — S17Y(1), with
pg = n — 1 such that after applying an orthogonal transformation of S™,

r(M) =a(l)® B(J).

As a first property of tensor product immersions in a sphere of radius 1, we obtain the
following:

Lemma 2.2. Let r : M — S™ C R™! be a tensor product immersion of 2 curves. Then
M s flat. More precisely if o : I — SP='(1) and 8 : J — ST7'(1) are the curves given in
Lemma 2.1, then t and s are flat coordinates on the surface, i.e. we have that
<ryprp>=1=<rgrs >
and
<rg,rs >=0.

Proof. Let o and 3 be arclength parametrized as in Lemma 2.1. Clearly, we have that

re=a @ f3,
re=a® 3,

As « and (3 are arclength parametrized curves in a unit sphere it immediately follows that
<rn,ry>=1=<rgr, > < rp,rs >=0,

which completes the proof. O



Now, in the remainder of this section we want to express the condition that M is a
Willmore surface in terms of the curves a and 3. First note that

re =a" @0,
Tss = Q@ ﬂ”,
st = O/ & ﬂ,,

and that by the properties of the tensor product the above vectors are orthogonal to
ry =ao ®@F and ry; = a ® #'. Also, we have that the component in the direction of the
normal of the sphere in R**! can be computed as follows:
<rg,r>=<ad" @B,a 3>

=<ad a>< 38>

= — <K O/,O/ >=—1.
Similar computations will be made frequently throughout this section. Tt now follows
immediately that the second fundamental form & (of M? in S™(1)) is given by:

0 0 0 0 0 0
h(a,a) —Ttt+T, h(a,a) —Tt37 h(a,a) —T55+'T'. (21)
From this we deduce that the mean curvature vector H satisfies
1 1 1 1
H= (b br  [HJ = o 0F + 876 - 5. (2.)

Now we first prove

Lemma 2.3. Denote by At the Laplacian with respect to the normal connection of M? in
S™. Then, we have

ATH = %(Ttttt + Tssss) + Tsste + %(1 + [ ()||*)ru
F(LH18"()I1P)res + FLU”(@)7)ers 4 (118”(5)]1)s7s]-

Proof. Note that V4 H denotes the normal component of H; in the sphere, i.e. that part

(2.3)

of H; which is normal to the tangent space spanned by rg, r; and the position vector r. As
«a and (3 are arclength parametrized curves in a unit sphere, it follows straightforwardly
from the tensor product that:
<rupr>=<ad" Q8,00 3>
=<ad" a>
=—<ad o >=0,

where we also used that < o”,a >= — < o/, o’ >= —1. Similarly, it follows that

< Ty, >=0, < T, e >= —|[a”||?, < Ty s >=0,

< rysyr >= 0, < ryggyry >= 0, < Pypgy s >= — 1,

< reg,r >= 0, < sty Ty >= —1, < sty s >= 0,

< Tagsy T >= 0, < Tgey Ty >= 0, < Tass, s >= — |87



Using the above formulas together with the fact that r, ry and r; are three mutually

orthonormal vectors, it now follows from the definition of VLH and H = (rtt + 1)+,
that
VEH = Ho— {1 o ()] "
= g(rue + ras) + 1o — g[1 = [la” @), '
VoH = H,—3[1 —|8"(s)|I’]rs
% 1 : 1 " 2 (25>
= §(Ttts + Tsss) +rs — 5[1 - Hﬂ ( )“ ]TS,

Similarly, it also follows that
Ve (VeH) = (Vi H)+ 3(|lo” (D)) (2.6)
= g7+ gTuse + 3(1+ [l () + (1l (D)]]*)ers, .

V4 (VAH) = (VEH). + (180 .
= gTasss T g7sete + 3(1F+ [1B(3)1*)rss + F(IB"()1)srs
Lemma 2.3 now follows directly from (2.6) and (2.7). O

Now we can show that:
Proposition 2.1. A tensor product immersion is a Willmore surface if and only if curves
a(t) and B(s) salisfy

%(Ttttt + Tosss) + Tostt + (% + 2" (1)||* — i”ﬂ"( NP ra (2.8)
(g + 3B = 2l )rss + Tl ()]*)ere + Z(118"(3)]|*)srs = 0. '

Proof. Using the properties of the tensor product, as well as (2.1) and (2.2), we have
Zh?lhflﬁﬁea = < H?h’<%7 %) > h(ai 7)

»Jk |

Q3|Qj

= < %(Ttt + Tss) + T, Ty +7r > (Ttt + 'r) (29)
= 5l = (ra + ),
ZhSthQHﬁea = < H,h(ai %) > h(aﬁ %)
= < %(T‘tt + ?“53) +rrs+1r > (Tss + 7«) (2.10)
e %[Hﬁ”(s)lp_ 1](7‘35—|—T‘)7
Zh W HBe, = <H A2, 2)> k(2,2

= < %(rtt + 7“85) + 1, T > Ty (2.11)
= 0

Substituting (2.2), (2.3) and (2.9)-(2.11) into the Willmore equation (1.3), we get
Proposition 2.1. O



Next, we want to simplify (2.8), which depends on both curves o and 3 simultaneously
as much as possible in order to determine explicitly which curves a and 3 solve such
equation, i.e. we want to obtain independent expressions for the curves a and 3. For that
purpose, we introduce auxiliary functions A and B respectively defined by

_l § " 2 l " 2
1 3 1
B — - " 2 _ " t 2 21
S B = ) (2.13)

Then (2.8) is equivalent to

5t (1)3;(5) + 5os(1)B1 () + al(1() + (0" [ealDBs(s) (g 1
+ﬂW%W%%UﬂM+AcM)(@+Bﬂ4mu):

foralle =1,...,pand 7 =1,...,¢q. Multiplying now the above expression with 3; and
taking the summation over j, we obtain

1 (4) 1 an 2 y
3 (1) + 51 B"(s)|Pe(t) — e (1)
Fa(lla(0)[2)0l(t) + A- (1) = B - o(t) = 0, (2.15)

which is valid for all 4 = 1,..., p. Substituting now (2.12) and (2.13) into (2.15), we have
forallz =1,...,p that

Lol (1) + 118" (s) | ai(t) — o (t
—[L 4 2187 — Hla" ()]

_|_

) + 5l ()] )eeri(t)
ozz(t

+ 1+ 2l = 518" (s)1"]e () =

S~ w

which can still be rewritten as

Hﬂ”( )|I” (__az( ) — iaﬁ (1)) + % ( ) — %a;-’(t)
(HOé ( )H )ta (t) — %Oé ( )+ i”a ( )I‘Qai(t) 4+ %Ha"(t)HQOé;!(t) —0. (216)

Of course, by interchanging the roles of the two curves a and (3, we also obtain for all
7 =1,...,q that

la"(D)[2(=18;(s) — 187()) + 38 (s) — 181(s) (2.17)
LB )P)Bs) = L5(5) + HIB ()23 (5) + 28"(5)]2B(s) = 0

From this we can prove:

Lemma 2.4. Let M be a tensor product immersion generated by curves o and 3 as in
Lemma 2.1. Then, if necessary after exchanging the role of o and (3, we may assume that
a is a greal circle in SP~', and thus after applying an orthogonal transformation of S?~!,
we may assume that

a(t) = (cost,sint,0,...,0).

10



Proof. Assume that neither o nor 3 is a great circle, i.e., a;(t)+a¥(t) # 0, 3;(s)+pB%(s) # 0.
Then it follows from (2.17) that ||| is a constant. Similarly, it follows from (2.16) that

|3"]| is constant too. Substituting now the expression for ozz(-4) and ﬂj(-4) obtained from
respectively (2.16) and (2.17) in (2.14) we find for all 7 and j that
0= %054)ﬂj + %aiﬁf) + a;-'ﬁ;-' + Ao B; + Baiﬁ;f

= 318" l03B; + 0l B; + Baifj + joif” + ol B + Beufs]

= —5118"0iB; + o B; + Baif; — j|lo”"||if; + aiff + Aai3; + ol 37

= aif}j + ofB; + i3] + i3]

= (i + o )(B; + B7),
which contradicts the fact that neither « nor 3 is a great circle. O

The consequences that the curve « is a great circle are further investigated in the next
section. Of course as by properties of the tensor product, an orthogonal transformation of
the curves induces an orthogonal transformation of the surface itself, we may assume that

a(t) = (cost,sint,0,...,0).

3 Proof of Theorem 1

As we have shown in the previous section, we may assume that
a = (cost,sint, 0,...,0), (3.1)

Putting (3.1) into (2.14), it is straightforward to check that the Willmore equation (2.14)
reduces to

B0(s) + S = 1B + S U8 — (5 — S IDBs) =0, (3.2

where j =1,...,q.

Note that by the above differetial equation 3(s), 3(s), 8"(s), 3%)(s), 3 (s) are linear
dependent. This implies that by applying an orthogonal transformation, we may assume
that curve 3 is contained in a totally geodesic S?(1) in S?7'(1). Let us assume that 38 does
not contain a piece of a great circle. For such a curve, we have, on an open dense subset
of the parameter domain, the following Frenet formulas:

Bls) =to
Bls) =t

B"(s) =17 = —lo+ kil (3.3)
t,2 == _kltl + kgtg
té - —kgtg,

11



where {to,11,12,13} is an orthonormal moving frame along the curve and k; > 0 on the
previously mentioned open and dense subset.
Thus we have

/3(‘;) =1

B's) =t

B"(s) = —to + kit

B"(s) = —t1 + itz — (k1)*t1 + kikats

BD(s) = (14 k)t — 3kakity + (K — ky — K} — kyk2)tg + (2K Ky + Ky k) 1.

(3.4)
Noting that
1B ($)II* =1+ (k)%
the Willmore equation (3.2) becomes
3
BW(s) = =5 (k)™ = Bk kit + (14 (k1)) lo. (3.5)

Combining (3.4) with (3.5), using that {4y, t;, { and {3 are linearly independent, we
know that the surface M is a Willmore surface if and only if the curvature k;(s) and ky(s)
of curve §(s) satisfy

1
]{?2(1{71)2 =C, k‘i’ — ]{?1 + 5(]{71)3 — kl(kg)Q = 0, (36)

where ¢ is an arbitrary constant. Note that the above system of differential equations
corresponds to the one in (1.3) of [14] with G =1 and X = 4.

Remark that the above differential equations imply that if k5 is nonzero somewhere, it
is nonzero everywhere, as in that case the constant ¢ is nonzero. This corresponds to the
case that the curve § is linearly full in S?(1), i.e. is not contained in a totally geodesic
S%(1) in S3(1). However, if the curve is contained in a totally geodesic S*(1), k2 vanishes
identically and therefore ¢ = 0 and k; is determined by the following differential equation:

K — by + Tk = 0, (3.7)

which can be solved explicitly using elliptic functions. Using elementary properties of
elliptic functions of [2], see also Table 2.7(c) of [14], we obtain after a translation of the
s-coordinate that either:

(i) ki(s) =0, i.e. the curve (3 is a great circle;

(i) ki(s) = V2, in which case it follows from (3.4) that § is congruent with a circle of
radius \/I in S?(1). Tt is clear that integrating this leads to

B(s) = (\/g, \/gcos(\/?:s), \/gsin(\/gs),

this gives Ejiri’s example;

12



(iil) ki(s) = \/22_k2 dn(\/;_k2s,k), where 0 < k£ < 1;

(iv) ki(s) = \/2?‘312“—_1(11(1 | 52—, k), where \/g <k <l
(v) ki(s) = 2sech(s),

where dn, cn and sn are the Jacobi elliptic functions ([2]). Note that the first solution
corresponds to a great circle and that the last solution can be seen as a limit case of the
third or fourth one for k approaching 1. Also, the second solution can be seen as a limit of
the third one with & approaching 0. As it is clear that the above solutions cannot be joint
together differentiably, Theorem 1 now follows immediately from the fact that the tensor
product immersion behaves nicely with respect to orthogonal transformations in the base
spaces.

To conclude this section, we remark that (2.2), (3.1) and (3.4) imply that H* =
(k1(s))?/4. From the Gauss equation, we get p* = 2 + £(ki(s))’>. Thus H = 0 if and
only if k1(s) = 0, which implies that r : M — S™ is congruent with the Clifford minimal
torus in S°(1).

4 New examples of Willmore tori in S°(1)

Throughout this section we will assume that the curvature of the curve 8 is determined
by (3.7). First note that as 8" + 8 # 0, it follows that a ® 3, ' ® 3, a ® ', &' @
a® (B"+3), o @ (8" + B3) are 6 orthogonal vectors, implying that the tensor product of
a @ [ is linearly full in S®. From the discussion in the proof of Theorem 1, we only need
to study the following cases:

ki(s) = \/22_k2 dn(\/;_ms,k), 0< k<1, (4.1)

Fi(s) = o2 en(y /525, k). Ji<k<L (4.2)

Note that the other cases, which are linearly full in S*(1), can be obtained by taking the
appropriate limits. Curves corresponding to (4.1) are called curves of Type 1, whereas

curves corresponding to (4.2) are called curves of Type 2. In both cases, the curve 3 itself
is then determined from (3.4) by:

B"(s) = £(8"(s) + B(s)) + (1 + k})B'(s) = 0. (43)
As the curvature k; is determined as solution of
H(s) = b — 1K,
it follows that

K(s) = K, — 2k2K,.

13



It now follows the quite remarkable fact that the curvature of the curve itself is a so-
lution of the equation (4.3). This means that if necessary after applying an orthogonal
transformation of S?(1), we may assume that

B(s) = (dki(s),4/1 — d?k{ cos (s),4/1 — d*k7 sin ¢(s)), (4.4)

where d is a positive constant and ¢(0) = 0.
Now, assume that § is a curve of Type 1. Then, expressing that ' is an arclength
parametrized curve yields:

#(5) \/—(2—k2)2—4d2(1—k2)+8d2(2—k2)dn(ﬁ,k)z—mﬂ dn(\/Qs_T,k)“
S) = .

2—k?—4d? dr‘l(ﬁ,k)2

Substituting now 3 in the differential equation (4.3) (and evaluating the result at s = 0),
we find after a computer computation using the program Mathematica that the constant
d is related to the modulus of the elliptic function by

d = 2—k2
T V3B=3k24E4

Substituting this expression now in the equations for ¢’ it follows that

1 2 — k2 — dn(—=2, k)?

’ Neemzk
@I s) = 41 2 ' 4.5
() 3 —3k2 4+ k'] — i du( s, k)? -

Clearly, by an orthogonal transformation we may take the negative sign in the above
expression. Moreover, replacing dn by sn, we get that the function ¢’ is determined by

k2 2 s
¢I(5) — V/3-3k24k1 I+ -z SN (\/2—k2’k> . (46)
1-k2 1 E*(2—k2) 2( s k)
a-ry SV (o k

As sn, ¢n and dn are periodic function with period 4K (k), where K (k) is the complete
elliptic integral of the first kind ([2]), the resulting curve is closed provided that

Li(k) =

4K (k)V2—k2
/ # (s)ds,

0

is a rational multiple of 27. The above integral can be expressed in terms of the Heumann-
Lambda function Ag. Indeed from [2], formula 411.6, together with the fact that the
integral is periodic with period K(k)v/2 — k2, the latter following immediately from

sn(u+ 2K, k) = —sn(u, k)
sn(2K —u, k) = —sn(—u, k) = sn(u, k),

14



it follows that

Ti(k) = 4\/(3 —3k2 4 k") (2 — k*)K + 2m(1 — Ag(arcsin(l — k2), k)), (4.7)

where Ay denotes the Heumann Lambda function. As T;(k) is a continuous function, we
obtain infinitely many closed curves 3 in S? and thus infinitely many new examples of
Willmore tori in S®(1). This also proves Theorem 2. Below, we include some pictures of
the function 7;(k), as well as one of the curves 3 (their projection on the yz-plane) for a
suitable value of k.

k=0. 77085

18.5
18
17.5 0.25
17
-qd\7s -0 -0.25 0.25 5 0. s
16.5
-0.25
16
15.5 ’

0.2 0.4 0.6 0.8 1

If 3 is a curve of Type 2, we proceed in the same way. First, we deduce that
_ 2k* — 1
2T — 3k% + 3K

Next, we find that the function ¢, eventually after an orthogonal transformation is deter-
mined by the differential equation:

(1 — k%) — k? Sn(\/21:2—_1>

¢'(s) = V1 —3k2+ k4<1 RO = 1) (o) (4.8)

from which it follows that the resulting curve is periodic provided

K(k)V2k2=1 —k?) — ;
Ta(k):_/4()2 1 1 —3k2 + k* e )
0 (1= F2)2 + K2(2k2 — 1) sn(ob=)’

is a rational multiple of 27. Again, the above integral can be computed in terms of the
Heumann-Lambda function resulting in:

(2k2 — 1)%/2
V1 = 3k? 4 3k

Ty(k) =4 K(k) —2n(1 - Ao(arcsin(i), k)). (4.9)

1—3k2+3k%
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As Ty(k) is a non constant continuous function we obtain infinitely many examples of
closed curves 3 and thus of Willmore tori in S°(1). This completes the proof of Theorem
3. Again, we include some pictures of the function T3(k) and of a curve 8 corresponding
to suitable values of T5(k).

15

5 Examples of flat Willmore torii in S7(1)

In case that the curve (3 is contained in S?(1), we have already obtained an expression
for the curvature of the curve 3 in terms of elliptic functions and used this relation in
the previous section in order to construct new explicit examples of Willmore tori in S°(1).
Also in the case that 3 is linear full in S?(1), the equation (3.6) can be solved explicitly in
terms of elliptic functions by following the ideas developed in Section 2 of [13]. Note that
as in this case ¢ is a nonzero constant, k; is a stricly positive function. First, we assume
that &y (and therefore also k;) are nonzero constants. It then follows that k; is determined

by
1Rt — At =1,

From this, we get that

2 ki-274
" == ky,

which implies k] > 2. Then the solution of (3.4) is
B(s) = (Acos(0ys), Asin(b1s), pcos(bzs), psin(bss)),
where | k2 4
A={z(1- L
2 V9(k1)* — 8(k1)? + 16

D=

)37,
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Ly 3k? — 4
\/9 k1)* —8(k1)2 + 16

N[ =

n= 15l

)37,

6, — %\/3(k1)2 + /() —8(k1)2 1 16,

1
92:5\/3(131 — \/9(ky)* — 8(ky1)% + 16.

We get the following non-minimal flat Willmore tori r: M — S7

r = (Acos(6s)cost, Acos(8;s)sint, Asin(f;s)cost, Asin(f;s)sint,
pcos(Bss)cost, prcos(8ys)sint, psin(fys)cost, psin(fys)sint).

Next we assume that k; is not a constant. We then introduce a positive function u by
u(s) = ki(s)?. As u/(s) = 2k, k], it follows that
u”(s) = Q(k’) + 2k1k"
LOO% 4 9k (ky — LKS + 2(ke)™%)
%( )" + 2u — u? + 2c*u,

which we can still rewrite as:
(") u™") = (4 — 2u + 4c*u?)u'.
Solving the above equation, we find that there exists a constant d such that
(u')2 = 4u? — u® — 4c* + du. (5.1)

As the right hand side of (5.1) is positive for u — —oo and negative for u = 0 or u — +oo
and because u(s) is a positive function (and thus there are values of s such that u(s)
is positive and the righthandside of (5.1) is positive), it follows that the righthandside
polynomial in u has three real roots: 1 negative —a; and 2 positive ay < az. Clearly, we
must have that

oap = g + az — 4. 4c¢? = gy

This implies that ay+a3—4 > 4. It is then well known that the solution u can be expressed
as

Ki(s) = u(s) = as(1 — 2522 s’ (5v/as F ans, §/ 22222)).

Acknowledgements: The authors would like to express their thanks to Udo Simon
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