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INEXACT KRYLOV SUBSPACE METHODS FOR LINEAR SYSTEMS∗

GERARD L.G. SLEIJPEN† AND JASPER VAN DEN ESHOF∗

Abstract. There is a class of linear problems for which the computation of the matrix-vector
product is very expensive since a time consuming approximation method is necessary to compute it
with some prescribed relative precision. In this paper we investigate the effect of an approximately
computed matrix-vector product on the convergence and accuracy of several Krylov subspace solvers.
The obtained insight is used to tune the precision of the matrix-vector product in every iteration so
that an overall efficient process is obtained. This gives the empirical relaxation strategy of Bouras
and Frayssé proposed in [2]. These strategies can lead to considerable savings over the standard
approach of using a fixed relative precision for the matrix-vector product in every step. We will
argue that the success of a relaxation strategy depends on the underlying way the Krylov subspace is
constructed and not on the optimality properties for the residuals. Our analysis leads to an improved
version of a strategy of Bouras, Frayssé, and Giraud [3] for the Conjugate Gradient method in case
of Hermitian indefinite matrices.

1. Introduction. In Quantum Chromodynamics (QCD) [7], the overlap formu-
lation has initiated a lot of research in solving linear systems of the form

(rΓ5 + sign(Q))x = b (r ≥ 1),(1.1)

where Q and Γ5 are sparse Hermitian indefinite matrices, and sign(t) is the standard
sign-function. Thus, sign(Q) is essentially the matrix Q with all positive eigenvalues
replaced by one and all negative eigenvalues by minus one. Therefore, the system
in (1.1) is dense. Realistic simulations require in the order of one to ten million
unknowns.

Usually, Equation (1.1) is solved with a standard Krylov subspace method for
linear systems, for example the Conjugate Gradient method (since this matrix is
Hermitian). In every step some method is required to compute the product of sign(Q)
and a vector. The usual approach is to construct some polynomial approximation for
the sign-function, for example using a Lanczos approximation. For an overview and
comparison of methods used in this context we refer to [27].

It is obvious that the accurate computation of the matrix-vector product can be
quite time consuming if done to high precision. On the other hand, the accuracy of the
matrix-vector product has influence on the Krylov subspace method used for solving
the linear system (i.e., the outer iteration). In this paper we investigate the influence
of an approximately computed or inexact matrix-vector product on the convergence
and accuracy of various Krylov subspace methods. This should lead to a further
understanding of, for example, the relaxation strategy for the accuracy of the matrix-
vector product as introduced by Bouras et al. [2, 3]. For example for GMRES, they
propose to compute the matrix-vector product with a precision proportional to the
inverse of the norm of the current residual. When the residual decreases the demands
on the quality of the computed matrix-vector product are relaxed, thus explaining
the term relaxation.

When thinking of inexact Newton methods, e.g., [5] the success of such relax-
ation strategies for Krylov subspace methods seems puzzling and further analysis is
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2 Inexact Krylov subspace methods for linear systems

necessary on this topic. This is the subject of this paper. We also like to refer to an
independent forthcoming paper by Simoncini and Szyld on this subject [23]. Their
approach is based on an orthogonality condition, but the fundamental ideas seem
to be related. The perhaps counter-intuitive phenomenon that an accurate matrix-
vector product is needed in the beginning of the iterative process, instead of at the
final iterations has also been observed and analyzed for the Lanczos method for the
eigenvalue problem [12].

In this paper we consider the effect of perturbations on the matrix-vector product
for various Krylov subspace solvers. This problem is related to rounding error analysis
of Krylov subspace methods since in this situations an inexact matrix-vector product
is one source of errors. In our analysis we will use an approved method from this area:
we try to bound the residual gap and separately analyze the behavior of the computed
residuals (although this is only possible in a few special cases). The usual way for
bounding the gap is based on an inspection of the recursions, e.g., [24, 14, 19, 18]. Our
approach differs from the analysis in these papers in the sense that our analysis is based
on properties of the upper Hessenberg matrix that arises in the matrix formulation
of the Krylov subspace method. Where possible we point out the differences with
techniques used in literature and discuss implications for rounding error analysis.

Another related problem is when a variable preconditioner is used in the Krylov
subspace method. See [9, 22, 28, 8, 11] for some results.

The outline of this paper is as follows. In Sections 2 and 3 we setup the framework
that we need in the rest of this paper. We give an expression for the residual gap for
a general Krylov subspace method in Section 3. This general expression is exploited
in the remainder of this paper, starting with Richardson iteration in Section 4 and
Chebyshev iteration in Section 5. The Conjugate Gradient method is the subject of
Section 6. The focus in that section will be mainly on indefinite systems. Inexact
GMRES and FOM for general matrices are treated in Section 7 and we conclude with
some numerical experiments in Section 8.

2. Krylov subspace methods. This paper is concerned with the approximate
solution of the n × n linear system

Ax = b, with ‖b‖2 = 1.(2.1)

Before we continue we define some notation. The vector ek denotes the kth
standard basis vector, i.e., (ek)j = 0 for all j 6= k and (ek)k = 1. Furthermore, ~1 is

the vector with all components one and, similarly, ~0 is the vector with all components
zero. The dimension of these vectors should be apparent from the context. We warn
the reader for some unconventional notation. If we apply a matrix with k columns
to an `-vector with ` ≤ k, then we assume the vector to be expanded with zeros if
necessary (we do the same with other operations and equalities). Finally, we use bold
capital letters to denote matrices of length n and use small bold capitals to denote the
columns of these matrices where the subscript denotes the column number (starting
with 0), so for example, v0 = Ve1. The zero vector of length n is denoted by 0.

The notion of a Krylov subspace plays an important role in the understanding of
a large class of iterative methods for solving (2.1). The Krylov subspace of order k is
defined as

Kk ≡ Kk(A,b) ≡ span{b,Ab, . . . ,Ak−1b}.(2.2)
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In this paper we concentrate on iterative methods for which the residual rj in step
j belongs to the space Kj+1 and r0 = b. Because Kj ⊆ Kj+1, the residuals provide
a sequence that after k steps of the subspace method can be summarized by the
following matrix relation

ARk = Rk+1Sk, Rke1 = b,(2.3)

where Rk is an n by k matrix with as jth column rj−1, and Sk is a k + 1 by k upper

Hessenberg matrix such that ~1∗Sk = ~0∗.
The vector rj is a residual corresponding to some approximate solutions in the

Krylov subspace Kj . Indeed, if Sj denotes the matrix Sj from which the last row is
dropped, then, if Sj is invertible, we have with β ≡ e∗j+1Sjej ,

~0∗ = ~1∗Sj = ~1∗Sj + βe∗j ⇒ βe∗jS
−1
j = −~1∗,

and

SjS
−1
j e1 = (Sj + βej+1e

∗
j )S

−1
j e1 = e1 − ej+1.(2.4)

Now, let

xj ≡ Rk(S−1
j e1).(2.5)

Then we get using (2.3) and (2.4) that

b −Axj = b −ARk(S−1
j e1) = b −ARj(S

−1
j e1) = b−Rj+1(SjS

−1
j e1)

= b −Rj+1(e1 − ej+1) = b− (r0 − rj) = rj ,

and we have that rj = b − Axj . We see that if xj ≡ Rk(S−1
j e1) then the iterate xj

is consistent with the residual rj .

A recursion for the iterates xj follows by substituting Rk = b~1∗ −AXk in (2.3);
this gives

−Rk = Xk+1Sk, Xke1 = 0.(2.6)

Some Krylov subspace methods use the recursions in (2.3) or (2.6) in a practical way,
for example the Chebyshev method uses (2.6) for constructing the iterates xj .

We saw that for the rj to be a residual corresponding to an approximate solution

from Kj it is sufficient that ~1∗Sk = ~0∗ and Sk is upper Hessenberg. This is also a
necessary condition, see [17, Section 4.4].

We now summarize some properties and relations that we use in the remainder
of this paper.

Lemma 2.1. If the matrix Sj is invertible for j ≤ k, then the LU -decomposition

of Sk and the one of Sk exists and is unique. Furthermore,

Sk = JkUk and Sk = JkUk,(2.7)

where Jk is lower bidiagonal with (Jk)j,j = 1 and (Jk)j+1,j = −1 and and Uk is upper

triangular with (Uk)i,j =
∑i

l=1(Sk)l,j for i ≤ j.
Proof. The existence and uniqueness of the LU -decomposition of Sk follows from

[10, Theorem 3.2.1]. The matrix J−1
k is lower triangular with all components one.



4 Inexact Krylov subspace methods for linear systems

Therefore, it follows that J−1
k Sk = Uk. This proves the first equality in (2.7). The

second equality follows by checking that

JkUk = (Jk − ek+1e
∗
k)Uk = Sk − ek+1e

∗
kUk = Sk.

The LU -decomposition of Sk is used in the construction of some Krylov subspace
methods. We will return to this later.

In some cases it is convenient to consider the Krylov decomposition

ACk = Ck+1Tk, Cke1 = b,(2.8)

where Ck is an n by k matrix and Tk is a k + 1 by k upper Hessenberg matrix.
From this relation different residual sequences (2.3) can be derived depending on the
required properties for the rj . In order to continue our discussion, we assume that

Tk has full rank, and we define the k + 1-vector ~γk as the vector such that ~γ∗
kTk = ~0∗

and ~γ∗
k = (1, γ1, . . . , γk)∗. Notice that, due to the Hessenberg structure of Tk, the

elements γj can be computed using a simple and efficient recursion.
A simple way to derive a residual sequence is to put Γk ≡ diag(~γk); then we see

that the matrices

Sk ≡ Γk+1TkΓ−1
k and Rk ≡ CkΓ−1

k(2.9)

satisfy (2.3) (with, indeed, ~1∗Sk = ~0∗). In this case the residual rj is a multiple of
the vector cj . Furthermore, if Tj is invertible, then we have for the residual

rj = cj/γj = Cj+1(I − TjT
−1
j )e1 = b−ACjT

−1
j e1,(2.10)

where we have used the following lemma and (2.8). (For ease of future reference, we
formulate the lemma slightly more general than needed here.)

Lemma 2.2. Let j ≤ k. Then

e1 − Tk(T †
je1) =

~γj

‖~γj‖2
2

and e1 − Tk(T−1
j e1) =

ej+1

γj
,(2.11)

where T †
j denotes the generalized inverse of Tj [10, Section 5.5.4], and where, for the

second expression, Tj is assumed to be invertible.

Proof. Note that e1 − Tk(T †
je1) = (I − TjT

†
j)e1. Since I −TjT

†
j is the orthogonal

projection on Ker(Tj
∗) = span(~γj), we have that I −TjT

†
j = ‖~γj‖−2

2 ~γj ~γ∗
j . This leads

to the first expression in (2.11). The second expression follows from a combination of
e1 − Tk(T−1

j e1) = e1 − Tj(T
−1
j e1) = e1 − Γ−1

j+1SjS
−1
j Γje1 and (2.4).

The lemma also leads to an expression for residuals from an alternative construc-
tion:

rj = b−ACjT
†
je1 = Cj+1(I − TjT

†
j)e1 =

1

‖~γj‖2
2

Cj+1~γj .(2.12)

If we define

Υk ≡ [~γ0, . . . , ~γk−1], Θk ≡ diag(‖~γ0‖2, . . . , ‖~γk−1‖2),

then we get

Sk ≡ (Υk+1Θ
−2
k+1)

−1Tk(ΥkΘ−2
k ) and Rk ≡ Ck(ΥkΘ−2

k ).(2.13)

It can be easily checked that ~1∗(Υk+1Θ
−2
k+1)

−1 = ~γ∗
k and therefore ~1∗Sk = ~0∗ and

also the Hessenberg form is preserved. However, a tridiagonal matrix Tk does not
guarantee that Sk is tridiagonal in general. However, it should be noted that the
matrix (Υk+1Θ

−2
k+1)

−1 can be decomposed into simple factors.
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3. Inexact Krylov subspace methods. There is a class of applications for
which it is very costly to compute the matrix-vector product to high precision. We
assume that we are given some device Mη : Cn → Cn with the property that

Mη(y) = Ay + g with ‖g‖2 ≤ η‖A‖2 ‖y‖2,(3.1)

and the smaller η the more costly this operation becomes.
In step j of all the iterative methods, that we discuss, it it necessary to compute

the product of the matrix A with some vector, say y, which is done using Mη. It is
equivalent to consider the exact method where a perturbation gj−1 is added to the
matrix-vector product in step j with ‖gj−1‖2 ≤ ηj−1‖A‖2 ‖y‖2.

Due to the existence of the gj−1, the space spanned by the residuals is in general
not a Krylov subspace generated by A anymore. This has two consequences: the
convergence behavior is altered, and the maximal attainable accuracy of the iterative
method is limited. The central question is how large the perturbations can be if one
is interested in a solution xk such that ‖b − Axk‖2 = O(ε) without altering the
convergence behavior too much, or equivalently, how to pick ηj−1 in step j.

In the remainder of this paper we will see that, for the methods that we consider,
the residuals now satisfy the perturbed relation

ARk + Fk = Rk+1Sk, Rke1 = b,(3.2)

where the columns of Fk are a function of the perturbations gj . Furthermore, xj still
satisfies (2.5) (or equivalently (2.6)) because of the assumption of exact arithmetic.
These two common properties allow a unified analysis.

The vector rk is usually not a residual anymore for the approximate solution xk

due to the perturbation Fk. Therefore, we will refer to the vector rk as the computed

residual in contrast to the true residual defined by b − Axk. The goal is to get an
expression for ek, the difference between the computed residual and the true residual.
If we, furthermore, show that the computed residuals become small with respect to
the residual gap, then the ultimately attainable accuracy is essentially determined by
this gap ek.

We define Ek+1 ≡ Rk+1 − (b~1∗ − AXk+1). If we multiply Ek+1 from the right
with Sk and use (2.6) and (3.2), we get that Ek+1Sk = Fk. Under our assumptions,
we have that e0 = Ek+1e1 = r0 − b = 0. Hence, using (2.4) we get

rk − (b −Axk) = ek = −Ek+1SkS−1
k e1 = −FkS−1

k e1 = −
k∑

j=1

fj−1e
∗
jS

−1
k e1.(3.3)

We see that the expression for the gap is a linear combination of the perturbations
fj−1 with coefficients −e∗jS

−1
k e1. Our approach for bounding the gap ek is based

on using properties of the matrix Sk. We will do this for various Krylov subspace
methods in the remainder of this paper. Therefore, the following lemma is convenient
and will be frequently used in the remainder of this paper.

Lemma 3.1. Assume that j ≤ k. Let Sk = Γk+1TkΓ−1
k as in (2.9), then

e∗jS
−1
k e1 = γj−1e

∗
jT

−1
k e1 = e∗jT

−1
k ej ,

and

|e∗jT †
ke1| ≤

σmin(Tk)−1

‖~γj−1‖2
, |e∗jT−1

k e1| ≤ σmin(Tk)−1

(
1

‖~γj−1‖2
+

1

|γk|

)
.(3.4)
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Here σmin(Tk) is the smallest singular value of Tk.

Proof. The relation Sk = Γk+1TkΓ−1
k in (2.9) implies e∗jS

−1
k e1 = γj−1e

∗
jT

−1
k e1 and

e∗jS
−1
k ej = e∗jT

−1
k ej . Using (2.4) we see that e∗jS

−1
k e1 = e∗jS

−1
k (e1 − Sk(S−1

j−1e1)) =

e∗jS
−1
k (e1 − Sj−1(S

−1
j−1e1)) = e∗jS

−1
k ej .

To prove (3.4), we observe that T †
kTk is the identity on k-vectors if Tk is of rank

k. Since e∗j~yj−1 = 0 for any j − 1-vector ~yj−1 we have that

e∗jT
†
ke1 = e∗jT

†
k(e1 − Tk~yj−1) and

e∗jT
−1
k e1 = e∗jT

†
k(e1 − Tk~yj−1) + e∗jT

†
k(Tk(T−1

k e1) − e1).

With ~yj−1 = T †
j−1e1 and ~yj−1 = T−1

j−1e1, a combination with (2.11) leads to

e∗jT
†
ke1 = e∗jT

†
k

~γj−1

‖~γj−1‖2
2

= e∗jT
†
k

ej

γj−1
and e∗jT

−1
k e1 = e∗jT

†
ke1 − e∗jT

†
k

ek+1

γk
.(3.5)

and (3.4) easily follows.
We expressed our estimates in terms of the smallest singular value of Tk. This

value depends monotonically (decreasing) on k, and σmin(Tm) ≤ σmin(Tk) if m > k.
The smallest singular value of Tk does not have this attractive property: even if Tm

is well-conditioned, there may be a k < m for which Tk is singular or nearly singular.

3.1. Relaxation strategies. In [2], Bouras and Frayssé showed experiments for
GMRES with a relative precision ηj in step j + 1 given by

ηj = max

{
ε

‖b−Axj‖2
, ε

}
.(3.6)

An interesting property of this choice for ηj is that it requires very accurate matrix-
vector products in the beginning of the process, and the precision is relaxed if the
methods converges, i.e., the residuals become small. This justifies the term relax-

ation strategy as introduced in [2]. For an impressive list of numerical experiments,
they observe that with (3.6) the GMRES method converges roughly as fast as the
unperturbed version, despite the, sometimes large, perturbations. Furthermore, the
norm of the true residual (‖b − Axj‖2) seems to stagnate around a value of O(ε).
Obviously, such a strategy can result in large savings in practical applications. The
true residual is unfortunately in general not known, since this would require an exact
matrix-vector product. The norm of the computed residual ‖rj‖2 can serve as an
alternative in (3.6).

In the coming sections, we will analyze the effect of inexact matrix-vector products
and relaxation strategies as in (3.6) for different Krylov subspace methods by writing
the residual relation into the form (3.2) and by analyzing the residual gap using
(3.3). If it is additionally shown that the computed residuals rk become sufficiently
small, then the residual gap will ultimately determine the attainable accuracy. The
convergence of the computed residuals is a difficult topic that we can only analyze
in some special cases. It should be noticed that for the applications that we have
in mind the norm of the computed residuals can be efficiently monitored, while for
the true residual or size of the residual gap, it is necessary to compute an accurate
matrix-vector product which is not feasible.

For the analysis in this paper, we assume the use of exact arithmetic operations.
This is a reasonable assumption, considering that in general the “error” in the matrix-
vector product is much larger than machine precision, as in the QCD example (1.1)
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mentioned in the beginning of Section 1, where the error in the matrix-vector product
is an error resulting from the truncation of an approximation process for the matrix
sign-function times a vector.

4. Inexact Richardson iteration. One of the simplest iterative method for
linear systems is Richardson iteration, e.g., [15]. With a perturbed matrix-vector
product, this method is described by the following recursion (with x0 = 0, r0 = b)
for j = 1, . . . , k

rj = rj−1 − α(Arj−1 + gj−1)(4.1)

xj = xj−1 + αrj−1(4.2)

and ‖gj‖ ≤ ηj‖A‖2 ‖rj‖2. For simplicity we restrict our attention to symmetric
positive definite matrices A with an optimal choice for α:

α ≡ 2

λ− + λ+
,(4.3)

where λ− and λ+ are, respectively the smallest and largest eigenvalue of A.
For this method it is clear that after k steps of the method, the iterates satisfy

(2.6) and the residuals satisfy (3.2) with Fk = Gk and Sk = JkUk with Uk = α−1I .
Therefore, we can exploit (3.3) and get using e∗jS

−1
k e1 = α for the residual gap the

following bound

‖rk − (b −Axk)‖2 = ‖
k∑

j=1

fj−1α‖2 ≤ α‖A‖2

k−1∑

j=0

ηj‖rj‖2.

Recall that we are only interested in an approximate solution xk with ‖b−Axk‖2 =
O(ε). This suggests to pick ηj = ε/‖rj‖2 and we get using (4.3),

‖rk − (b−Axk)‖2 ≤ εkα‖A‖2 = ε2k
C(A)

C(A) + 1
< ε2k,

where C(A) ≡ ‖A‖2 ‖A−1‖2.
It remains to be shown that the computed residuals become sufficiently small.

For inexact Richardson iteration we have the following result which even shows that
the computed residuals become small at a speed comparable to the exact process.

Lemma 4.1. Let rk satisfy (4.1) with ηj = 0 and rk with ηj = ε/‖rj‖2, then

‖rk − rk‖ ≤ εC(A).

Proof. The difference between the two residuals is given by

rk − rk = (I −αA)kb+α

k∑

j=1

(I −αA)k−j fj−1 − (I −αA)kb = α

k∑

j=1

(I −αA)k−j fj−1.

For ηj = ε/‖rj‖2 we have ‖fj‖2 ≤ ηj‖A‖2 ‖rj‖2 = ε‖A‖2, hence

‖rk − rk‖2 ≤ |α|
k∑

j=1

‖(I − αA)‖k−j
2 ε‖A‖2 ≤ ε‖A‖2 ‖(αA)−1‖2|α| = εC(A).
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Fig. 4.1: Richardson iteration with ηj = 10−5/‖rj‖2, true residuals (—), norm computed
residual (- ·) and the quantities 10−5C(A), 2k10−5 (both dotted). The matrix A has dimension 1000
and C(A) = 10. Left picture: errors have all components equal. Right picture: random errors.

Since rk will go to zero for k → ∞, we expect the norm of rk ultimately to stagnate
at a level below εC(A). This shows that the final residual precision is essentially
determined by the residual gap. We give a simple illustration of this in Figure 4.1.
We conclude that for Richardson iteration the required precision of the matrix-vector
product can be relaxed with a strategy similar as the one proposed for GMRES in
(3.6).

4.1. Discussion. One might remark that in practical applications the residual
is not computed in an incremental fashion as in (4.1). However, incrementally com-
puted residuals are important for a relaxation strategy to be successful. Furthermore,
directly computed residuals are not necessarily more accurate even if using a fixed
precision, i.e., ηj = η. In this case a direct computation of the k + 1th residual yields

‖rk − (b −Axk)‖2 ≤ η‖A‖2 ‖xk‖2 = ‖(η‖A‖2Rk)S−1
k e1‖2,

whereas an expression for the recursively computed residual follows from (3.3)

‖rk − (b −Axk)‖2 = ‖FkS−1
k e1‖2.

Both Fk and η‖A‖2Rk have a j+1th column with a length smaller than η‖A‖2 ‖rj‖2.
Hence, the difference in the upper bounds is determined by the mutual angle between
the columns. In case the residuals change slowly and if the fj are random, the recur-
sively computed residual can be more accurate. Practical experiments confirm this,
although the differences are small. Numerical experiments suggest that in the situ-
ation of only finite precision errors an incrementally computed residual is no longer
necessarily more accurate than a directly computed residual as is often observed in
practice.

5. Inexact Chebyshev iteration. A more advanced method than Richardson
iteration is Chebyshev iteration, e.g., [10, Section 10.1.5],[6, Chapter 7]. It is more ad-
vanced than Richardson iteration in the sense that it employs a three-term recurrence
for the residuals for faster convergence. For clarity and in order to establish notation,
we start with a short derivation of Chebyshev iteration. Again we assume A to be
symmetric positive definite.
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We define φ(t) ≡ αt − β as a function that maps the interval [λ−, λ+] to the
interval [−1, 1], so (for example)

α ≡ 2

λ+ − λ−
, β ≡ λ+ + λ−

λ+ − λ−
.(5.1)

The main idea behind the Chebyshev method is to construct the residuals rj as
multiples of the vectors cj = cj(φ(A))b, where cj(t) is the Chebyshev polynomial of
degree j, see for a definition [6, p. 4]. An efficient algorithm comes from the three-term
recurrence for the Chebyshev polynomials

cj = 2φ(A)cj−1 − cj−2, with c0 = b, c1 = φ(A)b,

which reads in matrix formulation for k steps,

ACk = CkTk with Tk ≡




β
α

1
2α

1
α

β
α

1
2α

1
2α

. . .
. . .

. . .
. . .
1
2α




.(5.2)

Equations (2.3) and (2.9) now give a three-term recurrence for the residuals with
γj = cj(φj(0)). A recursion for the approximate solutions xj is given by (2.6). All
together we have the following recursion for j = 2, . . . , k (which we state here for
convenience)

rj = 2α
γj−1

γj
(Arj−1 + gj−1) − 2β

γj−1

γj
rj−1 −

γj−2

γj
rj−2,(5.3)

xj = −2α
γj−1

γj
rj−1 − 2β

γj−1

γj
xj−1 −

γj−2

γj
xj−2,(5.4)

with r0 = b, r1 = αγ0

γ1
(Ar0 +g0)−β γ0

γ1
r0, x0 = 0 and x1 = −αγ0

γ1
r0. In this recursion

we have already replaced the matrix-vector product in (5.3) with a perturbed version.
It easily follows that the residuals for inexact Chebyshev satisfy (3.2) with Fk = Gk

and therefore ‖fj‖2 ≤ ηj‖A‖2‖rj‖2.
In order to bound the residual gap with (3.3) we have to bound e∗jS

−1
k e1, this is

done using the following lemma.
Lemma 5.1. Let Tk be as in (5.2), and let α and β be as (5.1). Then

|e∗jT−1
k ej | ≤

2α√
β2 − 1

=
2√

λ+λ−

= 2

√
C(A)

‖A‖2
.(5.5)

Proof. The matrix Tk is given by Tk = β
α (I + 1

2β ∆), where ∆ is the k by k matrix

with zeros entries everywhere except at the positions (i− 1, i) and (i, i− 1), where it
has the value one and the (2, 1) element is 2. To obtain the estimate for e∗jT

−1
k ej , we

express (I + 1
2β ∆)−1 as a Neumann series, and check that e∗j∆

2i−1ej = 0. With some

effort it can be shown that |e∗j∆2iej | ≤ 2 (2i)!
(i!)2 for all i = 1, 2, . . .. Now use for t = 1/β2

that

1√
1− t

=

∞∑

i=0

(2i)!

(2ii!)2
ti if |t| < 1.
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This leads to the estimate in (5.5).

A combination of Lemma 5.1, the relation e∗jS
−1
k e1 = e∗jT

−1
k ej from Lemma 3.1,

and (3.3) gives the following bound on the residual gap

‖rk − (b −Axk)‖2 ≤ 2
√
C(A)/‖A‖2

k−1∑

j=0

‖fj‖2 ≤ 2
√
C(A)

k−1∑

j=0

ηj‖rj‖2.

Given the fact that we are interested in a residual precision of only O(ε) we propose
the same relaxation strategy as for Richardson iteration in Section 4, i.e., pick ηj =
ε/‖rj‖2. The gap for this strategy can then be bounded as

‖rk − (b −Axk)‖2 ≤ 2kε
√
C(A).(5.6)

The proposed relaxation strategy allows very large perturbations when the resid-
uals are small. Nevertheless, the following lemma shows that also the convergence of
the computed residuals for this strategy is close to that of the exact method. Fur-
thermore, the computed residuals become in the end sufficiently small for (5.6) to be
meaningful as measure for the attainable accuracy.

Lemma 5.2. Let rk satisfy (5.3) with ηj = 0 and rk with ηj = ε/‖rj‖2. Then

‖rk − rk‖2 ≤ ε(1 − |γk|−1)C(A).

Proof. If we subtract (2.3) from (3.2), then we get

A(Rk −Rk) + Fk = (Rk+1 −Rk+1)Sk, (R0 −R0)e1 = 0.(5.7)

Let v− be the normalized eigenvector of A corresponding to λ−. We will show that
‖rk − rk‖2 is maximal when for all perturbations we have fj = ε‖A‖2v− (or Fk =

ε‖A‖2v−
~1∗). Subsequently, we will solve (5.7) for these perturbations from which our

claim follows.
With (2.9) we rewrite (5.7) as

ADk + FkΓk = Dk+1Tk,

with dj ≡ (rj − rj)γj . Written as a three-term recurrence this reads

dj = 2φ(A)dj−1 − dj−2 + 2αfj−1γj−1,

with d0 = 0, d1 = αf0. This recurrence can be solved using standard techniques (e.g.,
[6, p.58],[9, Section 2]), which gives

dk = αuk(φ(A))f0γ0 +

k−1∑

j=1

2αuk−j(φ(A))fjγj ,

where uj is the so-called Chebyshev polynomial of the second kind (e.g., [6]), i.e.,
uj+1(t) = 2tuj(t) − uj−1(t), u0(t) = 0 and u1(t) = 1.

Realizing that |uj(t)| ≤ j for t ∈ [−1, 1], uj(−1) = (−1)jj and sign(γj) = (−1)j

it follows that

‖dk‖2 ≤

∣∣∣∣∣∣
εα‖A‖2


uk(φ(λ−))γ0 +

k−1∑

j=1

2uk−j(φ(λ−))γj



∣∣∣∣∣∣
.
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Fig. 5.1: Chebyshev iteration with ηj = 10−10/‖rj‖, true residuals (—), norm computed

residual (- ·) and the quantities 10−10C(A), 2k10−10
√

C(A) (both dotted). The matrix A has
dimension 100 and C(A) = 1000. Left picture: errors have all components equal. Right picture:
random errors.

This shows that the error is maximal if all perturbations are ε‖A‖2v−.
In order to solve (5.7) with Fk = ε‖A‖2v−

~1∗, we use a relation for the iterates
which follows from substituting Rk = b~1∗ −AXk in (2.6):

AXk − b~1∗ = Xk+1Sk, X0e1 = 0.(5.8)

Comparing (5.8) with (5.7) shows that ‖rk−rk‖2 is bounded by the norm of the k+1th
approximate solution of Chebyshev iteration when the right hand side is ε‖A‖2v−,
which is

ε‖A‖2
1 − ck(−1)/γk

λ−
v−.

By noting that 0 ≤ ck(−1)/γk ≤ 1 and |ck(−1)| = 1 the proof can be concluded.
In Figure 5.1 we give an illustration of our relaxation strategy for Chebyshev

iteration as we did for Richardson iteration in Section 4.

5.1. Discussion. The effect of perturbations on the Chebyshev method has been
investigated in literature. In [30], Woźniakowski analyzes the effect of finite precision
arithmetic on the Chebyshev method. He describes a variant of the Chebyshev method
where the residuals are computed directly and concludes that this method is stable.
He, furthermore, points out this method is not well-behaved: the residuals for this
method can stagnate at a level of C(A)‖A‖2 ‖A−1b‖2 times the machine precision (it
is interesting to note that a similar observation has been made for MINRES [25]). A
method is well-behaved if the true residuals decrease below the level of ‖A‖2 ‖A−1b‖2

times the machine precision.
Gutknecht et al. [19] analyze the residual gap for general Krylov subspace methods

that use two three-term recurrences (one for the residuals and one for the approximate
solutions). This analysis is applied in [18] in a qualitative discussion on the residual
gap for the Chebyshev method. The approach from [18] differs essentially from ours
in that we are using properties of the matrix Sk to bound the gap instead of a close
inspection of the recursion as in [19]. The advantage is that it is easier to derive bounds
in terms of global properties (as in Lemma 5.1) and our approach is not restricted to
a certain type of recursion. Similar expressions as in [19] can be obtained from (3.3)
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by writing out e∗jS
−1
k e1 using the LU -decomposition from Lemma 2.1. A difference

is that, due to a different context, we do not consider perturbations on the recursion
for the iterates but an analysis as in the previous sections can be easily extended to
this case.

6. The Inexact Conjugate Gradient method. In this section we discuss re-
laxation strategies for the Conjugate Gradient method [20] and some of its variants al-
though, strictly speaking, not all variants that we discuss use conjugate gradients. The
Conjugate Gradient method (CG) is intimately connected with the Lanczos method,
e.g., [10, Chapter 9]. This method exploits an efficient three-term recurrence for the
construction of an orthogonal basis v0, . . . ,vk for the Krylov subspace Kk+1. The
Lanczos method can be summarized as

AVk = Vk+1Tk, Vke1 = b,(6.1)

where Tk is a k+1 by k tridiagonal Hermitian matrix and Vk is an orthonormal matrix
whose columns span Kk. The Conjugate Gradient method can be derived from the
Lanczos method as is known from the work of Lanczos.

The most popular formulation of the CG method uses three coupled two-term
recurrences, e.g., [20, Section 3]. For j = 1, . . . , k we have

c = Apj−1 + gj−1(6.2)

rj = rj−1 − αj−1c(6.3)

xj = xj−1 + αj−1pj−1(6.4)

pj = rj + βj−1pj−1,(6.5)

with

αj−1 ≡ ‖rj−1‖2
2

p∗
j−1c

and βj−1 ≡ ‖rj‖2
2

‖rj−1‖2
2

,(6.6)

and p0 = r0 = b and x0 = 0. We have added a perturbation, gj−1, to the matrix-vec-
tor product in (6.3) to obtain the inexact version with ‖gj−1‖2 ≤ ηj−1‖A‖2 ‖pj−1‖2.

The goal is, again, to obtain a final residual precision of ε. Therefore, we want to
investigate the influence of the ηj on the residual gap and we make the assumption
that the computed residuals become sufficiently small.

If we define ∆k ≡ diag(α0, . . . , αk−1) and

Ũk ≡




1 −β0

1 −β1

. . .
. . .

. . . −βk−2

1




,

then we get the following equivalent matrix formulations of (6.3), (6.4), and (6.5),

APk + Gk = Rk+1Jk∆−1
k+1, Xk+1Jk = −Pk∆k, Rk = PkŨk.(6.7)

Combining these relations gives

ARk + (GkŨk) = Rk+1(Jk∆−1
k Ũk) and −Rk = Xk+1(Jk∆−1

k Ũk).
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We see that (3.2) and (2.6) are satisfied for this method with Sk ≡ Jk∆−1
k Ũk and

Fk ≡ GkŨk. The residuals of inexact CG method are now multiples (γ−1
j ) of the

Lanczos vectors of an inexact Lanczos process given by

AVk + F̃k = Vk+1Tk,(6.8)

where Tk = Γ−1
k+1SkΓk, Γk = diag(~γk), γj = (−1)j‖rj‖−1

2 , Vk = RkΓk and F̃k =
FkΓk.

We can use (3.3) to get an expression for the residual gap

rk − (b−Axk) = −FkS−1
k e1 = −GkŨkS−1

k e1 = −Gk∆kJ−1
k e1 = −

k−1∑

j=0

αjgj .

From ‖gj‖2 ≤ ηj‖A‖2 ‖pj‖2, we get

‖rk − (b −Axk)‖2 ≤
k−1∑

j=0

ηj |αj |‖A‖2 ‖pj‖2 =
k−1∑

j=0

ηj‖A‖2 ‖xj+1 − xj‖2.(6.9)

This type of expression is well-known from the work in [24, 14]. Since we have from
(6.6) that

√
βj‖rj‖2 = ‖rj+1‖2, we can bound this as

‖rk − (b −Axk)‖2 ≤ C(A)

k−1∑

j=0

ηj(‖rj+1‖2 + ‖rj‖2)

= C(A)

k−1∑

j=0

ηj‖rj‖2(1 +
√

βj).

(6.10)

Following their work for inexact GMRES and (3.6), Bouras, Frayssé, and Giraud
proposed in [3] for CG a relaxation strategy where

ηj = max

{
ε

‖rj‖2
, ε

}
.(6.11)

If we take the slightly weaker ηj = ε
‖rj‖2

, then we get for this strategy using (6.10)

‖rk − (b −Axk)‖2 ≤ εkC(A) max
0≤j<k

(1 +
√

βj).(6.12)

As long as the βj are not too large, this strategy can work very well. Indeed, numerical
experiments with symmetric positive definite matrices A confirm this.

Practical problems often lead to a matrix A that is indefinite, for instance the
QCD example mentioned in the introduction. In this case there can be very large
intermediate residuals caused by an eigenvalue of Tk being “accidentally” close to
zero. The CG method is still used in practice for solving Hermitian indefinite systems,
despite its lack of robustness. One reason is that, although the tridiagonal matrix can
be ill-conditioned in one iteration, this can never happen for two consecutive iterations,
e.g., [1, 16]. The situation of an eigenvalue of Tk close to zero is in literature often
referred to as a near breakdown. It results in a value of βj that is very large and
it follows from (6.12) that the proposed strategy in (6.11) may fail in achieving the
required residual precision.
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From (6.10) it follows that picking ηj = ε/(‖rj+1‖2 + ‖rj‖2) is a better strategy
in this case. However, this is not practical since rj+1 is not known yet. An alternative
is to consider the first bound in Equation (6.9) and pick

ηj =
ε

αj‖pj‖2
.

If the approximation of the matrix-vector product is computed with an incremental
method the inner-product of pj and the “current” approximation for the product
can be monitored at the cost of an additional inner-product and from this αj can
be estimated. Nevertheless, in case of a near breakdown a very accurate matrix-
vector product is still necessary. We will therefore consider variants of the Conjugate
Gradient method in Section 6.1.

Studying the convergence of the computed residuals is a much more difficult topic.
Greenbaum [13] showed that the convergence of a slightly perturbed CG process can
be related to that of an enlarged matrix with eigenvalues in small clusters around the
eigenvalues of the original matrix. The width of these clusters is determined by the
size of the perturbation of the Lanczos process. Unfortunately, this analysis does not
apply in our situation since it does not explain why the accuracy of the matrix-vector
product can be relaxed when the CG method converges as was the case for Richardson
iteration and Chebyshev iteration in the previous sections. Still, when F̃k in (6.8)
has some very large columns, we can expect that the convergence behavior is severely
altered if the method is not converged. We know that for the jth column of F̃k we
have ‖̃fj−1‖ = ‖gj−1 − βj−2gj−2‖2/‖rj−1‖2. We will bound the length of this vector.
A simple analysis shows that

‖pj−1‖2 = ‖RkŨ−1
k ej‖2 ≤ ‖RkΓk‖2 ‖Γ−1

k Ũ−1
k ej‖2 = ‖Vk‖2

‖rj−1‖2
2

ρj−1
,

where

ρj ≡
(

j∑

i=0

‖ri‖−2

)−1/2

.(6.13)

Note that ρj can be interpreted as the norm of a smoothed residual, see e.g., [20,

Section 7]. We have the following upper bound for the norm of the jth column of F̃k

‖̃fj−1‖ = ‖gj−1 − βj−2gj−2‖2/‖rj−1‖2 ≤ ‖A‖2 ‖Vk‖2 ‖rj−1‖2

(
ηj−1

ρj−1
+

ηj−2

ρj−2

)
.

The ratio ‖rj−1‖2/ρj−1 is large in case of a near breakdown, since we then have that
ρj−1 � ‖rj−1‖2. We find that when there is a near breakdown there can be a very
large perturbation of the Lanczos relation. One consequence is a large residual gap
(as discussed). Another effect is a potential delay in convergence (or even worse). A
simple numerical example of this is given in the next section.

6.1. Variants of the Conjugate Gradient method. Mathematically equiv-
alent variants of the CG method can be derived from the Lanczos method in (6.1).
In this section we will consider two alternatives for the CG method in the previous
section. These methods are based on a three-term recurrence instead of a coupled
two-term recurrence. We start with a short derivation.
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Since the CG residuals are multiples of the Lanczos vectors we can derive the
coefficients for the recursion (2.3) from (6.1) by virtue of (2.9). Therefore, we write

Tk ≡




α0 β0

β0 α1
. . .

. . .
. . .

. . .

. . .
. . . βk−2

βk−2 αk−1

βk−1




, Sk ≡




η0 δ0

τ0 η1
. . .

. . .
. . .

. . .

. . .
. . . δk−2

τk−2 ηk−1

τk−1




.

From the property that ~1∗Sk = ~0, it immediately follows that τj = −(ηj +δj−1) (with
δ−1 = 0). Using (2.9) we see that ηj = βj , δj = βj(γj/γj+1) and τj = βj(γj+1/γj).
Eliminating βj gives that δj = τj(γj/γj+1)

2. With δ−1 = 0 we get, using (2.12),

δj = τj
‖rj+1‖2

2

‖rj‖2
2

, ηj =
r∗jArj

‖rj‖2
2

, τj = −(ηj + δj−1).

Computing the residuals and iterates with these coefficients using the recursions de-
scribed by (2.3) and (2.6) gives a variant of CG known as Orthores (we use the
nomenclature from [19]).

Rutishauser’s variant of this method is obtained by introducing auxiliary vari-
ables ∆xj and ∆rj using the LU -decomposition, Sk = JkUk, from Lemma 2.1 where
(Uk)j,j = −τj−1 and (Uk)j+1,j = δj−1. This gives

Rk+1Jk = ∆Rk, ∆Rk Uk = ARk and

Xk+1Jk = ∆Xk, ∆Xk Uk = −Rk.
(6.14)

Now that we have defined the two methods, we shift our attention to the inexact
case. In inexact Orthores the matrix-vector product is perturbed in step j with a
term gj−1. This gives the (familiar) perturbed residual relation

ARk + Fk = Rk+1Sk, Rke1 = b,

where Fk = Gk and, therefore, ‖fj‖2 ≤ ηj‖A‖2 ‖rj‖2. For the inexact version of
Rutishauser’s method we have ∆Rk Uk = ARk +Gk, and it follows that for the same
perturbations, the inexact version of Orthores and Rutishauser’s variant are equivalent
under the assumption of exact arithmetic and, hence, the same upper bounds apply.

We want to bound the gap for the discussed methods and derive a suitable re-
laxation strategy. Therefore, we note that the residuals of inexact Orthores are now
multiples (γ−1

j ) of the Lanczos vectors of an inexact Lanczos process given by (6.8)

with Tk = Γ−1
k+1SkΓk, Γk = diag(~γk) and γj = (−1)j‖rj‖−1

2 . Combining this with
Lemma 3.1 shows that

|e∗jS−1
k e1| ≤ σmin(Tk)−1 1

‖rj−1‖2
(ρj−1 + ‖rk‖2) ,(6.15)

with ρj−1 as defined in (6.13).
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From (3.3) we get the following bound on the residual gap

‖rk − (b −Axk)‖2 ≤ σmin(Tk)−1
k−1∑

j=0

‖rj‖−1
2 (ρj + ‖rk‖2) ‖fj‖2

≤ ‖A‖2 σmin(Tk)−1
k−1∑

j=0

ηj (ρj + ‖rk‖2) .

Recall that we assume that the computed residuals ultimately become small enough.
Now, assume that we terminate the iterative process for ‖rk‖2 = O(ε). In this case we
see that the size of the gap is essentially determined by the ρj , the ηj , and σmin(Tk).
Unfortunately, we have no a priori knowledge about the size of σmin(Tk). We hope
that this quantity is in the order of σmin(A). For inexact Orthores (and Rutishauser’s
variant) we propose the following relaxation strategy

ηj =
ε

ρj
,(6.16)

with ρj as in (6.15). Note that ρj can be computed at little additional cost. With
this relaxation strategy we get for the residual gap

‖rk − (b−Axk)‖2 ≤ εk‖A‖2 σmin(Tk)−1

(
1 +

‖rk‖2

ρk

)
.

This shows that the distance between the computed and true residual can be large
when there is a near breakdown but when the process is terminated, if ‖rk‖2 = O(ε),
the gap is hopefully O(ε).

To summarize: if we consider the upper bounds on the residual gap, we see that
for the two discussed variants based on a three-term recurrence there is no need in
computing the matrix-vector product more accurately in case of a near breakdown in
contrast to CG. As seen, we can exploit this in our relaxation strategy. For indefinite
matrices A, where the convergence behavior of the residuals is highly irregular, the
alternative CG methods and relaxation strategy in this section can offer advantages
over CG and the relaxation strategy by Bouras et al. in (6.11) .

Furthermore, for the three-term recurrences a near breakdown does not lead to a
large perturbation of the (implicit) Lanczos relation. Hence, we expect the effect of
loss of convergence speed caused by near breakdowns less dramatic than for CG.

In Figure 6.1 we give a simple illustration. The right-hand side has all components
equal and the matrix is A = diag(1 : 100)−5.2025 I. The shift causes a large interme-
diate residual in the fifth step. The figure illustrates that Orthores and Rutishauser’s
variant perform equal and better than the CG method with respect to accuracy and
convergence speed. Here, we prefer to use the three-term recurrence variants over the
coupled two-term recurrences.

6.2. Discussion. For positive definite systems, the standard CG method seems
the most appropriate in the inexact setting. Although this is not apparent from our
analysis since the residuals are not monotonically decreasing. In [14] the stability of
CG is explained by using the fact that the errors in CG (‖xk−x‖2) are monotonically
decreasing in combination with an expression as in (6.9). We refer to [14, 19] for more
information and a comparison of the discussed variants in the context of rounding
errors and positive definite A.
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Fig. 6.1: exact FOM (dotted), CG (—), Orthores (- ·), Rutishauser’s variant (dots). In both
pictures ε = 10−10. Left picture: ηj = ε. Right picture: ηj = ε/ρj .

The observations in the previous section show that (in the inexact setting) the
use of a three-term recurrence for solving Hermitian indefinite systems can offer ad-
vantages over the standard CG implementation. Specially, when the matrix A is not
too ill-conditioned and convergence is irregular. For numerical experiments we refer
the reader to Section 8.

Numerical experiments (not reported here) suggest that this is not necessarily
the case when floating point errors are the only source of errors. For example, near-
breakdowns also influence the attainable precision of Rutishauser’s variant of the CG
method, just as for standard CG. Orthores, on the other hand seems not sensitive
to peaks but appears to be, like Chebyshev iteration and MINRES, not well-behaved
(cf. Section 5.1). Our analysis can be extended for making a rounding error analysis
of several variants of the CG method for indefinite systems. This can help identifying
the different aspects of the CG method that influence the accuracy.

Studying the behavior of the computed residuals is a much more difficult subject.
In general we observe in numerical experiments that the computed residuals become
small enough for the residual gap to be a meaningful indicator for the attainable
residual precision. Nevertheless, small perturbations of the matrix-vector product
can seriously delay convergence for the CG method and its variants. This also is
the case for inexact GMRES that we discuss in the next section and we refer to this
section for a numerical example.

As a final remark we note that we could have proposed inexact MINRES as the
alternative for indefinite systems. We have not done this here for two reasons. A
simple analysis of inexact MINRES shows that essentially the same bound applies
as for inexact Orthores and therefore the same relaxation strategy is appropriate.
Secondly, we want to illustrate that the underlying mechanism for constructing the
Krylov subspace is important and not the fact if the residuals are smoothed. This is
also illustrated in the next section in our discussion about inexact FOM and GMRES.

7. Inexact FOM and GMRES. The Lanczos method is a starting point for
the derivation of a large class iterative methods for Hermitian matrices A. For non-
Hermitian systems, the Arnoldi method [10, Section 9.4] can be used for constructing
an orthonormal basis v0, . . . ,vk for Kk+1 and can therefore serve as a starting point.
The Arnoldi method can be summarized by the following relation

AVk = Vk+1Tk, Vke1 = b,(7.1)
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where Tk is k + 1 by k upper Hessenberg and Vk is n by k and orthogonal.
If in step j of the Arnoldi method the matrix-vector product is done approxi-

mately, i.e., a perturbation gj−1 is added to the matrix-vector product Avj−1, then
we obtain the inexact Arnoldi method. This latter method satisfies the following
perturbed Arnoldi relation

AVk + F̃k = Vk+1Tk, Vke1 = b/‖b‖2 = b,(7.2)

where F̃k = Gk and, therefore, ‖̃fj‖ ≤ ηj‖A‖2 ‖vj‖2 = ηj‖A‖2. An interesting
observation is that Vk is still an orthogonal matrix, but now the columns span the
Krylov subspace Kk(Âk,b), with Âk ≡ A + F̃kV

∗
k . We will assume in this section

that Tj is invertible and Tj has full rank for j ≤ k.
The inexact FOM and inexact GMRES method [2] use the Arnoldi relation ex-

plicitly for constructing iterates of the form

yF

j = T−1
j e1, xF

j = Vjy
F

j and yG

j = T †
je1, xG

j = Vjy
G

j .

The corresponding computed residuals are given by

rF

j = Vj+1(I − TjT
−1
j )e1 and rG

j = Vj+1(I − TjT
†
j)e1.

These expressions are a special case of Equations (2.10) and (2.12) and, therefore, we
get from Lemma 2.2 that rF

j = vj/γj and rG

j = ‖~γj‖−2
2 Vj~γj , where ~γk is as defined in

Section 2, i.e., γ∗
kTk = ~0∗ and ~γ∗

ke1 = 1. This gives the following relation between the
norms of the computed residuals of inexact FOM and GMRES

ρj ≡ ‖rG

j ‖2 =

(
j∑

i=0

‖rF

i ‖−2

)−1/2

.(7.3)

The same result is well-known for exact FOM and GMRES from the work of Brown
[4].

Note that an alternative expression for the residuals is given by rF

j = b − Âjx
F

j

and similarly for inexact GMRES. Hence, inexact FOM/GMRES is equivalent to

exact (or ideal) FOM/GMRES applied to the linear system Ânx = b. Hence, the
computed residuals are monotonically decreasing and after at most n steps the method
terminates with xF

n = xG

n = (A + F̃nV∗
n )−1b. In the remainder of this section we will

drop the superscripts F or G in expressions that are valid for both methods.
To bound the residual gap in step k we use an expression for the gap that is

equivalent to (3.3) but is expressed in terms of the matrix F̃k (this simplifies the
analysis in this section somewhat). We have

rk − (b−Axk) = rk − (b − (Âk − F̃kV
∗
k )xk) = −F̃kyk.(7.4)

Hence

‖rk − (b−Axk)‖2 = ‖F̃kyk‖2 ≤ ‖A‖2

k−1∑

j=0

ηj |e∗j+1yk|.(7.5)

Since, the iterates of inexact FOM and GMRES ultimately will approach the same

vector Â
−1

n b it is evident from (7.4) that an appropriate relaxation strategy for inexact
GMRES is also suitable for inexact FOM, and vice versa.
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If we plug (3.4) into (7.5), then we get the following bound for the residual gap
of inexact FOM,

‖rF

k − (b −AxF

k)‖2 ≤ ‖A‖2 σmin(Tk)−1
k−1∑

j=0

ηj(‖rG

j ‖2 + ‖rF

k‖2),(7.6)

and for inexact GMRES we get

‖rG

k − (b −AxG

k )‖2 ≤ ‖A‖2 σmin(Tk)−1
k−1∑

j=0

ηj‖rG

j ‖2.(7.7)

We follow the same approach as for Orthores in Section 6.1 and assume that we
terminate inexact FOM/GMRES when ‖rk‖2 = O(ε), where ε is again the required
residual precision. We see that in step k the residual gap is essentially determined by
the ηj , the ‖rG

j ‖2 (or ρj) and the smallest singular value of Tk. Again, the size of the
smallest singular value of the Hessenberg matrix is difficult to estimate a priori (we
can however monitor it during the iterations). Assume that this singular value is not
getting too small, this suggest again that relaxation is possible with ηj = ε/ρj . This
results for inexact FOM in the bound

‖rF

k − (b −AxF

k)‖2 ≤ εkσmin(Tk)−1‖A‖2

(
1 +

‖rF

k‖2

ρk

)
,(7.8)

and for inexact GMRES we get

‖rG

k − (b −AxG

k )‖2 ≤ εkσmin(Tk)−1‖A‖2.(7.9)

We see that the relaxation strategy derived from the bounds on the residual gap
confirms the empirical choice of Bouras et al. in (3.6) for GMRES and can explain
the success of this approach. See also the numerical experiments in [2].

For inexact GMRES we know that the size of the computed residuals monotoni-
cally decrease and rn = 0 and therefore the gap provides in the end useful information
about the attainable accuracy. However, this does not say anything about the speed of
convergence of the perturbed process. In some cases it can be shown that convergence
of the relaxed process is approximately as fast as for the unperturbed process (similar
to what we have seen for Chebyshev iteration). This is for example the case when the

perturbation f̃j ∈ Kj+2, which means that only the Hessenberg matrix differs from
the Hessenberg matrix of the unperturbed process and Vk remains the same. (For
notational convenience we consider a perturbation in just one step.)

To show this we consider two inexact Arnoldi processes, both with ηi = 0 for
i < k, except for the second process we take ηj = η for some j < k − 1. The
corresponding quantities for the first process (the unperturbed process) are denoted
with lines on top of them. Suppose we have ‖rk‖2 = O(ε). The goal is now to show
that ‖rk‖2 = O(ε) if the proposed relaxation strategy is applied.

Let g ≡ V∗
k f̃j . Then we have that Tk = T k + g e∗j+1 and for inexact GMRES

we can apply perturbation theory for the least squares problem. For example with
Theorem 19.1 in [21], we get

∣∣∣‖rG

k‖2 − ‖rG

k‖2

∣∣∣ ≤ ‖rG

k − rG

k‖ ≤ (1 + 2C(A))‖̃fj‖2.
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We see that this is not sufficient for explaining the fast convergence of the perturbed
process. By generalizing Theorem 19.1 in [21], we get the following lemma.

Lemma 7.1. Let j < k − 1. Then

‖rF

k − rF

k‖2 ≤ ‖A−1‖2 ‖
(
I − ÂkVk(V∗

k ÂkVk)−1V∗
k

)
f̃j‖2 (‖rG

j ‖2 + ‖rF

k‖2),

‖rG

k − rG

k‖2 ≤ ‖A−1‖2 ‖
(
I − ÂkVk(V∗

k Â
∗

kÂkVk)−1(ÂkVk)∗
)

f̃j‖2 (‖rG

j ‖2 + ‖rG

k‖2).

Proof. For inexact FOM we have

‖rF

k − rF

k‖2 = |e∗k+1Tkek| |e∗k(T
−1

k − T−1
k )e1| = |e∗k+1Tkek| |e∗kT−1

k g| |e∗j+1y
F

k |.

The first two terms can be rewritten with

|e∗k+1Tkek| |e∗kT−1
k g| = ‖

(
I − ÂkVk(V∗

k ÂkVk)−1V∗
k

)
f̃j‖2,

and the last term can be bounded using Lemma 3.1. This proves the first statement.
Now, we turn to the proof of the second statement. Define zk ≡ (I − Tk T †

k)e1

and zk ≡ (I − T k T
†

k)e1. We have to bound ‖rG

k − rG

k‖2 = ‖zk − zk‖2.

zk − zk = (I − Tk T †
k)(zk − zk) + TkT †

k(zk − zk)

= (I − Tk T †
k)g e∗j+1y

G

k + Tk T †
k(I − T k T

†

k)zk.

For the norm of the first term we have

‖(I − Tk T †
k)g e∗j+1y

G

k ‖2 = ‖(I − Tk T †
k)g‖2 |e∗j+1y

G

k |.

This expression is bounded using Lemma 3.1. For the second term we have

‖Tk T †
k(I − T k T

†

k)zk‖2 ≤ ‖TkT †
k(I − T kT

†

k)‖2 ‖zk‖2 = ‖TkT †
k(I − T k T

†

k)‖2 ‖rG

k‖2.

We know from [26] that ‖TkT †
k(I − T k T

†

k)‖2 = ‖(I − Tk T †
k)T k T

†

k‖2 and

‖(I − Tk T †
k)T k T

†

k‖2 = ‖(I − TkT †
k)(Tk − g e∗j+1)T

†

k‖2 ≤ ‖(I − Tk T †
k)g‖2 ‖T

†

k‖2.

The proof is concluded by noting that

‖(I − Tk T †
k)g‖2 = ‖

(
I− ÂkVk(V∗

k Â
∗

kÂkVk)−1(ÂkVk)∗
)

f̃j‖2.

We conclude from this lemma that, if f̃j ∈ Kj+2, then the convergence of the
relaxed method is as fast as for the unperturbed method. The proof in Lemma 7.1
essentially used that the change in the Hessenberg matrix is in the order of the size
of the perturbation f̃j . Therefore, this theorem is difficult to extend to more general
perturbations, since the Hessenberg reduction is not forward stable, see [29]. In fact,
small perturbations of the matrix-vector product can indeed severely delay conver-
gence. This is illustrated by the following experiment with inexact FOM. (Note that
the convergence of the computed residuals of inexact FOM and GMRES are related
through the vector ~γk.)

The matrix A ∈ R100×100 is lower bidiagonal with diagonal elements (A)j,j = j
and and has ones on its lower bidiagonal. For the the right-hand side we have taken
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Fig. 7.1: Convergence inexact FOM with ηj = ε = 10−12: true residual (—), computed residual
(- ·) and 1/j! (dotted).

b = e1. It easily follows for this example that T n = A and the corresponding vector
~γj with ~γ∗

j Tj = ~0∗ and ~γ∗
j e1 = 1 is given by γj = (−1)jj!. Therefore we have

that ‖rF
j‖2 = 1/j!. Figure 7.1 shows the convergence history of inexact FOM with

ηj = ε = 10−12. Although, the accuracy requirement is achieved (as expected), for the
inexact method many more iterations are necessary to reach the required precision.
An explanation is offered by the fact that the right-hand side is very close to an
eigenvector of A and convergence for general right-hand sides is much slower.

8. Numerical experiments. In this section we conduct an experiment with
inexact CG and it’s variants from Section 6. For experiments with inexact GMRES
we refer the reader to [2]. All experiments are done in Matlab.

The linear system comes from the computation of quark propagators using Wilson
fermions in Quantum Chromodynamics. The matrix DW is CONF6.0-0.00l4x4.2000
from the Matrix Market. This matrix is complex valued and contains 3072 unknowns.
The matrix has the following property, e.g., [7], Γ5 DW = D∗

W Γ5 with Γ5 ≡ I⊗(γ5⊗
I3) and

γ5 ≡




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 .

The Hermitian matrix A is now given by A = Γ5 DW . This matrix is highly indefinite.
For the right-hand side we have taken a complex random vector of unit length. To
simulate an inexact matrix-vector product we have added in step j of CG, a random
complex vector (it can be proven that ‖A‖2 ≤ 8 and we have not taken into account
the norm of A in our experiments).

Figure 8.1 shows the results for inexact CG, Orthores and Rutishauser’s variant
when a residual precision of O(ε) is required with ε = 10−8. The left picture shows
the results for a constant precision (ηj = ε) and the right picture for the relaxation
strategy from Section 6.1 (ηj = ε/ρj).
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Fig. 8.1: True residuals CG (solid), Orthores (- ·), Rutishauser’s variant (dots), ηj (dotted). In
both pictures ε = 10−8. Left picture: ηj = ε. Right picture: ηj = ε/ρj .

For ηj = 10−8 we see that the three-term recurrence is superior to the coupled
two-term recurrence. This can be explained by our analysis and the large residuals in
the initial steps. This advantage remains if we apply the relaxation strategy from Sec-
tion 6.1 (although we lose some additional digits compared to the constant precision
case).

9. Conclusions and outlook. In this paper we have investigated the effect of
approximately computed matrix-vector products on the convergence and accuracy of
various Krylov subspace methods. This analysis was used to derive suitable relaxation
strategies for these methods. It confirms the empirical results of Bouras et al. in [2, 3].
Furthermore, it was shown that for the Conjugate Gradient method the three-term
recurrence can offer advantages over the standard coupled two-term recurrence in case
the matrix is indefinite and suffers from large intermediate residuals or peaks in the
convergence curve. This was illustrated in Section 8.

For methods like Richardson iteration and Chebyshev iteration it is necessary that
the residuals are computed in an incremental matter for a successful relaxation strat-
egy. We illustrated, by the example of CG versus Orthores for indefinite problems,
that it is the underlying way the Krylov subspace is constructed that is of impor-
tance. By comparing inexact FOM and inexact GMRES we saw that the optimality
properties of the residuals are not of influence on the attainable accuracy in the end.
Therefore, a relaxation strategy for GMRES should also work for FOM, since the
Krylov subspace is constructed in the same matter, i.e., using inexact Arnoldi.

Studying the convergence of the inexact methods is a more difficult problem.
Stationary methods construct residual polynomials that are small everywhere on a
predefined interval. For these types of methods we could prove that with our relax-
ation strategies convergence is as fast as for the exact method. For GMRES and CG
this is a much more difficult problem.

In future work we want to apply the observations in this paper to the simulation of
overlap fermions (as mentioned in the beginning of the introduction) and combine this
with the work in [27] for the computation of the matrix sign-function. Furthermore,
we plan to extend the analysis in this paper to a rounding error analysis for the
different variants of CG for indefinite Hermitian systems (and the BiCG method) in
order to understand the effect of the different types of breakdown on the residual gap.
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