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FOR THE MULTIPARAMETER EIGENVALUE PROBLEM
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Abstract. We define and evaluate the normwise backward error and condition numbers for the multiparameter
eigenvalue problem (MEP). The pseudospectrum for the MEP is defined and characterized. We show that the
distance from a right definite MEP to the closest non right definite MEP is related to the smallest unbounded
pseudospectrum. Some numerical results are given.

Key words. Multiparameter eigenvalue problem, right definiteness, backward error, condition number, pseu-
dospectrum, nearness problem.

AMS subject classifications. 65F15, 15A18, 15A69.

1. Introduction. We study the backward error, condition numbers and pseudospectrum for
the multiparameter eigenvalue problem (MEP)

(1.1) Wi(λ)xi = 0, 0 6= xi ∈ C
ni , i = 1, . . . , k,

where

λ = (λ1, . . . , λk) ∈ C
k,

Wi(λ) = Vi0 −
k∑

j=1

λjVij ,

and Vij are ni × ni matrices over C. We will shortly denote the MEP (1.1) by W . For k = 1, a
MEP is a generalized eigenvalue problem V10x1 = λ1V11x1.

A k-tuple λ that satisfies (1.1) is called an eigenvalue and the tensor product x = x1⊗· · ·⊗xk

is the corresponding right eigenvector. A left eigenvector corresponding to the eigenvalue λ is
y = y1 ⊗ · · · ⊗ yk, where 0 6= yi ∈ C

ni and y∗
i Wi(λ) = 0 for i = 1, . . . , k.

The backward error and condition numbers are important tools in numerical linear algebra
that reveal the quality and sensitivity of numerical solutions. The theory of backward error and
conditioning for eigenproblems is well developed for the generalized eigenvalue problem (see, e.g.,
[6]) and the polynomial eigenvalue problem (see, e.g., [9]).

Multiparameter eigenvalue problems arise in a variety of applications [1], particularly in math-
ematical physics when the method of separation of variables is used to solve boundary value
problems [13]. The result of the separation is a multiparameter system of ordinary differential
equations.

To a MEP (1.1) which satisfies a certain regularity condition, a k-tuple of commuting linear
transformations on a tensor product space is associated, as follows. The tensor product space
Cn1 ⊗ · · · ⊗Cnk is isomorphic to CN , where N = n1 · · ·nk. Linear transformations V †

ij on CN are
induced by the Vij , i = 1, 2, . . . , k; j = 0, 1, . . . , k, and defined by

V †
ij(x1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xk) = x1 ⊗ · · · ⊗ Vijxi ⊗ · · · ⊗ xk

and linearity. On CN we define operator determinants

∆0 =

∣∣∣∣∣∣∣∣∣

V †
11 V †

12 · · · V †
1k

V †
21 V †

22 · · · V †
2k

...
...

...

V †
k1 V †

k2 · · · V †
kk

∣∣∣∣∣∣∣∣∣
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and

∆i =

∣∣∣∣∣∣∣∣∣∣

V †
11 · · · V †

1,i−1 V †
10 V †

1,i+1 · · · V †
1k

V †
21 · · · V †

2,i−1 V †
20 V †

2,i+1 · · · V †
2k

...
...

...
...

V †
k1 · · · V †

k,i−1 V †
k0 V †

k,i+1 · · · V †
kk

∣∣∣∣∣∣∣∣∣∣

for i = 1, . . . , k.
A MEP is called nonsingular if the corresponding operator determinant ∆0 is invertible. A

nonsingular MEP is equivalent to the associated problem

(1.2) ∆iz = λi∆0z, i = 1, . . . , k,

for decomposable tensors z = x1 ⊗ · · · ⊗ xk ∈ CN , where the matrices Γi := ∆−1
0 ∆i commute for

i = 1, . . . , k (see [2]).
If λ is an eigenvalue of W then

da := dim

(
⋂

j1 + · · · + jk = N

j1, . . . , jk ≥ 0

ker
[
(Γ1 − λ1I)j1 · · · (Γk − λkI)jk

])

is the algebraic multiplicity and

dg := dim

(
k⋂

i=1

ker (Γi − λiI)

)
=

k∏

i=1

dim
(

kerWi(λ)
)

is the geometric multiplicity of the eigenvalue (see [2]). We say that an eigenvalue λ is geometrically

or algebraically simple when dg = 1 or da = 1, respectively. It is easy to see that da ≥ dg so an
eigenvalue that is algebraically simple is also geometrically simple.

Let λ be an eigenvalue of W with the corresponding left and right eigenvectors x and y. We
form a k × k matrix

(1.3) B0 =




y∗
1V11x1 y∗

1V12x1 · · · y∗
1V1kx1

y∗
2V21x2 y∗

2V22x2 · · · y∗
2V2kx2

...
...

...
y∗

kVk1xk y∗
kVk2xk · · · y∗

kVkkxk


 .

The following lemma is a consequence of Lemma 3 in [7].

Lemma 1.1. If λ is an algebraically simple eigenvalue of the multiparameter eigenvalue

problem W then B0 is nonsingular.

A MEP is called Hermitian when all matrices Vij are Hermitian. Furthermore, a Hermitian
MEP is called right definite if

(1.4)

∣∣∣∣∣∣∣∣∣

x∗
1V11x1 x∗

1V12x1 · · · x∗
1V1kx1

x∗
2V21x2 x∗

2V22x2 · · · x∗
2V2kx2

...
...

...
x∗

kVk1xk x∗
kVk2xk · · · x∗

kVkkxk

∣∣∣∣∣∣∣∣∣

≥ δ

for all vectors xi ∈ Cni , ‖xi‖ = 1, i = 1, . . . , k, and some δ > 0. Condition (1.4) is equivalent to
the positive definiteness of ∆0 [2, Theorem 7.8.2]. This implies that if W is right definite then
there exist N linearly independent eigenvectors. If λ is an eigenvalue of a right definite problem
W then λ ∈ R

k. Furthermore, if all matrices Vij of a right definite problem W are real then the
eigenvectors are also real. If λ is a real geometrically simple eigenvalue with corresponding left
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and right eigenvector x = x1 ⊗ · · · ⊗ xk and y = y1 ⊗ · · · ⊗ yk, respectively, then yi = xi for a
Hermitian MEP.

After preliminaries in Section 2, we study the backward error in Section 3. The condition
numbers for eigenvalues and eigenvectors are discussed in Section 4. The pseudospectrum, ex-
amined in Section 5, is another valuable tool for the study of the sensitivity of eigenvalues to
perturbations of matrices. In Section 6, we give some numerical experiments for right definite
two-parameter eigenvalue problems, where pseudospectra can be visualized in the R2.

2. Preliminaries. Throughout the paper we assume that the MEP W is nonsingular. The
matrices Eij for i = 1, . . . , k; j = 0, . . . , k are arbitrary and represent tolerances for the perturba-
tions ∆Vij of Vij , defined by ‖∆Vij‖ ≤ ε‖Eij‖ for some ε > 0. Usually we take either Eij = Vij

considering normwise relative perturbations, or Eij = I considering normwise absolute perturba-

tions. Elementwise perturbations |∆Vij | ≤ ε|Eij | can also be considered, see Remark 3.4. We
define

∆Wi(λ) := ∆Vi0 −
k∑

j=1

λj∆Vij .

We will denote the perturbed MEP with matrices Vij + ∆Vij by W + ∆W . For a complex λ the
sign of λ is defined as (cf. [6, p. 495])

sign(λ) :=

{
λ/|λ|, λ 6= 0

0, λ = 0.

Suppose that we are looking for the maximum 2-norm of Az where A ∈ Ck×k and z ∈ Ck is
such that |zi| ≤ θi for i = 1, . . . , k, where θ1, . . . , θk are given positive constants. The maximum
is clearly attained by z for which |zi| = θi for i = 1, . . . , k. For θ = [θ1 · · · θn]T we define the
θ-weighted norm of A as

(2.1) ‖A‖θ := max{ ‖Az‖2 : z ∈ C
k, |zi| = θi for i = 1, . . . , k }.

Clearly,

(2.2) ‖A‖θ ≤ ‖A‖2‖θ‖2.

One may verify that ‖ · ‖θ is indeed a matrix norm. One may also see that ‖ · ‖θ is not a
consistent norm as it does not necessarily satisfy ‖AB‖θ ≤ ‖A‖θ‖B‖θ (for a counterexample,
take A = B = I and θ such that ‖θ‖2 < 1).

From now on, ‖ · ‖ stands for ‖ · ‖2. We say that a decomposable tensor z = z1 ⊗ · · · ⊗ zn is
normalized if ‖zi‖ = 1 for i = 1, . . . , k. From ‖z‖ = ‖z1‖ · · · ‖zn‖ it follows that ‖z‖ = 1. In this
paper we will assume that the eigenvectors are normalized.

3. Backward error. Let (x̃, λ̃) be an approximate eigenpair of W and let x̃ be normalized.

We define the normwise backward error of (x̃, λ̃) by

η(x̃, λ̃) := min{ε : (Wi(λ̃) + ∆Wi(λ̃))x̃i = 0,
(3.1)

‖∆Vij‖ ≤ ε‖Eij‖, i = 1, . . . , k; j = 0, . . . , k }.

The following theorem is a generalization of the backward errors for the case k = 1 given in
[5, Lemma 2.1] and [6, Theorem 2.1].

Theorem 3.1. For the normwise backward error η(x̃, λ̃) we have

(3.2) η(x̃, λ̃) = max
i=1,...,k

‖ri‖
θ̃i

,
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where ri := Wi(λ̃)x̃i and

θ̃i := ‖Ei0‖ +

k∑

j=1

|λ̃j |‖Eij‖

for i = 1, . . . , k.

Proof. From ri = −∆Wi(λ̃)x̃i it follows that ‖ri‖ ≤ θ̃iε for i = 1, . . . , k. Therefore, the right-

hand side of (3.2) is a lower bound for η(x̃, λ̃). The lower bound is attained for the perturbations

∆Vi0 = − 1

θ̃i

‖Ei0‖rix̃
∗
i , ∆Vij =

sign(λ̃j)

θ̃i

‖Eij‖rix̃
∗
i

for i, j = 1, . . . , k.

If W is Hermitian then it is of interest to consider a backward error in which the perturbations
∆Vij are Hermitian. The backward error for a Hermitian MEP can be defined as

ηH(x̃, λ̃) := min{ε : (Wi(λ̃) + ∆Wi(λ̃))x̃i = 0, ∆V ∗
ij = ∆Vij ,

(3.3)
‖∆Vij‖ ≤ ε‖Eij‖, i = 1, . . . , k; j = 0, . . . , k}.

It is clear that ηH(x̃, λ̃) ≥ η(x̃, λ̃) and that the optimal perturbations in (3.1) are not Her-
mitian in general. The next lemma, which is is a generalization of [6, Lemma 2.6], shows that in

the case when λ̃ is real requiring the perturbations to be Hermitian has no effect on the backward
error.

Theorem 3.2. If W is Hermitian and λ̃ is real then

(3.4) ηH(x̃, λ̃) = η(x̃, λ̃).

Proof. Let ri = Wi(λ̃)x̃i. It follows from λ̃ being real that x̃ ∗
i ri is real. We are looking for a

Hermitian matrix Si such that Six̃i = −ri. We take Si = ‖ri‖I if ri is a negative multiple of x̃i;
otherwise we take Si = ‖ri‖Hi where Hi is a Householder matrix that maps x̃i to −ri/‖ri‖. Such
an Hi exists because x̃ ∗

i ri is real and is equal to I − 2(w∗
i wi)

−1wiw
∗
i , where wi = x̃i + ri/‖ri‖.

Let ∆Vij be Hermitian matrices defined by

(3.5) ∆Vi0 =
1

θ̃i

‖Ei0‖Hi, ∆Vij = − 1

θ̃i

sign(λ̃j)‖Eij‖Hi

for i, j = 1, . . . , k. It follows that ∆Wi(λ̃) = Si and the first constraint in (3.3) is satisfied. Using
(3.2), we get

‖Si‖ = ‖ri‖ ≤ η(x̃, λ̃)θ̃i

for i = 1, . . . , k. From (3.5) we deduce ηH(x̃, λ̃) ≤ η(x̃, λ̃). Since ηH(x̃, λ̃) ≥ η(x̃, λ̃) by definition,
equality (3.4) must hold.

We remark that one can see from x̃ ∗
i Six̃i = −x̃iri that a Hermitian matrix Si such that Six̃i =

−x̃iri exists only when x̃ ∗
i ri is real. This is the reason why Lemma 3.2 can not be generalized for

nonreal approximations λ̃. As it is reasonable to assume that λ̃ is real if λ is real, Lemma 3.2 can
also be applied for a right definite MEP.

If we are interested only in the approximate eigenvalue λ̃, then a more appropriate measure
of the backward error may be

η(λ̃) := min{ η(x̃, λ̃) : x̃ normalized }.
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Proposition 3.3.

η(λ̃) = max
i=1,...,k

1

θ̃i

σmin(Wi(λ̃)).

Proof. The result follows from Theorem 3.1 by using the equality

min
‖x‖=1

‖Ax‖ = σmin(A).

Remark 3.4. Although in this paper we do not consider componentwise backward errors,
componentwise results from [6] can be generalized as well.

4. Condition numbers. In this section, we assume that λ is a nonzero algebraically simple
eigenvalue of a nonsingular MEP W with corresponding normalized right eigenvector x and left
eigenvector y.

4.1. Eigenvalue condition number. A normwise condition number of λ can be defined by

κ(λ, W ):= lim sup
ε→0

{‖∆λ‖
ε

:

(
Vi0 + ∆Vi0 −

k∑

j=1

(λj + ∆λj)(Vij + ∆Vij)

)
(xi + ∆xi) = 0,(4.1)

‖∆Vij‖ ≤ ε‖Eij‖, i = 1, . . . , k; j = 0, . . . , k

}
.

The following results can be considered as a generalization of theory in [6, Section 2.2].

Theorem 4.1. The condition number κ(λ, W ) is given by

(4.2) κ(λ, W ) = ‖B−1
0 ‖θ,

where

θi := ‖Ei0‖ +

k∑

j=1

|λj |‖Eij‖

for i = 1, . . . , k, and θ = [θ1 · · · θk]T .

Proof. If we expand the first constraint in (4.1) and keep only the first order terms then we
get

∆Wi(λ)xi +

k∑

j=1

∆λjVijxi + Wi(λ)∆xi = 0.

Premultiplying by y∗
i yields

y∗
i ∆Wi(λ)xi + y∗

i

k∑

j=1

∆λjVijxi = 0

for i = 1, . . . , k. By rearranging the equations we obtain the linear system




y∗
1V11x1 · · · y∗

1V1kx1

...
...

y∗
kVk1xk · · · y∗

kVkkxk







∆λ1

...
∆λk


 =




y∗
1∆W1(λ)x1

...
y∗

k∆Wk(λ)xk


 ,
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or shortly

B0∆λ =




y∗
1∆W1(λ)x1

...
y∗

k∆Wk(λ)xk


 .

Since λ is an algebraically simple eigenvalue, it follows from Lemma 1.1 that B0 is nonsingular.
Thus,

∆λ = B−1
0




y∗
1∆W1(λ)x1

...
y∗

k∆Wk(λ)xk




and we conclude

‖∆λ‖ ≤ ‖B−1
0 ‖

εθ = ε‖B−1
0 ‖θ.

Hence, the expression in (4.2) is an upper bound for the condition number. To show that this
bound can be attained we consider the matrices

∆Vi0 = ε‖Ei0‖yix
∗
i , ∆Vij = −sign(λ̃j)ε‖Eij‖yix

∗
i

for i, j = 1, . . . , k.

As for the backward error, if the MEP W is Hermitian then it is natural to restrict the perturba-
tions ∆Vij in (4.1) to be Hermitian. We denote

κH(λ, W ):= lim sup
ε→0

{‖∆λ‖
ε

:

(
Vi0 + ∆Vi0 −

n∑

j=1

(λj + ∆λj)(Vij + ∆Vij)

)
(xi + ∆xi) = 0,

∆V ∗
ij = ∆Vij , ‖∆Vij‖ ≤ ε‖Eij‖, i = 1, . . . , k; j = 0, . . . , k

}
.

Lemma 4.2. If λ is a real algebraically simple eigenvalue of a Hermitian multiparameter

eigenvalue problem W then

κH(λ, W ) = κ(λ, W ).

Proof. For a Hermitian MEP and algebraically simple eigenvalue λ we can take y = x and
then the matrices Hi in the proof of Theorem 4.1 are Hermitian. It follows that the perturbations
for which the bound is attained are also Hermitian.

As in Section 3 let us remark that Lemma 4.2 can also be applied to a right definite MEP.

4.2. Eigenvector condition number. In order to study the condition number of the eigen-
vector of an algebraically simple eigenvalue we introduce the following approach. If an eigenvector
x = x1 ⊗ · · · ⊗ xk is perturbed to x̃ = (x1 + ∆x1) ⊗ · · · ⊗ (xk + ∆xk), then we are interested in
‖ vec(∆x)‖, where

vec(∆x) = [∆xT
1 · · · ∆xT

k ]T
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is a vector in Cn1+···+nk . Therefore we define a normwise condition number of x by

κ(x, W ):= lim sup
ε→0

{ ‖ vec(∆x)‖
ε

:

(
Vi0 + ∆Vi0 −

k∑

j=1

(λj + ∆λj)(Vij + ∆Vij)

)
(xi + ∆xi) = 0,

x̃ = (x1 + ∆x1) ⊗ (x2 + ∆x2) ⊗ · · · ⊗ (xn + ∆xn),(4.3)

g∗i xi = g∗i (xi + ∆xi),

‖∆Vij‖ ≤ ε‖Eij‖, i = 1, . . . , k; j = 0, . . . , k

}
,

where the vectors gi that are used for the normalization of x̃ are such that g∗
i xi 6= 0 for i = 1, . . . , k

and that the matrix

(4.4)




g∗1V11x1 · · · g∗1V1kx1

...
...

g∗kVk1xk · · · g∗kVkkxk




is nonsingular. We can for instance take gi = yi, since in this case the matrix (4.4) is equal to B0,
which is nonsingular for algebraically simple eigenvalues by Lemma 1.1.

If we expand the first constraint in (4.3) and keep only the first order terms then we get

(4.5) ∆Wi(λ)xi +

k∑

j=1

∆λjVijxi + Wi(λ)∆xi = 0,

for i = 1, . . . , k. Let m = n1 + · · ·+nk. We can join all equations (4.5) into one equation in Cm as

(4.6) D vec(∆x) = − diag(∆Wi(λ)) vec(x) + V ∆λ,

where

D =




W1(λ)
. . .

Wk(λ)


 , diag(∆Wi(λ)) =




∆W1(λ)
. . .

∆Wk(λ)


 ,

V =




V11x1 · · · V1kx1

...
...

Vk1xk · · · Vkkxk


 ,

∆λ = [∆λ1 · · · ∆λk ]T , and vec(x) = [xT
1 · · · xT

k ]T .

If we define the m × k matrix

G =




g1 0 · · · 0

0 g2

...
...

. . . 0
0 0 · · · gk




then it is easy to see that G∗V is equal to (4.4). As a result G∗V is nonsingular and we can define
an oblique projection

P = I − V (G∗V )−1G∗
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onto Range(G)⊥ along Range(V ). It follows that PV = 0 and when we multiply (4.6) by P we
obtain

(4.7) PD vec(∆x) = −P diag(∆Wi(λ)) vec(x).

From g∗i ∆xi = 0 for i = 1, . . . , k it follows that G∗ vec(∆x) = 0 and thus P vec(∆x) =
vec(∆x). Now we can rewrite (4.7) as

(4.8) PDP vec(∆x) = −P diag(∆Wi(λ)) vec(x).

Lemma 4.3. The operator T defined by T := PDP is a bijection as an operator from G⊥ onto

G⊥, where G⊥ := Range(G)
⊥

Proof. Since T clearly maps to G⊥, it is enough to show that T is injective. Suppose that
there exists a z ∈ G⊥ such that Tz = 0. Since Pz = z, there exists an h ∈ Ck such that

(4.9) Dz = V h

If we left-multiply (4.9) by G∗ we obtain G∗V h = 0 and since G∗V is nonsingular it follows that
h = 0. As a result we have Wi(λ)zi = 0 for i = 1, . . . , k where z is partitioned conformally
to vec(x). Since λ is algebraically simple by assumption it follows that dim kerWi(λ) = 1 and
therefore zi = γixi for certain γi ∈ C. Now we know that G∗z = 0 on one hand and on the other
hand G∗z = [γ1 · · · γk]T so γi = 0 for i = 1, . . . , k from which we conclude z = 0.

It follows from Lemma 4.3 and (4.8) that

vec(∆x) =
(
PDP

∣∣
G⊥

)−1

P diag(∆Wi(λ)) vec(x),

where PDP
∣∣
G⊥

is a restriction of PDP to G⊥. This gives

(4.10) ‖ vec(∆x)‖ ≤ ε

∥∥∥∥
(
PDP

∣∣
G⊥

)−1

P

∥∥∥∥
θ,n

,

where

‖A‖θ,n
:= max

{
‖Az‖ : z = [zT

1 · · · zT
k ]T , zi ∈ C

ni , ‖zi‖ ≤ θi, i = 1, . . . , k

}

and n = [n1 · · · nk]T . One can view this θ, n-norm as a block version of (2.1).
This leads to the next theorem.

Theorem 4.4.

(4.11) κ(x, W ) =

∥∥∥∥
(
PDP

∣∣
G⊥

)−1

P

∥∥∥∥
θ,n

.

Proof. In the discussion preceding the theorem we showed in (4.10) that

κ(x, W ) ≤
∥∥∥∥
(
PDP

∣∣
G⊥

)−1

P

∥∥∥∥
θ,n

.

What remains is to construct a perturbation where equality is attained.
Suppose that for z = [zT

1 · · · zT
k ]T such that ‖zi‖ ≤ θi for i = 1, . . . , k we have

∥∥∥∥
(
PDP

∣∣
G⊥

)−1

P

∥∥∥∥
θ,k

=

∥∥∥∥
(
PDP

∣∣
G⊥

)−1

Pz

∥∥∥∥ .
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Equality in (4.10) is then attained if we take

∆Vi0 = −ε‖Ei0‖
αi

zix
∗
i , ∆Vij = sign(λj)

ε‖Eij‖
αi

zix
∗
i

for i, j = 1, . . . , k.

Remark 4.5. If we take gi = yi for k = 1, . . . , k then D is a bijection as an operator from

G⊥ to G⊥ and we have

∥∥∥∥
(
PDP

∣∣
G⊥

)−1

P

∥∥∥∥
θ,k

=

∥∥∥∥P
(
D
∣∣
G⊥

)−1

P

∥∥∥∥
θ,k

.

From (4.11) we can produce upper bounds for the norm of x̃ − x. If we consider only first order
terms then we have

‖x̃− x‖ ≤ ‖∆x1‖ + · · · + ‖∆xk‖

and it follows that

‖x̃− x‖ ≤
√

k ‖ vec(∆x)‖.

If we can apply (4.11) then we obtain the bound

κ(x, W ) ≤
√

k

∥∥∥∥
(
PDP

∣∣
G⊥

)−1

P

∥∥∥∥
θ,k

.

5. Pseudospectra. Another tool for the study of the sensitivity of the eigenvalues to per-
turbations are pseudospectra. They have been studied for the standard (see, e.g., [11, 12]) and
generalized eigenproblem [4] and for the polynomial eigenvalue problem (see, e.g., [10]). We extend
the definition of pseudospectrum to multiparameter eigenvalue problem.

We define the ε-pseudospectrum of W by

Λε(W ) =

{
λ ∈ C

k : (Wi(λ) + ∆Wi(λ))xi = 0, xi 6= 0,(5.1)

‖∆Vij‖ ≤ ε‖Eij‖, i = 1, . . . , k; j = 0, . . . , k

}
.

If we define the ε-pseudospectrum of Wi by

Λε(Wi) =

{
λ ∈ C

k : (Wi(λ) + ∆Wi(λ))xi = 0, xi 6= 0,

‖∆Vij‖ ≤ ε‖Eij‖, j = 0, . . . , k

}
,

then it is easy to see that

(5.2) Λε(W ) = Λε(W1) ∩ Λε(W2) ∩ · · · ∩ Λε(Wk).

Theorem 5.1.

Λε(W ) = {λ ∈ Ck : η(λ) ≤ ε for i = 1, . . . , k }
= {λ ∈ C

k : σmin(Wi(λ)) ≤ εθ̃i for i = 1, . . . , k }
= {λ ∈ Ck : ‖Wi(λ)−1‖ ≥ 1/(εθ̃i) for i = 1, . . . , k }
= {λ ∈ Ck : ∃ui, ‖ui‖ = 1 such that ‖Wi(λ)ui‖ ≤ εθ̃i for i = 1, . . . , k }.

Proof. The first equality follows readily from the definition (5.1). For the second equality
Lemma 3.3 can be applied. The last two equalities follow from the identity minx6=0 ‖Ax‖/‖x‖ =
‖A−1‖−1 = σmin(A) with the convention that ‖A−1‖ = ∞ if A is singular.
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Pseudospectra for the MEP have a property that is different from pseudospectra for the
standard eigenvalue problem Ax = λx: if ε is large enough then Λε(W ) will be unbounded. This
is the subject of the rest of this section.

If W is a right definite MEP, then we are interested in the smallest perturbation that would
make W +∆W not right definite. Again, here we restrict the perturbations ∆Vij to be Hermitian.
We can define the distance to the closest not right definite MEP as

ξ(W ) := min{ ε : W + ∆W is not right definite, ∆V ∗
ij = ∆Vij ,

‖∆Vij‖ ≤ ε‖Eij‖, i = 1, . . . , k; j = 0, . . . , k }.

In the next theorem we show that ξ(W ) is bounded with the minimal ε where the pseudospectra
is unbounded.

Theorem 5.2.

(5.3) ξ(W ) ≤ min{ ε : Λε(W ) is unbounded }.

Proof. If λ = (λ1, . . . , λk) is an eigenvalue of a right definite W with the corresponding
normalized eigenvector x = x1 ⊗ · · · ⊗ xk then it follows that λi is equal to the tensor Rayleigh
quotient [8]

(5.4) λi =
x∗∆ix

x∗∆0x

for i = 1, . . . , k. It is easy to see that

(5.5) x∗∆0x =

∣∣∣∣∣∣∣

x∗
1V11x1 · · · x∗

1V1kx1

...
...

x∗
kVk1xk · · · x∗

kVkkxk

∣∣∣∣∣∣∣
.

Suppose now that ε is so small that W + ∆W is right definite for ‖∆Vij‖ ≤ ε‖Eij‖, i =
1, . . . , k; j = 0, . . . , k. There exists a δ(ε) > 0 such that

(5.6)

∣∣∣∣∣∣∣

z∗1(V11 + ∆V11)z1 · · · z∗1(V1k + ∆V1k)z1

...
...

z∗k(Vk1 + ∆Vk1)zk · · · z∗k(Vkk + ∆Vkk)zk

∣∣∣∣∣∣∣
≥ δ(ε)

for all ‖zi‖ = 1, i = 1, . . . , k. Since the eigenvalues of W + ∆W can be expressed as Rayleigh
quotients (5.4) it follows from (5.5) and (5.6) that the pseudospectrum Λε(W ) is bounded. This
yields the bound (5.3).

6. Numerical examples. We present some numerical examples obtained with Matlab 5.3.
For all examples we take Eij = Vij for all i, j. We draw all pseudospectra by computing
σmin(Wi(λ)) in all grid points by Matlab’s svd. For more efficiency one could try to use ideas
mentioned in [11], but we will give no attention to this further. The size of the grid used in the
examples is 400× 400.

Example 6.1. For the first numerical example we take the right definite two-parameter
eigenvalue problem

W1(λ) =

[
1 1
1 2

]
− λ1

[
2.2 1

1 2.3

]
− λ2

[
0.1 −0.1
−1 4

]
,

W2(λ) =

[
2 1
1 −1

]
− λ1

[
1 −0.2

−0.2 −0.1

]
− λ2

[
2 −0.1

−0.1 4

]
.
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Fig. 6.1: Pseudospectra for Example 6.1. Top left: The eigenvalues are intersections of the eigen-
curves det W1(λ) = 0 (solid line) and det W2(λ) = 0 (dashed line). Top right: pseudospectra for ε =
10−1.8, 10−1.5, 10−1.2, 10−0.9, 10−0.6 . Bottom: pseudospectra for W1 (left) and W2 (right).

The eigenvalues λ = (λ1, λ2) are intersection points of the eigenvalue curves det(W1(λ)) = 0
and det(W2(λ)) = 0 as depicted in the top left picture in Figure 6.1. The pseudospectra for
ε = 10−0.6, 10−0.3, 100, 100.3 are shown in the top right picture in Figure 6.1. One can see that
the boundaries of the pseudospectra are not differentiable. The reason is that pseudospectra are
intersections of pseudospectra for W1 and W2, which are shown on the bottom left and bottom
right picture in Figure 6.1, respectively.

The eigenvalues together with the corresponding condition numbers are presented in Table 6.1.
In order to obtain the condition number of an eigenvalue we have to compute ‖B−1

0 ‖θ. Since the
problem is right definite and all matrices Vij are real we have to consider only real vectors in the
definition (2.1) of ‖B−1

0 ‖θ. This assumption makes it easier to compute the θ-norm as we only
have to compute a finite number of norms. In particular, for a right definite two-parameter case
we have

‖B−1
0 ‖θ = max{ ‖B−1

0 z‖ : z ∈ R
2, |zi| = θi for i = 1, 2 }.



12 M. E. HOCHSTENBACH AND B. PLESTENJAK

Table 6.1: Eigenvalues and their condition numbers for the right definite two-parameter problem in Ex-
ample 6.1.

λ1 λ2 κ(λ, W )
−1.0142 1.5688 4.66

0.4556 −0.3613 2.42
0.9360 −0.4025 3.34
1.0069 0.7125 3.37

By comparing results from Table 6.1 to Figure 6.1 one can see that the eigenvalue with the largest
condition number has the largest pseudospectrum as may be expected.

−2 0 2
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0

2

λ
1

λ
2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

λ
1

λ
2

10−0.9

10−0.6

Fig. 6.2: Left: Eigenvalues of the 500 randomly perturbed two-parameter eigenvalue problems of Ex-
ample 6.1, where each ∆Vij is a symmetric matrix such that ‖∆Vij‖ = 10−1.2‖Vij‖, and pseudospectrum for
ε = 10−1.2. Right: Pseudospectra for Example 6.1 for ε = 10−0.9 and ε = 10−0.6.

The left figure in Figure 6.2 shows eigenvalues of 500 randomly perturbed problems, where
each ∆Vij is a random symmetric matrix such that ‖∆Vij‖ = 10−1.2‖Vij‖. One can see that all
dots in Figure 6.2 lie in the interior of the pseudospectrum for ε = 10−1.2.

The right figure in Figure 6.2 presents pseudospectra for ε = 10−0.9 and ε = 10−0.6 on a larger
area. One can suspect that here, in contrast to the eigenvalue problem Ax = λx, a pseudospectrum
may be unbounded.

Figures 6.1 and 6.2 suggest that the sensitivity of the eigenvalue is related to the angle of
the intersection between the curves det(W1(λ)) = 0 and det(W2(λ)) = 0. We observe that the
pseudospectrum is large when the angle of the intersection is small. The following proposition
(that can be easily generalized to MEPs with more than two parameters) justifies this observation.

Proposition 6.2. Let µ = (µ1, µ2) ∈ C2 be an algebraically simple eigenvalue of a right defi-

nite two-parameter eigenvalue problem W and let x = x1⊗x2 and y = y1⊗y2 be the corresponding

normalized right and left eigenvector, respectively. Then

B0 = −




n1−1∏

j=1

σ
(1)
j (µ) 0

0

n2−1∏

j=1

σ
(2)
j (µ)







∂f1

∂λ1
(µ)

∂f1

∂λ2
(µ)

∂f2

∂λ1
(µ)

∂f2

∂λ2
(µ)


 ,
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where fi(λ) = det Wi(λ) and where σ
(i)
1 (µ) ≥ σ

(i)
2 (µ) ≥ · · · ≥ σ

(i)
ni−1(µ) > 0 are nonzero singular

values of Wi(µ) for i = 1, 2.
Proof. There exists a decomposition

(6.1) Wi(λ) = Ui(λ)Σi(λ)Vi(λ)∗,

such that
1. Ui(λ) and Vi(λ) are unitary matrices,

2. Σi(λ) = diag(σ
(i)
1 (λ), . . . , σ

(i)
ni

(λ)) is a diagonal matrix,
3. the elements of Ui(λ), Σi(λ), and Vi(λ) are holomorphic functions of λ in a small neigh-

borhood of µ, and
4. Wi(µ) = Ui(µ)Σi(µ)Vi(µ)∗ is a singular value decomposition of Wi(µ).

We may consider (6.1) as a singular value decomposition of Wi(λ) where the singular values
are not necessarily ordered by their size. Let uni

(λ) and vni
(λ) denote the nith column of Ui(λ)

and Vi(λ), respectively. Since µ is an algebraically simple eigenvalue, σni
(µ) = 0, σni−1(µ) 6= 0,

vni
(µ) = xi, and uni

(µ) = yi.
From (6.1) it is easy to show that

(6.2)
∂fi

∂λj

(µ) = σ
(i)
1 (µ) · · ·σ(i)

ni−1(µ)
∂σ

(i)
ni

∂λj

(µ).

From

σ(i)
ni

(λ) = uni
(λ)∗Wi(λ)vni

(λ) = uni
(λ)∗(Vi0 − λ1Vi1 − λ2Vi2)vni

(λ)

we have

(6.3)
∂σ

(i)
ni

∂λj

(µ) = −y∗
i Vijxi = −(B0)ij .

The result now follows from (6.2) and (6.3).
It follows from Theorem 4.1 and (2.2) that ‖B−1

0 ‖ has a great impact on the sensitivity of the
eigenvalue λ. As follows from Lemma 6.2, ‖B−1

0 ‖ may be large when the angle of the intersection
between the curves det(W1(λ)) = 0 and det(W2(λ)) = 0 is small.

Example 6.3. For the second example we take the two-parameter Sturm-Liouville problem

W1(λ)x1(t1) = −x′′
1(t1) − (λ1 + λ2 cos 2t1)x1(t1),

(6.4)
W2(λ)x2(t2) = −x′′

2(t2) − λ2x2(t2)

with boundary conditions xi(0) = xi(π) = 0 for i = 1, 2, studied in [3]. The second equation of
(6.4) yields that λ2 = 12, 22, 32, . . . and then it follows from the first equation of (6.4) that λ1 is
an eigenvalue of the Mathieu’s equation with parameter λ2.

If we take h = π/n and apply the finite-difference method to the two-parameter boundary-
value problem (6.4) using symmetric differences y′

i ≈ (yi+1 − yi−1)/(2h) and y′′
i ≈ (yi+1 − 2yi +

yi−1)/h2 for the derivatives y′ and y′′, then we obtain an algebraic two–parameter problem where

V10 = V20 =
1

h2
tridiag(1,−2, 1),

(6.5) V11 = I, V21 = 0,

V12 = diag
(

cos
2π

n + 1
, cos

4π

n + 1
, . . . , cos

2nπ

n + 1

)
, V22 = In.
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Fig. 6.3: Pseudospectra for the algebraic two-parameter approximation of Example 6.3, where n = 10 and
ε = 10−1.8, 10−1.5, 10−1.2 , 10−0.9 , 10−0.6 .

The eigenvalues of the above algebraic two-parameter problem are approximations to the eigen-
values of (6.4) with the order of the approximation O(h2).

Figure 6.3 shows eigenvalues and pseudospectra for the algebraic two-parameter approximation
(6.5) of (6.4) for n = 10. The left figure shows eigenvalues as the points where eigencurves
det(W1(λ)) = 0 (solid line) and det(W2(λ)) = 0 (dashed line) intersect. One should note that
the lines det(W2(λ)) = 0 do not agree with the known result λ2 = 12, 22, 32, . . . . The reason is
that the eigenvalues in Figure 6.3 are the eigenvalues of the algebraic approximation (6.5) and
not of the original problem (6.4). The eigenvalues occur in groups of two for a fixed λ2. In
some of these pairs the eigenvalues are so close together that they look like a single eigenvalue
on Figure 6.3, an example of such pair is (−12.6225, 34.7056) and (−12.6215, 34.7056). The right
figure with the pseudospectra for ε = 10−1.8, 10−1.5, . . . , 10−0.6 indicates that the fact that some
of the eigenvalues are close together does not reflect on their pseudospectra and the eigenvalues
are well conditioned.

7. Conclusions. We studied backward error, condition numbers, and pseudospectra for the
MEP. The results can be viewed as generalization of the theory for the generalized eigenvalue
problem [6] and the polynomial eigenvalue problem [9, 10]. We also studied nearness of a right
definite MEP to a non right definite MEP and established that it is connected with the unbounded
pseudospectra.
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