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Abstract

We give an overview of all codim 1 bifurcations in generic planar discontinuous piecewise

smooth autonomous systems, here called Filippov systems. Bifurcations are defined using

the classical approach of topological equivalence. This allows the development of a simple

geometric criterion for classifying sliding bifurcations, i.e. bifurcations in which some sliding

on the discontinuity boundary is critically involved. The full catalog of local and global

bifurcations is given, together with explicit topological normal forms for the local ones.

Moreover, for each bifurcation, a defining system is proposed that can be used to numerically

compute the corresponding bifurcation curve with standard continuation techniques. A

problem of exploitation of a predator-prey community is analized with the proposed methods.
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1 Introduction

Piecewise smooth systems (PSS) are described by a finite set of ODEs

ẋ = f (i)(x), x ∈ Si ⊂ Rn, (1)

where Si, i = 1, 2, . . . ,m, are open nonoverlapping regions separated by a (n− 1)-dimensional

manifold (boundary) Σ. The functions f (i) and the boundary are smooth and the union of Σ

and all Si is the entire state space.

PSS are frequently encountered in all fields of science and engineering, where relationships

among relevant variables are smooth but can be of different nature in some regions of state

space. Among the most famous examples of PSS, there are stick-slip mechanical systems, where

the friction between two surfaces is nonzero and changes sign with the relative velocity of the

surfaces [Galvanetto, Bishop & Briseghella 1995, Van de Vrande, Van Campen & De Kraker

1999]. But nonsmooth mechanics [Brogliato 1999] include many other important applications

as rocking blocks [Hogan 1989], suspension bridges [Doole & Hogan 1996], vibrations and noise

[Oestreich, Hinrichs, Popp & Budd 1997], and robotics [Mc Geer 1990]. Electrical and electronic

devices are systematically modelled as PSS whenever they contain diodes and transistors [Hasler

& Neirynck 1985, Bernardo di, Garofalo, Glielmo & Vasca 1998]. Moreover, PSS have a long

tradition in process control theory [Flügge-Lotz 1953, Utkin 1977, Tsypkin 1984] where they are

used to model on-off feedback control systems. Finally, interesting problems concerning PSS can

be formulated also in economics, medicine, and biology. One of these problems, dealing with

the conflict between conservation and exploitation of natural resources, is shortly discussed in

the example presented at the end of the paper.

PSS are called continuous if f (i)(x) = f (j)(x) at any point of the boundary Σij separating

two adjacent regions Si and Sj. In these systems the vector ẋ is uniquely defined at any point

of the state space and orbits in region Si approaching transversally the boundary Σij , cross it

and enter into the adjacent region Sj. By contrast, in discontinuous PSS (from now on called

Filippov systems), two different vectors ẋ, namely f (i)(x) and f (j)(x), can be associated to a

point x ∈ Σij. If the transversal components of f (i)(x) and f (j)(x) have the same sign, the

orbit crosses the boundary and has, at that point, a discontinuity in its tangent vector. On the

contrary, if the transversal components of f (i)(x) and f (j)(x) are of opposite sign, i.e. if the two

vector fields are “pushing” in opposite directions, the state of the system is forced to remain on

the boundary and slide on it. Although, in principle, motions on the boundary could be defined

in different ways, the most natural one is Filippov convex method [Filippov 1964, Filippov 1988]

that defines sliding motions on Σij as the solutions on Σij of the continuous ODE ẋ = g(x),
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where g(x) is a convex combination of f (i)(x) and f (j)(x) tangent to Σij at x. Generically, this

convex combination is unique. Thus, the state portrait of a Filippov system is composed of the

sliding state portrait on Σ and of the standard state portraits in each regions Si.

Bifurcation analysis of PSS has received a lot of attention in the last years. In most cases,

however, the study was restricted to continuous PSS or to bifurcations of Filippov systems

not involving sliding [Feigin 1994, Freire, Ponce, Rodrigo & Torres 1998, Bernardo di, Feigin,

Hogan & Homer 1999, Bernardo di, Budd & Champneys 2001]. This greatly simplifies the

analysis, since, as we will see in a moment, sliding bifurcations are many and of quite subtle

nature. Indeed, the appearance or disappearance of sliding at a particular parameter value is a

bifurcation, even if it leaves the attractors of the system unchanged.

As noticed in [Leine 2000], there is no general agreement on what a bifurcation could be in

Filippov systems. This is an unfortunate situation because the comparison between different

contributions becomes difficult, if not impossible. Surprisingly, even in the special case of planar

systems only local bifurcations have been considered. The first attempt was due to Bautin &

Leontovich [Bautin & Leontovich 1976] who, however, gave an incomplete classification, since

they did not allow for sliding. Next major contribution was due to Filippov [Filippov 1988],

who classified singular points in planar discontinuous systems and identified all codim 1 local

singularities. However, some unfoldings of local singularities are missing in Filippov’s work and

bifurcations of sliding cycles are not treated at all. Actually, the existing contributions on sliding

bifurcations of cycles refer either to specific bifurcations [Bernardo di, Champneys & Budd 1998]

or to particular classes of systems, like mechanical systems of the stick-slip type [Galvanetto et

al. 1995, Kunze & Küpper 1997, Leine 2000, Dankowitz & Nordmark 2000] and piecewise linear

systems [Bernardo di, Johansson & Vasca 2001, Kowalczyk & di Bernardo 2001, Giannakopoulos

& Pliete 2001]. Finally, very little is known on normal forms and on numerical analysis of sliding

bifurcations.

For all these reasons, we present a review with reference, however, to the simplest class of

Filippov systems, namely generic planar systems. Three are the merits of the paper. First, bi-

furcations and their codimensions are defined, as in [Filippov 1988], using the classical approach

of topological equivalence [Bautin & Leontovich 1976, Guckenheimer & Holmes 1983, Kuznetsov

1998]. This allows us to develop a nice geometrical criterion for defining and classifying sliding

bifurcations, i.e. bifurcations in which some sliding on the discontinuity boundary is critically

involved. Secondly, using this criterion, we derive the full catalog of the codim 1 local and

global sliding bifurcations, giving explicit topological normal forms for all local ones. Lastly,

for each bifurcation we propose a defining system that can be used to numerically compute
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the corresponding bifurcation curve using standard continuation techniques [Doedel & Kernévez

1986, Kuznetsov & Levitin 1995-1997]. An interesting problem of renewable resources manage-

ment is solved to show the power of the presented methods. Some comments on the possibility

of extending the analysis to higher order systems and to higher codimension sliding bifurcations

are given at the end of the paper.

2 Preliminaries

We now consider generic planar Filippov systems and assume, for simplicity, that there are only

two regions Si, i.e.

ẋ =







f (1)(x), x ∈ S1,

f (2)(x), x ∈ S2.
(2)

Moreover, the discontinuity boundary Σ separating the two regions is described as

Σ =
{

x ∈ R2 : H(x) = 0
}

,

where H is a smooth scalar function with nonvanishing gradient Hx(x) on Σ, and

S1 = {x ∈ R2 : H(x) < 0}, S2 = {x ∈ R2 : H(x) > 0}.

The boundary Σ is either closed or goes to infinity in both directions and f (1) 6≡ f (2) on Σ.

2.1 Standard and sliding solutions

We now briefly recall how solutions of (2) can be constructed by concatenating standard solutions

in S1,2 and sliding solutions on Σ obtained with the well-known Filippov convex method (for

details, see [Filippov 1964, Aubin & Cellina 1984, Filippov 1988, Kunze 2000]). First we define

the crossing set Σc ⊂ Σ as

Σc = {x ∈ Σ : σ(x) > 0},

where

σ(x) = 〈Hx(x), f (1)(x)〉〈Hx(x), f (2)(x)〉. (3)

It is the set of all points x ∈ Σ, where the two vectors f (i)(x) have nontrivial normal components

of the same sign. By definition, at these points the orbit of (2) crosses Σ, i.e. the orbit reaching

x from Si concatenates with the orbit entering Sj , j 6= i, from x.

Then, we define the sliding set Σs as the complement to Σc in Σ, i.e.

Σs = {x ∈ Σ : σ(x) ≤ 0}.
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The crossing set is open, while the sliding set is the union of closed sliding segments. Points

x ∈ Σs, where both vectors f (1)(x) and f (2)(x) are tangent to Σ, are called singular sliding points.

The Filippov method associates the following convex combination g(x) of the two vectors f (i)(x)

to each nonsingular sliding point x ∈ Σs:

g(x) = λf (1)(x) + (1 − λ)f (2)(x), λ =
〈Hx(x), f (2)(x)〉

〈Hx(x), f (2)(x) − f (1)(x)〉
. (4)

As indicated in Fig. 1,

S2

S1

Σs

g(x)

x

Hx(x)

f (2)(x)

f (1)(x)

Figure 1: Filippov construction.

〈Hx(x), g(x)〉 = 0, x ∈ Σs,

i.e. g(x) is tangent to Σs, where defined. Thus,

ẋ = g(x), x ∈ Σs, (5)

defines a scalar differential equation on the one-dimensional manifold Σs, which is smooth in all

nonsingular points. Solutions of this equation are called sliding solutions. In accordance with

[Gatto, Mandrioli & Rinaldi 1973], constant solutions of (5) are called pseudo-equilibria of (2)

(in [Filippov 1988] they are called quasi-equilibria). At a pseudo-equilibrium P , g(x) = 0, and

the vectors f (i)(x) are transversal to Σ and anti-collinear. This implies that a generic pseudo-

equilibrium is an internal point of a sliding segment. But pseudo-equilibria can also be boundary

points of a sliding segment (when one of the two vectors f (i)(x) is equal to zero). Singular sliding

points will be called singular pseudo-equilibria.

A sliding segment is delimited either by a point X (called boundary equilibrium), where

one of the vectors f (i)(X) vanishes, or by a point T (called tangent point or singular point

[Filippov 1988]), where the vectors f (i)(T ) are nonzero but at least one of them is tangent to Σ.

Dealing only with generic systems, we can exclude that boundary equilibria and tangent points

accumulate in Σ.
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Generically, the sliding orbit is either stable or unstable in the normal direction. Indeed, if

〈Hx(x), f (1)(x)〉 > 0, 〈Hx(x), f (2)(x)〉 < 0,

the sliding orbit is stable, while for

〈Hx(x), f (1)(x)〉 < 0, 〈Hx(x), f (2)(x)〉 > 0,

it is unstable.

It is now possible to define a unique forward solution of (2). For this, assume that x(0) ∈ S1

and construct the forward solution x(t) of (2) by solving the corresponding equation in S1. If

this solution does not remain in S1, it reaches the boundary Σ at time t1, i.e. H(x(t1)) = 0. At

this point, there are three possibilities:

(A) If σ(x(t1)) > 0, i.e x(t1) ∈ Σc, then we switch to ẋ = f (2)(x), and we integrate this

equation in region S2 for t ≥ t1. In other words, the orbit crosses Σ at x(t1).

(B) If σ(x(t1)) < 0, then x(t1) ∈ Σs, and we switch to Eq. (5) on Σs thus generating a sliding

orbit for t ≥ t1 (this orbit degenerates to a point if x(t1) is a pseudo-equilibrium). The sliding

solution can either tend toward a pseudo-equilibrium (including a singular one) or arrive at time

t2 > t1 to a boundary equilibrium or to a tangent point. In the first case, we set x(t) = x(t2)

for all t > t2. In the second case, we determine if a sliding orbit starts at x(t2) and, if so, we

follow the sliding solution x(t) for t > t2. Otherwise, we follow the unique standard orbit in

S1 or S2 that departs from x(t2) (the uniqueness of this orbit can be proved by recalling that

accumulations of tangent points are not possible in generic systems).

(C) If σ(x(t1)) = 0, then x(t1) is either a boundary equilibrium or a tangent point and one

can proceed as outlined in (B).

The same procedure can be applied to the reversed system (2), with f (i)(x) 7→ −f (i)(x), to

generate a unique backward solution. Although the solutions are uniquely defined both forward

and backward in time, system (2) is not invertible in the classical sense, since its orbits can

overlap. It should also be pointed out that unstable sliding segments will not be observed in

numerical integration of (2).

We note that it is common in the literature to introduce a differential inclusion corresponding

to a Filippov system (2) and then consider its solutions [Aubin & Cellina 1984, Filippov 1988].

This approach, though attractive theoretically, leads to the nonuniqueness of solutions and makes

it difficult to define phase portraits even in the planar case. Therefore, we do not use differential

inclusions in this paper.
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2.2 Tangent Points

Suppose that a tangent point T ∈ Σs is characterized by

〈Hx(T ), f (1)(T )〉 = 0.

We say that this tangent point is visible(invisible) if the orbit of ẋ = f (1)(x) starting at T belongs

to S1(S2) for all sufficiently small |t| 6= 0. Similar definitions hold for the vector field f (2).

Suppose T = (0, 0) and assume that the discontinuity boundary Σ is locally given by the

equation x2 = 0, i.e. H(x) = x2. If this is not the case, one can always translate the origin

of coordinates to T and then introduce new coordinates (y1, y2) by the following construction.

Introduce any smooth local parameterization y1 of Σ near the origin (with y1 = 0 corresponding

to T ) and consider orbits of the gradient system

ẋ = Hx(x).

Since H(x) is smooth and Hx(T ) 6= 0, this system is smooth and its orbits cross Σ orthogonally

near T . Assign to any point x near T the y1-value at the intersection with Σ of the orbit of the

gradient system passing through x. Next, set y2 = H(x). This defines a local diffeomorphism

x 7→ y near T .

A tangent point T of f (1) is called quadratic if the orbit passing through T can be locally

represented as x2 = 1
2νx

2
1 +O(x3

1), ν 6= 0. Under the above assumptions,

f (1)(x) =





p1 + a1x1 + b1x2 +O(‖x‖2)

c1x1 + d1x2 + 1
2q1x

2
1 + r1x1x2 + 1

2s1x
2
2 +O(‖x‖3)



 ,

where p1 6= 0, and

ν1 =
c1

p1
.

If ν1 < 0, the tangent point is visible, while if ν1 > 0 it is invisible. Generically, T is not a tangent

point for f (2), so that f (2)(T ) is transversal to Σ, as well as all nearby vectors f (2)(x), x ∈ Σ.

This implies that in a neighborhood of a generic tangent point the orbits are like in Figs. 2(a)

and (b) (with a possible reversal of all arrows and/or reflection with respect to the vertical axis).

Near an invisible tangent point, a useful map

ε 7→ K(1)(ε), ε ∈ R, (6)

can be defined along the orbits of f (1) (see Fig. 3). When p1 > 0 (as in Fig. 3), the map is

defined for ε < 0. On the contrary, when p1 < 0, the map is defined for ε > 0. Let us consider
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(b)

T

S2

T

S2

S1

Σ

Σ

S1

(a)

Figure 2: Generic visible (a) and invisible (b) tangent point. The thick orbit is a sliding orbit.

Tε K(1)(ε)

x1

x2

S1

S2

Figure 3: Map K (1).

only the case p1 > 0. As shown in [Filippov 1988] (see also [Gubar’ 1971]), map (6) is smooth

near a quadratic invisible tangent point and has the expansion

K(1)(ε) = −ε+ k
(1)
2 ε2 +O(ε3),

where

k
(1)
2 =

2

3

(

a1 + c1

p1
−

q1

2c1

)

.

Map (6) is particularly important for the analysis of a singular pseudo-equilibrium, called

fused focus, where an invisible tangent point of f (1) coincides with an invisible tangent point of

f (2) (see Sec. 3.2.4 below). Recall that the Filippov vector g is undefined at such a point. In

this case, a Poincaré map P can be constructed by composing K (1) (defined for ε < 0) and K (2)

(defined for ε > 0). When both invisible tangent points are quadratic, this gives

P (ε) = ε+ (k
(2)
2 − k

(2)
2 )ε2 +O(ε3)

for ε < 0, so that the fused focus is locally stable if

k2 = k
(1)
2 − k

(2)
2 < 0,

and unstable if k2 > 0 (see Fig. 4). As we shall see, k2 plays a role similar to that of the first

Lyapunov coefficient in the analysis of Hopf bifurcations [Kuznetsov 1998]. It should be noted
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S2

T0

T0

Σ

Σ

S1

S2

S1

(a) (b)

Figure 4: Unstable (a) and stable (b) fused focus.

that a fused focus, which is not an equilibrium of f (1) or f (2), should not be confused with the

so called focus-focus boundary equilibrium [Bautin & Leontovich 1976, Kunze 2000].

2.3 Topological equivalence and bifurcations

The state portrait of (2) is the union of all its orbits in R2. As already mentioned, these orbits

can overlap when sliding. We say that two Filippov systems of the form (2) are topologically

equivalent if there is a homeomorphism h : R2 → R2 that maps the state portrait of one system

onto the state portrait of the other, preserving orientation of the orbits. Notice that all sliding

segments of one system are mapped onto sliding segments of the other. Moreover, we require

that h maps the discontinuity boundary Σ of one system onto the discontinuity boundary of the

other system.

Now consider a Filippov system depending on a parameter (a one-parameter family):

ẋ =







f (1)(x, α), x ∈ S1(α),

f (2)(x, α), x ∈ S2(α),
(7)

where x ∈ R2, α ∈ R, and f (i), i = 1, 2, are smooth functions of (x, α), while

S1(α) =
{

x ∈ R2 : H(x, α) < 0
}

, S2(α) =
{

x ∈ R2 : H(x, α) > 0
}

,

for some smooth function H(x, α) with Hx(x, α) 6= 0 for all (x, α) such that H(x, α) = 0.

We say that (7) exhibits a bifurcation at α = α0 if by an arbitrarily small parameter pertur-

bation we get a topologically nonequivalent system.

Recall that a bifurcation has codim 1 if it appears at isolated parameter values in generic

one-parameter families. All bifurcations of (7) can be classified as local or global. A local

bifurcation can be detected by looking at a fixed but arbitrarily small neighborhood of a point

in the plane. All other bifurcations will be called global in this paper. Under this definition, all

bifurcations involving nonvanishing cycles are classified as global bifurcations. Of course, we do
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not consider bifurcations occurring in regions S1 or S2, but focus only on codim 1 bifurcations

which involve sliding on the discontinuity boundary. Actually, the appearance or disappearance

of a sliding segment is already a bifurcation, since a state portrait with overlapping orbits can

not be homeomorphically transformed into a state portrait without overlappings.

To produce all generic one-parameter bifurcations involving the discontinuity boundary Σ,

we use the following classification criterion. For a given parameter value α, consider the sliding

set Σs ⊂ Σ and find all pseudo-equilibria and tangent points in it. In view of our genericity

assumption, these points are in finite number but can collide when α varies, leading to local codim

1 bifurcations. Another local codim 1 bifurcation occurs when a standard hyperbolic equilibrium

in S1 or S2 approaches the boundary Σ and “hits” it for some parameter value. Obviously, there

are no other local codim 1 bifurcations. To detect global codim 1 bifurcations involving sliding,

consider the so-called special orbits, namely the orbits entering S1 or S2 from pseudo-equilibria

or tangent points. A bounded special orbit can return in finite time to the sliding set Σs or

tend asymptotically to its ω-limit set. The return points vary with α and could “collide” with

pseudo-equilibria or tangent points in Σs for some parameter value. Such collisions imply global

bifurcations. Generically, an ω-limit set of a special orbit is a stable standard equilibrium or a

cycle (which can cross Σ). Collisions of equilibria with the discontinuity boundary have already

been taken into account. Thus, the remaining possibility is that a nonvanishing cycle hits the

sliding set Σs. Finally, a global bifurcation can also occur when a special orbit approaches an

incoming separatrix of a standard saddle in S1 or S2 and coincides with it at some parameter

value.

The advantage of the outlined classification criterion is that it does not capture global bifur-

cations which are completely analogous to their smooth counterparts, namely those bifurcations

in which critical orbits cross the discontinuity boundary several times but do not slide.

3 Local Bifurcations

In this section we summarize results on local bifurcations in one-parameter Filippov systems

(7). For each bifurcation, we give (without proof) a so called topological normal form, e.g. a

polynomial Filippov system such that any generic Filippov system satisfying the same bifurcation

condition is locally topologically equivalent to it.
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3.1 Collisions of equilibria with the boundary

Suppose that a hyperbolic equilibrium Xα of ẋ = f (1)(x, α) exists in S1 for α < 0 and collides

at α = 0 with the discontinuity boundary Σ. Moreover, assume that Xα has simple eigenvalues

and hits Σ with a nonzero velocity with respect to the parameter at a point X0, where f (2)(x, α)

is transversal to Σ. This happens in generic one-parameter families of planar Filippov systems.

Without loss of generality, we can assume that Σ is locally a straight line and that f (2) is

orthogonal to Σ in a neighborhood of X0 for small α. Indeed, after introducing a smooth scalar

parameterization y1 of Σ with y1 = 0 corresponding to X0, one can take as the second coordinate

of a point x the value y2 = H(x, α) of the function defining Σ, and as the first coordinate the

value y1 at the intersection of the discontinuity boundary Σ with the orbit of f (2) passing through

x. In the y-coordinates the discontinuity boundary is given by y2 = 0, while the orbits of f (2)

are straight lines y1 = const. The map x 7→ y is a local diffeomorphism that depends smoothly

on α. The system ẋ = f (1)(x, α) written in the y-coordinates will obviously have a hyperbolic

equilibrium colliding with the discontinuity boundary.

3.1.1 Boundary focus

Assume that the colliding focus is unstable and has counter-clockwise rotation nearby (the case

of a stable and/or clockwise focus can be immediately understood by reversing all arrows in the

figures and/or by reflecting the figures with respect to the vertical axis).

There are five generic critical cases: BFi, i = 1, 2, 3, 4, 5. In all cases, there is a visible tangent

point when α < 0, and an invisible tangent point when α > 0. The cases are distinguished by

the relative position of the focus zero-isoclines and the behavior of the orbit departing from the

visible tangent point into S1, as well as by the direction of the motion in S2.

The unfoldings of these singularities are presented in Fig. 5. In cases BF1, BF2 and BF3,

there is a stable sliding orbit at α = 0 that departs from the equilibrium or approaches it. By

contrast, in cases BF4 and BF5, the sliding orbit is unstable.

In case BF1, a stable sliding cycle Lα surrounds the unstable focus Xα for α < 0. The sliding

segment of the cycle ends at the visible tangent point Tα and begins at a transverse arrival point

located between Tα and a pseudo-saddle Pα. The domain of attraction of this cycle is bounded

by the stable separatrices of Pα. When α → 0, the stable cycle shrinks, while the three points,

Xα, Tα and Pα, collide simultaneously. For small α > 0, there are no equilibria or cycles and

the stable sliding orbit begins at the invisible tangent point Tα. This bifurcation entails the

catastrophic disappearance of a stable sliding cycle.

In case BF2, the orbit departing from the visible tangent point Tα for small α < 0 returns
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Figure 5: Boundary focus bifurcations: In cases BF1 and BF3 stable sliding cycles exist for

nearby parameter values.
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to Σ at the right of the pseudo-saddle Pα. Thus, no sliding cycle exists. The state portraits for

α = 0 and α > 0 are like in case BF1.

Analytically, one can distinguish the cases BF1 and BF2 as follows. Let

f (1)
x (X0, 0) =





a b

c d



 ,

and consider the positive half-orbit of the planar linear system







ẋ1 = ax1 + bx2,

ẋ2 = cx1 + dx2,

that departs from point T on the line x2 = 1 where ẋ2 = 0, i.e.

T =

(

−
d

c
, 1

)

.

This orbit makes a counter-clockwise excursion, and returns to the same line x2 = 1 at point

R = (θ, 1). Case BF1 corresponds to

θ < −
b

a
,

while the opposite inequality characterizes BF2. For the critical value

T

x1

x2

R

ẋ2 = 0

ẋ1 = 0

Figure 6: Degenerate boundary focus.

θ = −
b

a

the orbit is orthogonal to the line x2 = 1 at the point R (see Fig. 6). This corresponds to

a codim 2 singularity (degenerate boundary focus). It can be shown that this critical value is

characterized by
d− a

2ω
tg

[

ω

a+ d
ln

(

−
bc

a2

)]

= 1, (8)
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where

ω =
1

2

√

−(a− d)2 − 4bc.

Note that a related formula on p. 246 in [Filippov 1988] contains misprints.

In case BF3 (see Fig. 5 again), a stable sliding cycle Lα passing through the visible tangent

point Tα surrounds the unstable focus Xα for α < 0. Contrary to case BF1, there is no pseudo-

equilibrium nearby. When α → 0, the stable cycle shrinks and the focus Xα collides with the

tangent point Tα. For small α > 0, there is no cycle and all nearby orbits tend to a stable pseudo-

equilibrium Pα that exists close to the invisible tangent point Tα. This bifurcation implies the

non-catastrophic disappearance of a stable sliding cycle.

In case BF4, the visible tangent point Tα present for small α < 0 is the starting point of

an unstable sliding orbit. Since the focus is unstable, all orbits leave a small neighborhood of

the critical equilibrium. The same is true for α > 0 with the only difference that a repelling

pseudo-equilibrium Pα exists near the invisible tangent point Tα.

In the last case BF5, no attractor exists near the bifurcation, that can be seen as the collision

of a pseudo-saddle Pα with the visible tangent point Tα and the focus Xα as α → 0. After the

collision, only an invisible tangent point Tα remains.

One can easily provide topological normal forms for all the above cases. For example, the

system

ẋ =







f (1)(x), H(x, α) < 0,

f (2)(x), H(x, α) > 0,
(9)

where

f (1)(x) =





x1 − 2x2

4x1



 , f (2)(x) =





0

−1



 , H(x, α) = x2 + α,

is a normal form for case BF1. It is convenient to assume that H depends on the unfolding

parameter α, while f (1) and f (2) do not. Notice that by setting

f (1)(x) =





x1 − 2x2

3x1





with f (2) and H(x, α) as above, one obtains case BF2, while

f (1)(x) =





−x1 − 2x2

4x1 + 2x2





corresponds to BF3. Normal forms for BF4 and BF5 can be obtained from those for BF2 and

BF3, respectively, by setting

f (2)(x) =





0

1



 .
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3.1.2 Boundary node

Assume that the colliding node X0 is stable. Depending on the direction of the motion in S2,

there are two generic critical cases. The unfoldings of the singularities BN1,2 are presented

in Fig. 7. Cases with unstable nodes or nodes with differently inclined zero-isoclines can be

reduced to the considered ones. In case BN1, the critical equilibrium X0 is an attractor with

BN1

BN2

X0

S2

Tα

S1

S2

S1

α < 0 α = 0

Pα

S1

α > 0

Σ Σ

S2

X0

Tα

S1

S2

S1

α = 0

S1

α > 0

Pα

S2
S2

α < 0

Xα

Tα

Σ Σ

Σ

Σ

Xα

Tα

Figure 7: Boundary node bifurcations.

an incoming stable sliding orbit. In case BN2 the equilibrium X0 is unstable but has a sector

of incoming orbits (bounded by the unstable sliding orbit and the non-leading manifold of the

node). In both cases, there is a visible tangent point when α < 0, and an invisible tangent point

when α > 0.

In case BN1, a stable node Xα and a visible tangent point Tα coexist for α < 0. They collide

at α = 0 and are substituted by a stable pseudo-node Pα and an invisible tangent point Tα for

α > 0. This bifurcation illustrates how a stable node can become a stable pseudo-node.

In case BN2, a pseudo-saddle Pα and the stable node Xα coexist for α < 0 with the visible

tangent point Tα, while there is only a tangent point Tα for α > 0. This is a catastrophic

disappearance of a stable node.

As in the previous case, it is easy to derive topological normal forms. The normal forms for
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BN1,2 are given by (9) with

f (1)(x) =





−3x1 − x2

−x1 − 3x2



 , f (2)(x) =





0

∓1



 , H(x, α) = x2 + α.

3.1.3 Boundary saddle

When the colliding equilibrium is a saddle, there are three generic critical cases (BS1, BS2 and

BS3) determined by the slope of the saddle zero-isoclines. The corresponding unfoldings are

presented in Fig. 8. All other cases (i.e., when the saddle is oriented differently or the motion in

S2 is reversed) can be reduced to the considered ones. In all cases, there is an invisible tangent

point when α < 0, and a visible tangent point when α > 0. These points delimit the sliding

segments on the discontinuity boundary.

In case BS1, a saddle Xα coexists with a pseudo-saddle Pα and an invisible tangent point Tα

for α < 0. These three points collide at the critical parameter value α = 0 and are substituted

by a visible tangent point Tα for α > 0. No attractor is involved.

In case BS2, a saddle Xα coexists with an invisible tangent point Tα and a stable pseudo-

node Pα for α < 0, while only a visible tangent point Tα remains for α > 0. This is a catastrophic

disappearance of a stable pseudo-node.

In the last case BS3, for α < 0 a saddle Xα coexists with an invisible tangent point Tα, while

for α > 0, there is a pseudo-saddle Pα and a visible tangent point Tα. This bifurcation shows

how a saddle can become a pseudo-saddle.

A topological normal form in case BS1, is given by the system (9), where

f (1)(x) =





−x1 + 3x2

3x1 − x2



 , f (2)(x) =





0

−1



 , H(x, α) = x2 + α.

Normal forms for BS2 and BS3 have the same f (2) and H but

f (1)(x) =





−2x1 − x2

x1 + x2





in case BS2 and

f (1)(x) =





x1 − 3x2

−3x1 + x2





in case BS3.

3.2 Collisions of tangent points

If a smooth vector field f(x, α) is quadratically tangent to the boundary Σ at a point Tα, then,

generically, this tangent point will slightly move under parameter variation. In other words, the
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Figure 8: Boundary saddle bifurcations: In cases BS1 and BS2 a stable pseudo-node disappears

catastrophically, while a standard saddle becomes a pseudo-saddle in case BS3.
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presence of a quadratic tangent point is not a bifurcation. However, the collision of two tangent

points is a local codim 1 bifurcation. Moreover, two tangent points of the same vector field can

not collide if they are both visible or invisible, while tangent points of different vector fields

collide independently of their nature. Thus, in generic one-parameter families of planar Filippov

systems, one can expect the following critical cases:

(1) collision of a visible and an invisible tangent point of f (1)(x, α);

(2) collision of a visible tangent point of f (1)(x, α) and a visible tangent point of f (2)(x, α);

(3) collision of a visible tangent point of f (1)(x, α) and an invisible tangent point of f (2)(x, α);

(4) collision of an invisible tangent point of f (1)(x, α) and an invisible tangent point of

f (2)(x, α).

In the following, we analyze these possibilities in detail.

3.2.1 Double tangency

Suppose that for α < 0 the vector field f (1)(x, α) has two quadratic tangent points: an invisible

and a visible one. Let these tangent points collide at α = 0 forming a double tangent point T0.

The orbit of f (1)(x, 0) passing through T0 has generically a cubic inflection point. Assume also

that f (1)(x, α) is locally transversal to the boundary for α > 0 and that the vector field f (2) is

transversal to the boundary near T0 for all small α. As in Sec. 3, we can suppose, without loss

of generality, that the boundary Σ is a straight line and that f (2) is orthogonal to Σ.

DT2
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T0
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T
2
α

S2

Σ Σ

S1

S2

Σ
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Σ
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Σ
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T
1
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T
2
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Σ

α < 0

T
1
α

Figure 9: Double tangency bifurcations. DT1: Appearance of a stable sliding segment. DT2:

Closing of a crossing window.
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Under these assumptions, there are two generic critical cases, DT1 and DT2, corresponding

to opposite inflections of the orbit passing through T0. These critical cases are shown in Fig. 9

together with their unfoldings.

In case DT1, a stable sliding segment exists between T 1
α and T 2

α for α < 0. At the critical

value α = 0 there is a single orbit that departs from T0 tangentially to the boundary, while all

other orbits cross Σ. For α > 0 all orbits cross Σ.

In case DT2, there are two stable sliding segments for α < 0, separated by a “crossing

window” between T 1
α and T 2

α . The sliding motions starting on the left segment terminate at T 1
α

and continue in S1 along a standard orbit that reaches the right sliding segment. At α = 0 the

crossing window disappears and an uninterrupted sliding orbit exists for α > 0.

Topological normal forms for DT1,2 are given by (9) with

f (1)(x, α) =





1

±(α+ x2
1)



 , f (2)(x, α) =





0

−1



 , H(x) = x2.

3.2.2 Two visible tangencies

Now assume that, for all sufficiently small α, f (1)(x, α) has a visible quadratic tangent point

T
(1)
α ∈ Σ, while f (2)(x, α) has a visible quadratic tangent point T

(2)
α ∈ Σ. Further, suppose

that at α = 0 these tangent points collide, i.e. T
(1)
0 = T

(2)
0 = T0, while their relative velocity

with respect to the parameter is nonzero. As before, we can assume that the discontinuity

boundary Σ is a straight line. It is easy to see that under these assumptions there are two

generic critical cases, V V1 and V V2, in which the vectors f (1)(T0, 0) and f (2)(T0, 0) are collinear

or anti-collinear, so that T0 is a singular sliding point. Figure 10 presents unfoldings of these

singularities, assuming that T
(1)
α is located to the right of T

(2)
α for α < 0 and to the left for

α > 0. For α = 0, in case V V1 there is a sliding segment containing the singular sliding point,

while in case V V2 only one singular sliding point is present.

In case V V1, the tangent points T
(1)
α and T

(2)
α delimit a segment of Σ which is crossed by

orbits going from S1 to S2 when α < 0, and in the opposite direction when α > 0.

In case V V2, the tangent points T
(1)
α and T

(2)
α delimit a stable sliding segment contaning a

pseudo-saddle Pα for small α 6= 0.

Topological normal forms for cases V V1,2 are given by (9) with

f (1)(x, α) =





±1

∓(α+ x1)



 , f (2)(x, α) =





1 − x1

x1



 , H(x) = x2.
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Figure 10: Collisions of two quadratic tangencies when both tangent points are visible. V V1:

Closing and opening of a crossing window. V V2: Appearance of a stable sliding segment.

3.2.3 One visible and one invisible tangency

When one of the colliding quadratic tangent points (say T
(1)
α ) is invisible, while the other (T

(2)
α )

is visible, there are three generic critical cases: Case V I1, when the vectors f (1)(T0, 0) and

f (2)(T0, 0) are collinear, and two cases (V I2 and V I3), when they are anti-collinear. The unfold-

ings of these three singularities are shown in Fig. 11.

In case V I1, all orbits, except one, cross Σ for α = 0. The cases V I2 and V I3 can be

distinguished by looking for α = 0 at the coefficient ν of the quadratic term in the functions

representing the orbit passing through T0 (see Sec. 2.2). In case V I2 the orbits in S1 are less

bended than those in S2, while the opposite is true in case V I3. This results in sliding motions

in the opposite directions. Notice, however, that the sliding segment is stable on one side of T0

and unstable on the other.

Similar to the previous cases, unfolding of case V I1 gives a sliding segment bounded by

the tangent points T
(1)
α and T

(2)
α for both α > 0 and α < 0. However, this sliding segment is

unstable for α < 0 and stable for α > 0. Unfolding of cases V I2 and V I3 opens a crossing

window between T
(1)
α and T

(2)
α in the sliding segment. In both cases, there are disjoint sliding

segments of opposite stability for α 6= 0. Moreover, in case V I2, there exists a pseudo-saddle for

any small α 6= 0, while in case V I3 an unstable pseudo-node existing for α < 0 is substituted

by a stable pseudo-node for α > 0. In other words, approaching the bifurcation from positive

values of α, we get a catastrophic disappearance of a stable pseudo-equilibrium.

Topological normal forms for cases V Ij are given by (9) with H(x) = x2 and the following
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Figure 11: Collisions of visible and invisible tangencies.

f (k). For V I1,2:

f (1)(x, α) =





±1 − x1

±(α+ x1)



 , f (2)(x, α) =





1 − x1

2x1



 ,

and for V I3:

f (1)(x, α) =





−1 + x1

−α− 2x1



 , f (2)(x, α) =





1 − x1

x1



 .

3.2.4 Two invisible tangencies

Finally, assume that the two colliding quadratic tangent points are invisible. There are two

generic critical cases in which f (1) and f (2) are collinear or anti-collinear at the singular sliding

point T0, respectively (see Fig. 12). In case II1, for α = 0 there is a sliding segment, on which

the sliding is stable on one side of T0 and unstable on the other. In case II2, point T0 is a

fused focus (see Sec. 2.2). Suppose, that the coefficient k2 defined in Sec. 2.2 is negative. This

implies stability of the pseudo-focus. The case of an unstable pseudo-focus can be understood

by reversing all arrows in the portraits.

Unfolding of case II1 opens a crossing window delimited by T
(1)
α and T

(2)
α in the sliding

segment. There are disjoint sliding segments of opposite stability for all sufficiently small α 6= 0
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Figure 12: Collisions of two invisible tangencies.

but no attractors are involved.

Case II2 is perhaps the less trivial local bifurcation in planar Filippov systems. The quadratic

tangent points T
(1)
α and T

(2)
α delimit a single sliding segment for all small α. This segment is

stable for α < 0 and unstable for α > 0. Moreover, the sliding segment contains a pseudo-

node Pα, which is stable for α < 0 and unstable for α > 0. Finally, by analyzing the local

Poincaré return map defined on Σ outside the sliding segment, one can prove that a unique

and stable crossing cycle Lα exists for α > 0 (see [Filippov 1988]). This cycle shrinks together

with the sliding segment and disappears when α is positive and tends to zero. Thus, in terms of

isolated invariant sets, a stable pseudo-node existing for negative α is substituted by an unstable

pseudo-node and a stable crossing cycle. Therefore, this bifurcation can be called supercritical

pseudo-Hopf bifurcation.

The system (9) with

f (1)(x, α) =





−1 − x1

−x1



 , f (2)(x, α) =





1

α− x1



 , H(x, α) = x2,

is a local topological normal form for the supercritical pseudo-Hopf bifurcation (case II2).

The bifurcation diagram in the subcritical case, corresponding to the unstable pseudo-focus

(k2 > 0), can be obtained from the described one by reversing the direction of all orbits and

changing the sign of the parameter.

Notice that a normal form for II1 can be obtained from that for II2 by reversing f (1), i.e.
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with

f (1)(x, α) =





1 + x1

x1



 ,

and f (2) and H as above.

3.3 Collisions of pseudo-equilibria

When α varies, two pseudo-equilibria can collide and disappear via the standard saddle-node

bifurcation, which can properly be called in this case a pseudo-saddle-node bifurcation. Figure

13 illustrates this bifurcation in the case of a stable sliding segment. We will re-encounter this

bifurcation while dealing with bifurcations of sliding cycles in Sec. 4.2.1.

α > 0α = 0α < 0

P 1
α

P 2
α

S2

P0

S2 S2

ΣΣΣ

S1 S1 S1

Figure 13: Pseudo-saddle-node bifurcation.

A topological normal form for this bifurcation is (9), where

f (1)(x, α) =





α+ x2

1



 , f (2)(x, α) =





0

−1



 , H(x) = x2.

4 Global Bifurcations

4.1 Bifurcations of cycles

System (2) can have standard periodic solutions that lie entirely in S1 or S2. All other periodic

solutions can be naturally subdivided into two classes: periodic solutions which have a sliding

segment in Σ (sliding periodic solutions) and those which have only isolated points in common

with Σ (crossing periodic solutions). Note that a crossing periodic solution can pass through

the boundary of the sliding segment. Accordingly, the orbits corresponding to periodic solutions

will be called standard, sliding and crossing cycles. Due to uniqueness of forward solutions,

sliding periodic solutions with a common sliding piece must coincide. One can introduce a local
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transversal section to a cycle and define the Poincaré map in the usual way forward in time.

However, the derivative of this map at the fixed point corresponding to a sliding cycle will be

zero, since all nearby points will be mapped into the fixed point. This is sometimes referred to

as superstability and is related to the fact that the Poincaré map is noninvertible in this case. On

the contrary, a crossing cycle has a smooth invertible Poincaré map and is exponentially stable

if the derivative µ of the Poincaré map satisfies µ < 1, and exponentially unstable if µ > 1.

Finally, a crossing cycle passing through the boundary of a sliding segment can be exponentially

stable or unstable from one side and superstable from the other (see examples below).

Of course, sliding cycles can also cross Σ and have more than one sliding segment, while

crossing cycles can return to Σ more than twice. In what follows we consider the simplest

possible cycles and do not present state portraits that can be obtained from the considered ones

by reversing all arrows.

4.1.1 Collision of a cycle with the boundary (touching)

A standard piece of a cycle can collide with the discontinuity boundary. The simplest case is

that of a standard cycle that touches at α = 0 a sliding segment Σs at a quadratic tangent point

T0. The unfolding of this singularity is presented in Fig. 14. It is assumed that for α < 0 the

Σ
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α > 0α = 0
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Lα

S1
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Figure 14: Touching bifurcation.

cycle Lα ⊂ S1 is stable and that its distance from Σ is O(α) for small α. Then, for α > 0, the

cycle remains but becomes a sliding cycle. This transition from a standard to a sliding cycle is

a touching bifurcation, which sometimes is called grazing or sliding-grazing bifurcation. Notice

that stability of Lα changes from exponential stability to superstability.
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4.1.2 Appearance of a double tangency on the sliding cycle (sliding disconnection)

Appearance of a double tangent point inside a sliding segment is a local bifurcation discussed

in Sec. 3.2.1 (case DT2). When this happens on a sliding cycle it causes a global change of the

state portrait, depicted in Fig. 15. Assume that a sliding cycle Lα exists for α < 0 and that

S1
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α = 0 α > 0

T0

α < 0

S2
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T
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T
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α Σ

Lα

S2

S1

Σ

Lα

Figure 15: Sliding disconnection.

a generic double tangent point T0 appears in the sliding segment at α = 0. For α > 0, two

visible quadratic tangent points, T 1
α and T 2

α, appear and interrupt the sliding motion, so that

the cycle Lα now has two sliding segments. Some authors call this rearrangement a multisliding

bifurcation.

The following two bifurcations are purely global and are due to the collision of a sliding cycle

with an invisible or visible quadratic tangent point.

4.1.3 Return to an invisible tangent point (buckling)

Assume that there exists a sliding cycle Lα for α < 0 and that, for α = 0 the standard piece

of the cycle returns to the sliding segment at an invisible quadratic tangent point T
(1)
0 (see Fig.

16). If the point of return of Lα on Σ passes with a nonzero velocity from the sliding to the
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Figure 16: Buckling bifurcation.
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crossing segment at α = 0, then for α > 0 the cycle remains but enters S2 before returning

back to the sliding segment. This is a buckling bifurcation of the sliding cycle (also called sliding

switching).

4.1.4 Return to a visible tangent point (crossing)

The case of a periodic orbit starting at and returning to the same visible quadratic tangent

point at α = 0 is more complicated. Assuming genericity with respect to the parameter, there

are three distinct cases as shown in Fig. 17. The critical cycle L0 can be either sliding (case

CC2

SC

CC1

T
(1)
α

α = 0α < 0 α > 0

S1

Σ

S1

Lα

T
(1)
0

Σ

T
(1)
α

Lα

T
(1)
α

α = 0

Σ

S1

S2

S1

S2

S1

S2

Lα

T
(1)
0 T

(1)
α

Σ

L0

Σ

α = 0

S1 S1

S2

T
(1)
0

Σ

L0

S2

Σ

S2

S1

L0

S2

α < 0

Lα

S1

S2

T
(1)
α

Σ

L
s

α

L
c

α

S2

T
(1)
α

α > 0

α > 0

α < 0

Σ

Figure 17: Crossing bifurcations: SC : sliding critical cycle; CC1 : superstable from inside

and stable from outside critical cycle; CC2 : superstable from inside and unstable from outside

critical cycle.

SC) or crossing. Moreover, in the latter case, it is generically exponentially stable (case CC1)

or unstable (case CC2) from outside and always superstable from inside (see central portraits in
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Fig. 17). In all cases, there is a quadratic tangent point T
(1)
α of f (1) for all sufficiently small |α|.

In case SC, a sliding cycle Lα with two sliding segments exists for α < 0 and is substituted

by a sliding cycle with only one sliding segment for α > 0, since the orbit crosses Σ near T
(1)
α .

We call this bifurcation simple crossing.

In case CC1, for α < 0, there is a sliding cycle Lα with a single sliding segment ending at

T
(1)
α . This sliding segment shrinks for α → 0 and the cycle becomes for α = 0 a crossing cycle

that is superstable from inside and exponentially stable from outside. For α > 0, a unique and

exponentially stable crossing cycle exists. Therefore, this bifurcation implies a transition from

a superstable sliding cycle to an exponentially stable crossing cycle. We call it sliding-crossing.

In the last case CC2, a superstable sliding cycle Ls
α coexists with an exponentially unstable

crossing cycle Lc
α for sufficiently small α < 0. The two cycles collide at α = 0 forming a critical

crossing cycle L0 and then disappear for α > 0. This bifurcation, also called sliding-crossing,

implies the catastrophic disappearance of a stable sliding cycle.

4.2 Pseudo-homoclinic bifurcations

A pseudo-equilibrium Pα of (7) can have a sliding orbit that starts and returns back to it at

α = 0. This is possible if P0 is either a pseudo-saddle-node or a pseudo-saddle. Moreover, a

standard saddle Xα can have a homoclinic orbit containing a sliding segment at α = 0.

4.2.1 Sliding homoclinic orbit to a pseudo-saddle-node

Appearance of a pseudo-saddle-node inside a sliding segment is a local bifurcation discussed in

Sec. 3.3 . If the pseudo-saddle-node appears on a sliding cycle Lα it causes a global change

of the state portrait, as is depicted in Fig. 18, where a sliding cycle Lα exists for α < 0 and

a generic pseudo-saddle-node P0 appears in the sliding segment at α = 0. Then, for α > 0, a

pseudo-saddle P 1
α and a pseudo-node P 2

α appear and interrupt the periodic motion, so that no

cycle is present for α > 0. All nearby orbits approach for small α > 0 the stable pseudo-node

P 2
α. This bifurcation is completely analogous to the standard bifurcation of an orbit homoclinic

to a saddle-node.

4.2.2 Sliding homoclinic orbit to a pseudo-saddle

A sliding cycle Lα can collide with a pseudo-saddle. Assuming that the orbit departing from a

tangent point misses the pseudo-saddle transversally with respect to the parameter, we get the

bifurcation diagram shown in Fig. 19, where a sliding cycle Lα exists for α < 0 and becomes
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α = 0 α > 0α < 0

Σ

S2

Σ

L0

P 1
α

S2

P 2
α

P0

S2

Σ

Lα

S1 S1 S1

Figure 18: Bifurcation of a homoclinic orbit to a pseudo-saddle-node.

α < 0 α = 0 α > 0

Lα H0

S2

Σ

S2

S1
S1

S2

S1

Σ ΣPα
P0 Pα

Figure 19: Bifurcation of a sliding homoclinic orbit to a pseudo-saddle.
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a sliding homoclinic orbit at α = 0. There is no periodic orbit for α > 0. This bifurcation is

completely analogous to the standard bifurcation of a homoclinic orbit to a saddle.

4.2.3 Sliding homoclinic orbit to a saddle

A sliding cycle Lα can collide with a standard saddle Xα, say in S1 (see Fig. 20). Generically,

α < 0 α > 0α = 0

Σ

Tα

S1

Σ

T0

S2

S1
X0

S2

S1
XαXα

Tα Σ

S2

Lα Γ0

Figure 20: Bifurcation of a sliding homoclinic orbit to a saddle.

the cycle existing for α < 0 touches the saddle X0 at α = 0 and then disappears for α > 0. This

is another catastrophic bifurcation.

4.3 Pseudo-heteroclinic bifurcations

We complete our list of codim 1 global bifurcations, by considering also two rather simple

possibilities related to heteroclinic orbits between pseudo-saddles and saddles.

4.3.1 Heteroclinic connection between two pseudo-saddles

A generic unfolding of an orbit connecting at α = 0 two pseudo-saddles is presented in Fig.

21. For sufficiently small |α| 6= 0, the heteroclinic connection breaks down giving rise to a

α < 0 α = 0 α > 0

S2S2 S2

S1

P 1
α P 2

α P 1
0 P 2

0

S1

P 1
α P 2

α

Σ Σ

S1

Σ

Figure 21: Bifurcation of a heteroclinic orbit between pseudo-saddles.
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bifurcation.

4.3.2 Heteroclinic connection between a pseudo-saddle and a saddle

A generic unfolding of an orbit connecting at α = 0 a pseudo-saddle with a standard saddle in S2

is given in Fig. 22. It does not involve nearby attractors and is listed here only for completeness.

α < 0 α = 0 α > 0

P
1
0 P

1
α

Σ

S1

X0

Σ

S2

Xα

Σ

S2 S2

S1S1

Xα

P 1
α

Figure 22: Bifurcation of a heteroclinic orbit between a pseudo-saddle and a saddle.

5 Numerical Analysis of Bifurcations

One could consider (2) as the limit of a globally smooth system in R2 when some parameter

ε→ 0. For example, one can define a smooth system

ẋ = S(x, ε)f (1)(x) + (1 − S(x, ε))f (2)(x), (10)

where

S(x, ε) =
1

2
−

1

π
arctan

(

H(x)

ε

)

with ε > 0. Then, as ε→ 0, (10) tends toward the discontinuous system (2). Moreover, consider

a forward solution x(t) of (2) and suppose that it has no unstable sliding segments. Then it can

be proved that the solution xε(t) of (10) with xε(0) = x(0) tends to x(t) uniformly on any finite

time interval [0, T ].

Therefore, one could attempt to analyse the bifurcations of (10) using standard techniques

for smooth ODEs [Doedel & Kernévez 1986, Kuznetsov & Levitin 1995-1997]. This is not easy,

since (10) is a stiff ODE and, thus, requires special methods for its bifurcation analysis. But even

worse than that, the most interesting sliding bifurcation phenomena are absent in (10). Thus,

one has to develop special algorithms to deal with bifurcation analysis of Filippov systems. Below

we present such algorithms for the planar case, indicating, whenever possible, their applicability

to the n-dimensional case.
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5.1 One-parameter continuation

5.1.1 Continuation of pseudo-equilibria

A pseudo-equilibrium is an equilibrium of system (5) on the sliding manifold Σs. However,

to set up equations for its continuation, which are valid in the n-dimensional case, it is more

convenient to recall that at a pseudo-equilibrium x the vectors f (1) and f (2) are anti-collinear,

namely

λ1f
(1)(x, α) + λ2f

(2)(x, α) = 0,

for some real λ1 and λ2 with λ1λ2 > 0. This condition, together with the condition H(x, α) = 0,

gives the following defining system for the pseudo-equilibrium:



















H(x, α) = 0,

λ1f
(1)(x, α) + λ2f

(2)(x, α) = 0,

λ1 + λ2 − 1 = 0.

(11)

The system is valid for any n ≥ 2. It is a system of (n + 2) scalar equations in the (n + 3)-

dimensional space Rn+3 with coordinates (x, α, λ). Generically, (11) defines a smooth one-

dimensionsl manifold in Rn+3, whose projection on the (x, α)-space gives a branch of pseudo-

equilibria, provided λ1λ2 > 0 and both f (1) and f (2) do not vanish.

If λ1 = 0 at a point X but λ2 6= 0, then f (2)(X,α) = 0, i.e., X is an equilibrium of f (2) at

the boundary Σ.

5.1.2 Continuation of tangent points

At a tangent point of f (1), the following two conditions are satisfied:







H(x, α) = 0,

〈Hx(x, α), f (1)(x, α)〉 = 0.
(12)

Obviously, this system defines a curve only when the system is planar, since only in that case

(12) is a system of two equations in the 3-dimensional (x, α)-space. For 3-dimensional Filippov

systems, (12) defines a curve of tangent points in the state space R3 for a fixed parameter value

α. A similar defining system can be specified for the tangent points of f (2).

5.1.3 Continuation of cycles

One might attempt to approximate the periodic solutions of a Filippov system with those of

its smooth approximation (10) with sufficiently small ε > 0. Obviously, this approach does not

work well near the discontinuity boundary. Indeed, if mesh adaptation is used, most of the mesh
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points accumulate near switches from standard to sliding motions. A simple countermeasure is

to subdivide the periodic orbit into segments located entirely in S1 or S2, and sliding segments.

This approach works particularly well for the continuation of crossing cycles that cross Σ at only

two points, u(0) and v(0) as shown in Fig. 23(a). Then the following boundary-value problem

(a) (b)

v(0) = u(1)

u(0) = v(1)

Σ

S2

S1 u(1)

u(0)

S1

S2

Σ

Figure 23: The boundary-value problems for a crossing cycle (a) and a standard segment of a

sliding cycle (b).

on the unit interval [0, 1] can be used for the continuation of the crossing cycle:



























































u̇− T1f
(1)(u, α) = 0,

H(u(0), α) = 0,

u(1) − v(0) = 0,

v̇ − T2f
(2)(v, α) = 0,

H(v(0), α) = 0,

v(1) − u(0) = 0,

(13)

where Ti is the time spent by the (T1+T2)-periodic solution in region Si, i = 1, 2. The boundary

conditions u(1) = v(0) and v(1) = u(0) ensure the periodicity, while the two scalar conditions

involving H force the switch points to belong to the boundary Σ. The whole periodic solution

corresponding to the crossing cycle is then given by the formula:

x(t) =







u
(

t
T1

)

, t ∈ [0, T1],

v
(

t−T1
T2

)

, t ∈ [T1, T1 + T2].

Clearly, the approach is valid for any n ≥ 2. A solution to the above boundary-value problem can

be continued using the standard software AUTO97 [Doedel & Kernévez 1986, Doedel, Champ-

neys, Fairgrieve, Kuznetsov, Sandstede & Wang 1997]. This is also true for all boundary-value

problems discussed below.
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The continuation of cycles with sliding segments is more complex. Indeed, the computation

of such segments is equivalent to solving certain boundary-value problems for







ẋ = g(x, α),

0 = H(x, α),
(14)

where g is defined by a parameter-dependent analogue of (4). Note that (14) is a differential-

algebraic system that can be numerically integrated using well-known codes, but for which

boundary-value problem solvers are hard to develop (see, however, [Ascher & Spiteri 1994]).

Fortunately, finding sliding periodic orbits in the planar case is much simpler, since the

sliding segments coincide with pieces of the discontinuity boundary Σ, as shown in Fig. 23(b).

Thus, the sliding segments can be computed for any fixed α by the continuation of the curve

H(x, α) = 0,

and the problem is reduced to the continuation of the standard segment of the periodic orbit.

As we have seen in the previous sections, generically, such a standard segment departs from Σ at

a visible tangent point (in Fig. 23(b) u(0) is a visible tangent point of f (1)). After a finite-time

T1, the orbit returns back to Σ at point u(1). This means that the following boundary-value

problem:






























u̇− T1f
(1)(u, α) = 0,

H(u(1), α) = 0,

H(u(0), α) = 0,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0,

(15)

can be used to continue the standard segment located in S1. Notice that the last two equations

in (15) are nothing else than the defining equations (12) of the tangent point u(0) of f (1).

5.2 Detection of bifurcations

To detect a bifurcation, a scalar test function ψ has to be constructed, which changes its sign

at the bifurcation parameter value.

5.2.1 Test functions for local bifurcations

The most easily detectable local bifurcation is the collision of an equilibrium with the disconti-

nuity boundary Σ (see Sec. 3.1). Indeed, following a standard equilibrium curve, say

f (1)(x, α) = 0,
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one should merely monitor the test function

ψ0(x, α) = H(x, α), (16)

which has a regular zero when the equilibrium of f (1) hits Σ.

Other codim 1 local bifurcations occur within the discontinuity boundary. In particular,

following a pseudo-equilibrium curve defined by (11), one can encounter the following codim 1

singularities:

(1) collision with another pseudo-equilibrium;

(2) collision with a boundary equilibrium.

These bifurcations can be detected, respectively, as zeroes of the test functions:

ψ1(x, α) = vn+1 (17)

and

ψ2(x, α) = λ1λ2, (18)

where vn+1 is the α-component of the vector v ∈ Rn+3 tangent to the curve defined by (11) at

point (x, α, λ).

Other codim 1 bifurcations in Σ can be detected by looking at tangent points. In particular,

following a tangent point defined by (12) in a planar system, one can encounter two codim 1

singularities:

(1) Double tangency of one vector field, say f (1), i.e. a visible and an invisible tangent points

of f (1) collide;

(2) Collision of tangent points of different vector fields, i.e. a tangent point of f (1) collides

with a tangent point of f (2);

These bifurcations can be detected, respectively, as zeroes of the following test functions:

ψ3(x, α) = v3, (19)

and

ψ4(x, α) = 〈Hx(x, α), f (2)(x, α)〉, (20)

where v3 is the α-component of the vector v ∈ R3 tangent to the curve defined by (12) at point

(x, α).
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5.2.2 Detection of global bifurcations

Global bifurcations of sliding cycles caused by local events on a sliding segment, such as ap-

pearance of a double tangency (see Sec. 4.1.2) or appearance of a pseudo-saddle-node (see Sec.

4.2.1), can be detected by monitoring the local test functions described above.

Although some test functions could be constructed also for other global bifurcations described

in Sec. 4, the most practical method to detect them is plotting orbits starting at visible tangent

points and at pseudo-equilibria for different parameter values. We will return to the continuation

of such global bifurcations later.

5.3 Two-parameter continuation of codim 1 bifurcations

In two-parameter families of Filippov systems, codim 1 bifurcations happen when we cross

certain curves in the parameter plane. Here we construct defining systems which allow to

compute such curves.

5.3.1 Continuation of local bifurcations

Obviously, the defining system






f (1)(x, α) = 0,

H(x, α) = 0,
(21)

can be used to continue a boundary equilibrium x ∈ Rn of f (1) with respect to two parameters,

i.e. when α ∈ R2.

The continuation of two coinciding tangent points of different vector fields is also straight-

forward in planar systems. Indeed, it is sufficient to add condition ψ4 = 0 (see (20)) to system

(12):


















H(x, α) = 0,

〈Hx(x, α), f (1)(x, α)〉 = 0,

〈Hx(x, α), f (2)(x, α)〉 = 0.

(22)

The continuation of a double tangency of, say, f (1) with respect to two parameters is somehow

more subtle. It can be done by adding to system (12) an extra equation

d2

dt2
H(x(t), α)

∣

∣

∣

∣

∣

t=0

= 0,

where x(t) is the solution of f (1) starting at the tangent point. Thus, the defining system


















H(x, α) = 0,

〈Hx(x, α), f (1)(x, α)〉 = 0,

〈Hxx(x, α)f (1)(x, α) + [f
(1)
x (x, α)]THx(x, α), f (1)(x, α)〉 = 0,

(23)
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is suitable for the two-parameter continuation of the double tangent point.

Finally, consider the two-parameter continuation of a pseudo-saddle-node (see Sec. 3.3). At

a pseudo-saddle-node, the (n+ 2) × (n+ 2) Jacobian matrix of (11) with respect to (x, λ1, λ2)

J(x, α, λ) =











HT
x 0 0

λ1f
(1)
x + λ2f

(2)
x f (1) f (2)

0 1 1











has a nontrivial null-vector v = (w, µ1, µ2)
T ∈ Rn+2: Jv = 0. Thus, the system







































































H(x, α) = 0,

λ1f
(1)(x, α) + λ2f

(2)(x, α) = 0,

λ1 + λ2 − 1 = 0,

〈Hx(x, α), w〉 = 0,

λ1f
(1)
x w + λ2f

(2)
x w + µ1f

(1) + µ2f
(2) = 0,

µ1 + µ2 = 0,

〈w,w〉 + µ2
1 + µ2

2 − 1 = 0,

(24)

can be used for the two-parameter continuation of a pseudo-saddle-node. This is a system

of (2n + 5) scalar equations in the (2n + 6)-dimensional space with coordinates (x, α, λ, w, µ).

Obviously, (24) is valid in the general n-dimensional case.

5.3.2 Continuation of global bifurcations

Continuing global bifurcations with respect to two parameters is easier than detecting them,

since all special points and orbits are already identified. Moreover, the continuation of a sliding

disconnection (see Sec. 4.1.2) is equivalent to that of a double tangency, while the continuation of

a sliding homoclinic orbit to a pseudo-saddle-node is equivalent to the continuation of the pseudo-

saddle-node itself. These problems have been already considered in the previous subsection.

The two-parameter continuation of the touching bifurcation (see Sec. 4.1.1) of a cycle located

in S1 can be performed using the equations































u̇− T1f
(1)(u, α) = 0,

u(0) − u(1) = 0,

H(u(0), α) = 0,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0.

(25)

This defining system can be derived by imposing u(0) = u(1) in (15) (cf. Figs. 23(b) and 24(a)).

This system is valid for n ≥ 2.
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(f)(e)

(d)

(a) (b)

(c)

u(1) S1

u(0)

Σ

S2

u(1)

S1

u(0)
Σ

S2

S1 Σ

u(0)

Σ

u(1)

S2

S1

S1

S2

Σ

S2

S1

u(0) = u(1)

u(1)

u(0)

Σ

u(1)

S2

u(0)

Figure 24: The boundary-value problems for (a) touching bifurcation; (b) buckling bifurcation;

(c) crossing bifurcation (SC); (d) crossing bifurcation CC1,2; (e) a homoclinic orbit to a pseudo-

saddle; (f) an orbit connecting two pseudo-saddles.
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By contrast, buckling (see Sec. 4.1.3) and crossing (see Sec. 4.1.4) bifurcations are planar-

specific. Indeed, both bifurcations are characterized by the condition that a standard segment

of a cycle returns to Σ at a tangent point. Thus, for example, the following defining system (see

Fig. 24(b), where u(0) and u(1) are a visible and an invisible tangent point of f (1), respectively)

allows one to continue the buckling bifurcation:














































u̇− T1f
(1)(u, α) = 0,

H(u(0), α) = 0,

H(u(1), α) = 0,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0,

〈Hx(u(1), α), f (2)(u(1), α)〉 = 0.

(26)

The same defining system can be used for the continuation of a crossing bifurcation in the case

of a sliding critical cycle (see Fig. 24(c), where u(1) is a visible tangent point of f (2)).

In order to continue a crossing critical cycle (see Fig. 24(d)) with respect to two parameters,

a defining system should specify both standard segments (located in S1 and S2) of the critical

cycle. If the critical cycle starts at a visible tangent point u(0) of f (1), then it crosses the

discontinuity boundary Σ at a point u(1) = v(0) and proceeds in S2 until it hits Σ again at

v(1) = u(0). Thus, the defining system takes the form:







































































u̇− T1f
(1)(u, α) = 0,

H(u(0), α) = 0,

u(1) − v(0) = 0,

v̇ − T2f
(2)(v, α) = 0,

H(v(0), α) = 0,

v(1) − u(0) = 0,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0.

(27)

The remaining global bifurcations involve homoclinic and heteroclinic orbits to standard or

pseudo-saddles. A sliding homoclinic orbit to a pseudo-saddle (see Sec. 4.2.2) can be continued

using the following defining system


























































u̇− T1f
(1)(u, α) = 0,

H(u(0), α) = 0,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0,

H(u(1), α) = 0,

λ1f
(1)(u(1), α) + λ2f

(2)(u(1), α) = 0,

λ1 + λ2 − 1 = 0.

(28)
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Such a defining system can be easily derived by looking at Fig. 24(e), where the standard

segment of the critical orbit is located in S1 and connects a visible tangent point u(0) of f (1)

with a pseudo-saddle u(1). The continuation of a solution to the boundary-value problem (28)

will give a parameterization of the standard segment u(τ), τ ∈ [0, 1] in S1, the time T1 spent by

the standard orbit in S1, as well as the coordinates of the tangent point u(0) and the pseudo-

saddle u(1) with its corresponding λ1,2.

Similar defining functions can be used for the continuation of a standard orbit connecting

two pseudo-saddles in a planar Filippov system (see Sec. 4.3.1 and Fig. 24(f)):







































































u̇− T1f
(1)(u, α) = 0,

H(u(0), α) = 0,

λ1f
(1)(u(0), α) + λ2f

(2)(u(0), α) = 0,

λ1 + λ2 − 1 = 0,

H(u(1), α) = 0,

µ1f
(1)(u(1), α) + µ2f

(2)(u(1), α) = 0,

µ1 + µ2 − 1 = 0.

(29)

All segments we have continued until now correspond to finite time intervals T1,2. However,

this is not the case when an orbit is asymptotic to a standard saddle. We have listed two such

bifurcations: A heteroclinic connection between a pseudo-saddle and a standard saddle (Sec.

4.3.2) and a sliding homoclinic orbit to a saddle (Sec. 4.2.3). In both cases, one can employ the

so called projection boundary conditions at the standard saddle (see, for example, [Kuznetsov

1998]), namely require that an approximating orbit segment ends at a point of the stable linear

subspace of the saddle, which is very close to the saddle itself. In the planar case, this can be

formulated in terms of orthogonality to the adjoint stable eigenvector.

For example, for the case of a sliding homoclinic orbit to a saddle depicted in Fig. 25(a)

where u(0) is a tangent point of f (1), y is a standard saddle in S1, and w is its adjoint eigenvector

corresponding to the eigenvalue ν > 0, the defining system takes the form:







































































u̇− T1f
(1)(u, α) = 0,

H(u(0), α) = 0,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0,

f (1)(y, α) = 0,
[

f
(1)
x (y, α)

]T
w − νw = 0,

〈w,w〉 − 1 = 0,

〈w, y − u(1)〉 = 0.

(30)
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Figure 25: The boundary-value problems for a sliding homoclinic orbit to a saddle (a) and an

orbit connecting a pseudo-saddle to a saddle (b).

Similarly, for the two-parameter continuation of the heteroclinic connection between a pseudo-

saddle and a standard saddle shown in Fig. 25(b) one obtains the following defining system:



















































































u̇− T1f
(1)(u, α) = 0,

H(u(0), α) = 0,

λ1f
(1)(u(0), α) + λ2f

(2)(u(0), α) = 0,

λ1 + λ2 − 1 = 0,

f (1)(y, α) = 0,
[

f
(1)
x (y, α)

]T
w − νw = 0,

〈w,w〉 − 1 = 0,

〈w, y − u(1)〉 = 0.

(31)

6 Example: Harvesting a Prey-Predator Community

In order to avoid the extinction of a valuable resource, exploitation is often forbidden when

the resource is scarce. In this context, the simplest case of interest is that of a two population

community (prey and predator with densities x1 and x2, respectively), where the predator

population is harvested only when abundant, i.e. when x2 > α, where α is a prescribed threshold.

The standard Rosenzweig-MacArthur prey-predator model presented in many books (see, for

example, [Bazykin 1998]) is the most obvious candidate for describing the dynamics of the two

populations when x2 < α. In that model the prey population grows logistically in the absence

of predator and each predator transforms the harvested prey into new bornes. More precisely,
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the model for x2 < α is the following:

ẋ = f (1)(x, α), (32)

where

f (1)(x, α) =





x1(1 − x1) − ψ(x1)x2

ψ(x1)x2 − dx2





and

ψ(x1) =
ax1

b+ x1

is the functional response of the predator, namely the amount of prey eaten by each predator in

one unit of time.

When the predator population is abundant (x2 > α) an extra mortality must be added to

the second equation in order to take exploitation into account. If we assume that the resource

is exploited at constant effort E, the equation for x2 > α takes the form

ẋ = f (2)(x, α), (33)

where

f (2)(x, α) =





x1(1 − x1) − ψ(x1)x2

ψ(x1)x2 − dx2 −Ex2



 .

Since the prey equation is the same in both regions S1 = {x : x2 < α} and S2 = {x : x2 > α},

there is a unique nontrivial zero-isocline ẋ1 = 0, which is the parabola

x2 =
1

a
(b+ x1)(1 − x1). (34)

By contrast, the nontrivial zero-isoclines ẋ2 = 0 are different in the two regions. More precisely,

they are vertical straight lines given by

x1 =
bd

a− d
, x ∈ S1,

and

x1 =
b(d+E)

a− (d+E)
, x ∈ S2.

From this it follows that there are two distinct tangent points T (1) and T (2) given by the inter-

sections of the horizontal discontinuity boundary Σ = {x : x2 = α} with the two zero-isoclines.

The horizontal segment between the tangent points is a sliding segment Σs and contains pseudo-

equilibria if it intersects the parabola (34). In fact, at these intersection points the tangent

vectors ẋ are vertical and anti-collinear (condition for pseudo-equilibrium). The bifurcation
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analysis with respect to α is therefore relatively easy and can be performed analytically in great

part.

In Figs. 26 and 27 we show the results of this analysis for the following values of the

parameters: a = 0.3556, b = 0.33, d = 0.0444, E = 0.2067.

Figure 26 presents generic state portraits corresponding to different decreasing values of α,

while intermediate critical state portraits are plotted in Fig. 27. All together, there are five

different bifurcations. The first (Fig. 27(a)) is a touching bifurcation (see Sec. 4.1.1), where the

classical prey-predator limit cycle (Fig. 26(1)) becomes a sliding cycle (Fig. 26(2)). The second

(Fig. 27(b)) is a pseudo-saddle-node bifurcation (see Sec. 3.3): It generates a pseudo-saddle

and a stable pseudo-node (Fig 26(3)). Just after that bifurcation, there are two attractors: the

stable pseudo-node and the stable sliding cycle. The third bifurcation is a global bifurcation

characterized by the presence of a sliding homoclinic orbit to the pseudo-saddle (Fig. 27(c)).

After this bifurcation the sliding cycle does not exist and the stable pseudo-node remains the only

attractor (26(4)). The fourth bifurcation (Fig. 27(d)) is due to another sliding homoclinic orbit

to the pseudo-saddle, after which the sliding cycle reappears but has a much smaller size (see Fig.

26(5) and Fig. 28 for a magnification). The fifth bifurcation (Fig. 27(e)) is a boundary focus

bifurcation (see case BF1 in Sec. 3.1.1), where the small sliding cycle shrinks and disappears.

For lower threshold values the attractor is again unique, namely a stable pseudo-node (Fig.

26(6)), which becomes a stable node (Fig. 26(6)) after the last bifurcation (Fig. 27(f)), which

is a boundary node bifurcation (case BN1 in Sec. 3.1.1).

The state portraits in Fig. 26 are interesting: They show that high degrees of protectionism

(high threshold values α) allow the ecosystem to behave cyclically with very large excursions of

prey and predator populations. Lower threshold values, i.e. reasonable degrees of protectionism,

prevent the periodic and dangerous crashes of the predator population. However, for these

threshold values the ecosystem can have two attractors. Finally, for very low protectionism the

ecosystem is at the exploited equilibrium, characterized by a low predator density. The most

striking result of this bifurcation analysis is that the discontinuous exploitation introduced with

the threshold has the power of creating multiple attractors (see Figs. 26(3) and (5)), which,

indeed, are not possible in the standard Rosenzweig-MacArthur model. A deeper understanding

of the dynamics of discontinuously exploited ecosystems requires a bifurcation analysis also

with respect to more than one parameter. This can be done by continuation using the defining

functions described in Sec. 5. Such computations have been done with respect to b and α (see

Fig. 29). Details of this analysis and a complete bifurcation diagram will be reported elsewhere.
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Figure 26: Generic state portraits of model (32)-(33): (1) a stable standard cycle at α = 2.75;

(2) a stable sliding cycle at α = 1.625; (3) a stable sliding cycle and a stable pseudo-node at

α = 1.2375; (4) a stable pseudo-node at α = 1.175; (5) a stable sliding cycle (almost invisible)

and a stable pseudo-node at α = 1.02; (6) a stable pseudo-node at α = 0.9; (7) a stable standard

node at α = 0.5.
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Figure 27: Critical state portraits of model (32),(33): (a) touching bifurcation at α ≈ 2.440; (b)

pseudo-saddle-node bifurcation at α ≈ 1.2437; (c) sliding homoclinic orbit to a pseudo-saddle

bifurcation at α ≈ 1.2277; (d) another sliding homoclinic orbit to a pseudo-saddle (almost

invisible) at α ≈ 1.03; (e) boundary focus bifurcation at α ≈ 1.01017; (f) boundary node

bifurcation at α ≈ 0.6527.
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Figure 28: Magnification of a small sliding cycle at α = 1.02.

7 Discussion

We have presented an overview of all one-parameter bifurcations in generic planar discontinuous

piecewise smooth autonomous systems (here called Filippov systems). Apart from numerous

applications, there are two natural directions in which the analysis presented in this paper can

be extended: To more dimensions and to higher codimensions.

As we have already mentioned in the Introduction, there is a number of interesting results on

bifurcations of periodic solutions in specific 3-dimensional and general n-dimensional Filippov

systems (see, for example [Feigin 1994, Bernardo di et al. 1999, Bernardo di, Champneys &

Budd 1998, Bernardo di, Garofalo, Glielmo & Vasca 1998, Bernardo di, Budd & Champneys

2001]). Much less is known about local bifurcations in n-dimensional systems. Filippov [Filippov

1988] has identified codim 1 boundary equilibria and tangent points in 3-dimensional systems.

Unfortunately, his classification should be done from scratch for each dimension n, since the

dimension of the set of tangent points is equal to n − 2 and thus depends on n. If no tangent

points are involved, the situation is relatively easy and one can apply standard bifurcation

theory to pseudo-equilibria within the sliding set Σs. In generic one-parameter families of Filip-

pov systems, only fold and Hopf bifurcations of pseudo-equilibria occur within Σs. In the case of

fold bifurcation, two pseudo-equilibria appear or disappear at the bifurcation parameter value.

The Hopf case implies the appearance or disappearance of a small periodic orbit in the sliding
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Figure 29: Bifurcation diagram of model (32)-(33) in the (α, b)-plane for b > 0.26. The dotted

line corresponds to the one-parameter family with b = 0.33. Bifurcation curves: HP - standard

Hopf bifurcation; BF1,2 - boundary foci; BN1 - boundary node; PSN - pseudo saddle-node; TOC

- touching; H - sliding homoclinic orbit to a pseudo-saddle. Points of codim 2 bifurcations: A

- boundary Hopf bifurcation; B - degenerate boundary focus; C - sliding homoclinic orbit to a

pseudo-saddle-node.
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manifold. The existence of tangent points makes the bifurcation picture more complicated, since

no center manifold reduction is possible. However, many local codim 1 bifurcations involving

tangent curves and sliding are most likely treatable for n = 3.

The analysis of codim 2 local bifurcations in planar Filippov systems seems feasible. Notice

that two such points are present in Fig. 29: A - a standard Hopf bifurcation occuring at

the discontinuity boundary (bounary Hopf), and B - a degenerate boundary focus satisfying

condition (8) from Sec. 3.1.1. Generic two-parameter unfoldings of these singularities will have

bifurcation diagrams similar to those near points A and B in Fig. 29. However, many more

codimension 2 bifurcations are present even in model (32)-(33). Another interesting codimension

2 case is a degenerate pseudo-Hopf bifurcation, where k2 = 0 (see Secs. 2.2 and 3.2.4). Its two-

parameter unfolding has a curve where two crossing cycles of opposite stability collide and

disappear.

There are other interesting topics, related to the numerical analysis of n-dimensional Filippov

systems. For example, it would be interesting to analyze rearrangements of one- (and, eventually,

two-parameter) bifurcation diagrams of smooth systems defined by (10), when ε → 0+, and

understand how these diagrams tend to the diagrams of the corresponding discontinuous systems.

This seems to be a nontrivial problem, since there are obviously no sliding motions in (10) for

any ε > 0. Asymptotic methods from the theory of singularly perturbed ODEs might be

applicable to that problem. Among others, the problem of the continuation of sliding cycles in

n-dimensional Filippov systems as solutions of certain boundary-value problems for differential-

algebraic equations, is the most challenging one. Recall, however, that the continuation of the

grazing bifurcation (see Sec. 4.1.1) can be done using system (25) for all n ≥ 2.
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