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Abstract. We find the exact values of complexity for an infinite series of 3-

manifolds. Namely, by calculating hyperbolic volumes, we show that c(Nn) = 2n,
where c is the complexity of a 3-manifold and Nn is the total space of the punctured

torus bundle over S
1 with monodromy

(

2 1
1 1

)

n

. We also apply a recent result of

Matveev and Pervova to show that c(Mn) ≥ 2Cn with C ≈ 0.598, where a compact

manifold Mn is the total space of the torus bundle over S1 with the same mon-
odromy as Nn, and discuss an approach to the conjecture c(Mn) = 2n + 5 based on

the equality c(Nn) = 2n.

The notion of complexity of 3-dimensional manifolds (see Definition 4 below)
was introduced by S. Matveev, see [5]. Upper bounds for complexity can easily be
obtained. On the other hand, no lower bounds were known until recently, except
for only several hundreds of manifolds of small complexity, where a full case-by-case
analysis can be performed by a computer [6, 7]; thus, neither exact values nor even
reasonable lower bounds were known for any infinite class of 3-manifolds. First
meaningful lower bounds of the complexity were obtained in 2001, see [8].

In the present paper, the exact value of complexity is found for an infinite series
of 3-manifolds. This is done in Section 3 for the manifolds Nn that are n-fold
covers of the figure eight knot complement N1; alternatively, Nn can be described
as the total space of the punctured torus bundle over the circle with monodromy
(

2 1
1 1

)n

. In Section 2 we apply the aforementioned lower bound [8] to the total

space Mn of (compact) torus bundle over S1 with the same monodromy. Section 1
contains necessary definitions.

1. Definitions.

In this section, we recall some definitions following [5, 6]. By K denote the 1-di-
mensional skeleton of the tetrahedron, which is just the clique (that is, the complete
graph) with 4 vertices. Note that K is homeomorphic to a circle with three radii.

Definition 1. A compact 2-dimensional polyhedron is called almost simple if the
link of its every point can be embedded in K. An almost simple polyhedron P is
said to be simple if the link of each point of P is homeomorphic to either a circle
or a circle with a diameter or the whole graph K. A point of an almost simple
polyhedron is non-singular if its link is homeomorphic to a circle, it is said to be
a triple point if its link is homeomorphic to a circle with a diameter, and it is
called a vertex if its link is homeomorphic to K. The set of singular points of a
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simple polyhedron P (i.e., the union of the vertices and the triple lines) is called
its singular graph and is denoted by SP .

It is easy to see that any compact subpolyhedron of an almost simple polyhedron
is almost simple as well. Neighborhoods of non-singular and triple points of a simple
polyhedron are shown in Fig. 1 a, b; Fig. 1 c–f represents four equivalent ways of
looking at vertices; in particular, Fig. 1 e shows the cone over the 1-dimensional
skeleton of the tetrahedron.

f)

a) b) c)

d) e)

Figure 1. Nonsingular (a) and triple (b) points; ways of looking at
vertices (c–f)

Definition 2. A simple polyhedron P with at least one vertex is said to be special if
it contains no closed triple lines (without vertices) and every connected component
of P \ SP is a 2-dimensional cell.

Definition 3. A polyhedron P ⊂ Int M is called a spine of a compact 3-dimen-
sional manifold M if M \ P is homeomorphic to ∂M × (0, 1] (if ∂M 6= 0) or to
an open 3-cell (if ∂M = 0). In other words, P is a spine of M if a manifold M
with boundary (or a closed manifold M punctured at one point) can be collapsed
onto P . A spine P of a 3-manifold M is said to be almost simple, simple, or special

if it is an almost simple, simple, or special polyhedron, respectively.

Given a special spine P of a compact manifold M 3, one can construct a dual
singular triangulation of M3 with one vertex (lying in the middle of the 3-cell M\P ),
see Fig. 1 f; if M is a manifold with connected boundary, the same construction
gives a triangulation of the one-point compactification of M \ ∂M . In both cases,
there is a one-to-one correspondence between vertices of P and tetrahedra of the
triangulation.

Definition 4. The complexity c(M) of a compact 3-manifold M is the minimal
possible number of vertices of an almost simple spine of M . An almost simple spine
with the smallest possible number of vertices is said to be a minimal spine of M .
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Theorem 1 [5]. Let M be an orientable irreducible 3-manifold with incompressible

(or empty) boundary and without essential annuli. If c(M) > 0 (that is, if M is

different from (possibly punctured) S3, RP 3, and L3,1), then any minimal almost

simple spine of M is special.

Thus, if M is as in Theorem 1, then c(M) is equal to the minimal number
of tetrahedra in a singular triangulation of M . By the way, this implies that
c(M) ≥ ‖M‖, where ‖M‖ stands for the Gromov norm of M (see [4]), whenever M
is a compact 3-manifold that satisfies the assumptions of Theorem 1. We do not
know any manifold M such that c(M) = ‖M‖.
2. Torus bundles over S1: a lower bound.

Theorem 2 [8]. Let M be a compact irreducible orientable 3-manifold non-homeo-

morphic to S3, RP 3, and L3,1. Then c(M) ≥ 2 log5 |Tor(H1(M, Z))|+β1(M, Z)−1.

Corollary 1 [8]. For lens spaces, we have c(Lp,q) ≥ 2 log5 p− 1.

In particular, c(Ln) ≥ 2 log5 ϕn−1, where Ln stands for Lϕn,ϕn−1
and ϕn denotes

the nth Fibonacci number. Since ϕn = (((
√

5 + 1)/2)n + ((−
√

5 + 1)/2)n)/
√

5, we

have c(Ln) ≥ Cnn−2 with Cn = 2
n

log5(
√

5ϕn) tending to C = 2 log5((
√

5+1)/2) ≈
0.598 as n → ∞, which is a fairly good estimate, since c(Ln) ≤ n − 4 whenever
n ≥ 4, see [6].

Theorem 2 can be successfully applied to some other 3-manifolds. Let us denote
by Mn the total space of the T 2-bundle over S1 with monodromy An, where

A =

(

2 1
1 1

)

. A short calculation shows that |Tor(H1(Mn, Z))| = ± det(An−I) =

±(det An − TrAn + 1); since An =

(

ϕ2n+1 ϕ2n

ϕ2n ϕ2n−1

)

and det An = 1, we have

|Tor(H1(Mn, Z))| = ϕ2n+1 + ϕ2n−1 − 2. Taking into account that β1(Mn, Z) = 1,
we get the following estimate in a similar way.

Corollary 2. c(Mn) ≥ 2Cnn, where Cn = 1
n

log5(ϕ2n+1 + ϕ2n−1 − 2).

Note that Cn → C = log5((
√

5 + 1)/2)2 ≈ 0.598 as n → ∞, which is as good
as in the previous example since c(Mn) ≤ 2n + 5, see [1]. Combining this with
the inequalities c(Mn) ≥ 7 and Cn > 0.597 whenever n ≥ 6 (none of the Mn is
contained in the list of 3-manifolds up to complexity 6, see [6]; in fact, all compact 3-
manifolds up to complexity 6 are elliptic except for the flat manifolds, which all have
complexity 6, while all the manifolds Mn are Sol-manifolds), we get c(Mn) > 1.19n
for all n ≥ 1. We believe that c(Mn) = 2n+5 (see [1]) and c(Ln) = n−4 (see [5, 6]).
Note that ‖Mn‖ = 0, because there is an obvious action of S1 on Mn.

3. Punctured torus bundles: exact values.

This is the main section of the paper. Here we find the exact values of c(Nn) for
an infinite series of 3-manifolds; to the best of our knowledge, this is the first result
of this kind. The manifolds Nn, n ∈ N, are the total spaces of the punctured torus

bundles over S1 with monodromy An, where A =

(

2 1
1 1

)

.

The manifold N1 has been studied extensively. It is well known to be hyperbolic
and homeomorphic to the figure eight knot complement, see [9, Chap. 4]. A
special spine P of N1 with two vertices, four edges, and two hexagonal 2-cells
is represented by Fig. 2 a; the picture shows the boundary of the neighborhood
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in P of the singular graph SP (which consists of two vertices and four triple lines;
note that the triple lines themselves are not drawn). Since the spine P is special
(and thus both components of P \ SP are disks), the picture contains enough
information to reconstruct P . This spine coincides with the spine P0 constructed
in [1, §2.3]. Figures 2 a and 2 c are taken from [2, §4]; many other pictures related
to the manifold N1 can be found in [3, Chap. 8].
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d)c)b)a)
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E H

A D

E H

Figure 2. Noncompact hyperbolic 3-manifolds of complexity 2

Theorem 3. The equality c(Nn) = 2n holds.

Proof. Any special spine defines its dual decomposition of the manifold into tetra-
hedra. For N1, this decomposition is shown on Fig. 2 b. It consists of two tetra-
hedra (each contains one vertex of the spine), glued together so that there are two
edges (dual to the hexagons of the spine); each of them is incident to six dihedral
angles of the tetrahedra; it is described in detail in [9, Chap. 1]. The gluing pat-
tern can be reconstructed from Fig. 2 a; it is ABC ←→ EHF , BAD ←→ GEF ,
CDA ←→ GFH, DCB ←→ EGH. Thus, the edges marked by single arrows are
glued together, those marked by double arrows are glued together, too, and the
direction of the arrows is respected.

A complete hyperbolic structure on N1 comes from that on two tetrahedra
considered as regular ideal tetrahedra in H3. All their dihedral angles are equal
to π/3 [9], so the sum of the dihedral angles incident to an edge equals 2π for
both edges, which means that the hyperbolic structure described above is well
defined. Among the ideal tetrahedra in H3, the regular one has the maximal
volume V ≈ 1.0149, see, e.g., [9, Chap. 7]. Therefore, the manifold N1 admits a
hyperbolic structure of volume 2V .

Since there is an n-fold covering p : Nn → N1, the polyhedron p−1(P ) is a special
spine of Nn with 2n vertices, so we have c(Nn) ≤ 2n; again, that spine coincides
with the one constructed in [1, §2.3]. For the same reason, the manifold Nn admits a
complete hyperbolic structure of volume 2nV . Now we have to prove the inequality
c(Nn) ≥ 2n.

The manifolds Nn satisfy the hypotheses of Theorem 1. Thus, their minimal
spines are special. So, if a minimal spine of Nn contains k vertices, then there
is a (singular) triangulation of Nn formed by k tetrahedra. Straightening them,
we get a triangulation of a fundamental domain for π1(Nn) in H3, which has
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volume 2nV , into k ideal tetrahedra (which may overlap). Since the volume of
any ideal tetrahedron in H3 does not exceed V , we get k ≥ 2n. �

Remarks. 1. In fact, we have shown that c(M) ≥
⌈

Vol(M)
V

⌉

for any hyperbolic

manifold M3, either compact or noncompact, orientable or not. We know no
examples of compact hyperbolic 3-manifolds for which this estimate is sharp. On the
other hand, there exist compact orientable hyperbolic 3-manifolds of volume 0.94...
and 0.98..., while the complexity of any compact orientable hyperbolic 3-manifold
is at least 9, see [2]. Moreover, there exist infinitely many compact hyperbolic 3-
manifolds such that their volume is less than 2V [2, 9]; their list contains manifolds
of arbitrary large complexity, because there are only finitely many irreducible 3-
manifolds of complexity bounded by any integer N , see [5].

2. There exists one more noncompact orientable hyperbolic 3-manifold of vol-
ume 2V and complexity 2, see [2]. Its minimal special spine and corresponding
triangulation are shown on Fig. 2 c, d. The gluing pattern is ABC ←→ FHE,
BAD ←→ FEG, CDA ←→ HFG, DCB ←→ HGE. The complexity of any n-
fold covering space of this manifold is again equal to 2n. The proof of this statement
repeats that of Theorem 3.

3. Let us return to the manifolds Mn considered in Section 2. Consider a minimal
triangulation of Mn (dual to its minimal spine P , which is special by Theorem 1).
Since there is only one vertex (dual to the 3-cell M \ P ), all the edges of the
triangulation are loops. They generate the group π1(M). Therefore, at least one
of them has a nonzero image under the projection p∗ : π1(Mn) → π1(S

1). Let us
suppose for a moment that there is an edge e that is isotopic to the section of the
fibration p : Mn → S1. Let σ be the 2-component of P dual to e. Put P ′ = P \ σ.
Then P ′ is an almost simple spine of the manifold Mn \ e = Nn. By Theorem 3,
P ′ contains at least 2n vertices. Consequently, P = P ′ ∪ σ has at least 2n + 2
vertices, which is close to the conjectured value c(Mn) = 2n + 5, see [1] (indeed, if
adding σ to P ′ does not increase the number of vertices, then ∂σ is a closed triple
line and the spine P is not minimal by virtue of Theorem 1; if all vertices of P
belonging to ∂σ are different but their number is less than 4, then a simplification
move [5–7] can be applied, and P is not a minimal spine; finally, one can show that
the case where ∂σ passes through some vertex of P more than once but does not
pass through any other vertex is impossible). However, it remains unclear why such
an edge e should exist in a triangulation dual to arbitrary minimal spine of Mn.

Acknowledgements. The main idea of this paper has appeared during my visit
to Institut Joseph Fourier (Grenoble, France). The paper has been finished at
Utrecht University, the Netherlands. The author thanks both institutes for their
kind hospitality. The author has pleasure to thank S. Matveev for useful discussions.

References

1. S. Anisov, Toward lower bounds for complexity of 3-manifolds: a program, available as
preprint math:GT/0103169, 1–43 (to appear).

2. A. Fomenko and S. Matveev, Isoenergetic surfaces of Hamiltonian systems, the enumeration

of three-dimensional manifolds in order of growth of their complexity, and the calculation

of the volumes of closed hyperbolic manifolds, (in Russian; English transl.: Russian Math.

Surveys 43 (1988), no. 1, pp. 3–24), Uspekhi Mat. Nauk 43 (1988), no. 1(259), 5–22.
3. G. Francis, A topological picturebook, Springer–Verlag, New York, 1987, pp. xvi+194.

4. M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982),

5–99.

5



5. S. Matveev, Complexity theory of three-dimensional manifolds, Acta Appl. Math. 19 (1990),
101–130.

6. S. Matveev, Tables of 3-manifolds up to complexity 6, (.dvi and .ps files are available

through http://www.mpim-bonn.mpg.de/html/preprints/preprints.html ; the .ps file ex-
ceeds 60 Mbytes), Max Planck Institute preprint MPI 1998-67, 1–50.

7. S. Matveev, Computer recognition of three-manifolds, Experimental Mathematics 7 (1998),
no. 2, 153–161.

8. S. Matveev and E. Pervova, Lower bounds for the complexity of three-dimensional manifolds,

(in Russian; English transl.: to appear), Dokl. Akad. Nauk 378 (2001), 1–2.
9. W. Thurston, The geometry and topology of 3-manifolds, preprint (1981).

European PostDoctoral Institute

Current address: Dept. of Mathematics, Utrecht University, P.O. Box 80.010, 3508 TA Utrecht,

the NETHERLANDS
E-mail address: anisov@mccme.ru, anisov@math.uu.nl

6


