CUBIC FORM GEOMETRY FOR HYPERSURFACES OF CENTRO-AFFINE AND GRAPH HYPERSURFACES #### FRANKI DILLEN, GERD VERBOUWE AND LUC VRANCKEN ABSTRACT. We characterize non-degenerate hypersurfaces of centro-affine and graph hypersurfaces of which the cubic form C is divisible by the second fundamental form h. #### 1. Introduction and main results One of the most attractive results in classical affine differential geometry is the theorem of Pick and Berwald, stating that a Blaschke hypersurface has vanishing cubic form if and only if it is a non-degenerate hyperquadric. In this way, non-degenerate quadrics are characterized in a differential geometric way. This theorem has been generalized in many directions, e.g. Simon [6] and Nomizu and Pinkall [3] showed that a non-degenerate hypersurface (with an arbitrary affine structure) of \mathbb{R}^{n+1} with $h \mid C$ is a hyperquadric. We have analyzed the condition $h \mid C$ for various other immersions. The first results deal with (pseudo-)Riemannian manifolds and extend the main theorem of [2]: **Theorem 1.** Let M^n be a Riemannian submanifold of $S^{n+1}(1)$ with non-degenerate second fundamental form. Let \widetilde{C} be the symmetric traceless part of its cubic form, then \widetilde{C} vanishes identically if and only if M^n is the intersection of the sphere with a non-degenerate quadratic cone which is centered at the origin. **Theorem 2.** Let M^n be a pseudo-Riemannian submanifold of $S_m^{n+1}(\pm 1) \subset \mathbb{R}_k^{n+2}$ with non-degenerate second fundamental form. Let \widetilde{C} be the symmetric traceless part of its cubic form, then \widetilde{C} vanishes identically if and only if M^n is the intersection of $S_m^{n+1}(\pm 1)$ with a non-degenerate quadratic cone which is centered at the origin. In affine differential geometry, non-degenerate hypersurfaces M^n of centro-affine and graph hypersurfaces \widetilde{M}^{n+1} of \mathbb{R}^{n+2} with $h \mid C$ can be characterized as follows **Theorem 3.** Let f be a non-degenerate affine immersion of (M^n, ∇) into $(\widetilde{M}^{n+1}, \widetilde{\nabla})$, where $(\widetilde{M}^{n+1}, \widetilde{\nabla})$ is a centro-affine hypersurface of \mathbb{R}^{n+2} w.r.t. a point o. Let h be the second fundamental form of M^n in \widetilde{M}^{n+1} and C its cubic form. Then $h \mid C$ if and only if $f(M^n)$ is the intersection of \widetilde{M}^{n+1} with a non-degenerate quadratic cone which is centered at the point o. **Theorem 4.** Let f be a non-degenerate affine immersion of (M^n, ∇) into a graph hypersurface \widetilde{M}^{n+1} of \mathbb{R}^{n+2} . Let h be the second fundamental form of M^n in \widetilde{M}^{n+1} and C its ²⁰⁰⁰ Mathematics Subject Classification. 53 B 25. Keywords. Cubic form, quadrics. cubic form. Then $h \mid C$ if and only if $f(M^n)$ is the intersection of \widetilde{M} with a cylinder on a non-degenerate quadric of which the rulings are parallel to the normal of \widetilde{M}^{n+1} . **Corollary 1.** Let f be a non-degenerate affine immersion of (M^n, ∇) into an affine sphere $(\widetilde{M}^{n+1}, \widetilde{\nabla})$ in \mathbb{R}^{n+2} . Let h be the second fundamental form of M^n in \widetilde{M}^{n+1} and C its cubic form. If $h \mid C$, then $f(M^n)$ is the intersection of \widetilde{M}^{n+1} with a hyperquadric. **Corollary 2.** Let $(\widetilde{M}^{n+1}, \widetilde{\nabla})$ be a non-degenerate hyperquadric in \mathbb{R}^{n+2} , equipped with its Blaschke normal. Let f be a non-degenerate affine immersion of (M^n, ∇) into \widetilde{M}^{n+1} . Then $h \mid C$ if and only if - (a) if \widetilde{M}^{n+1} is a central quadric, then $f(M^n)$ is the intersection of \widetilde{M}^{n+1} with a non-degenerate cone which vertex coincides with the center of \widetilde{M}^{n+1} , or - (b) if \widetilde{M}^{n+1} is a paraboloid, then $f(M^n)$ is the intersection of \widetilde{M}^{n+1} with a cylinder on a non-degenerate quadric of which the rulings are parallel to the normal of \widetilde{M}^{n+1} . The last result solves a conjecture of Lusala. ### 2. Preliminaries Let M^n and \widetilde{M}^{n+1} be manifolds with a torsion-free affine connection ∇ resp. $\widetilde{\nabla}$. Let $f: M^n \to \widetilde{M}^{n+1}$ be an immersion for which there is a transversal vector field ξ s.t. $$\widetilde{\nabla}_X f_*(Y) = f_*(\nabla_X Y) + h(X, Y)\xi$$ for all $X,Y\in\mathfrak{X}(M^n)$. Then f is said to be an affine immersion of (M,∇) into $(\widetilde{M}^{n+1},\widetilde{\nabla})$ and h is called the affine second fundamental form. For an affine immersion f of (M^n,∇) into $(\widetilde{M}^{n+1},\widetilde{\nabla})$ with transversal vector field ξ , the (affine) shape operator S and the transversal connection form τ are defined by (2.2) $$\widetilde{\nabla}_X \xi = -f_*(S(X)) + \tau(X)\xi.$$ Given an immersion $f: M \to (\widetilde{M}, \widetilde{\nabla})$, one can always choose an transversal section ξ and with (2.1) induce a connection ∇ on M; then with this choice of ξ , $f: (M, \nabla) \to (\widetilde{M}, \widetilde{\nabla})$ is an affine immersion. M^n is called non-degenerate if h is non-degenerate (and this condition is independent of the choice of ξ). **Remark.** A cone in \mathbb{R}^n is a set consisting of half-lines emanating from some point v, the vertex of the cone. A quadratic cone Q with vertex v is called non-degenerate if it does not contain a straight line, i.e. there exists an affine coordinate system $\{x^1, \ldots, x^n\}$ on \mathbb{R}^n in which Q is given by $\sum_{i=1}^n a_i(x^i - v^i)^2 = 0$ and $x^n > v^n$ with $a_i \in \mathbb{R}_0$. Note that this terminology does not correspond to the above definition. Indeed, for the inclusion $\iota: Q \hookrightarrow \mathbb{R}^{n+1}$ the second fundamental form of a cone Q is always degenerate. The cubic form of (M^n, ∇) in $(\widetilde{M}^{n+1}, \widetilde{\nabla})$ is defined by $$C(X,Y,Z) := (\nabla_X h)(Y,Z) + \tau(X)h(Y,Z) ,$$ 0 for $X, Y, Z \in \mathfrak{X}(M^n)$. By the Codazzi equation for h, the cubic form is totally symmetric. The cubic form is called divisible by h (see [3]) if there exists a one-form ρ such that for all $X, Y, Z \in \mathfrak{X}(M^n)$, $$C(X,Y,Z) = \rho(X)h(Y,Z) + \rho(Y)h(Z,X) + \rho(Z)h(X,Y),$$ and this property is denoted by $h \mid C$. One can show that this property does not depend on the choice of the transversal vector field. Now take $(\widetilde{M}^{n+1}, \widetilde{\nabla})$ to be (\mathbb{R}^{n+1}, D) , the affine space with its usual flat connection and fix an affine coordinate system $\{x^1, \dots, x^{n+1}\}$ on \mathbb{R}^{n+1} . Let M^n be a hypersurface of \mathbb{R}^{n+1} . If the position vector is at each point x of M^n transversal to the tangent space of M^n at x, one can take $\xi = -x$ and consider the induced connection on M^n given by (2.1); with this choice of ξ , (M^n, ∇) is called a centro-affine hypersurface. Let $(\widetilde{M}^{n+1}, \widetilde{\nabla})$ be (\mathbb{R}^{n+1}, D) . A hypersurface M is called a graph hypersurface if the connection ∇ on M is induced by a constant transversal vector field ξ , i.e. $D_X \xi = 0$. Taking $\xi = (0, \dots, 0, 1)$ there is an affine coordinate system $(x^1, \dots, x^n, x^{n+1})$ on \mathbb{R}^{n+1} such that M is locally given by $$\{(x^1,\ldots,x^n,x^{n+1})\in\mathbb{R}^{n+1}\mid (x^1,\ldots,x^n)\in U \text{ and } x^{n+1}=F(x^1,\ldots,x^n)\}$$, where U is a connected open part of \mathbb{R}^n and F is a smooth function on U. If $(\widetilde{M}^{n+1}, \widetilde{\nabla})$ is equipped with a parallel volume element ω (e.g. (\mathbb{R}^{n+1}, D) with its volume form given by the determinant), and M is non-degenerate, there exists (up to sign) a unique choice of ξ such that - (i) $\tau = 0$, or equivalently $\nabla \theta = 0$, and - (ii) θ coincides with the volume element ω_h of the non-degenerate metric h, where θ denotes the induced volume form given by $$\theta(X_1,\ldots,X_n) = \omega(f_*(X_1),\ldots,f_*(X_n),\xi)$$ for $X_1, \ldots, X_n \in \mathfrak{X}(M)$. This choice of ξ is called the Blaschke normal and (M^n, ∇) is called a Blaschke hypersurface. An improper affine hypersphere is a Blaschke hypersurface for which the shape operator is identically zero. If the shape operator of a Blaschke hypersurface M^n is a constant nonzero multiple of the identity, M^n is called a proper affine hypersphere. We can now state the theorem of Pick and Berwald: **Theorem 5.** Let $f:(M^n,\nabla)\to (\mathbb{R}^{n+1},D)$ be a Blaschke hypersurface. If its cubic form C vanishes identically, then $f(M^n)$ is a hyperquadric in \mathbb{R}^{n+1} . This theorem has been generalized in many directions; e.g. **Theorem 6** ([6]; [3]). Let $f:(M^n,\nabla)\to (\mathbb{R}^{n+1},D)$ be a non-degenerate immersion. If C is divisible by h, then $f(M^n)$ lies in a hyperquadric. In [2], Lusala considered the following question within the context of Riemannian geometry. Given a hypersurface (M^n, ∇) of a space-form $(\widetilde{M}^{n+1}(c), \widetilde{\nabla})$ with non-degenerate second fundamental form h, put $C(X,Y,Z) = (\nabla h)(X,Y,Z)$ for X,Y,Z in $\mathfrak{X}(M)$ (here the ξ from above is taken to be the unit normal, so τ vanishes identically). Since h is non-degenerate, we can define the Tchebychev vector field by $$h(T, u) = \frac{1}{n} tr_h C(u, \cdot, \cdot)$$ $$= \frac{1}{n} \sum_{i=1}^n \epsilon_i C(u, e_i, e_i) \text{ for all } u,$$ where the e_i form an orthonormal frame w.r.t. h; i.e. $h(e_i, e_j) = \epsilon_i \delta_{ij}$ with $\epsilon_i = \pm 1$. The symmetric traceless part \widetilde{C} of C is given by $$\widetilde{C}(X,Y,Z) \ = \ C(X,Y,Z) - \frac{n}{n+2} \left(h(X,Y) h(Z,T) + h(Z,X) h(Y,T) + h(Y,Z) h(X,T) \right)$$ for X, Y, Z in $\mathfrak{X}(M^n)$. One can now try to classify hypersurfaces for which \widetilde{C} vanishes identically; this generalizes the notion of parallel submanifolds, defined by $\nabla h \equiv 0$. In [2], this has been done for M^2 in $S^3(1)$. For more information about parallel submanifolds, we refer to the survey [1]. **Remark.** It turns out that hypersurfaces of (\mathbb{R}^n, D) with non-degenerate second fundamental form for which \widetilde{C} vanishes identically, are, by the theorem of Pick and Berwald, non-degenerate hyperquadrics, cf. the proof of Theorem 1. #### 3. Proofs 3.1. **Proof of Theorem 3.** Let \widetilde{M}^{n+1} be a centro-affine hypersurface of \mathbb{R}^{n+2} w.r.t. the point o and let f be an immersion of M^n into \widetilde{M}^{n+1} . Since our considerations will be local, we may assume $M^n \subset \widetilde{M}^{n+1}$ and we will use the notation M and \widetilde{M} throughout for the local situation. Define $F:\widetilde{M}\subset\mathbb{R}^{n+2}\to\mathbb{R}^{n+2}:x\mapsto\lambda(x)x$ with $\lambda>0$ such that the image of \widetilde{M} under F is contained in a hyperplane of \mathbb{R}^{n+2} not passing through o. We will denote this hyperplane with \mathbb{R}^{n+1} . Denote the image of M under F with \overline{M} . We have the following immersions - $(M, \nabla) \hookrightarrow (\widetilde{M}, \widetilde{\nabla})$ with transversal vector field ξ , fundamental form h, shape operator S and transversal connection form τ , - ullet $(\widetilde{M},\widetilde{\nabla})\hookrightarrow (\mathbb{R}^{n+2},D)$ with transversal vector field -x and fundamental form \widetilde{h} and - $F:(M,\overline{\nabla})\hookrightarrow (\mathbb{R}^{n+1},D)$ with transversal vector field $\overline{\xi}=F_*(\xi)$, fundamental form \overline{h} , shape operator \overline{S} and transversal connection form $\overline{\tau}$. For $V \in T_p\widetilde{M}$, one has $$F_*(V) = \lambda V + V(\lambda)x.$$ For $X, Y \in T_n M$ we have $$D_X F_*(Y) = D_X (\lambda Y + Y(\lambda)x)$$ = $\lambda D_X Y + X(\lambda)Y + Y(\lambda)X + X(Y(\lambda))x$ and, because of $$D_X Y = \nabla_X Y + h(X, Y)\xi + \widetilde{h}(X, Y)(-x),$$ we find $$D_X F_*(Y) = \lambda \left(\nabla_X Y + h(X, Y) \xi - \widetilde{h}(X, Y) x \right) + X(\lambda) Y + Y(\lambda) X + X(Y(\lambda)) x.$$ Keeping in mind that $F_*(\xi) = \lambda \xi + \xi(\lambda)x$, we also obtain $$D_X F_*(Y) = F_*(\overline{\nabla}_X Y) + \overline{h}(X, Y)(\lambda \xi + \xi(\lambda)x)$$ = $\lambda \overline{\nabla}_X Y + X(Y(\lambda))x + \overline{h}(X, Y)(\lambda \xi + \xi(\lambda)x)$ = $\lambda \overline{\nabla}_X Y + \overline{h}(X, Y)\lambda \xi + (X(Y(\lambda)) + \overline{h}(X, Y)\xi(\lambda))x.$ By comparing the coefficients of ξ and x and taking the tangential part of both expressions for $D_X F_*(Y)$, we find $$h(X,Y) = \overline{h}(X,Y)$$ $$-\lambda \widetilde{h}(X,Y) = \overline{h}(X,Y)\xi(\lambda)$$ $$\lambda \overline{\nabla}_X Y = \lambda \nabla_X Y + X(\lambda)Y + Y(\lambda)X,$$ in particular $$\overline{\nabla}_X Y = \nabla_X Y + \rho(X) Y + \rho(Y) X,$$ where $\rho = d \log \lambda$. Calculating $D_X F_*(\xi)$ in two ways gives $$D_X F_*(\xi) = D_X(\lambda \xi + \xi(\lambda)x)$$ $$= X(\lambda)\xi + \xi(\lambda)X + X(\xi(\lambda))x + \lambda(-S(X) + \tau(X)\xi)$$ $$D_X F_*(\xi) = -F_*(\overline{S}(X)) + \overline{\tau}(X)F_*(\xi)$$ $$= -\lambda \overline{S}(X) - (\overline{S}(X))(\lambda)x + \overline{\tau}(X)(\lambda \xi + \xi(\lambda)x) .$$ Equating the component of ξ in these formulae gives $$\lambda \overline{\tau}(X) = X(\lambda) + \lambda \tau(X),$$ hence $$\overline{\tau}(X) = \rho(X) + \tau(X).$$ The cubic form of \overline{M} in \mathbb{R}^{n+1} is given by $$\overline{C}(X,Y,Z) = (\overline{\nabla}_X \overline{h})(Y,Z) + \overline{\tau}(X)\overline{h}(Y,Z)$$ $$= (\overline{\nabla}_X \overline{h})(Y,Z) + (\rho(X) + \tau(X))h(Y,Z)$$ $$= X(h(Y,Z)) + (\rho(X) + \tau(X))h(Y,Z)$$ $$-\overline{h}(\nabla_X Y + \rho(X)Y + \rho(Y)X,Z)$$ $$-\overline{h}(Y,\nabla_X Z + \rho(X)Z + \rho(Z)X)$$ $$= X(h(Y,Z)) + \rho(X)h(Y,Z) + \tau(X)h(Y,Z)$$ $$-h(\nabla_X Y,Z) - \rho(X)h(Y,Z) - \rho(Y)h(X,Z)$$ $$-h(Y,\nabla_X Z) - \rho(X)h(Y,Z) - \rho(Z)h(Y,X)$$ $$= X(h(Y,Z)) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z) + \tau(X)h(Y,Z)$$ $$-\rho(X)h(Y,Z) - \rho(Y)h(X,Z) - \rho(Z)h(X,Y)$$ $$= (\nabla_X h)(Y,Z) + \tau(X)h(Y,Z)$$ $$-\rho(X)h(Y,Z) - \rho(Y)h(Z,X) - \rho(Z)h(X,Y)$$ $$= C(X,Y,Z) - \rho(X)h(Y,Z) - \rho(Y)h(Z,X) - \rho(Z)h(X,Y).$$ Now assume that the cubic form C of M^n in \widetilde{M}^{n+1} is divisible by h. Since \overline{h} and h coincide, we obtain that $\overline{h} \mid \overline{C}$, hence, by Theorem 6, \overline{M} is an open part of a non-degenerate hyperquadric of \mathbb{R}^{n+1} . 3.2. **Proof of Theorem 4.** Let \widetilde{M}^{n+1} be a graph hypersurface of \mathbb{R}^{n+2} and let f be a non-degenerate affine immersion of M^n into \widetilde{M}^{n+1} . One can proceed locally as in the previous proof by considering a projection π of the graph hypersurface \widetilde{M} on a hyperplane \mathbb{R}^{n+1} that does not contain the direction of the normal of \widetilde{M} , where the projection takes place along the normals of \widetilde{M} . Calculating the data $(\overline{\nabla}, \overline{h}, \overline{\tau})$ for the projection $\overline{M} = \pi(M)$ in terms of those of M reveals $\overline{\nabla} = \nabla, \overline{h} = h$ and $\overline{\tau} = \tau$, hence $\overline{C} = C$. Since $\overline{h} = h$, \overline{M} is a non-degenerate hyperquadric of \mathbb{R}^{n+1} if $h \mid C$. For the first corollary, note that a proper affine sphere is a centro-affine hypersurface and that an improper affine sphere is a graph hypersurface (see e.g. [4]). For the second corollary, note that a central hyperquadric with its Blaschke structure is a centro-affine hypersurface w.r.t. the center of the hyperquadric and that a paraboloid with its Blaschke structure is an improper affine sphere. ## 3.3. **Proof of Theorem 1 and 2.** To prove Theorem 1, we first note **Lemma 1.** For the immersion $S^{n+1}(1) \hookrightarrow (\mathbb{R}^{n+2}, D)$, the Blaschke normal and the Euclidean unit normal coincide. To complete the proof of Theorem 1, it now suffices to observe that the conditions $\widetilde{C} \equiv 0$ and $h \mid C$ are equivalent and then use Theorem 3. If $\widetilde{C} \equiv 0$, then with $\rho = \frac{n}{n+2}h(T,\cdot)$, (3.1) $$C(X,Y,Z) = \rho(X)h(Y,Z) + \rho(Y)h(Z,X) + \rho(Z)h(X,Y).$$ On the other hand, assume that there exists a one-form ρ such that (3.1) holds. Choose an orthonormal frame (e_1, \ldots, e_n) w.r.t. h, i.e. $h(e_i, e_j) = \epsilon_i \delta_{ij}$ with $\epsilon_i = \pm 1$. With $X = \sum_{i=1}^{n} X^{i} e_{i}$, we have $$h(T,X) = \frac{1}{n} tr_h C(X,\cdot,\cdot) = \frac{1}{n} \sum_{i=1}^n \epsilon_i C(X,e_i,e_i)$$ $$= \frac{1}{n} \sum_{i=1}^n \epsilon_i \left(\rho(X) \epsilon_i + 2\rho(e_i) h(X,e_i) \right)$$ $$= \frac{1}{n} \sum_{i=1}^n \epsilon_i \left(\rho(X) \epsilon_i + 2\rho(e_i) X^i \epsilon_i \right)$$ $$= \frac{1}{n} \sum_{i=1}^n \left(\rho(X) + 2\rho(X^i e_i) \right) = \frac{n+2}{n} \rho(X) .$$ For $|\{k,l,m\}| = 3$, $\widetilde{C}(e_k,e_l,e_m) = 0$, since the e_i form an orthonormal frame and by (3.1), $C(e_i,e_j,e_k) = 0$. Since \widetilde{C} is totally symmetric, it remains to show $\widetilde{C}(e_i,e_j,e_j) = 0$ (we do not exclude the case i=j). This is now straightforward: $$\widetilde{C}(e_i, e_j, e_j) = C(e_i, e_j, e_j) - \frac{n}{n+2} \left(h(e_i, T) h(e_j, e_j) + 2h(e_j, T) h(e_i, e_j) \right) \\ = C(e_i, e_j, e_j) - \frac{n}{n+2} \left(\frac{n+2}{n} \rho(e_i) h(e_j, e_j) + 2 \frac{n+2}{n} \rho(e_j) h(e_i, e_j) \right) \\ = \rho(e_i) h(e_j, e_j) + 2\rho(e_j) h(e_i, e_j) - (\rho(e_i) h(e_j, e_j) + 2\rho(e_j) h(e_i, e_j)) = 0.$$ Since Theorem 6 holds true when the signature of the standard metric on \mathbb{R}^{n+2} is changed, the proof of Theorem 2 is similar. ## REFERENCES - [1] Ü. Lumiste, Submanifolds with parallel fundamental form, Handbook of differential geometry, Vol. I, (ed. F. Dillen et al.), North-Holland, Amsterdam, 2000, 779-864. - [2] T. Lusala, Cubic form geometry for surfaces in S³(1), Beiträge Algebra Geom., 43 (2002), 275-296. - [3] K. Nomizu and U. Pinkall, Cubic form theorem for affine immersions, Results in Math., 13 (1988), 338-362 - [4] K. Nomizu and T. Sasaki, Affine Differential Geometry Geometry of Affine Immersions, Cambridge Univ. Press, Cambridge, New York, 1994. - [5] K. Nomizu and T. Sasaki, Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J., 132 (1993), 63-90. - [6] U. Simon, Zur Relativgeometrie: Symmetrische Zusammenhänge auf Hyperflächen, Math. Zeitschrift, 106 (1968), 36-46. KATHOLIEKE UNIVERSITEIT LEUVEN, DEPARTEMENT WISKUNDE, CELESTIJNENLAAN 200 B, B-3001 LEUVEN - HEVERLEE, BELGIUM $E ext{-}mail\ address:$ Franki.Dillen@wis.kuleuven.ac.be $E ext{-}mail\ address:$ Gerd.Verbouwe@wis.kuleuven.ac.be Universiteit Utrecht, Mathematisch Instituut, Budapestlaan 6, 3584CD Utrecht, The Netherlands E-mail address: vrancken@math.uu.nl