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Abstract

We consider fictitious domain-Lagrange multiplier formulations for variational problems
in the space H(curl; Q) derived from Maxwell’s equations. Boundary conditions and the
divergence constraint are imposed weakly by using Lagrange multipliers. Both the time
dependent and time harmonic formulations of the Maxwell’s equations are considered, and
we derive well-posed formulations for both cases. The arising variational problem can be
discretized by functions that do not satisfy an a-priori divergence constraint.
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1 Introduction

Partial differential equations arising from computational electromagnetics like Maxwell’s equa-
tions, still pose very challenging problems in numerical analysis and simulation, partly due to
the subtle nature of the relevant function spaces arising in variational formulations. In spite
of the significant progress in understanding these equations, that has been achieved during the
past years, not much appears to be known about Ficticious Domain Formulations (FDF) for
Maxwell’s equations. In a FDF, the domain of interest 2 C R" is embedded into a larger but
simpler domain O C R™. A typical example is O = [0, 1]". Of course, in general, simple domains
support the design of fast numerical methods. Specifically, in the context of Maxwell’s equations,
simple geometries facilitate a more convenient realization of appropriate discretizations which,
due to the above mentioned nature of the relevant function spaces, tend to be quite complex
in nature. For instance, isoparametric techniques for adapting trial spaces with incorporated
boundary conditions to complex boundaries would typically interfere with the desired structural
properties of the trial spaces. In addition, the FDF would help dealing with moving boundaries
or treating control problems where boundary values act as a control variable. In such a case,
only the discretization of the boundary has to be changed unless complex boundaries require
local refinements on [0 which, however, would still benefit from the simple geometry of [.

One way of realizing an FDF is to append boundary conditions by Lagrange multipliers.
Once the saddle point character of the resulting variational problem has been accepted, other
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constraints could, of course, be treated in the same fashion. In most applications, the electric
field FE is divergence-free, i.e., an extra condition is automatically imposed on the discretization.
This can either be enforced directly by using (at least discretely) divergence-free trial functions
(as long as they are available) or by incorporating also such constraints with the aid of Lagrange
multipliers. In this article, we consider FDFs for variational problems in the spaces H (curl; )
and H(div; Q) arising from Maxwell’s equations, where not only the boundary conditions are
imposed weakly by using Lagrange Multipliers, but also the divergence constraints which can
be inhomogeneous, as in the case of the electric field. This allows one to use trial functions
that do not have to satisfy a divergence constraint and remain independent of (possibly varying)
domain geometries. We consider both the time dependent and the time harmonic formulations
of Maxwell’s equations.

Of course, there is a well-known price to be paid. As mentioned above, FDFs, or more
generally, appending any extra condition weakly in terms of Lagrange multipliers, give rise
to saddle point problems, which are symmetric but no longer positive definite. This has at
least two drawbacks, namely efficient solvers for positive definite systems can no longer be
used and, secondly, standard discretizations cannot be chosen arbitrarily but have to fulfill the
Ladyshenskaja-Babuska-Brezzi (LBB) condition. Meeting such compatibility conditions, might
be a delicate task, in particular, when the extra conditions are non-trivial.

However, recent progress in the analysis of adaptive methods for saddle point problems make
the latter issue appear in a somewhat different light. In fact, first in the context of wavelets, [8,
13, 14] and later in [2] for Finite Elements, convergent adaptive algorithms have been constructed
where the involved discretization spaces need not meet the LBB condition. Moreover, the
methods in [8, 13] are proven to converge at an asymptotically optimal rate, i.e., the error is
comparable with the error of the best approximation that is obtained by any linear combination
of N wavelets, when N is the number of adaptively generated degrees of freedom (best N-term
approximation). These developments motivate us to address here the FDF in the context of
Maxwell’s equations. In particular, well posedness (in the sense to be explained in Section 2.3)
will be a center of focus, as it is an essential prerequisite for the techniques developed in [8, 13].

Aside from the above aspects, our interest in this subject is fueled by an inherent difficulty
that arises when applying a FDF to Maxwell’s equations. The electric field belongs to a space
which is, in general, not a subspace of H'!(Q). However, this difference is very small in the sense
that under certain mild conditions on the domain this space is embedded in H*'(f2). Since a
fictitious domain typically gives rise to such an embedding one has to be careful in formulating
a fictitious domain approach so as to capture also possible H!-singularities.

The outline of the paper is as follows. Section 2 collects some prerequisites and gives a brief
overview of the relevant function spaces, Maxwell’s equations and the basic theory of saddle
point problems as well as of FDF’s. Section 3 is concerned with FDFs for the time dependent
Maxwell’s equations. We also show an example where a straightforward formulation of a FDF
fails since it only captures the smooth H'(f)-part. We derive then a well-posed FDF that
indeed preserves the possible H'(Q)-singularities. Section 4 is concerned with FDFs for the
time harmonic formulation of Maxwell’s equation which usually is significantly harder to treat,
because the bilinear form in question is in general non-coercive. We show that the formulation
derived for the time dependent case does not immediately carry over to a well-posed formulation
for the time harmonic non-conducting case. We present a strategy, though, to obtain a well-
posed problem.



2 Basic Notation and Facts

We always consider an open bounded Lipschitz domain 2 C R" with boundary I' := 02, which
consists of m smooth components.

2.1 The Spaces H(div;2) and H(curl;Q)

We use the short hand notation J; := % for 1 <14 < n and we will always assume in the sequel
that all the involved weak partial derivatives exist in Lo(£2). For three-dimensional vector fields

¢ =(¢1,¢,G3)T, we set
curl ¢ := (0a(3 — D3C2, 031 — 013, 01Ca — 0aly)! =V x . (2.1)

As usual, the divergence operator is defined for any vector field ¢ = (¢1,...,(,)? by div¢ :=
Yor10i¢G = V- (. For notational convenience, we will always write vector fields and vector
valued quantities in boldface characters. Then, for D € {curl,div}, we define

H(D;Q) = {¢€Ly(Q): D¢ € Ly (N)}, (2.2)
V(D;Q) = {¢€ H(D;Q): D=0} =Ker(D). (2.3)

We be mainly concerned with the 3D-case here. When nothing else is said, n = 3 is assumed.
All these spaces are Hilbert spaces with the corresponding graph norm

1€ (30 = I€l6.0 + 1D ¢IE 0l
where [€][§ o = (¢;¢)o,a = [ [¢[*. Finally, we define
H,(D; Q) := closg(p;a)C5° (2)-

Trace Spaces

With n being the outward unit normal on I', one can prove that for u € H(curl;2), u xn €
H : (T"), and that

Hy(curl; Q) = {u € H(cur;Q2); u xn =0 onTI}.

One has the following Green’s formula,

/curlv-¢—/v-curlq&:(vxn,q’))p, (2.4)
Q Q

for all v € H(curl;Q) and ¢ € H(Q), where (-, -)r is the usual duality form induced by the
Ly (T")-inner product. Note that the standard trace mapping

u € H(curl;Q), u— u X n, (2.5)

is not surjective on the space H -3 (T"). The range space of this trace mapping is usually denoted

by H ~3 (divp;T), see [4, 5, 6, 22] for the analysis of these spaces for general Lipschitz domains.
For u € H(div;{2), one can prove that the normal trace on the boundary, u - n belongs to

H 3 (T') and that this trace mapping is onto, [3]. Furthermore, we have the Greens formula

/Qv-gradqﬁ—l-/(div'v)qb: [ (2.6)

Q
for all v € H(div; Q) and ¢ € H(Q).



An Embedding Theorem

The following facts will play a crucial role in the subsequent developments [17, p. 52].

Theorem 2.1 If the bounded domain S is either a convex polyhedron or has a CY' boundary,
then the space Hy(curl,Q) N H(div,Q) is continuously embedded in H'(Q) and thus equals
HY(Q).

Remark 2.2 It should be noted that in general H'(Q) C H(curl; Q) N H(div; Q). Indeed, e.g.
if the domain has reentrant corners, H(curl; Q) N H(div;Q) contains H'(Q)-singularities in
the sense that there exists u € H(curl; Q) N H(div; Q) but u ¢ H'(Q), [1].

Since the gap between these spaces is small, one has to be careful in the construction of any
variational formulation for Maxwell’s equations, i.e., one has to make sure that the formulation
captures the entire field and not only the smooth H'(Q)-part.

Another difficulty is the fact that the space Hi, () == {u € H'(Q): u xn =0o0nT} is
closed in the H(curl; Q) N H(div;2) topology [10, 12]. This means that, if the approximation
spaces are subsets of H1, () (i.e., the trial functions are too smooth), whereas the variational
formulation is posed in H(curl; Q) N H(div;2), any Galerkin method would converge to the
H'-part of the solution. Thus, again H'-singularities would be missed.

These facts complicate the design of appropriate FDFs for Maxwell’s equations as we shall
see later.

Hodge Decompositions
Hodge decompositions play an important role in the analysis of the spaces H(curl; Q) and
H(div; Q). Defining

H, = {curl u: u € H'(Q), divu =0, (curl u)-n =0onT}, (2.7)

H, = {gradq: q € H'(Q)},
the orthogonal decomposition

1
Ly(Q2) = H; © Hy (2.9)

holds [17].

2.2 Maxwell’s Equations
The Time-Dependent Formulation

Let the domain © C R? be filled with a homogeneous, linear, isotropic dielectric material,
characterized by the electric permittivity € and magnetic permeability u. These are assumed to
be constant. The boundary I' is assumed to be a perfect electric conductor. The current density
is denoted by J, and the charge density by p. These quantities are related by the fundamental
principle of continuity, or charge conservation:

op .
s = 0. 2.1
5 +divd =0 (2.10)



The electric field is denoted by E and the magnetic flux density by B. Currents can generate
fields and vice versa. Their connections are given by Mazwell’s equations

0 1
_EEE + ;curlB: J, (2.11)
0
EB +curl E = 0. (2.12)

For a perfectly conducting boundary I', the following boundary conditions are imposed
Exn=0and B-n=0. (2.13)

Taking the divergence of these equations and using (2.10) yields

divE= g, (2.14)
div B= 0. (2.15)

These equations are often included in the set of Maxwell’s equations, although they are conse-
quences of (2.11) and (2.12).

Another material parameter is the conductivity o. In the presence of an electric field E, the
material will conduct a current with density given by Ohm’s law:

J =oE. (2.16)

Source and sought terms are problem dependent and must be specified explicitly for each partic-
ular electromagnetic problem. We shall exclusively deal with problems where a current density
Jimp is imposed on the system. For the case of positive conductivity, the current density J that
enters (2.11), is composed of two parts:

J = Jimp +0E. (2.17)

For the non-conducting case 0 = 0 we have Jj,, = J. As we shall see, the mathematical
properties of electromagnetic problems are very different for the two cases ¢ =0 and o > 0.

Depending on the smoothness of the boundary, and the smoothness w.r.t. the time variable
of the current and charge densities, existence and uniqueness theorems for Maxwell’s equations
[15, 16] state that for any time instant ¢,

E(-,t),B(-,t) € H(curl; Q) N H(div; Q).

A common procedure for the resolution of Maxwell’s equations is the elimination of B, [1, 7].
This gives rise to a second order differential equation for determining E

’E E 1 0J;
58— + 08— + Zcurlcurl E = ——2P

2.1
ot? ot ot '’ (2.18)

with initial conditions

E(,0)=E,, divEy= %,

OFE 1 1
E(a:,O) == (J(:L',O) + ;curlBO(:B) - O'E()(.’B)) , x el



Concerning test and trial spaces for a variational formulation, known existence and uniqueness
results suggest the space Hy(curl; Q)N H (div; 2) as a natural choice, see e.g. [11]. An alternative
approach is based on the observation that the divergence constraints are automatically preserved
by the time evolution and do in this sense not arise from first principles. This suggests focusing
on the part in H(curl;(2) as a natural test and trial space.

Having chosen some test space X (€2) and approximating the derivatives with respect to time
by a standard backward difference, leads, by (2.4), to a variational problem at the time step t,:
Find E" = E(-,t,) € X(£2) such that

(curl E", curlv)o o + &(E",v)p0 = (F",v)0,0, (2.19)

for all v € X (), where the constant « is positive, and depends on ¢, u, o as well as on the time
step At,. F" is a vector field depending on Jiyp, E" ! and on E" 2.

The Time-Harmonic Formulation

Maxwell’s equations in the time-harmonic formulation are obtained by assuming that all involved
quantities have a sinusoidal time variation with angular frequency w. If g(x, t) is a field quantity,
we describe it as

g(z,t) = Re (g(x)e™"),
where g(x) is a complex valued amplitude, only depending on spatial variables. Upon inserting
E(z)e ™! and B(x)e ™! into Maxwell’s equations in the time domain, one obtains

%curl]g’ +iewE = J + oE, (2.20)
curlE — iwB = 0, (2.21)
divE = ép, (2.22)

divB = 0. (2.23)

wt

Once E: and B are known, the physical fields are determined by taking the real parts of E (x)e™"
resp. B(x)e~™!. A common procedure for the time-harmonic formulation is to take the curl of
(2.21) and insert it into (2.20), which yields

curlcurl E — w?y (ig + 5) E = —iwulJ, divE = l—),
w €

whose variational formulation in the chosen test and trial space X (€2) reads, on account of (2.4),
as
(curl E, curlv)p g — w?p (z'g + 6) (E,v)p0 = —iwp(J,v)00, v€EX(Q). (2.24)
w

The treatment of the divergence condition depends on the choice of X (2), as we shall see below.

As we have seen, both formulations lead to a problem involving the bilinear form
a(u,v) := (curlu,curlv)o o + & (u,v)o 0 (2.25)

for u,v € X (). The parameter k may be either a positive real or a complex (and possibly
negative) constant. As we shall see below, the treatment of (2.25) significantly differs for these
two cases. In the remainder of this paper we shall investigate the well-posedness of FDFs
involving the bilinear form (2.25).



2.3 Saddle Point Problems

As indicated before, we wish to enforce boundary conditions and even further constraints weakly
with the aid of Lagrange multipliers. This leads to saddle point problems. For the convenience
of the reader we will collect a few facts about saddle point problems that will be frequently used
below.

Let X and M be Hilbert spaces with duals X’ resp. M’ such that X — Hy — X', M —
Hy — M' for two Hilbert spaces Hy, Hjs inducing the dualities. Let a(-,:) : X x X — C and
b(-,) : X x M — C be continuous bilinear forms. The general format of a saddle point problem
reads as follows: Given f € X', g € B(X) C M’, find (u,p) € X x M as the solution of

a(u,v) +b(v,p) = (f,v), v € X, (2.26)
b(u, q) =(9,9), ¢ € M. (2.27)

Define the operators A € L(X,X"), B € L(X,M') and B’ € L(M, X') as follows
(Au,v) := a(u,v), (Bu,p) :=b(u,p) =t (u, B'p),

for u,v € X and p € M. In operator form, the system (2.26) and (2.27) can be equivalently

written as 4 B 5
U
e (A 5) ()= (1) or -

The problem (2.28) is said to be well-posed if the operator £ induces a norm isomorphism of
V := X x M onto its dual V! = X' x M’ i.e., there exist constants 0 < ¢ < C < oo such that
for any U € V,

clUllv < 1£Ulv: < ClU|lv- (2:29)

The characterization of well-posedness for real-valued bilinear forms a(-,-) and b(-,-) in terms of
inf-sup conditions is due to F. Brezzi (see [3, Thm. I1.1.1]). It’s counterpart for complex-valued
bilinear forms reads as follows (see [3] and [17, 23, 25]).

Theorem 2.3 Define ker(B) := {v € X : Bv =0 in M'}. The saddle point problem (2.28) is
well-posed if and only if the following conditions hold for some positive constants a, 3 > 0:

inf  sup a(u,v)l >a>0, (2.30)
veker(B) yeker(B) ||l x [Vl x
inf sup M >a>0, (2.31)
u€ker(B) ycker(RB) [[ullx, [lvflx
inf sup 2P S 5o (2.32)

peM yex |lullx llplla
Moreover, A is onto if and only if (2.30) is valid, A is one-to-one if and only if (2.31) holds and
(2.32) is equivalent to Ran(B) being closed in M'.

3 FDFs for the Time-Dependent Formulation

Recall from Section 2 that boundary constraints involve the tangential components v, (u) :=
u|r X n which belong to the space H™2 (divp; T).



3.1 An Essential Obstruction

To our knowledge, not much is known so far on FDFs for Maxwell’s equations. The issue is
somewhat more delicate than in other situations due to a complication caused by the above
mentioned subtle difference between the spaces {u € H'(Q2) : v, (u) = 0} and Hy(curl; Q) N
H(div; ). We will clarify the consequences of this fact first for the problem (2.25) with xk € Rt
and u,v € Hy(curl; Q) N V(div; ). Without loss of generality we can assume that

QcO=(0,a)", a € R,

where the ‘simple domain’ [0 will serve as the fictitious domain. Moreover, for simplicity, we
will use periodic functions on [, see e.g. [18]. Let us denote by
COO

per

(O0) := {v € C® : v(x + ak) = v(z), k € Z*}

the a-periodic infinitely differentiable vector fields. Then for any function space X we denote
by Xper(C)) the closure of Co¢ (00) in the X-norm: Xper(OJ) := closx Cpe (). Note that also
other boundary conditions on (0 can be considered. In fact, the subsequent analysis also applies
to homogeneous Dirichlet boundary conditions on [l.

One would then be tempted to employ the following FDF:

Problem 3.1 Given f € Xper(D), X(O) := H(curl;0) N H(div;0), determine (u,¢,A) €
Xper(D) x Lo(0) x (H™2(divr; T))' such that

a(uav)D + (¢7 diVU)O,D +<)‘a7T(v)>F = ( ~7”)0,D7 v E Xper(D)a
(le u, Ip)O,D = 07 ’d) € L?(D)a
(1,7, (w))r =0, p € (H 2 (divp;T))'.

The reason why this approach would in general fail can be explained as follows. On one
hand, if Problem 3.1 has a solution, its first component u belongs to Xpe-(CJ). But there is a
counterpart to Theorem 2.1 for X, (0).

Lemma 3.2 The space Xper(O) is continuously embedded in H'(O).

Proof: Using integration by parts, we obtain for u,v € C*°(0)per

/ gradu : gradv = / divu dive +/ curlu - curlw. (3.1)
O O O

The assertion follows then by standard density arguments. 0O

Hence also the restriction u|q of a solution belongs to H'(£2). On the other hand, as already
noted above, the electric field E solving Maxwell’s equations may be an element of H (curl; Q)N
H(div; ), but, depending on 2 may have H'-singularities, see Remark 2.2.

The above reasoning, combined with Theorem 2.1 actually shows the following somewhat
more general fact.

Remark 3.3 Assume that the physical domain Q is embedded in a convex polyhedron 0. Then
FDFs for (2.25) that fall in either one of the following categories:



e test and trial functions belong to Xper(O) defined above;

e test and trial functions have global H (curl; O) N H(div;O) regularity and have vanishing
tangential components u X ng on 00;

fail in the sense that they may not capture possible H'-singularities, i.e. parts of the solution
that do not belong to H'(Q).

Remark 3.4 Since trivially (H(curl;0) NV (div;O))per — (H (curl;0) N H(div;O))per, the
availability of divergence-free trial functions on O (as e.g. divergence-free wavelet bases, see

[21, 24]) would be no remedy.

In this context, we mention the following FDF for a scattering problem, i.e., for an exterior
boundary value problem proposed in [9]. Defining the bilinear form

a(u,v)g = (curlw, curlv)g + k(u,v)n, u,v € H(curl;O), (3.2)

the following variational problem is analyzed in [9]:
Given (J,n) € (H(curl;0)) x (H 2 (divp;T)), find (u,\) € H(curl;0) x (H 2 (divp;T))’
such that

a(u,v)g + (v xn,A)p = (Jo,v), v € H(curl;O), (3.3)
(uxn,g) = (n.&)r, meH 3(div;T), (3.4)

where Jp is some extension of J from Q to O, and (-, -)r is the duality form on the boundary.
For the definition of divp, we again refer to [4, 5, 6]. In [9], this problem is discretized using
Nedelec elements on a fixed grid for O, imposing zero boundary conditions on the tangential
components 4 X n|g on 0. Due to the use of the Nedelec elements on [J the solution would
have in the limit zero divergence on O so that Remark 3.3 applies. Of course, this problem
may disappear when suitable absorbing boundary conditions are employed instead, which would
correspond anyway to the nature of the scattering problem.

3.2 Preserving H'-Singularities

We present now an alternative FDF which preserves the possible H !-singularities of the solutions
to Maxwell’s equations. The above observations suggest as a remedy to require only H(curl; )
regularity and impose the divergence constraint only on €2 which is reflected by the following

Problem 3.5 Given (J, f) € (Hy(curl;Q))' x H (), find a pair (u,p) € Hy(curl; Q)x H}(Q)
such that
a(u,v) + (v,gradploo = (J,v)o,0, v € Hy(curl; ),
(u,grad Q)O,Q = (f’ Q)O,Qa /S H&(Q)’

where we assume again first that x > 0 in (2.25). The next step is to append boundary
conditions. Recalling (3.2), we consider



Problem 3.6 Given the triple (J, f,m) € (Hper(curl;0)) x H1(Q) x H_%(divr;I‘), find a
triple (u,p,A) € Hper(curl;0) x HE(Q) X (H_%(divr;F))' so that

a(u,v)g + (v,gradploa + (¥ (v),A\)r = (J,v)o0, v € Hper(curl;0),
(uagrad q)O,Q = (f7 q)Qa qc H&(Q)a

_1 .
(vr (u), u)r = (n,p)r, p€(H 2(divp;1)),

where as above v;(u) = ulp X n.

The main result of this section can be stated as follows.

Theorem 3.7 The Problems 3.5 and 3.6 are well-posed and have unique solutions. The first
two components of the solutions to both problems coincide on ) when the boundary conditions
in 3.6 are homogeneous.

The remainder of this section is devoted to the proof of Theorem 3.7. We begin with some
prerequisites that will eventually allow us to apply Theorem 2.3. As before, we assume always
that €2 is some bounded, simply connected polyhedral Lipschitz domain with boundary I' = 012.
Recall the orthogonal decomposition of Ly(2) in (2.9). A similar decomposition also holds for
H(curl; Q). In fact, defining

X1(Q) :={curlu: ue H(Q), curlu € H(curl;Q), divu =0, (curl u)-n=0o0nT},
X5(Q) :={grad¢: ¢ H'(Q)},

we record the following observation.
Lemma 3.8 The spaces X1(Q) and Xo(Q2) form an orthogonal decomposition of H(curl; Q)
H(curl; Q) = X1(Q) & X2(Q). (3.5)

Proof: Given u € H(curl;Q), write u = u; +uq according to (2.9). It is clear that u; € X;(Q),
i =1,2. Since curluy =0, u; L ug in H(curl;2). 0O

Now we embed €2 into a larger, simpler domain [J. Problems 3.5 and 3.6 suggest considering
the following operators.

Lemma 3.9 The operators Div: Xo(Q) — H 1(Q) and Divg : Xo(O) — H () defined by
(Divu,p) := (u,gradp)oq, (Divowu,p):= (u,gradp)oo, pE Hp(Q), (3.6)
are bounded and onto.
Proof: The boundedness is clear. For f € H~1(Q) the boundary value problem
—Ap=f on€Q, ¢=0 onl =09Q,

has a unique solution ¢ € HZ (). This means grad ¢ € X»(02) and Divgrad ¢ = f. To confirm
also the surjectivity of Divgq, it suffices to extend ¢ by zero from  to 0. 0O

10



Lemma 3.10 The spaces Hy(curl; Q) NV (div; Q) and
H,.(,Q) := {u € Hper(curl;0) : Divgu =0,u xn =0 on I'}
are closed in H(curl; Q) and H(curl;0), respectively.

Proof: The trace mapping y,(u) = u|r X n is bounded and, by Lemma 3.9, so are the operators
Div and Divg. The spaces defined above are the kernels of these operators. [0

From now on, we will frequently use the notation A < B which means that there exists a
constant ¢ > such that A < ¢ B, uniformly in all parameters on which A and B may depend.
The following observation is based on the results in [6].

Lemma 3.11 There ezists a continuous extension operator F : H (curl; Q) — H(curl; R?).

Proof: Let f € H(curl; Q) be given. Embed €2 in an open ball B and denote by I'n the common
interface between 2 and B\ Q. Let f € H(curl; B/Q) be the the continuous lifting given in [6]
that satisfies f x ng =0 on 9B as well as

fxnr, = xna, | flgeurtom S I1F % msl,y, (3.7)

divy gy 0(B\Q2))

Here the vectors nr, = —ng, np are the outward unit normals on the interface I' as part of
the boundary of B \ €2, respectively 0B. Now define

f, in{,
E(f):= f, in B/Q,
0, inR/B.

Due to the continuity of the tangential components E(f) belongs to H(curl;R3). By the
boundedness of the lifting (3.7), we obtain

E 73 S : f _

= ||f||H(curl;Q) + [If x nQ”H_%(divF;F)
S ||f||H(curl;Q)a

where we have used the boundedness of the trace in the last step. This proves the claim. 0

The last ingredient concerns the inf-sup condition (2.32) in Theorem 2.3.

Lemma 3.12 There exists a positive constant 3 > 0 such that the inf-sup condition

(A, u X n)r

> (3.8)

inf sup
AC(H™ i (divp;T"))! w€Hper(curk) HAH(H_ 3 (divpiT)) ||u||H(curl;|:|)

holds.

11



Proof: The proof is similar in spirit to [19]. Since the extension in Lemma 3.11 is bounded, the
above extension from H (curl; Q) to H(curl;R?) also yields a bounded extension to the space

H . (curl; ) provided that B C 0. Fix any X € (H’%(divr; I'))’. Using the surjectivity and
boundedness of the trace mapping

H(curl; Q) 3 u s 7, (u) = u|r x n € H™ 2 (divp; T), (3.9)

see [6], and finally the boundedness of the lifting map (see Lemma 3.11), we obtain

Mgy vy = 5P ”ML = (%,H%(u»r
r; peEH "™ % (divp;T) H H™ 1 (divp;T) u€ H(curl;Q2) Yr H- 1 (divr;T)
< sup sy (w)ir < sup M,

u€H (curl;Q) ||u||H(curl;Q) ~ u€ Hper(curl;0) ||u||H(curl;D)

which is the desired inf-sup condition. 0O

Proof of Theorem 3.7: Let us consider first Problem 3.5. Since x > 0, the bilinear form
a(-,-) in (2.25) is coercive on H(curl; (2), hence also on the subspace Hy(curl; Q). This implies
the validity of (2.30) and (2.31). The inf-sup condition (2.32) corresponding to the divergence
constraint in Problem 3.5 is equivalent to the closedness of the range of the divergence mapping
Divq, which is indeed ensured by Lemma 3.9. Moreover, the corresponding mapping is onto.
Thus, Problem 3.5 is, by Theorem 2.3, well-posed and thus has a unique solution.

Now, we investigate Problem 3.6. The bilinear form a(-, ) in (3.2) is coercive on H(curl; )
and hence also on the closed subspace Hper (00, 2) = {u € Hper(curl; ) : Divou =0, u xn =
0 on I'} which is the kernel of the operator B defined by the Lagrange multipliers in Problem
3.6. The inf-sup condition corresponding to the trace mapping in Problem 3.6 is fulfilled by
Lemma 3.12. Moreover, the operator £ induced by the variational problem: Given (J, f) €
(Hper(3,9)) x H (), find a pair (u,p) € Hper (O, Q) x Hi(Q) such that

a(u,v)o + (v,gradp)oo = (J,v)o0, v € Hper(O,9),
(u,grad @)oo = (f,q)on, ¢€ Hy(Q),

is by the preceeding remarks a norm isomorphism from the space Hper(CJ,2) X H{(92) onto its
dual. This implies the validity of (2.30) and (2.31) for the bilinear form corresponding to L.
Thus, again Theorem 2.3 yields that Problem 3.6 is well-posed and hence has a unique solution.
a

4 FDFs for the Time-Harmonic Formulation

Finally, we discuss properly defined FDF's also for the time-harmonic case. Again, we need some
preparations.

Definition 4.1 We say that A > 0 is a Maxwell eigenvalue, if there exists a non-zero function
u € Vp(Q) := Hy(curl; Q) NV (div; Q) such that

(curlu,curlv)p o = A(u,v)o0, v € Vp(R).

12



One can prove that the Maxwell eigenvalues form a discrete subset of R, [11]. As in (2.24),
we define the bilinear form a(-,-) : H(curl; Q) x H(curl;2) — C by

a(u,v) = (curlu, curlv)g o — w?p (e + zg) (u,v)0,0- (4.1)

Remark 4.2 For ¢ > 0, there exists a positive constant o > 0 such that we have the inf-sup

condition
inf sup lo(u, )] > a.
ueVo(Q )'UEV() ||u||H curl;Q) HUHH curl;2)

For o = 0 it holds as well, provided that )\ := w?ue is not a Mazwell eigenvalue.

In fact, for o > 0, the claim is a trivial consequence of the coercivity of a(-,-) as a bilinear
form on Hy(curl;Q), [20]. For o =0, the operator A induced by a(-,-) in (4.1) is injective on
Vo(R2) since X is assumed not to be a Mazwell eigenvalue. Moreover, A is selfadjoint, so that A
is also surjective, hence one-to-one, which is the desired inf-sup-condition by (2.31).

We arrive at the following saddle-point formulation realizing the divergence constraint on (2
for the time-harmonic problem.

Problem 4.3 Given (J, f) € (Hy(curl; Q) x H~1(Q), find a pair (u,p) € Ho(curl; Q) x H}(Q)
such that

a(u,v) + (v, grad ploo = i (J, 0o, v € Holcurl; ),
(ua grad Q)O,Q = (.f, Q)O,Qa q € H(}(Q)a
where a(-,-) is defined by (4.1).

Theorem 4.4 Assume that o > 0 or, when o = 0, that w?ue is not a Mazwell eigenvalue.
Then, Problem 4.3 is well-posed.

Proof: By Remark 4.2 the bilinear form a(-,-) satisfies the required inf-sup condition, and the
claim follows from Lemma 3.9 and Theorem 2.3. 0
Boundary Conditions

Above we have imposed only the divergence constraint weakly in terms of Lagrange multipliers,
which still requires incorporating the boundary conditions into a discretization in Hy(curl; Q).
In order to treat them with the aid of Lagrange multipliers, we extend the bilinear form in (4.1)
from Q to O as follows: For u,v € H(curl;[J), let as in (3.2)

a(u,v)q := (curlu, curlv)g g — w’p (5 + ig) (u,v)o0. (4.2)
w
The resulting variational problem then reads:

Problem 4.5 Given the triple (J, f,n) € Hye(curl; ) x H () XHfé(din; T), find a triple
(u,p,A) € Hper(curl;0) x HL(Q) x (H 2 (divp;T)) so that

a(u,v)q + (v,gradp)oo + (v xn,A\)r = (J,v)o0, v € Hye(curl;0),
(Iu” grad q)O,Q = (fa q)Qa qc HO (Q)a
(u x n, = (), pe (H > (divr;T))'-
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Let us start by the case ¢ > 0.

Proposition 4.6 When o > 0 the bilinear form a(-,-) in (4.1) is coercive on H(curl;G) for
any domain G.

The proof of this fact is probably known, see, e.g. [20] for a closely related situation. Since we
are not aware of a precise reference and since the argument is short we include it for convenience.
To this end, we need the following technical lemma.

Lemma 4.7 Givenn, £ > 0, there exists a o > 0 so that
fla,y) =2 + (1° + €)y* — 2ney — *(2® + y* + 22y) > 0
for all z,y € R such that zy > 0, 2 + y? > 0.

Proof: Setting x = 0, y > 0, respectively z > 0, y = 0, shows that necessary conditions on « are
a < 1and a? < n? + £2. Moreover, these conditions ensure that f is positive in a neighborhood
of {(z,y) : =0 or y=0}. Then, the claim follows if one can find o > 0 so that for any fixed
xz > 0, the function g,(y) := f(z,y) has no real zeros. Straightforward manipulations reveal
that this is indeed the case if

r(a) = —22n+n* + € 4+1) +£2>0.
Since r has only one positive zero a*, we can choose 0 < a < min(1, /9% + &2,a*). O
We can use this observation to prove Proposition 4.6 as follows.

Proof: For uw € H(curl;G), define z(u) := ||curl u||%7G, y(u) = “qu,G and 7 = wlpe,
¢ := pwo. Note that a(u,u) = z(u) — (n + i&)y(u) = z(u) — ny(u) — ily(u) as well as
||u||%{(cm,l;G) = z(u) + y(u). It is then readily seen that the bilinear form a(-,-) is coercive in

the sense that |a(-,-)| > «f| - ||%{(curl'G) if and only if there exists a constant o > 0 such that

(@(uw) = ny(u)® + Ey(u)?® > *(z(u)® + y(u)? + 2z(u)y(u)),
which follows from Lemma 4.7. [

Now, we are prepared to show the desired result.

Corollary 4.8 Problem 4.5 is well-posed for o > 0.

Proof: Again we wish to apply Theorem 2.3. On account of Lemma 3.12, it remains to verify
the validity of the conditions (2.30) and (2.31) for the form a(-,-)g. Since by Lemma 4.6 the
bilinear form in (4.2) is, in particular, coercive on Hpe(curl; ), (2.30) and (2.31) obviously
hold. O

The question of well-posedness of Problem 4.5 for the non-conducting case ¢ = 0 turns
out to be less straightforward since a(-,-)g is no longer coercive. We assume throughout this
section that that A := w?ue is not a Maxwell eigenvalue with respect to €2 in the sense of
Definition 4.1. This is a reasonable assumption, since otherwise the original Maxwell problem
would not be well-posed. However, since ¢ = 0, it may very well happen that the equation
(curlu, curlv)g = A(u,v)o, u,v € Hyer(curl; ), has a non-trivial solution w # 0 on 0. We
shall show that this can be avoided by judiceously choosing [I.

Let us again assume that the problem is scaled in such a way that Q c O := (0,a)? for a
sufficiently large a € R.
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Theorem 4.9 Suppose that \ := w?ue is not a Mazwell eigenvalue with respect to Q. Choose
O := (0,a)? such that

4 2
A # = (m? 40”4 p?) (4.3)
for all m, n, p € N. Then, Problem 4.5 is well-posed.

Note that (4.3) can always be satisfied. In fact, if 72/ € Q choose a € R\ Q, otherwise some
a € Q such that Q C O. In order to prove Theorem 4.9, we consider the following auxiliary
problem:

Problem 4.10 Find u € Hpe(curl;0) such that
(curlu, curlv)g = A(u, v)qo, v € Hyer(curl;O). (4.4)

Lemma 4.11 Suppose that A > 0 is not a Mazwell eigenvalue. Then, Problem 4.5 is well-posed
if Problem 4.10 has only the trivial solution u = 0.

Proof: If Problem 4.10 has only the trivial solution u = 0, the operator induced by a(-,)g is
injective on Hper(curl; ) and thus the inf-sup-condition (2.31) is satisfied. Hence Lemma 3.9
and Lemma, 3.12 show that Problem 4.5 is well-posed. [

We shall next identify the non-trivial solutions of (4.4), i.e., eigenfunctions.

Lemma 4.12 There exists a family of eigenfields for the curlcurl operator on Cpe (0) with
eigenvalues
dr® 2 2
Amnp = a—2(m +n°+p°), m,n,peN (4.5)

Moreover, this family is orthogonal and complete in Lo(0), i.e., the set of finite linear combi-
nations of eigenfields is dense in Lo(O).

Proof: We rely on the identity curl curl = grad div— A, which is valid since we consider smooth
functions. Define

2mm
k= , 4.
" (4.6
where m € N, and consider
ugl)(xhwg,a:g)m,n,p = sin(kmx1) sin(kpz2) sin(kpzs), (4.7)

where m, n,p € N. In order to enforce u™™ (&) np = (ugl)(a:)m,n,p, ugl)(m)m,n,p,ugl)(w)m,n,p) to
be divergence-free we set

ugl)(w)m,mp = —m;”—an cos(kmx1) sin(kpz2) cos(kpzs), (4.8)
ugl)(:c)m,n,p = —mgn—f_’nQ sin(kpyz1) cos(kpza) cos(kpzs). (4.9)

It is easy to see that
A (@) p = 47 m? 0?4 1?) (@) gy i =1,2,3. (4.10)

a?
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Hence u") ()m n,p is an eigenfield of curl curl with the desired eigenvalue. Define now

u:(,’2)(w)m,n,p := sin(kpz1) sin(k,z2) cos(kpzs). (4.11)

In the same manner as just outlined, one can choose the remaining components of u(?) (@) m,np
so that it becomes divergence-free and is an eigenfield of the Laplacian, hence also for curl curl.
Letting

us () mnp = sin(ky,z1) cos(knzo) sin(kpzs),

Us  (T)mmnp = sin(knx1) cos(knz2) cos(kpzs),

ugs)(a:)m,n,p := cos(kmx1) cos(kpza) cos(kpzs),

one obtains for all components all necessary combinations of sines and cosines to form a basis
for Ly([0). Because of the constants in (4.8,4.9), the basis is orthogonal, but not orthonormal.
Since the family

(u(l) (-’B)m,n,pa ul? (m)m,n,pa e a“(s)(m)m,n,p)a m,n,p €N, (4.12)

is just a scaled version of the canonical Fourier basis of Ly([J), it is complete in the sense that
any function in Ly() can be approximated arbitrarily well by a finite linear combination of
elements in (4.12). O

Proposition 4.13 All eigenvalues of (4.4) are given by (4.5).

Proof: Let umnp be any of the eigenfunctions ul® (®)mmp, @ =1,...,8, arising in the proof of
Lemma 4.12. Integrating by parts leads to

(curlcurl wy, p p, v)o = (curlwy, p p, curlv)g = Ay p(Umnp, V)0, (4.13)

for all v € Hper(curl;[0) and hence the eigenvalues (4.5) are also eigenvalues of (4.4).
On the other hand, assume now that (u,\) is an eigenpair of (4.4), where A # A, ., for all
m,n,p € N. Then for any element w,, ,, of the basis (4.12) one obtains

AW, Uy np)o = (curlu, curluy, , )0 = (u,curlcurl uy, )0 = Appp (U, U pp)O-

Since A # Appnp for every m,n,p € N, u is perpendicular to the dense set of finite linear
combinations of elements from (4.12), hence u = 0. 0O

Proof of Theorem 4.9: If (4.3) holds, Lemma 4.12 and Proposition 4.13 imply that A cannot be
an eigenvalue of (4.4), i.e., Problem 4.10 and hence Problem 4.10 only have the trivial solution
u = 0. Hence, by Lemma 4.11, Problem 4.5 is well-posed. O
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