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Abstract

The Fermi Pasta Ulam oscillator chain with periodic boundary conditions and n par-
ticles admits a large group of discrete symmetries. The fixed point sets of these sym-
metries naturally form invariant manifolds that are investigated in this short note. For
each k dividing n we find invariant k£ degree of freedom symplectic manifolds. They
represent short wavelength solutions composed of k£ Fourier-modes and can be inter-
preted as embedded chains with periodic boundary conditions and only k particles.
Inside these invariant symplectic manifolds other invariant structures and exact solu-
tions are found which represent for instance periodic and quasiperiodic solutions and
standing and traveling waves. Some of these results have been found previously by
other authors via a study of mode coupling coefficients. But we arrive at our results in
a more systematic way and without any calculations. We show that the same invariant
manifolds exist in the Klein-Gordon lattice and in the continuum limit.

1 Introduction

The Fermi Pasta Ulam chain or FPU chain is a discrete model for a continuous non-
linear string, introduced by E. Fermi, J. Pasta and S. Ulam [4]. This string is modeled
by a finite number of point masses which represent the material elements of the string.
Each of the point masses interacts with its nearest neighbors only.
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Assume that the chain consists of a finite number n € N particles. Define ¢; € R the
vertical position of the j-th particle. We distinguish two different types of boundary
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conditions. We speak of fixed boundary conditions if the first and the last particle
do not move, meaning that we have gy = ¢, = 0 for all time. The FPU chain with
fixed boundary conditions models a string with Dirichlet boundary conditions. It is
also possible to choose periodic boundary conditions, in which case the first and the
last particle are identified, that is gg = ¢, for all time. The FPU chain with periodic
boundary conditions models a circular string. Both types of boundary conditions occur
very often in the literature. In this paper we shall only consider chains with periodic
boundary conditions, as it will become clear that each chain with fixed boundary
conditions is naturally embedded as an invariant manifold of an appropriate periodic
chain. The particles of the periodic chain are labeled by elements of the cyclic group
Z/nz. The Hamiltonian equations of motion for the FPU chain are derived as follows.

The space of positions ¢ = (q1,...,¢,) of the particles in the chain is R”. The
space of positions and conjugate momenta is the cotangent bundle T*R"™ of R”, the
elements of which are denoted (q,p) = (q1,...,¢n,P1,---,pn). T*R" is a symplectic
manifold, endowed with the symplectic form dg A dp = 2?21 dg; A dp;. Any smooth
function H : T*"R™ — R now induces the Hamiltonian vector field Xy given by the
defining relation (dgAdp)(Xg,-) = dH. In other words, we have the system of ordinary
differential equations ¢; = gT{j’ p; = —%.

The Hamiltonian function for the FPU chain with periodic boundary conditions and
n particles consists of a kinetic energy and a potential energy. The potential energy is
assumed to depend only on the vertical distance between pairs of neighboring particles.
Hence the Hamiltonian is

1
H= Y §p§+ Wi(gj+1 — ) (1.1)
in which W : R — R is a Lennard-Jones potential energy density function of the form

1
Wi(z) = —'xQ + %mg + E.r‘l . (1.2)

The «, 3 are real parameters measuring the nonlinearity in the forces between the
particles in the chain. We also write

1
H=| Y 52?? + Hy(q) + aH3(q) + BHa(q) -
JGZ/nZ
In which :
Hin(0) = — > (@ — )"
€T,z

is a polynomial in ¢ of degree m.

Fermi, Pasta and Ulam expected that for «a, 8 # 0, a many particle system such as
the FPU chain would be ergodic, meaning that almost all orbits densely fill up an energy
level set of the Hamiltonian. Ergodicity would lead to ‘thermalisation’ or equipartition
of energy between the various Fourier modes of the system. FPU’s nowadays famous
numerical experiment was intended to investigate how thermalisation would take place.
The result was astonishing: it turned out that there was no sign of thermalisation at all.
Putting initially all the energy in one Fourier mode, they observed that this energy was



shared by only a few other modes, the remaining modes were hardly excited. Within
a rather short time the system returned close to its initial state.

The observations of Fermi, Pasta and Ulam greatly stimulated work on nonlinear
dynamical systems. Nowadays people tend to explain the FPU experiment in two
ways. In 1965 Zabuski and Kruskal [16] considered the Korteweg-de Vries equation
as a continuum limit of the FPU chain and numerically found the first indications
for the stable behaviour of solitary waves. We now know that the Korteweg-de Vries
equation is integrable [10]. This clearly suggests an explanation for FPU’s observations,
although the relation between the FPU chain and its infinite dimensional limits has
never been completely understood.

Another, possibly correct explanation for the quasiperiodic behaviour of the FPU
system, is based on the Kolmogorov-Arnol’d-Moser theorem. As is well-known [1],
the solutions of an n degree of freedom Liouville integrable Hamiltonian system are
constrained to move on n-dimensional tori and are not at all ergodic but periodic and
quasiperiodic. The KAM theorem states that most invariant tori of such an integrable
system persist under small Hamiltonian perturbations, if the unperturbed integrable
system satisfies the Kolmogorov nondegeneracy condition. Although several authors,
starting with Izrailev and Chirikov [6], have stated that the KAM theorem explains
the observations of the FPU experiment, it has for a long time been completely unclear
how the FPU system can be viewed as a perturbation of a nondegenerate integrable
system. This gap in the theory was recently mentioned again in the review article of
Ford [5] and the book of Weissert [15]. The only results in this direction that are known
to me were obtained by Nishida [9] and Rink [12]. Although the results in Nishida [9]
are unfortunately incomplete, in Rink [12] the Birkhoff normal form for the FPU chain
is calculated and it is proven to be nondegenerately integrable. This explains why the
FPU chain at low energy can not be ergodic. On the other hand, there are many
numerical studies indicating that above a certain energy threshold the chain indeed
thermalises. Reference [11] contains a rather complete overview of these results.

Contrary to these more or less global results, several authors have been trying to
find lower dimensional invariant manifolds for the FPU chain. First of all because they
represent interesting classes of solutions such as periodic and quasiperiodic solutions
and standing and traveling waves. But also because it is believed by some authors, see
for instance [3], that the destabilisation of invariant manifolds can lead to chaos and
hence maybe to ergodicity.

Most of the invariant manifolds that are known in the FPU chain were discovered
more or less emperically. In their original paper Fermi, Pasta and Ulam [4] already
remarked that if the nonlinearity coefficient v in (1.2) vanishes and initially only waves
with an odd wave number are excited, then waves with an even wave number will
never gain energy. Later on other invariant manifolds were discovered by studying
mode coupling coefficients in detail, see for instance [2] and [11]. In these papers it is
shown that certain sets of normal modes will not be excited if they initially have no
energy.

In this paper, it will be shown that the same results and more can be obtained
without introducing Fourier modes or studying mode coupling coefficients. The idea
is to exploit the discrete symmetries that are naturally present in the FPU chain.
The fixed point sets of these symmetries form invariant manifolds for the equations of
motion. Although the idea behind this approach is quite simple, I am not aware of



any systematic study of the dynamical implications of these symmetries. Nevertheless,
symmetries seem to be the basic object to investigate if one wants to discover invariant
manifolds. We find all the invariant manifolds that were already known in the literature
and many more, without having to calculate mode coupling coefficients or to restrict
ourselves to the case @ = 0. The results are obtained in a systematic way and they are
not only valid for the FPU chain, but for any lattice with the same symmetries, such
as the Klein-Gordon lattice [8]. Moreover, our results apply in the continuum limit
as we can also point out several infinite dimensional invariant manifolds for a rather
broad class of nonlinear homogeneous partial differential equations.

2 Quasiparticles

Since we want to be able to compare our results with previous work, we introduce
Fourier modes in this section. It is natural to view the solutions of the FPU chain as
a superposition of waves and to make the following Fourier transformation:

1 2mwigk
1 = n Z e (2.1)
kE€EZ/nz
1 _2mijk _
r= Yo e (2.2)

n
k€EZL] .z

Using that

EZCM— 1 if j=0modn
" T 10 ifj#A0modn

one easily calculates that {g;,qx} = {P;, pr} = 0 and {g;, pr} = J;, the Kronecker
delta. Hence, (¢,p) are canonical coordinates. They are traditionally called phonons
or quasiparticles. Written out in phonons, the FPU Hamiltonian (1.1) reads as follows.
The kinetic energy becomes:

Z %pf _p" + Z p]pn -7

jeZ/nZ 1<.7<—

where it is understood that the term %]522 occurs only if n is even. The potential
2

energies H,, become

m
1 1 2mi( 7+1 2migk
Hp=—s D (@i —0)" =5 > Z e )n) =
J€L/nz JEZ [ nz keZ/nz
2miy Ek k6}) 2mik O =0, _ i=m O, =0k
m,mzz() [T -0 = Y [T g™ - )%
C oilol=m kEZ/nz 0:16|=m FE7/n
7//712 Ek k9k=0 mod n

in which the sum is taken over multi-indices 6 E Z" for which |0] := 3", |6x] = m. We
also used the multinomial coefficient (7)) := 0 9k We have obtained a rather compact
k




and tractible formula for the Hamiltonian in phonon-coordinates.
Let us also introduce real-valued phonons. For 1 < k < 7 define

2 27k 2 27k
Qk:((jk‘l‘(In—k)/\/iz \/;ZCOS(]T)’JJ' ) Qn—k:i((jk_qﬂ—k)/ﬁ: \/;ZSII]( d )qj
JEL/nn JEL] nz

P = /2 2jkm e _ = ]2 . 2jkm
Py=(pr+Pak)/V2 = \/;ZCOS( )Pj s Paok=i(Pa—k —Pr)/V2 = \/;ZS‘“( —)p;
jEZ/nZ jEZ/nz

and

Q ;Qn:’jn;Pn:pn

The transformation (g, p) — (Q, P) is again symplectic and one can express the Hamil-
tonian in terms of ) and P. In the case that « = § = 0, that is for the harmonic FPU
chain, one gets

=qz, Pr=p

N
EE
EE
INES

n

1 1 1
H= Y 5?5 + 5(‘1j+1 )= §(Pj2 +wiQ?)
JGZ/HZ j:l

in which for j = 1,...,n the numbers w; are the well-known normal mode frequencies
of the periodic FPU chain: _
. JT
w; =2 sm(;)
Note that written down in real-valued phonon coordinates, the equations of motion of
the harmonic chain are simply the equations for n — 1 uncoupled harmonic oscillators
and one free particle. The situation is not so simple anymore if «, 8 # 0, when the
normal modes interact in a complicated manner that is governed by the Hamiltonians

-1
H,, = Z &7 HQZk

n
6:|0|=m k=1

in which the ¢y are certain coefficients. An expression for the ¢g with |#| = 4 can be
found in [11], although the explicit calculation is not given there.

Note that H is independent of @), = ¢, = ﬁzj ¢;. Hence the total momentum
P, =p, = ﬁzj p; is a constant of motion and the equations for the remaining
variables are completely independent of (@, P.) = (Pn, x). It is common to set the
latter coordinates equal to zero, or to neglect them completely.

Although the other normal modes interact in a complicated manner, not every

: : . ol A Bk o op :
possible coupling term occurs. Only those monomials §° = [], §,* are present in
H,,(q) for which }°, k6, = 0 modn, whereas H,,(()) contains only the monomials
QY = IL. QZ’“ for which ¢g # 0. In the next section we will see that this is a consequence
of discrete symmetries in the system.

It is exactly the fact that not every coupling term occurs which accounts for the
existence of various invariant manifolds, see [2] and [11]. Let A C Z/,z. Then the
manifold spanned by modes in A is

MA={(Q,P)e T"R"Q; = P; =0VYj ¢ A} .



MA is an invariant manifold if and only if ¢; = 0 for all # with the property that 0, =1
for some j ¢ A and 6 = 0 for all £ ¢ AU{j}. Making use of this fact, several invariant
manifolds have been discovered. If n is even, one can for instance choose A = {5}. It
is then obvious that A satisfied the required property since j4 (m —1)% # 0 mod n.
The solutions in the invariant manifold Mig} are of the form ¢;(t) = (Z/IE)JQ%(t). This
type of periodic solutions in which neighbouring particles are exactly out of phase, is

well-known. In [11] a linear stability analysis is given for it.
Studying mode coupling coefficients in this way, several invariant manifolds have

been discovered. In [2] it is shown that if @ = 0 and n is even, MT{LQA"“’H} and
{n 2n {n 3n

Mél’s""’n_l} are invariant. Poggi and Ruffo [11] show that AM,;*"?° and M,""*
are invariant.
The above method is rather simple but has the following limitations:

1. An explicit expression for the ¢y is required.

2. The method becomes more elaborate if one wants to find invariant manifolds of
higher dimensions.

3. There is no a priori ‘physical’ reason why a certain M;;‘ will be invariant.
4. Invariant manifolds might exist that are not of the form M;L“ for some A C Z/,7.

5. It is not clear whether the discovered invariant manifolds will also be present in
the continuum limit or in other one-dimensional lattice systems.

For these reasons, studying mode coupling coefficients is rather unsatisfactory. But
with the method presented in the following sections of this paper it is possible to
detect easily many more invariant manifolds. They arise in a natural way as fixed
point sets of symmetries.

3 Symmetry

The Hamiltonian function (1.1) of the periodic FPU chain has some discrete symme-
tries. They have some important dynamical consequences. Define the linear mappings

R,S,T:R™— R" by

R: (q17QQ7 s 7qTL—17qTL)—P ((]27(]37 s 7QTL7QI) 3
S : (QIaQZa e aQn—laqn)_’ (_Qn—la —qn—2;---, 41, _Qn) and
T: (q17q27 ) ,Qn—lgqn)_} (_qla —42,---; —qn-1, _qn) )

The mappings (¢,p}> (Rq, Bp), (¢, p}> (S¢, Sp) and (¢, pp> (L'q,Tp) from T*R"
to T*R™ are also denoted R, S and T respectively. R and § satisfy the multiplication

relations R” = S* = Id and RS = SR™' and hence the discrete group (R, S) := {Id,
R,R* ... ,R*' S RS, ...,R""'S} is a representation of the n-th dihedral group
D, the symmetry group of the n-gon. Moreover, 7? = Id and 17’ commutes with R
and S and therefore the group (R, S,T) generated by R, S and 7T is a representation
of D, x Z/2Z.

R, S and T are symplectic maps: R*(dgAdp) = S*(dgAdp) = T*(dgAdp) = dgNdp.
Furthermore, note that R and S leave the Hamiltonian H invariant: R*H := HoR = H
and S*H := Ho S = H. We find that T*H = H o'l' = H if and only if the potential



energy density function W is an even function, in other words if @ = 0. The group
(R, S) is called a symmetry group of H, its elements symmetries. The same is true for
(R,S,T)if W is even.

For any symmetry P we have P*(dq A dp) = dq A dp and P*H = H so the Hamil-
tonian vector field Xy induced by H is equivariant under P: P*Xyg = Xprg = Xpg.
In other words: if v : R — T*R" is an integral curve of Xg, then Poy : R — T*R"
is also an integral curve of Xg. This implies that P commutes with the flow of X,
that is e!X# o P = P oetXH,

Of particular dynamical interest is the fixed point set of a symmetry P,

Fix P ={(q,p) € T"R"|(Pq, Pp) = (¢,p)} (3.1)

Let z € Fix P, then P(e!*#(z)) = X7 (P(z)) = e!*#(z) so Fix P is an invariant
manifold for the flow of Xz . In the next sections we investigate the various invariant
manifolds Fix P. We shall describe them in terms of the original coordinates (g, p),
but also in phonon-coordinates (g, p) and (), P). Therefore it is interesting to write
down the action of R, S and T in phonon coordinates:

R, G- Gnmts ) = (77700, Gy, 700Gy TG,
(B, P2y -+ s Pty ) = (€727 Py, ey, eIy e )
S @y G253 Qa1 Gn) 2 (=Gt — G2y — 01y — )
(P1, P2y -+« s Pr=1,Pn) = (=Pn=1, =Pn-2, -+, =P1, —Dn) -
T:(q1,G2, - Gne1,Gn) = (=01, = G2y -+ s =Gty —n)
(P1,D2y -+ s Pnet, Pn) =+ (=P1, =P2, -+, —Pn—1, —Pn) -

Note that by performing the transformation to phonons, the action of R on the coor-
dinate functions has been diagonalised. The actions of S and T however have not at
all changed. R acts on a monomial ¢’ as follows:

R* (H qzk> — o2mi Y ki /n quk
k k

In other words, the monomial ¢? is R-symmetric if and only if > i kB = 0modn. So
R-symmetry is the reason why only these monomials occur in the FPU Hamiltonian.

4 Invariant manifolds for arbitrary potentials

In this section we study the invariant manifolds that are formed by the fixed point
sets of elements of (R, S). So it is not yet assumed that the potential energy density
function W is even.
For integers n and k, let ged(n, k) be the greatest common divisor of n and k. For
keZ,
Fix Rk = {Qj = Qj+gcd(n,k)apj = pj+gcd(n,k) V]}

is an invariant ged(n, k) degree of freedom symplectic submanifold of T*R™. The
Hamiltonian function H |y pr on the symplectic submanifold Fix R obviously simply
models the periodic FPU chain with ged(n, k) particles. In this way, the periodic chain



with k£ particles is naturally embedded in the chain with n particles if £ divides n. In
phonon coordinates,
Fix R* = {§; = p; = 0 Vj # 0 mod }={Q; = P =0VYj# 0 mod

PIONS rERaL

(k=1)n
So if k divides n, then Fix R* = M{’“’ o and is hence spanned by modes
which represent a repeating spatial pattern with period k.

If for instance n is even, then Fix R% = M{z’ " is the two degree of freedom invari-
ant manifold spanned by The 5-th and the n-th normal modes. If we as usual neglect
the n-th mode, which moves independently of all other modes, we find that Fix R?
consists of all solutions of the form ¢;(t) = %Q%(t) These are the previously men-
tioned periodic solutions in which neighboring particles are exactly out of phase. On

the other hand one has for even n that Fix RZ = Miz"l""’n}. It consists of all even
modes.

n 2n n -

If 3 divides n, then Fix R® = MiS’ 8 ’n}, whereas Fix Rz = M{l{g’ﬁ""’n 3},
Etcetera.
Let us now for arbitrary ! € Z study

. s B _2mijl _ 2mijl .
Fix R'S = = {9 = ~0-j,pj =~ Vi} = {3, = " uj, Pj=—€ " Paoj Vi) =
lj lj lj
{QJ(‘OQ( )—{—Qn jsin( Jﬂ-)_chos( J;-)—{—P —jsin( ';T)_OV]<.]<2

Q3 = (-1 )’“Q% Py =(=1)* Py, Qn=Pa=0}

Itisa (2n —2— (1)) — (=1)"*!) /4 degree of freedom symplectic subspace of T*R™.
Note that Fix R'S is not always of the form M#A for some A. On the other
hand, Fix S = M{j|£<j<n} and if n is even, then Fix RZS = Mil’n_Q’B’n_‘l""} =
M{J|2<J<  J=tmed AVlilg<i<n, =0med 2} g for instance for n = 8 these are M§5’6’7}
and ZMS{1 36},
If both n and [ are even, then Fix R'S has dimension n/2 — 1 and in Fix R'S we
have L = Gnpr = 0. In other words, if n is even, then for every even [ the Hamiltonian

function H|piy gig On the symplectic subspace Fix R'S models the FPU chain with
fixed boundary conditions and n/2 — 1 moving particles. Hence, the FPU chain with
fixed boundary conditions and n/2 — 1 moving particles is naturally embedded in the
periodic FPU chain with n particles. This is the reason why we do not study FPU
chains with fixed boundary conditions separately.

5 Invariant manifolds for even potentials

If the potential energy density function W is even, then also 1" is a symmetry and
the full symmetry group of the FPU Hamiltonian is (R, S,T) =2 D,, X Z/37. Let us
study the fixed point sets of the symmetries R¥1" and R!'ST which have not yet been

discussed in the previous section.
For k € Z,

Fix RkT = {Qj = ~Gt+ged(n,k)r P; = TPjtged(n,k) V]}

8



which is nontrivial only if n/ ged(n, k) is even -and hence n must be even. In this case
it is a ged(n, k) degree of freedom invariant symplectic manifold. In phonons,

n n
Fix RET ={g; = p; =0 Vj # 5———— mod ———
ix 1@ = p; J7 2ged(n, k) o gcd(n,k)}
n n
= — Y oed(n ) d ecd(n, k) .
={Q; =P, =0Yj # Secd(n F) mo gcd(nvk)}
{350 B

So if 2k divides n, then Fix R*T' = M, 2
The special choice k = 2 gives us the invariant manifold Fix R T = Mﬁ{l’g’S"'"n_l}
of all odd normal modes that was already discovered by Fermi, Pasta and Ulam [4].

The choice k =1 gives us Fix RT = MT{L%}

If n is divisible by 4, then Fix RiT = M{2 610,72} iq invariant. This is a new

n 3n

result. The invariant manifold Fix R?*T = M, " *° is discussed in [11]. It contains
quasiperiodic solutions.

, the well known F-th mode.

non 5n
For an n divisible by 6 we find the invariant manifolds M{3 915m=3} o nd My¢2¢ }.
Etcetera.
For [ € Z,

2mijl 2mijl

Fix RST ={qj=qj,pj =pi—j Vj} ={@j =€ * Gu-j , Pj=€ *» Pn_j Vj} =

. T ljm
{stm(J ) — Qn- J(‘oq(Jn

Q3 =(-1'Qg, Py =(-1)'Pz}

) =PF; @n(ZJT
n

ljm
— P,_;cos(=—) = 1< -,
) J(‘oq(n) 0V _]<2

is an (2n — 2+ (=1)" + (=1)"*") /4 degree of freedom invariant symplectic manifold.
Note that again Fix R'ST is not always of the form M, but that on the other
hand Fix ST = MijIOSJS%} and if n is even, Fix R>ST = Méo’n_1’2’n_3’4""} =
Miﬂogsg’ §=0mod 2}L{jl3 <j<n, j=1mod 2}. So for instance for n = 8 these are Mé1’2’3’4}
7577}

and ZMS{Q’4

6 Examples of intersections

We have studied all fixed point sets of the elements of the symmetry groups (R, S) and
(R,S,T). More invariant manifolds are formed by taking intersections of these fixed
point sets. We will give just a few examples here.

2n n
If 3 divides n, then Fix R? N Fix S = Mi 3 }, whereas Fix R* N Fix ST = Mis}.
The latter is only invariant if the potential W is even.
an nn
If 4 divides n, then Fix R4 N Fix § = M\1°, Fix R* 0 Fix ST = M3} and
Fix R?T NFix ST = M{_}

3n 4n n 2n

If 5 divides n, then Fix R°NFix S = M{ 2% , whereas Fix R°NFix ST = M{5’ 5

72 5_71. 7N 7

If 6 divides n, then Fix RN Fix § = ]\/[{ "6 and Fix RENFix §T = M,¢'3'2
n n 5n {571}

And we find that Fix R*T = M,®'?" ¢’ can be split into Fix R*I’'NFix § = M,

5n
and Fix R3T N Fix ST = an} The normal mode solutions in ]\4{ } have as far



as | know not been discussed previously in the literature.

One can proceed and compute, if k£ divides n, the intersections of the various fixed
point sets of R*, S, RS, R*T', ST and RZST. We choose not to make a systematic
classification of the results, since most invariant manifolds in the FPU chain are not
even of the form M for some A.

7 Other lattices and the continuum limit

A major advantage of our method is that fixed point sets of symmetries are invariant
manifolds in any Hamiltonian system admitting these symmetries. Hence we expect
to find the invariant manifolds that we discovered in the FPU chain with periodic
boundary conditions also in other one-dimensional spatially homogeneous lattices, such
as the Klein-Gordon lattice [8]. The Klein-Gordon lattice with periodic boundary
conditions has the Hamiltonian

H= ) %Pf + %(%’H —q)* +W(g) ,
JEL[nz
in which W is a potential energy density function. The Klein-Gordon lattice models
a one dimensional mono-atomic structure with small coupling between the atoms. It
is clear that the mappings R and ST, see formulas (3.1), again leave this Hamiltonian
invariant, whereas R, S and 1" separately have this property if W is an even function.
Thus we have again found symmetries and their fixed point sets are invariant mani-
folds. In particular, the invariant manifolds that we discovered in the FPU chain with
even potential are also present in the Klein-Gordon lattice with even potential.

Our results are also valid in the continuum limit, when the discrete lattice equations
are replaced by a homogeneous partial differential equation. Consider for example for
z € R/y the equation

U = Upe + f(u)

for f: R — R. This equation can also be written as the system of equations
U =0, U = Upe + f(u) ,

which have the Hamiltonian

2 L 2 , .
H = R/Ziv(x) +§ux(m) — F(u(z)) dz

in which F' = f. Define the symplectic operators

Re su(h ulat), (b viat)
S sulh —u(=), vl —o(=)
T uCh—u(), ol —o() .

The constant @ € R/z is arbitrary. Clearly, H is invariant under R* and S7. H is
invariant under R®*, § and 7 separately if and only if F'is even, that is if and only if

10



f is odd.
The fixed point sets of these symmetries are invariant manifolds, possibly of infinite
dimension. If a ¢ Q, then Fix R consists of constant solutions only, but if a = é—’

is rational and ged(p,q) = 1, then Fix R represents the solutions with wu(t, z)
u(t, :C—I—%) Fix R T consists of solutions with u(z) = —u(m—}—%). The latter is nontrivial
only if ¢ is even. For arbitrary a, Fix R*S contains solutions with u(z) = —u(a — z)
and Fix R*ST represents solutions with u(z) = u(a — z).

It is natural to use the Fourier transformation

u(mv t) = Z U (t)eikm: ) U(‘ra t) = Z Uk (t)eikm;
k€T keZ
and to express the fixed point sets in terms of the Fourier variables (uk, vr)kez. We
then find for instance the following invariant manifolds

Fix R§ = {uk =uv, =0Vk ;é 0 mod q} = M{...,—Z%—Q,qu,?q,-..}
Fix ReT = {ur, = vy = 0 Vk # ¢ mod 2¢} = M- —30-0030}

Etcetera.

[7], [13] and [14] study the equation wuy; = wus, + u® by the Galerkin-averaging
method. By an analysis of mode coupling coefficients they discover that the manifolds
M=20-00.0.20,F apnd M- =30-9930} are invariant in a certain finite dimensional
system of differential equations, the Galerkin-averaging approximation, which approx-
imates the original partial differential equation. We arrive here at the much stronger
result that their conclusions hold for any odd nonlinearity f and in the original partial
differential equation.

8 Discussion

In a systematic way we found various invariant manifolds for the Fermi Pasta Ulam
oscillator chain with periodic boundary conditions. These invariant manifolds represent
interesting classes of solutions such as periodic and quasiperiodic solutions, standing
and traveling waves and embedded lower dimensional FPU chains with periodic or
fixed boundary conditions. They are moreover interesting since it is believed by some
authors [3] that destabilisation of these invariant manifolds can lead to chaos. Some
of the invariant structures that we found have previously been discovered by other
authors by an analysis of mode coupling coefficients. Our method on the contrary
looks for fixed point sets of symmetries which are natural invariant manifolds. We can
derive our results without computing the mode coupling coefficients explicitly. The
same invariant manifolds are present in other homogeneous Hamiltonian lattices such
as the Klein-Gordon lattice. In the continuum limit, when the lattice equations are
replaced by a homogeneous partial differential equation, we point out analogous infinite
dimensional invariant structures.
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