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Abstract

Using the theory of exact completions, we show that a specific class of pre-
topoi, consisting of what we might call “realizability pretopoi”, can act as
categorical models of certain predicative type theories, including Martin-Lof
type theory. Our main theoretical instrument for doing so is a categorical
notion, the notion of weak W-types, an “intensional” analogue of the “exten-
sional” notion of W-types introduced in an article by Moerdijk and Palmgren

([6])-

1 Introduction

In this article, we will show how categorical models for certain predicative type
theories, especially (extensional) Martin-Lof type theory, can be constructed us-
ing the technique of taking exact completions. The categorical models that will
interest us, are pretopoi with dependent products and W-types, and hence with
a natural number object. As is known from an article by Moerdijk and Palmgren
([6]), these categories can indeed act as such models, and in their internal logic,
the constructions familiar from Martin-Lof type theory can be performed.

More concretely, we will specify a set of constraints that a category C has to
satisfy in order for its exact completion to be a pretopos with dependent products,
a natural number object and W-types. Before we enumerate this set, let us recall
that the exact completion, denoted by C., can be constructed by taking formal
quotients of pseudo-equivalence relations in C. As will be explained in the next
section, it will then have a universal property.

As for the constraints on C, one of them must be that C is leztensive: this
notion is introduced in [3] and means that C has finite limits and finite stable
and disjoint coproducts (this result is obtained in [2]). It is also known from the
literature that it is necessary for C to have weak dependent products (see [4]). We
will also demand that C has a weak natural number object (for a definition, see [1]).
In [1], the authors show that if C satisfies satisfies the demands mentioned so far,
C.; must be a pretopos with dependent products and a natural number object.
What is missing is a constraint on C that will insure that C., has W-types.

Finding this additional constraint will help us in connecting this topic with the
theory of realizability topoi. If one has a pretopos E, with dependent products and
W-types, then one can construct what one might call, for want of a better name,
the “effective pretopos” relative to E, denoted here by Eff(E). This construction
takes place in two steps: first, we construct the category Pass(E) of partitioned
assemblies relative to E, and then we take the exact completion of this category.
Another goal of this article will be to show that Eff(E) is again a pretopos with
dependent products and W-types. To do this, it will suffice to show that Pass(E)
is a category that satisfies the demands that will insure that its exact completion
is such a category. And as it turns out, the following result is known from the
literature: Pass(E) is lextensive, has weak dependent products and a natural
number object.



This means that, as for the additional demand, two features are required.
Firstly, it has to be strong enough to insure that if C also satisfies this additional
demand, C.; will have W-types. Secondly, it will have to be weak enough so that
Pass(E) satisfies it for every pretopos E with dependent products and W-types.

In this article we will introduce the notion of “weak W-type” and we will show
that the requirement of having weak W-types meets these two desiderata. This
means that for the notion of weak W-type that is to be defined shortly, we can
prove the following two theorems:

Theorem 1.1 If C is a lexiensive category with weak dependent products, a weak
natural number object and weak W-types, then C.p is a pretopos with dependent
products and W-types.

Theorem 1.2 For every pretopos with dependent products and W-types E, the
category Pass(E) has weak W-types, and so is a lextensive category with weak
dependent products and natural number object and weak W-types.

And these two theorems have the following corrolary:

Corollary 1.3 For every pretopos with dependent products and W-types E, the
category Eff(E) is pretopos with dependent products and W-types.

2 Weak W-types

Let us start this section by giving some definitions that are pivotal to this article.

Definition 2.1 For any pretopos E with dependent products and W-types, the
category of partitioned assemblies relative to E, denoted Pass(E), is constructed
as follows. If N is the natural number object in E; the objects in Pass(E) are
morphisms in E having N as their codomain. A map between two such objects
ex : X —> Nandey : Y —> Nisamap f: X —— Y in E such that the
following statement holds in the internal logic of E:

“There is a partial recursive function with code r such that for all
ze€X:r-ex(x)=ey(f(z)).”

If a natural number » has this property, we say that r tracks f. (Remember
that the internal logic of E is rich enough to do recursion theory in, code partial
recursive functions as natural numbers and define Kleene application - on pairs on
natural numbers.) Q

Definition 2.2 The ezact completion of a category C with finite limits, denoted
by C.z, is characterized, up to natural isomorphism, by the following properties:
C.; is exact and there is a finite limit preserving embeddingy : C —— C,,
such that any finite limit preserving functor from C to an exact category factors
through y. Q

Definition 2.3 For any pretopos E with dependent products and W-types, the
ef fective pretopos relative to E, denoted by Eff(E), is the exact completion of
Pass(E). Q

Definition 2.4 In a pretopos E with dependent products, for any morphism f :
B —— A, the following functor can be defined:

Pr(X) =Y xIT®

ac A



The W-type for f in E is exactly the free Pg-algebra, and therefore exists of an
object in E, usually denoted W(f), together with a P¢-algebra, usually denoted
sup. Q

The following two remarks need to be made concerning this definition. Firstly,
if (X,ox) is another Pj-algebra, then there is a unique map ¢ : W(f) — X
such that

¢(sup,(t)) = (ox)a(¢ 0 1)

for any a € A and t : f~'(a) — W(f). We might think of ¢ as defined “by
recursion”, for this equation specifies the value of ¢ on sup,(¢), assuming that ¢ has
been specified on all values of t. Secondly, any subalgebra R C W = (W(f),sup)
must be equal to W. This means that for any subobject S C W(f) for which the
following statement in the internal logic holds:

Ya € AVt: f~1(a) — W(f)[(Vb € f~(a): t(b) €S ) — sup,(t) € S]
the following statement holds as well:
YweW(f): weS

So an “induction principle” complements the possibility of defining maps by re-
cursion.

We will end this section by introducing the notion of weak W-type. But before
we can do so, we have to “weaken” the notion of a Pf-algebra. For that purpose,
consider the following two functors for a lextensive category C and an object A in
C. Firstly, we have

Us:C/A—C

defined on an object p : X —— A in C/A as the object X. And secondly, we
have

A*:C—>C/A

defined on an object X in C by sending it to proj, : X x A —— A, considered
as an object in C/A.

We only introduce the latter functor to be able to explain the convention of
dropping it in the notation. This means that when we regard an object X in C as
an object in C/A, we are actually talking about A*(X); and the same convention
applies to morphisms.

Definition 2.5 Let X and Y be objects in C. An object 7 in C together with a
weak evaluation map ny : ZxY —— X is called a weak version of the exponential
XY if for every map g : U x Y —— X there exists a (not necessarily unique)
map h: U —— 7 such that g = nz o (h xY). Q

Definition 2.6 Let f: B —— A be amapin C. A weak P-algebra is a quadru-
ple x = (X, X*,0x,nx), where X is an object in C and X* in C/A, ox is a map
UsX* — X in C and nx a map X* X f —— X in C/A, in such a way that
X* is a weak version of X/ in C/A with nx as weak evaluation.

A homomorphism t of weak Pj-algebra’s from x = (X, X* ox,nx) toy =
(Y, Y* oy, ny) consists of a pair of maps (¢,t*),t: X — Y and t* : X* — Y™,
such that the following diagrams commute:

t* t*
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This defines a category, which we shall denote by W P;(C). Q

Remark that a weak P;-algebra no longer is an algebra. To obtain the no-
tion of a weak W-type, we have to weaken the recursive and inductive properties
characteristic of a W-type. For the latter purpose, we need the following auxiliary
notions.

Definition 2.7 A weak simple product of a map ¢ : C' —— I x K with respect
to K consists of a map w : W —— I and a map ¢ such that

€

W x K C

¢ (1)

wx K

I x K

commutes. Moreover, the pair of w and ¢ is weakly universal with this property:
in any situation
f

X x K C

ix K

I x K
there is a (not necessarily unique) map f' : X —— W over I such that f =

eo(f' x K). In this case, we call figure (1) a weak simple product diagram. 0

Definition 2.8 A map t = (¢,7*) : x —— y of weak Ps-algebra’s is said to be a
weak Pg-subalgebra of y, if for the pullback L in the following diagram in C/A:

L Py oy x f
PQl lﬂy
X Y
t

the following diagram is a weak simple product diagram:

Xrx 2 Ly

P f b1
Y*x f
(with ax = (t* X f,1x)). Q

Definition 2.9 A weak W-type w for a map f is weak Pj-algebra that is (i)
weakly initial in WP¢(C) and (ii) is such that every weak Pj-subalgebra t :
x — w has a section in W P;(C). Q



3 Paths

In this section, we will work towards proving theorem (1.1):

Theorem 3.1 ( = Theorem 1.1) If C s a lextensive category with weak de-
pendent products, a weak natural number object and weak W-types, then C.p is a
pretopos with dependent products and W-types.

We will do so by proving that it suffices to show that C., has W-types for all
maps lying in the image of y. This is what the proposition below will do for us.

Definition 3.2 A square

D——~C

B—— A
in some good category C is called a quasi-pullback, if the map D —— B x4 C'is
epi. Q

Proposition 3.3 Suppose in a pretopos E with dependent products and a natural
number object, we have a diagram of the following form:

p 2 g

it .
A —— A
_]A
Suppose furthermore that this diagram is a quasi-pullback and that f' is a choice
map for which there exists a W-type W(f'). Then there also exists a W-type for

f.

Proof : Let (W' supy.) be the W-type for f'. As is explained in [6], elements
w’ of W' can be thought of as trees. A path in such a tree w’ could, from that
perspective, be defined as a finite sequence of odd length o such that: (i) ¢(0) =
w'; (ii) for all even n < length(c) we have that o(n) € W’ and for all odd
n < length(c) we have that o(n) € B’; and (iii) if o(n) = (supy)a(t) for a
certain even n < length(c) and ' = o(n+1), then f/(') = o’ and t'(b') = o(n+2).
Notice that we do not demand that paths are complete, i.e., a path may stop even
it is possible to climb further upwards in the tree.

As it turns out, this definition makes sense in the internal logic of E, for we
can define the subojects Paths of (W’ + B + 1)N as consisting of those o €
(W' + B" + 1)Y such that:

(1) o(0) is an element of W'.

(2) TIf o(n) € W' for a certain natural number n, then either
on+1)e B oro(n+1)=x*.

(3) Tfo(n) € W and o(n+1) € B’ for a certain natural number
n, and, more specifically, o(n) = (supy.)qr(t') for certain
a e At (fYy" () — W', then f'(c(n+1)) = a’ and
o(n+2)=t(c(n+1)).

(4) Tf o(n) = * for a certain natural number n, then for all
natural numbers £ > n also o(k) = *.



(Here * denotes the single element of 1.). Tt is unnecessary to add that for all
o € Paths there is a natural number k£ € N such that o(k) = *, for that will be a
consequence of the inductive property of W-types.

In the sequel, we will use abbreviating symbolism, like the standard notation
for finite sequences and ways of manipulating them (in particular, * for concate-
nation), in writing down statements in the internal logic. We trust that the reader
is ingenious enough to translate these statements in their unabbreviated form, if
necessary.

Let furthermore Paths,,: for a certain element w’ € W' be defined as the fiber
above w’ of the map [ : Paths —— W' : ¢ — ¢(0), and let p be the canonical
map from W' to A" via )~ 4 W™ a),

We define the following binary relation ~ on W":

w~w << For all o € Paths,, ¢/ € Paths,: and natural numbers

n: if length(o) = length(c’) = 2n 4+ 1 and [0(2k 4+ 1)]p =
[0'(2k+1)]B for all k£ < n, then [p(c(2n))]a = [p(c(2n))]a.

Observe that ~ has the following properties:

i) wr~vwv=w~uw

() we~ = [p(w)]s = [

(iii) w ~ w' = For every o € Paths,, we can find a ¢/ € Paths,,:
having the same length as o, say 2n + 1, such that for all
k < n we have that [¢(2k + 1)]p = [¢/(2k + 1)]B, and for
all k < n we have that [p(c(2k))]a = [p(c(2k))]a.

(iv) w~v v ~w"=w~uw"

The proofs of claims (i) and (ii) are trivial.
(iii) is less easy: suppose w ~ w' and fix a o € Paths,,. Let length(c) = 2n+1.
We now prove with induction that:

Vk < n: Thereisac’ € Paths,, havinglength 2k+1, such that both
[0(2j4+ D)) = [0'(2j+1)]p forall j < k, and [p(c(25))]a =
(o' (20))]x for all ] < k.
For k = 0, there is ¢/ = (w').

Suppose we have constructed a ¢” with length 2k + 1 having the desired prop-
erty (k < n). Pick a b’ such that

b e () (p(c" (2k))) and []p = [0(2k + 1)]5

(it exists, since 3.2 is a quasi-pullback). If we set w” := (supy )~ (¢ (2k))(V'),
then
o' =" x (', w") € Paths,:

has the desired property for k+1. (We have [p(c(2(k+1)))]a = [p(o’'(2(k+1)))]a,
since w ~ w'.)

(iv) follows easily from (iii) and the definition.

We do not have, in general, that w ~ w. Set

S = {weW jw~w}
Or, equivalently:

w€S <&  Forall g,0' € Paths,, and natural numbers n: if length(o)
= length(c’) = 2n+ 1 and [0(2k + 1)]p = [0/(2k + 1)] g for
all £ < n, then [p(c(2n))]a = [p(c(2n))]4.



~ is now an equivalence relation on S, so we can form the quotient ¢ : § —— W.
Observe that we have that

w € S, 0 € Paths,,,2n 4+ 1 = length(c) = o(2n) € S
Let us also set (a’ € A'):
vo= Are T [(supwo)ur(r) € S}
Or, equivalently:

7€S) << Wehaveforall b, b] € (f/)~1(a’) that [by]p = [b)]s implies
that 7(bg) ~ 7(b}).

Note that it follows from 7 € S¥, and ¥’ € (f')_l(a’), that 7(b') € S.
We clearly have a map og : U1 S* — S in E making

UprS* »> Ups(W"I

gs l lsupwl

commute. We will now construct a commuting diagram of the following form:

Uns* Lo v,w!

gsl law (3)

S —= W
q

In pretopoi, there exists a general technique for constructing morphisms. If we
want to construct a morphism g : D —— (' in a Heyting pretopos, we can do this
by constructing a subobject L. C D x C' for which the following two statements
hold in the internal logic:

(i) VdeDVe,d €Cl(d, )€ LA(d,d)eL—c=C]
(i) Yde D3ceC[(d,c)€ L]

In this case we call the subobject L functional. Tt then follows using the axioms
of a Heyting pretopos that there exists a map g : 1) —— C having the property
that 1. is the graph of g.

In this way, we construct a morphism ¢* : S* —— WY in E by noting that
the subobject

Q = {(gh)eUS xUW|Q(g.h)}
where ()(g, h) is the statement:

If g € S and h € Wi @) for certain o € A" and a € A, then
[a']a = a and for all b € (f")~"(a’) : q(g(}")) = h([V']B).

is functional. (This is not hard to see.) The map ¢* so constructed is epi: for let
h be an arbitrary element of f~1(a) — W for a certain a € A. Pick an a’ € A’
such that [a’]4a = a. We have

o' € (f')"H(a")3s € S+ g(s) = h([t'])



since ¢ is epi. Since f’ is a choice map, we have a map g : (f')~
that q(g(b")) = h([b']g) for all &' € (f)~"(a’). Tf by, by € (f/)~!
[bo] = [b1]B, then

'(a") — S such
(a') are such that
q(9(b)) = h([bols) = h([¥1]B) = ¢(9(b1))
so g(by) ~ ¢(b}). This means that g € S¥, and hence that (g,h) € Q. Since h was

arbitrary, this means that ¢* is epi.
We now construct oy : U4 W/ — W in E by showing that

Sw = {(hyw)e UW/ x W |Sw(h,w)}
is functional. Here Yy (h,w) is the statement “There is a ¢ € US* such that
7*(9) = h and gos(g) = w.” That
VhecUW!Jwew: (h,w) € Zw

follows easily from the fact that ¢* is epi. Let us now show that

V90,91 € 5™ 1 ¢"(90) = ¢"(91) = q05(90) = qo5(91)
From this it follows that
Yhe W Vw,w' e W : (h,w) € Bw,(h,v') € Zw => w=1v'

and that (3.3) commutes.

Let for certain aj,aj € A’ elements go : (f')"'(af)) — W’ € S* and g¢; :
(f)~'(a}) — W' € S* be given such that ¢*(go) = ¢*(g1). This implies that
[ab]a = [@)]a and that

Wby € £ (ap), by € £ (ad) = [Bo]m = [Bils = go(bh) ~ g1(B))

From this it follows that og(go) ~ 05(g1), as the reader can check for himself. So
Yw is functional, and (3.3) commutes for the map ow just constructed.

I now claim that the Pj-algebra w = (W,ow : )", c4 Wi W) is
actually the W-type for f. For let

x=(X,ox : ZXf_l(a) — X)
a€A
be a Pf-algebra. We introduce the following notation: we write o ~ 7 for 0,7 €
Paths if and only if for some n € N: length(c) = length(7) = 2n + 1 and ¢(2n) ~
7(2n). And we define the following subset L of S x X:

L = {(s,z) €S x X| There exists g : Paths; —— X that is a
witness for (s, z).}

And a map ¢ : Paths, —— X is a witness for (s, z) if it satisfies the following
three demands:

(1) TIf o, 7 € Paths, are such that o ~ 7, then g(o) = g(7).

(ii) For all o € Paths,; and natural numbers n with the proper-
ties that o(n) = (0g)q(t') for certain @’ € A,#' € S¥,, that
the length of o equals n + 1, and that

m([t']B) = g(o * (', 1'0')) (b € (f)7(a")

defines a map f~'(a) —— X, we have that g(o) =
(ox)(m).
(i) g((o) = .



(It should be noted that the function m mentioned in (ii) indeed defines a function
f~Ma) — X, if (i) is satisfied. For if b}, b} € (f')~"(a’) are such that [bj]p =
[b1]B, then t'bf ~ t'b] since t' € S%,. So g(o* (b, t'by)) = g(o * (b}, 1'b})) according

to (i).)

Lemma 3.4 Suppose for elements s, s’ € S we have functions g : Paths, — X
and h : Pathsy, —— X satisfying conditions (i) and (ii) from the definition of a
witness. If o ~ 1 for elements o € Paths, and T € Paths,:, then g(c) = h(r).

Proof : The proof of this lemma uses the fact that:

Lemma 3.5 If R is a subobject of S satisfying
Ya' € AVt € S5 [V € ()71 (d') : t'V € R= (os)t' € R]
then R =S as subobjects of S.

Proof : Let K = {w € W |w € S — w € R}. Tt is easy to prove, using the
inductive property of W-types, that K = W' and hence R = S as subobjects of
S. Q

Let
M = {50€S|M(80)}
where M (sg) is the following condition:

For all s, € S and o € Paths,,: if length(c) = n+ 1 and o(n) = so,
then for all s; € S and 7 € Paths,, such that ¢ ~ 7 and for all
g : Paths,, —— X and h : Paths;,, —— X having properties (i) and

(i1): g(o) = A(7).

We prove that M = S as subobjects of S, using the previous lemma. Then the
desired result follows immediately.

Let a) € A and t}) : (f")"(ah) — W' € S* be such that for all b} €
(f)~1(a}) we have that ¢'b) € M. 1 want to show that sy = (05)t) € M, so take
arbitrary sq, sy € S and o € Paths,,,n € N with length(¢) = n+1 and o(n) = so
and 7 € Paths;, such that ¢ ~ 7 and ¢ : Paths;, — X and h : Paths,, — X
satisfying conditions (i) and (ii).

Let sy = 7(n). Since ow is iso, s; is of the form (awf)azl(t'l). The fact that
ay ~ a’ implies that [ap]4 = [a}]4 and that

Wby € (f')7"(ap), by € (f')7"(ah) = [Bolm = [b]B = tob ~ #hb)
So for by € (")~ '(ah), by € (f/)~(a}) such that [bl]p = [b}]B, we have that
o % (b, tabo) ~ 7+ (b, £767)
and hence g(o*(by, t4by) =
(i1), this implies that g(o)

shows that sy € M.
We conclude that M = S and that the lemma holds. Q

h(x (b}, t\b})). Using the fact that both g and h satisfy
= h(7). Since all the choices made were arbitrary, this

This lemma has the following easy consequence:

Lemma 3.6 If (s,z) € L and (s',2') € L and s ~ §', then x = 2. If (s,x) € L,
the function g : Paths, —— X “witnessing” this fact is unique.



Lemma 3.7 For every s € S there exists a (unique) x € X such that (s, z) € L.

Proof : Let M = {s € S|z € X : (s,x) € L'}. We prove, using lemma (3.5),
that M = S as subobjects of S. The desired results follows immediately from this.

Let @' € A" and t' € S}, be such that for all ¥ € (f’)_l(a’) we have that
t'd' € M. This means that there are unique z such that (t’b',zb/) c L and
unique gy : Pathsypr —— X witnessing this fact. Let

m([b']p) = @y (¥ € (F)7H(a")

This is a valid definition of a map f~'(a) —— X (a = [a]a): for if b), b} €
(f)~'(a’) are such that [b)]p = [b}]p, then #'b) ~ t'b}, since ¢ € S, and hence
Ty = Tp! (see lemma (3.6)).

Set s = (05)a'(t') and = (0x)q(m). Define g : Paths, — X as:

g(s)) = =
9((s,b) x0) = gp(0) (" € (f)7H(d)

This g witnesses the fact that (s,2) € L. So s = (os)(t') € M. Q

This last lemma implies that we have a map | : § —— X having L as its
graph. If we define I* : U/ S* — UsX' in E by

) ([bs) = 1(E(®")
for all a’ € A, #' € 53,0 € (f')~"(a’), then the diagram in E

l*
UpS* > Uy X!

X

commutes. In fact, it factors as:

* e
vse Loowt VS vy

il e

S > W > X
q 3

(Both these assertions are not hard to verify.)
It remains to show the uniqueness of £. It will follow from the following claim:
if we have another commuting diagram in E of the form

*
vsr I ouxt

N

S—— X
m

and m* is such that for all &' € A';¢' € S and V' € (f’)_](a') we have that
m*(t')([b']B) = m(t'h), then sq ~ s1 (sg, s1 € S) implies that I(sq) = m(s1).

Solet R={sg € S|Vsi € S: 59 ~s1 = Il(sg) = m(s1)}. We show, using
lemma (3.5), that R = S as subobjects of S. This will immediately yield the
desired result.
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Let so = (o5)a! () for certain aj € A and tg : (f)~"(ah) — W' e S* and
suppose that for all b € (f')~"(ah) we have that thby € R. Let s1 be an arbitrary
element of S such that sqg ~ s1. We know that s; is of the form (ag)azl(t’l) for
certain af € A’ 1} € S%,. From sq ~ s1 we deduce that [ap]a = [@}]4 and that

Wby € (f')7"(ab), by € (f')7"(ah) = [Bols = [B]B = tob ~ £15)
So for all by € (f)~1(ah), b} € (f)~1(a}) such that [bj]p = [b)]B, we have that
I(tyby) = m(t)bh). This implies that the functions wo, wy : f~'(a) — X (a =
[apla = [a}]a) defined by:
wo([bolr) = I(tabo)
wi([bi]s) = m(t}by)

are equal. So we conclude that:

I(s0) = U(os)tp)

Il
a q
d
=
2

Il
Q

I
—~ /i

Wrapping up, we see that £ is indeed unique. This completes the proof of the fact
that w is the W-type for f in C. 1]

4 Constructing W-types in the exact completion

In this section we will complete our proof of the first main result of this paper
(theorem (1.1)). In view of the reduction effected in the previous section, it will
suffice to show:

Theorem 4.1 Suppose C s a lextensive category with weak dependent products
and a weak natural number object. If C has a weak W-type for a map f in C,
then C.; has a strong W-type for the map yf.

Having the following auxiliary notions at hand, will facilitate the exposition of its
proof.

Definition 4.2 For an arbitrary map f : B —— A, we define the notion of a
Pg-structure in C. A Pj-structure is a quadruple x = (X, X*,0x,nx) with X
an object in C, X* an object in C/A4, ox a map Uy(X*) —— X in C and
nx a map X* x f —— X in C/A. A homomorphism of Pj-structures from
x=(X,X*ox,nx)toy = (Y,Y* oy,ny) is a pair t = (¢,¢*), where ¢ is a map
in C from X to Y, and t* is a map from X* to Y* in C/A. Furthermore, the
following diagrams should commute:

18 SIS IV LT G

[ e

X Y X Y

t

It is easy to see that this defines a category, one we shall call P;(C). 1]
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The category of weak Pj-algebra’s is a full subcategory of the category of Pj-
structures. Therefore morphisms in W P¢(C) can be considered as morphisms in
P¢(C), and if this is convenient, we will do so. And since (strong, i.e. ordinary)
Py-algebra’s can be regarded as weak Pj-algebra’s, they can also be considered as
Pj-structures.

Definition 4.3 A map t : x — y in P;(C) is said to be a weak Py-substructure
map, if for the pullback L in this diagram in C/A:

L Py oy x f
p2l l’?Y
X Y
t

the following diagram is a weak simple product diagram:

X*foL

p1
t* x f
Y*x f
Here ax = (t* x f,nx). Q
Concerning these notions, we have the following two lemma. Their proofs are easy

and omitted.

Lemma 4.4 If t : x —— y is a weak Py-substructure map and y is a weak
P;-subalgebra, then so is x.

Lemma 4.5 If w = (W, W*, ow,nw) is a weak W-type for f in a good category
C with weak dependent products, then ow has a section.

The proof of theorem (4.1) will proceed in two steps. First we will show that
if w = (W,W* ow,nw) is a weak W-type in C for a map f: B —— A, then
yw = (yW,yW* yow,ynw) has the following properties (in the remainder of
this section, we will drop the occurences of y; we trust that the reader will not get
confused):

(i)  The canonical map ¢ : W* —— W/ fitting into the dia-

gram
W f T g
N\
W
is epi.

(ii) For any subobject R C W: if it holds for every a € A and
T € W that

(Vbe f_l(a) . projw (nw(7,0)) E R) — ow(7T) ER

then R = W as subobjects of W.

(i) Tk=(K,06:) ,ca KI7a) K) is a Py-type, then
there exists a (not necessarily unique) Pj-structure map
t:w — k.

(iv) ow has a section s.

12



As our second step, we will show that if we have a Py-structure in a pretopos E with
dependent products and a natural number object for a choice map f: B — A

w = (WJ W*aaWanW)

having the above four properties, then there is a (strong, i.e. ordinary) W-type
for f. Taken together, the two steps will establish the proposition.

The following sequence of lemma’s will suffice for taking our first step. So
suppose C is a lextensive category with weak dependent products and a weak
natural number object, and suppose that w = (W, W*, o, nw ) is a weak W-type
for a map f : B —— A in C.

In these lemma’s, the following facts, familiar from the theory of exact comple-
tions, will repeatedly be used. In the exact completion, the objects in the image
of y are, up to iso, the projectives of this category. And every object in the ex-
act completion can be covered with a regular epi by such a projective. (See, for
instance, [5].)

Lemma 4.6 The canonical map ¢i : W* —— W/ in C.p/A is epi. (The fact
that q7 is canonical means that the diagram

G % f

W* x f Wi x f
N

w

commutes.)

Proof : Since w was a weak Py-algebra, we know that W* was a weak version of
W/ in C/A. We can now define the equivalence relation

Ra={(9,h) e Wy x W;|Vbe f_l(a) tnw(g,b) =nw(h,b)}

on WS (a € A) in C.p/A. Tt is not difficult to see that the quotient W*/R
in C.;/A is a strong version of W/. So W*/R = W/ and it follows that ¢} :
W* —— (A*W)7 is epi. i}

Lemma 4.7 For any weak Pg-algebra k = (K, K*, 0k, nk) in C., there is a P;-
structure map t : w — k.

Proof : Let r : R — K be a regular cover by an object R in the image of y.
Form the exponential RY in C.;/A. Since K* is a weak version of K7 in C.z/A,
we have a map 7} : R/ —— K* making

*
fofMK*xf

o) I

R - K

r

commute. Let r} : R* —s» R/ be a regular cover by an object in the image of y.
Now R* can be seen as a weak version of R/ in C/A, with ngr = evg o r}.
Since Uy (R*) is projective, we have a morphism og in C., such that

*

U
URY L UK

| |

R - K

T
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commutes (r* = r3 or}). Now r = (R, R*,0Rr,nr) can be seen as a weak Pj-

algebrain C, and r = (r, 7*) is a Pg-structure map in C.,. But the former implies
that there is a Pg-structure map  : w —— r. So t :=r o is a P;-structure map
from w to k. Q

Lemma 4.8 Ifr = (R, R*,0pr,nR) is a Pj-structure in C.p and t :x —— w is
a weak Pp-substructure map, then t has a section in P;(C.y).

Proof : Since t is a weak Py-substructure map, we know that if we form in C., /A

the pullback
Lo
o
K — w
then the following is a weak simple product diagram:

RExf2E L

P x f b1
W* x f
(with ag = ((t* x f),nRr))). Let £ : K — R be a regular cover by an object in

the image of y. Now consider the following diagram:

!
I Py

e

K—R w
K ¢ ;
Since the objects K, W and W* x f lie in the image of y, and since this functor
preserves pullbacks, we may assume that L’ also lies in the image of y.
Construct the following pullback:

YiZ J2 I

N

R*Xf——>1L
ar

And construct the strong version of T, (j1) in C.p/A (where m is the projec-
tion R* x f —— R*). This means that we have an object K§ with maps
&5 K — R* and ag, : K§ x f —— L' such that

- aK
K x f—2 s 1/

& xf n
R x f

14



is a strong simple product diagram (the notion of a strong simple product is defined
in the obvious way).

It is not hard to verify that
jZ o g,
_—

Kixf I

(togs) x pieh

W* x f

is a weak simple product diagram. Now let & : K*

by an element in the image of y. This implies that

—» K be a regular cover

K*x f 2 Ly

prol 4
(trol*)x f )
W*x f
with ag = j2 o ag, o (& X f) and € = &5 o &}, can be seen as a weak simple
product diagram in C/A.
Using the fact that K* is projective, we construct a map ox making

U *
UK* —> UR*

| o

K—R

commutative. This means that we have a Pj-structure k = (K, K*, 0, nx =
ly0ak) in C.;, that can also be seen as a P;-structure in C, and a Pj-structure
map & = (£,£*) in C.;. Now t o can be seen as a Pg-structure map in C, and it
is actually a weak Pj-substructure map in C (since (4) is a weak simple product
diagram). Therefore k can be seen as a weak P¢-algebra in C, and since w is a
weak W-type in C, we have a Pp-structure map s’ such that (t 0 &) os’ = idw in
P¢(C) and P(C.z). Sos = £ os’ is a Pp-structure map in C., that is a section
of t. Q

Corollary 4.9 Let R C W be a subobject in C,, and assume that the following
statement holds in the internal logic of C.y:

Ya € A¥r € W2 [(Vbe f~ (a): projw(nw(r,b)) € R) — ow(r) €R]  (5)
Then R =W as subobjects of W.
Proof : Define the following object in C.,/A: for any a € A
Ry ={reW;|¥be f(a): projw(mw(r,b) € R}

The validity of statement (5) implies that for the canonical map j* : R* —— W*,
ow o Uaj* factors through R. So we have a map or making

U
UR L U
i
R W
J
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commutative. By the very definition of R*, the map nw o (j* x f) factors through
A*R, so we have a map ngr making

*%
R*xfgW*xf

] I

R w

J
commute. So r = (R, R*, 0, ngr) is a Ps-structure in C.; and j = (j,j*) is a

Pj-structure map. It is actually a weak Pj-substructure map, so j has a section
s : w — r. This implies that j 1s 1so, and R = W as subobjects. 1]

Now we will take our second step. So suppose we have a Pj-structure w =
(W, W*, ow, nw) having the four properties mentioned on page 12 in a pretopos
E with dependent products and a natural number object for a choice map f :
B —— A. Now, even though the elements cannot, generally speaking, be thought
of as trees, we can still define the subobject Paths of (W 4+ B + I)N as consisting
of those o € (W + B + 1)V such that:

(1) o(0) is an element of W.

(2) If o(n) € W for a certain natural number n, then either
on+1)€Boro(n+1)=x*

(8) Ifo(n) € W and o(n+1) € B for a certain natural number
n, and, more specifically, o(n) = (ow)a(7) for certain a €
A, T e Wr, then f(o(n+1)) = aand o(n+ 2) = (projy o
aw)(r, (0 + 1),

(4) If o(n) = * for a certain natural number n, then for all
natural numbers £ > n also o(k) = *.

It is again unnecessary to require that for all & € Paths there is a natural number
k € N such that o(k) = *, for we can show that this is true using property (ii).
And we let Paths, for a certain element w € W denote the fiber above w of the
map ! : Paths — W : 0 — ¢(0), and let p be the composition of the canonical
map UsW* —— A and s (s is the map mentioned in property (iv)).

If the elements of W really were trees, then the following equivalence relation:

/

w~w <& There is a map h : Paths,, — Paths,s satisfying the
condition .

where & is the condition

h : Paths,, —— Paths,,s is a bijection and for all o € Paths,, we have
that length(o) = length(h(c)) and, if n is the natural number such
that 2n 4+ 1 = length(o) = length(h(c)), for all k < n that o(2k+ 1) =
(h(0))(2k + 1), and for all k < n that p(c(2k)) = p(h(o)(2k)).

would be the identity. The way to proceed is to force ~ to be the identity, by di-
viding out by this equivalence relation. So let W' = W/ ~ and let ¢ : W —— W’
be the quotient map. We will show that W’ can be turned into a full-blooded
W-type for the map f.

Our first task is to define a strong Pg-algebra structure on W'. Basically, we
only have to give a map

owr Y WO = U (W — W
a€ A

16



We claim that there is such a map, making

U *
vw* e vy

w| o

W — W
q

commute. (Here ¢* is the composition of ¢i : W* —— W/ and ¢ = ¢/ :
W/ —— (W’)/, and hence epi.)
We prove this claim by showing that the subobject

J = {(nw)eUW) xW'|J(rw')}
where J(7,w') is the statement

There exists a ¢ € UW™ such that both (U¢*)(0) = 7 and (qoow )(0) =

w'.

is functional. The validity of the statement
Vre UMWY Juw' e W' : (r,w') € J

follows immediately from the fact that Uq* is epi.
So suppose that 7 € U(W')! w' w"” € W' are such that (r,w') € J and
(r,w") € J. Now we can find o’, 0" € UW* such that:

(Ug*)(o')=7 and (qoow)(c’') = ', as well as
(Ug*)(o")=7 and (qoow)(c")=w".

So we have that (Uq*)(¢') = (Uq*)(¢"), and if 7 € (W’)f_l(“), this implies that
for all b € f_] (a):

(projw o nw )(a’,b) ~ (projw o nw (", b)
Now, using choice for f, we can select for every b in f~1(a) a map

hy : Paths I S Paths

(Proj ywonw (o (PTO] yonw (o ,b)

that satisfies the condition .
Define a map h : Paths(y,),r — Paths(sy, ), as follows:

h({(ow)o’)) = ((ow)o”) and
h({(ew)a',b)x o) = ((ow)c”,b) * hy(o)

It is easy to see that h is well-defined and conforms to the constraint &. So
(ow)o’ ~ (ow)o"”, and hence w' = (qoow)o’ = (qoow)o” = w".
This proves that J is functional, and hence that we have a map

oW Z W@
a€ A

in C having J as graph and making the desired diagram commute. This means
that we have defined a strong Pj-algebra structure w’ on W’ (and notice that
q = (¢,¢%) is a Ps-structure map). Now we have to prove that this strong P;-
algebra is the strong W-type for f in C.

17



So let

x = (X,ox: ZXf_l(“) — X)
acEA
be another strong Py-algebra in C. We have to construct a strong Ps-algebra map

t:w' —— x. We know that we have a P;-structure map j = (j,j*) : w — x.
I claim that j factors through q. In order to prove this, we have to show that

w~w = j(w) = j(w)

Solet R={weW|Vuw €W : w~uw = jlw)=j(w')} We prove that R=W
as subobjects of W using the inductive property (ii) of w.

Suppose w = (oW )o(7) for certain a € A and 7 € W, and assume furthermore
that

Vb e f~'(a) : (projy o nw)(7',b) E R
Let w' be an arbitrary element of W such that w ~ w'. We know that w' is of
the form (ow)a/(7') for some o' € A, 7/ € W}, (remember that ow has a section).
From the fact that w ~ w’ we deduce that a = a’ and that
Vb e f~1(a) : (projw o nw)(7,b) ~ (projw o nw)(r,b)

Now it follows from the induction hypothesis that (j o projy o nw )(r,b) = (j o
proju o nw )(7',b) for all b € f~'(a). But this implies that the following functions
f7Ha) — X

(U3™)(1) b€ £ (a).(j o projw o nw )(T,b)

(U7*)r') = Ab€ f'(a).(joprojw o nw)(',b)

are equal, and hence that

jw) = (Jow)a(r)
ox(Ug™(r))
ox (Uj (')
(Jow)a(T')
= j(w')

This completes the induction hypothesis. Therefore we can conclude that R = W
as subobjects of W.

We conclude that there exists a map ¢ : W/ —— X such that tog = j in C.

Let t* = t/. We prove that t is actually a strong P;-algebra map. The following
diagram in E/A commutes:

Wy« p B2l vy

| o

w X

4
As does the righthand square of the following diagram in E:

Uq* Ut
vw* 4 vy 2 ux!

oW l lo’W/ lo’X (6
w w' X

~—

18



And for the following reason: the map ¢ : W* —— X/ making

W*Xfﬂ»Xfxf

nw nx

_ >

J=togq

commute, is unique. Since both j7* and ¢* o ¢* have this property, we know that
t* o ¢* = j* and hence that the outer rectangle in (6) commutes. But since the
lefthand square in (6) commutes, and Ug* is epi, the same holds for the righthand
square in (6). The conclusion is that ¢ is really a strong P¢-algebra map.

We now prove that ¢ is the unique strong Ps-algebra map from w’ to x. This
follows from the following claim: if k = (k, k*) is another P¢-structure map from
w’ to x, then:

W~ ' = () = k(w)
We again prove this using the “inductive” property (ii) of w.

Solet R={we WV e W: w~w = jlw) = k(w)}. Assume that
w € W equals (ow )q(7) for a certain a € A and 7 € W such that

Vb e f~'(a) : (projw o nw)(r,b) € R

Let w' be an arbitrary element of W such that w ~ w’. w' is of the form (ow ) (")
for a particular 7/ € W}. Since w ~ w’, we have that

Vb € f_l(a) . (projw o nw)(7,b) ~ (projy o nw)(7',b)

So we know that for all b € f~1(a) we have that

(j o projuw )(r,b) = (k o projy )(r', b)

But this implies that the functions (Uj*)(7) and (Uk*)(7') are equal and that

j(w) = (jow)a(T)

= ox(Uj*(7))
ox(Uk*(7"))
(kow)a(r')
= k(v

Sow € R.

We conclude that R = W as subobjects of W, and hence that j = k. This
means that the map ¢ really is unique and that therefore w’ is a strong W-type.
So we have taken our second step, and we have completed the proof of proposition
(4.1). And with it, we have also proven theorem (1.1).

5 Constructing weak W-types in the category of
partitioned assemblies
In this final section, we want to prove

Theorem 5.1 (= Corollary 1.3) For all pretopoi E with dependent products
and W-types, we have that Eff(E) is also a pretopos with dependent products and
W-types.
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In view of theorem (1.1), it is sufficient to prove the following result:

Theorem 5.2 (= Theorem 1.2) For all pretopoi E with dependent producis and
W-types, we have that Pass(E) has weak W-types.

For this purpose, let
f:(eg:B—> N) —> (e4a: A—— N)

be an arbitrary map in Pass(E), and let f also be the name of the corresponding
map in E. We will first construct a weak Pg-algebra for f in Pass(E) and then
show that it is actually the weak W-type for f.

Let W(f) be the W-type for f in E, and let Paths be the object in E defined
as on page 5 (minus the accents): as explained there, we might think of it as the
set of paths in the trees that are the elements of W(f). In order to construct
the weak Pj-algebra, we need the notion of decorated tree in the internal logic
of E. For any element w € W(f), a member k of N is called a decoration of
w if k is such that for every o € Paths, and n = length(o) there is a function
¢:40,2,...,n—1} — N such that: (i) ¢(0) = &; (ii) if for some even k < n,a € A
and ¢ : f~'(a) — W(f), we have that o(k) = sup,(?), then jo(c(k)) = ea(a);
and (iii) for all even k < n — 1, we have ji(c(k)) - eg(o(k 4+ 1)) = c(k + 2). (Here
j is a pairing function for the natural numbers, and j; and j; are its associated
projections.)

The following comment is perhaps helpful in clarifying this definition: every
such k determines a function Paths,, —— N, one I shall also denote k. On an
element o € Paths,, this function is defined as follows: let n = length(s) and
¢:{0,2,...,n— 1} —— N be a function satisfying the conditions (i)-(iii) given
above. Now we set k(o) := ¢(n — 1), and this is well-defined, since the function ¢
satisfying (i)-(iii) is necessarily unique.

Conversely, we can consider a function & : Paths,, —— N and this determines
an element of N by taking x((w)). In fact, this natural number is a decoration if
and only if k satisfies the following constraint:

For all o € Paths,, a € A, t : f~'(a) —— W and natural numbers
m, ng,ni: if o(m) = sup,(t), m = length(o) — 1 and k(o) = j(no, n1),
then (1) €a(a) = no and (ii) n1 -ep(b) = k(o * (b, tb)) for all b € f_](a).

In the case E = Sets this has the following, more intuitive, significance: we think
of x as a function that assigns to every node in the tree w a natural number, in
such a way that if n is assigned to a node that is labelled by a certain element
a € A, then jy(n) = ea(a) and that if

is an edge in the tree w that is labelled by the element b € B, then we require
for the natural numbers n assigned to the end point and n’ assigned to the begin
point that ji(n) - ep(b) = n'.

In the sequel we will frequently exploit the presence of the functional perspec-
tive by using the notation k(o) in writing down formulas, even if £ is just an
element of N.

So we also define the notion of a decorated tree in the internal logic of E; being
a pair consisting of an element w € W(f) together with a decoration for it. Let
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us call the object of all these pairs . This object can easily be turned into an
object in Pass(E) by defining a morphism ey : W —— N as follows:

ew (w, k) = & = k({w))

Now we let W together with ey be the first component of the quadruple that is
to be the weak W-type.
In order to define the second component of the quadruple, we first define the

object W* in E/A as follows (a € A):
Wr = {(g,n) e W/ (@) x N|W*(g,n)}
where W*(g,n) is the statement

n codes a pair (ng,ni), that is, n = j(ng,n;), where ng equals €4(a)
and n; tracks g, meaning that for all b € f~!(a) we have: ny -eg(h) =

ew (g(b)).

By setting ew=(g,n) = n, we turn W* into an object in Pass(E), and also in
Pass(E)/(e4a : A—— N). And if nw : W* x f —— W in Pass(E)/(ca :
A —— N) is given by

mw((g,n),b) = (g(b), f(b))

then WW* is a weak version of W/ with gy as weak evaluation.

Therefore we let nw be the fourth component of the quadruple, and the con-
struction will be complete once we have defined a map ow : U.,(W*) — W.
So let us suppose that we have an element (g,n) in ;. Then we have for every
b€ f~'(a) elements (wy, k) = g(b) in W. We now define ow (g,n) to be (w, ),
where

w = sup,(Ab € f1(a).wp)

and « equals n. (It is not hard to see that x is a decoration of w.)
This completes the definition of the weak P;-algebra

w = (VV,W*,O'W,GW)

in Pass(E). We will now show that it is a weak W-type. First, we demonstrate
that it is weakly initial in W P¢(Pass(E)).

Proposition 5.3 The weak Pj-algebra w constructed in this section is weakly

initial in W Py (Pass(E)).

Proof : Suppose x = (X, X*, 0x,nx) is a weak Pj-algebra in Pass(E). We have
to construct a map t = (¢,4*) : w —— x. Without loss of generality, we may
assume that X*, ex« : X* —— N and nx : X* x f —— X are of the following
form: for any a € A

X: = {(h,m)e X/ (@) x N|X*(h,m)}

a

where X*(h,m) is the statement:

m codes a pair (mg, m1) in such a way that mg = e4(a) and my tracks

g, i.e., forall b€ f~1(a): my - ep(b) = ex(g(b)).
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and ex«(h,m) = m and nx((h, m),b) = (h(b), f(b)).

We first construct the natural number r that is to track ¢{. Suppose s is
a natural number tracking ox, and H is a function that yields for the codes of
partial recursive functions the code of their composition, i.e., for all codes of partial
recursive functions p and ¢ and natural numbers n

H(p,q)-n = p-(¢-n)

We then obtain r as a solution of

r-n = s(j(jo(n), H(r ji(n)))

using the First Recursion Theorem.
We construct the map ¢ by defining a suitable functional subobject of W x X.
We set:

L= {((w.r).2) €W x X|L((uw.x),2))

Where L((w, ), z) is the statement: “There exists a function g : Paths,, — X
that is a witness for ((w,«),z).” And a witness is defined as follows: we call
g : Paths, —— X a witness for ((w, k), z) if the following three conditions hold:

(1) r- k(o) =ex(g(o)) for all o € Paths,,.

(ii) For all ¢ € Paths, and natural numbers n, if o(n) =
sup,(?) and length(c) = n 4+ 1, then we have for the el-
ement (h,m) in X} defined by

h = b€ f7(a).g(o * (b,1h))
m = j(cala), H(r, ji(x(0))))

that ox(h, m) = g(o).
(iii) == g((w)).

(If constraint (1) is satisfied, the element (h, m) mentioned in (ii) really belongs to
X for if bisin f~1(a), then

H(r, jik(0)) - ep(b) = r-(jik(o) ep(b))
r k(o * (b, (b))
= ex(g(o* (b 1h)))

So H(r,jik(o)) really tracks h.) The way to understand this definition is by
thinking of ¢ as a restriction of ¢ to those elements that are “decorated subtrees”
of (w, k).

We prove that L is functional, by establishing a sequence of lemma’s.

(% is a decoration)

*
*

Lemma 5.4 If (w,k) € W and g,h are functions Paths, —— X salisfying
constraints (i) and (i1) in the definition of a witness, then g = h.

Proof : Let
R = {weW(f)|R(w)}
where R(w) is the condition

For all decorations & of w and functions g, h : Paths,, — X satisfying
constraints (i) and (ii) for being a witness: g = h.
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We prove, using transfinite induction for W-types, that R = W(f).

So let w = sup,(t) for some a € A and ¢ : f~'(a) — W(f) and assume that
for all b € f~'(a) the element #(b) of W(f) lies in R. Let x be a decoration of w
and let g, h : Paths,, — X be functions satisfying (i) and (ii).

Notice that for every element b € f~1(a), if we define kp = x((w,b,#(b))) and
gv, hy : Pathsy ) —— X by

gp(o) = g((w,b)x0)
hy(o) = h((w,b)*0)

for every o € Pathsy(;), then 3 is a decoration of #(h) and g» and h; both satisfy
(i) and (ii) for (¢(b), x3). Since we assumed that ¢(b) € R for every b € f~1(a), we
also have that g, = hy for every b € f~1(a).

Now let finally m := H(r,j1£({w))) and remark that it follows from the as-
sumption that ¢ and h satisfy constraint (ii), that:

g({w)) = ox(Ab e f7'(a). g((w, b, 1(b))), m)
= ox(Abe f_l(a).h(<w,b,t(b)>),m)
= h((w))

This shows that g = h.
We conclude that R = W(f) and that the lemma indeed holds. Q

This lemma has the following trivial consequence:
Lemma 5.5 If ((w,k),z) € L and ((w,&),z') € L, then z = 2'.
We furthermore claim:

Lemma 5.6 For all (w,k) € W there is a x € X such that (w,k),z) € L.

Proof : Let
R = {weW(p)|Rw))
where R(w) is the condition:
For all decorations & of w there exists a z € X such that ((w, k), z) € L.

We show, again using transfinite induction for W-types, that R = W.

So let w = sup,(t) for some a € A and ¢ : f~1(a) —— W(f) and assume
that for all b in f~1(a): ¢(b) € R. Let x be a decoration of w, and it again
follows that for every b € f~1(a) the element &y of N defined by &y = r({w, b, tb))
is a decoration of #(b). Observe that if we set v = Ab € f~'(a).(¢(b), k), then
(v,k) € WS and ow (v, k) = (w, k).

But from the fact that ¢(b) € R it now follows that there are (necessarily
unique, by lemma (5.5)) 2, € X such that ((¢(b), ks), z;) € L. This in turn implies
that there are for every b € f~'(a) (also necessarily unique, by lemma (5.4))
gv : Paths;;y — X that are witnesses for ((¢(b), x3), ).

Now define h and m as follows:

h

m

Mg f 1 (a).xy
J(o(k), H(r, j1(k)))
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Now (h,m) € X, for H(r, j1(k)) tracks h, as the following calculation shows:

H(r,ji(k)) -eg(b) = r-(j1(x) -ep(b)) (def%n%t%on H)
= r-ew(v(b)) (def¥n¥t¥on X*)
= 7r-ew(t(b), kp) (def%n%t%on v)
= & ((t(h))) (deflnlfclo.n €w) . .
= ex(ga(¢(0)))) (g sat%sf%es constramt (1))
= ex(xp) (gs satisfies constraint (ii))

Set z := ox(h,m), and define ¢ : Paths,, — X as follows:
g((w)) = =
g({w,b) xo) = gi(0)

It is easily verified that g satisfies constraints (ii) and (iii) for being a witness
for ((w,k),z). But g also satisfies constraint (i), as follows from the following
calculation and the remark that all g satisfy constraint (i).

ex(9((w)) = ¢

= €

1

<] 2] <]

A~ N N
2

[l
<
=

= ro({u))

This shows that ((w, k), #) € L, and hence that w € R.
We conclude that R = W. Q

Wrapping up, we see that we have shown that the subobject I is functional. Tt
follows that we have a map ¢t : W —— X in E such that L is the graph of £. Tt
is not hard to see that ¢ is also a map in Pass(E), since it is tracked by r. For if
(w, k) € W, then ((w, k), t(w, k)) € L, and so there exists a map ¢ : Paths,, — X
that is a witness for this element. This means that:

reew(w, k) =7 k({w)) = ex(g((w))) = ex (t(w, k))

To complete the definition of t, we define ¢}, : W; —— X by:

ta(v,n) = (tov,j(jo(n), H(r, ji(n))))
It remains to be shown that the following diagrams commute:

t* t*
wes f L v p o Y8 oy

m| o] e

w X W—t>X

It is easy to see that the first diagram commutes, so we concentrate on the second.
Suppose (v,n) € W} for some a € A. We know that for all b in f~!(a), we have
that (v(b),#(v(b))) € L. Reasoning along the same lines as in lemma (5.4), we can
show that for

h = tow

m = j(jo(n),H(r, ji(n)))
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we have that (h,m) € X} and (ow(v,n),0x(h,m)) € L. But since (h,m) =
t% (v, n), this implies that oxt*(v, n) = tow (g, n).

So t = (¢,t*) is a homomorphism of weak Pj;-algebra’s. We conclude that w is
indeed weakly initial in W P;(Pass(E)). Q

The following proposition will complete the proof of the fact that w is a weak
W-type for f in Pass(E).

Proposition 5.7 Ifk : x —— w is a weak Pj-subalgebra, then k has a section.

Proof : Let k : x —— w be a weak Pj-subalgebra. Form the following pullback
in Pass(E)/(e4 : A — N):

L—pLW*xf

n

X — W
k

We may without loss of generality assume that in x = (X, X*, ox,nx) the second
component X* and the fourth component nx are of the following form, and that
k* is given as follows. For any a € A and 7 € W;:

X = {(h,m)eL! x N|X*(h,m)}
where X*(h,m) is the statement

For all b in f~'(a) we have that p;g(h) = (7,b) and m codes a pair
(mg, mq) such that (i) €4(a) = mg; and (ii) my tracks projy o pz o h,
ie., forallbe f~'(a) : my-ep(b) = ex((projx o pa2 o g)(h)).

and X7 = [[,cwe X

¥, and k) @ X; —— W} is the projection, and ex« :

X* —— N is defined by ex«(7,7) = ew=(7), and finally nx : X* x f — X is
given by nx((r,(h,m)),b) = (p2 o h)(b).

The proof of this proposition is now a variation of that on the previous. We
again want to construct a map s : W —— X, and the natural number r that is
to track this map is constructed in the same way as in that proof.

We again define the subobject L, and what a means for a function

g : Paths,, — X

to be a witness, almost in the same way, but adding an extra constraint:

(v) k()= (w,r)

The proofs of the lemma’s (5.4-6) now carry over almost verbatim. In the proof of
lemma (5.6) we have to make the following slight adaptations. Let h and m now
be given by:

h = b f~'(a).(((v,x),b), (a,x3)) and
m = j(jo(x), H(r,j1(x)))
We now have that ((v, k), (h,m)) € X}, since the fact that ((¢(b), &s), 2s) € L now
also implies that k(zs) = (ws, kp) = v(b). So if we now set z := ox((v, &), (h, m))
and let g : Paths,, — X again be given by:
g((w)) = =
g((w,b) xo) = gi(0)



¢ again satisfies the “old” constraints (i)-(iii). It also satisfies the new constraint
(iv), since:

k(z) = kox((v,x),(h,m))
= O'W}{Z*((U,K/);(ham))
= ow(v, k)

= (w,K)

This means that the subobject L is again functional. Let s : W —— X in E be
such that L is the graph of s. Now s is a section of k£ by construction.
The map s* : W* —— X* is constructed as follows. We set

SZ(”) n) = ((va ”)a (h) m))

for every a € A and (v,n) € W7, with

a)

h = /\bEf_l(a).(((v,n),b),(a,(sov)(b)))and
m = j(jo(n), H(r,ji(n)))

It is now not hard to see that s = (s,s") is a weak Pj-algebra map in Pass(E)
and that s 1s a section of k. This completes the proof. 1]

This means that we have also established corollary (1.3).

This article is based on the thesis I wrote at the University of Utrecht. I would
like to thank professor Ieke Moerdijk for suggesting an interesting problem to work
on and for supervising the processes of writing the thesis and this article. I should
acknowledge the use of Paul Taylor’s macro’s to typeset the diagrams.
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