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Abstract

Superconvergence of the gradient for the linear simplicial finite element method ap-
plied to elliptic equations i1s a well-known feature in one, two, and three space dimensions.
In this paper we show that, in fact, there exists an elegant proof of this feature inde-
pendent of the space dimension. As a result, superconvergence for dimensions four and
up is proved simultaneously. The key ingredient will be that we embed the gradients
of the continuous piecewise linear functions into a larger space for which we describe an
orthonormal basis having some useful symmetry properties. Since gradients and rotations
of standard finite element functions are in fact the rotation-free and divergence-free ele-
ments of Raviart-Thomas and Nédélec spaces in three dimensions, we expect our results
to have applications also in those contexts.
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1 Introduction

In their famous 1969 paper, Oganesjan and Ruhovets [29] proved that the gradient Vuy, of the
continuous piecewise linear finite element approximation uj; of the solution u of the Poisson
problem —Awu = f with homogeneous Dirichlet boundary conditions on a rectangular two-
dimensional domain using uniform triangular partitions, is closer to the gradient V Lju of the
nodal linear Lagrange interpolants Lpu of u than to Vu. In fact, using standard notation for
Sobolev spaces and norms, they showed that

IV (un = Lypu)llo < Ch*|uls, (1)

whereas both Vuj and VLju approximate Vu only with order O(h). This phenomenon,
which has since the 1991 paper [27] by Lin et al. been called supercloseness to the nodal in-
terpolant, can be exploited to develop post-processing schemes to improve the approximation
order of Vuy, from O(h) to O(h?). This explains why [29] is often considered as the paper
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that initiated the research in the by now well-developed area of superconvergence in finite
element methods.

We have found that in one space dimension, the supercloseness of the finite element solution
was considered in the paper [33] by P. Tong 1969, but we suspect that in the engineering
society, the same result has already been known much longer, although we could not find an
earlier reference. The corresponding result in three space dimensions was firstly proved by
Chen [10] in 1980. Unaware of the developments in China, Kantchev and Lazarov proved
essentially the same result in 1986 [22]. Also in the paper [18] by Goodsell, the same super-
closeness can be found. Interestingly, the proofs for one, two and three dimensions are all
quite different in nature, and rather technical. In this paper, we will present just one key
argument that proves the supercloseness (1) for all space dimensions n > 1 simultaneously.
For dimensions four and up, we need to assume higher regularity of the solution u to guar-
antee that its nodal interpolant Lj,u is well-defined, but since this interpolant is not present
anymore in Theorem 4.7, we can remove those additional regularity assumptions by a density
argument, which results in Corollary 4.8.

Since the paper by Oganesjan and Ruhovets, a large number of superconvergence results have
been derived by different authors in various contexts [19, 24, 26]. The supercloseness (1) to
some local interpolant remained essential and of central importance in many of them. Indeed,
apart from the fact that similar results were obtained for higher order triangular elements
[1, 2, 7, 20] and for elliptic systems [21], also for elliptic equations in three space dimensions,
one succeeded in proving (1) for tetrahedral partitions with a certain symmetry [10, 18, 22].
Typical difficulties with superconvergence in IR? are surveyed in [9].

1.1 Motivation

The value of this paper lies in three aspects. First, it presents a proof for supercloseness
in dimensions one, two, and three that may be easier to understand than the proofs in the
original papers [33, 29, 10]. Second, for dimensions four and up, the supercloseness is a new
result. It might seem that in current practical applications of the finite element method there
is no need for simplicial higher dimensional elements. Nevertheless, it is well-known that for
example in areas like financial mathematics [35, 36], particle physics, statistical physics [13]
and general relativity, higher dimensional PDEs need to be solved. As an example, we quote
G.B. Cook and S.A. Teukolsky from the 1999 issue of Acta Numerica [12], in which they
contemplated (page 11) on simplicial meshes in four dimensions:

”(Given that general relativity is a four-dimensional theory, a natural approach for solving the
equations might be to discretize the full four-dimensional domain into a collection of simplices
and solve the equation somehow on this lattice. A discrete form of Einstein’s equations based
on this idea was developed by Regge [31, 34]. While considerable efforts have been made
to implement numerical schemes based on this Regge calculus approach, they have not yet
moved beyond test codes [4, 16]”.

Finally, finite element discretizations based on tensor product partitions in three dimen-
sions often lead to non-monotone matrices and a corresponding loss of the discrete maximum
principle. Hence, the numerical solution might not preserve exactly those properties of the
continuous system that are relevant. This may for instance result in a cash-flow opposite to
the flow of the corresponding continuous problem or in matter-spitting black holes. Simplicial
meshes seem to be the solution to this problem, as was proved for n = 3 in Korotov et al.



[23]. We expect that for the applications mentioned above, this is of vital importance. As a
third motivation, as we will outline in more detail in Section 1.3, the supercloseness may be
of use in the study of more complicated three-dimensional mixed finite element methods.

Our (for n > 4) supercloseness result (1), which follows from the strengthened Cauchy-
Schwarz inequality (3), implies superconvergence for the standard finite element method.
The superconvergence result itself may also be derived using an L estimate from the paper
[32], whereas the individual bounds (1), (3), and (6) can not be found in [32].

1.2 The main inequality

Consider a face-to-face partition of a bounded polytopic domain € C IR™ into n-simplices.
Denote the space of continuous piecewise linear polynomials with respect to this partition
by Vi, and let Vo, = Vi, N HY(Q). Discretizing the Poisson equation —Au = f € L*(Q)
with homogeneous Dirichlet boundary conditions using Vy, as approximating space, means
finding up € Vop such that (Vug, Vop) = (f,vp) for all v, € Vo This gives the Galerkin
orthogonality relation (V(u—uy), Vug) = 0 for all v, € Vi, and hence the difference uj, — Lyu
can be studied as follows. Assuming that u is smooth enough for Lyu to be well-defined, we
get that

||V (up, — Lhu)Hé = (Vup — VLpu,V(up — Lpu)) = (Vu— VLpu, V(up — Lpu)). (2)

Application of the Cauchy-Schwarz inequality at this point would only result in ||V (u, —
Lyu)||o being less than or equal to ||[Vu — VLulo, which is not enough for our purposes of
post-processing. Therefore, we will use an alternative analysis to show that, under additional
assumptions on the mesh, and with s =3 if n < 5 and s > n/2if n > 6,

Yu € H*(Q) N Hy (), Yor € Von, [(Vu — VLpu, Vor)| < Ch*|u|3|Vuglo. (3)

According to the Sobolev Embedding Theorem, the condition s > n/2 assures that u has a
representation as a continuous function, and hence that Lju is well-defined. The condition
s > 3 comes from a Bramble-Hilbert argument in the proof of (3), and obviously s = 3
is necessary and sufficient to get the factor A* in (3) for all n < 5. This explains why no
attention needed to be paid to this aspect in the existing proofs for space dimension up to
three.

1.3 A more general setting for mixed finite elements

It is possible to formulate our objectives more generally. For this, we recall the notion of
simplicial Nédélec [28] mixed finite elements in arbitrary dimension. These elements are
used in the discretization of problems in which the unknowns are vector fields. Connected
with the lowest order spaces NY is an interpolation operator II, defined for vector fields
q € W C [H*(Q)]" having a certain smoothness. Denoting by 7(e) a unit vector along a
given edge e, it is well-known that there exists a unique Il q € NY such that for all edges e

[(a- W) r(e)de = 0. (4)
€
For this interpolation operator, it typically holds that [28]

Vaqe W, |lq—II,ql|lo < Chlql;. (5)



An interesting fact is, that the subspace Zj of curl-free elements of N2 satisfies VVy, C Zj, C
VVy. Equality to either Vj, or Vp; arises when the equation to discretize has homogeneous
boundary conditions of either Dirichlet or Neumann type, whereas mixed boundary conditions
result in a Zj, strictly in between them. Moreover, if ¢ = Vu, then whenever both interpolants
are well-defined, we have IIq = VLILju, which is expressed in the following commuting
diagram:

Q) —Y W
Ly 11,

Von

v

Therefore, as a generalization of (3), we would like to show that
VYq e W, Yo, € Von, |(q— Mg, Vog)| < Ch*|ql2|Voslo- (6)

In this paper, we will prove (6) for all n and with the most general possible choice for
W C [H?(Q)]™. Forn =2, (6) yields supercloseness results not only in triangular lowest order
Nédélec elements, and hence through (3) for the standard finite element method. In [6, 7]
it was moreover shown that also for lowest and one-but-lowest Raviart-Thomas triangular
mixed finite elements for elliptic equations relation (6) yields superconvergence. Of central
importance in that context is the property that curls are gradients that are rotated pointwise
over /2. In three space dimensions and up, this is not the case anymore. This complicates
the analysis considerably. We refer to [17] for the definition and a summary of main results
concerning the three-dimensional mixed elements. Denoting the lowest order H(div;)-
conforming Raviart-Thomas space by RTY, in [17] it is moreover shown on page 275 that for
all q, € RTY, qy is divergence-free if and only if q; € curl N9. So even though in three and
higher dimensions, the relationship between Raviart-Thomas and Nédélec elements is more
obscure, gradients and curls of continuous (vector-) piecewise linear functions are present,
either implicitly or explicitly, as subspaces of physically relevant quantities. This motivates
why we will pay special attention to them in this paper.

1.4 Outline

In Section 2, we will concentrate on simplicial partitions of n-dimensional polytopes and
define the concept of uniformity. For n = 2 this will coincide with the usual definition of
uniform triangulations, which is that any two triangles sharing an edge form a parallelogram.
In Section 3, we derive results for continuous piecewise linear functions on such partitions.
The main feature is that their gradients can be written as linear combinations of mutually
orthogonal functions with small and point symmetric support. This point symmetry will be
the basis of the proof of the strengthened Cauchy-Schwartz inequality (6). In Section 4 we will
concentrate on post-processing, resulting in superconvergence. Finally, once the success of
the post-processing on the gradient of the finite element solution has been shown, we remove
the additional smoothness assumptions that were due to the definition of the interpolant by
a density argument.



2 Simplicial partitions of polytopes

It is not standard terminology what is meant by a uniform simplicial partition of an n-
dimensional polytope for n > 3, so we will concentrate on this in Section 2.1. In Section 2.2,
we prove that for each n there exist n-simplicial partitions having the required properties.

2.1 Regular families of uniform partitions

We will be interested in regular families (Aj); of simplicial partitions of the polytope Q C IR™.
By this we mean that (Ay), satisfies:

(R) There exists a > 0 such that for all Ay € (Ap) and for all n-simplices S € Ay, the
ratio of the volume of S and the volume of the circumscribed n-sphere S (see [15]) is
larger than a.

Moreover, we assume that each partition Ay € (Ap)p is uniform, which means that it satisfies
the following uniformity conditions:

(U1) There exist n linearly independent unit vectors xi,..., x» such that for each S € A,
and each j € {1,...,n}, the simplex S has an edge parallel to x; (j =1,...,n).

(U2) For each internal edge e ¢ 9 in one of the directions x; (j = 1,...,n), the patch of
simplices sharing e is point symmetric with respect to the midpoint of e.

Remark 2.1 In two space dimensions, it is clear that (U2) implies (U1), and after some
puzzling one can show the same for n = 3. It is unclear, though not unlikely, that the same
implication also holds for n > 3. The converse implication (Ul) = (U2) only holds in the
trivial case n = 1.

2.1.1 Two-dimensional meshes

For n = 2, it can easily be checked that the so-called three-directional mesh satisfies both
(U1) and (U2). Historically, this is the partition that is often called uniform, so this justifies
our definition of uniformness for higher dimensions. The two-dimensional chevron mesh and
the criss-cross mesh clearly satisfy (U1) whereas they do not satisfy (U2). See Figure 1 for
the three mesh types just mentioned.

Figure 1. Three-directional mesh (left), chevron, and criss-cross mesh (right).



Remark 2.2 Note that the so-called Union Jack mesh, which is often seen [3] as another,
differently structured mesh-type in two dimensions, is actually nothing else than the criss-
cross mesh rotated about 45 degrees.

For the three-directional mesh, each choice of two independent directions yi, y2 out of the
three directions present in the mesh, satisfies both (U1) and (U2). For the chevron mesh, there
is only one possibility to choose x1 and x satisfying (U1), namely, the z- and y-direction.
The patches corresponding to the y-direction are, however, not symmetric with respect to a
point. For the criss-cross mesh, a similar observation holds for the two diagonal directions.
This shows that (U1) and (U2) are not equivalent.

2.1.2 Three-dimensional meshes

One of the standard ways to construct a partition into tetrahedra in three space dimensions,
is to first decompose the domain into parallelepipeds (with blocks and cubed as special cases)
and then to continue according to Figure 2, in which we took the cube as example.

Figure 2. Partitioning of a cube into six tetrahedra.

This leads to a uniform partition, by choosing for x1, x2, x3 the three edge directions that
define the parallelepipeds. Depicted in Figure 3 are the patches corresponding to different
edges in the partition.

Figure 3. Point symmetric patches around edges.



Each patch is symmetric with respect to a point. Note that patches corresponding to the
block-directions Y1, x2 and ys and to the direction of the longest diagonal are space-fillers.
As opposed to the two-dimensional case, there exist directions in the mesh that are not present
in all tetrahedra. The patches corresponding to these directions do not fill space.

2.2 Construction of uniform rn-simplectic partitions

We will now construct partitions of @ C IR™ into n-simplices that satisfy conditions (U1)-
(U2). At the basis lies the generalization of the following description of the partition of the
unit square into two congruent triangles Syo and Soq,

Sp={reR* | 0<a <oy <1} and Sy={z R | 0<z, <2 <1} (T7)

By ¥ we denote the group of all n! permutations of the numbers 1,...,n. We will write
o(j) € {1,...,n} for the j-th component of ¢ € ¥". Recall [5] that a path simplex is a
simplex of which the mutually orthogonal edges form a path.

Lemma 2.3 The unit n-hypercube K™ = [0, 1]" can be decomposed into n! path simplices of
dimension n such that n of the $n(n+ 1) edges of each simplex coincide with n orthonormal
edges of K™.

Proof. It is well-known that K™ can be decomposed into n-simplices S, (¢ € ") where S,
is elegantly described as

So={r=(21,...,2,) € R" | 0 < 2pq) < <2y <11 (8)

Now, let 0 € ¥ and j € {1,...,n} be given. According to (8), z,(;) can, within S;, range
from zero to one if (and actually, only if) To() = 0 forall i < jand ;) = 1forall i > j.
This is exactly at an edge of K™. The path starting at the origin and consisting of edges in
the 2, (n), 5(n-1), - - -, ¥1 directions consecutively, and ending at (1,1,..., 1), lies in S,. This
proves that it is a path simplex. QED

A more descriptive characterization of the simplices that build up the hypercube is the fol-
lowing. First note, that each of the simplices contains the origin O as well as the point P
furthest away from the origin with all coordinates equal to one. Hence, the longest diagonal
of length \/n is shared by all simplices. The path simplex S, is then defined by walking from
O to P along n edges of the cube: first in the direction z,(,), then in the direction z,(,_y),
and so on, as illustrated in Figure 4.

Figure 4. The simplex defined by o = (2,3,1) is
. the one starting at the origin and following the path
. of orthogonal edges of the cube in respective directions
T X5 x1,x3 and x5. Its nodes are black bullets in the pic-
. ture. Starting at the origin and walking in the reverse
ad order, i.e., along edges in the directions z9, 23 and z;
f/’,/ ”””” Ve consecutively, defines the simplex that lies point sym-
2 / metrically with respect to the center to the original
R one. Its two missing nodes are open bullets.




Lemma 2.4 Let A = {S, | o € X"} be the partition of K™ into n-simplices according to
(8). Definep € X" by p(j)=n+1—-3(j=1,...,n) and let R: K™ — K", z + 2Mz be
the reflection with respect to the center M of K™. Then,

Soop = R(S5). (9)
Proof. Let s = (s1,...,8,) € S;. Then 0 < s,y < ... < 8,¢) < 1. The permutation
that orders the coordinates of R(s) = (1 — sy,...,1 — s,) is the reverse ordering of o, which
is o(n),...,0(1), and this is exactly p. QED

The point symmetry property is clearly visible from (7) for n = 2. For n = 3, it is depicted
in Figure 4. An important consequence of Lemmas 2.3 and 2.4 are the properties (U1)-(U2)
for the partition Ay of IR™ that is defined by translation of the partitioned hypercube over
all ve Z".

Theorem 2.5 Let Aj be the partition of IR"™ into n-simplices defined by translation over
all v € Z™ of the unit n-hypercube K™ partitioned according to Lemma 2.3. Then Ay is
face-to-face and satisfies properties (U1)-(U2) with (x;);j<n the canonical basis of IR".

Proof. (i) Note that each two faces of K™ that are point symmetrically opposite to each
other with respect to the center M, are themselves point symmetrically partitioned with
respect to their centers. Therefore, translation over unit distance in the direction orthogonal
to those faces results in a face-to-face contact. Now, according to Lemma 2.3, the partition
A of K™ satisfies (U1l) with (x;);<» the canonical basis of IR". Simplices that are formed
through translation of K™ in the canonical directions clearly inherit this property.

(ii) According to Lemma 2.4, the partition A of K™ is point symmetric with respect to its
center M. This means that also each neighboring hypercube K™ that is obtained through
translation over 0 # v € Z" with v(j) € {-1,0,1}, is point symmetrically partitioned with
respect to its center M. But then the union of K" and K™ is also point symmetric with
respect to (M + M)/2 which is a midpoint of an edge. So each simplex S C K" satisfying
(8) has an image S C K™ reflected in (M + M)/2. This holds in particular for any simplex
containing the point (M 4 M)/2, proving (U2). QED

Clearly, not only the partition Ay from Theorem 2.5 satisfies the uniformity conditions (U1)-
(U2), but also transformations and subsets of it in the following sense.

Corollary 2.6 Fach nonsingular n X n matrix A induces a uniform simplectic partition of
IR™ by the formula
Ag={AS | SCIR", S e A}, (10)

where the normalized columns of A form the directions x; from (Ul). Given a polytope
QC IR, _
AA’Q = {S € Ay | S C Q} (11)

is a uniform simplectic partition of Q if each S € A4 is either inside or essentially outside Q.

Several techniques that tile IR™ into congruent n-simplices are described in [14].



3 Linear splines and their derivatives

Now that we have defined the partitions on which to define continuous linear splines, we can
concentrate on some special properties of directional derivatives of such linear splines which
follow from the uniformity of the partition. First, we define Vo, = Vi N H (), where

Vi={ve H'(Q) | VS € Aagq, v|s is linear}. (12)

So we implicitly assume that we are dealing with a polytope Q C IR™ that can be uniformly
partitioned into n-simplices, using the columns of some nonsingular n X n matrix A to define
the directions x; from property (Ul). These directions give rise to a corresponding set of
directional derivatives Jy; as follows,

X?V a><1
Va=ATV = ; = : |. (13)
XZV O
It is easy to see that for all v € H(Q),
71[[Vollo < [V avllo < anl[Vollo, (14)

where 1 and o, are the smallest and largest singular values of A, respectively. Finally, we will
from now on assume that € is convex. This implies that the Poisson problem is H*regular

on €.

3.1 Constant directional derivatives on patches

The main observation that we wish to point out is not very difficult, and can easily be
understood by looking at the two-dimensional case. For convenience, we first introduce some
notations.

Definition 3.1 Let Ay g be a uniform partition of Q. Given j =1,...,n, let E; be the set
of all edges of Ay q parallel to x;. For e € I, let P. be the union of all S € Ay q for which
e is an edge. We will call P. a patch. Let M. be the midpoint of e and ¢. the characteristic
function of P..

Lemma 3.2 Let v, € V, and j € {1,...,n}. Then for each e € F;, Oy, vy is constant on P..
The patches P. form a partition of Q. If e ¢ 09, then P. is point symmetric with respect to
M.. If e C 9Q and v, € Vop, then Oy, vy is zero on F.

Proof. Given e € F;, the derivative d,vy, is for each S C P, determined by two different
values of v, on e, and hence constant on P.. By property (Ul), each S € Ay has exactly
one edge e € F; so the union of the patches covers the domain. If vy, is zero on e C 99, any
derivative tangential to the boundary vanishes. QED

Corollary 3.3 Let A, q be a uniform partition of Q. Then each vy, € V}, has an expansion

axjvh = Z Qe (15)

e€l;

with coefficients o, € IR. Moreover, if vy, € Vyp, and if e C 0€2 then a, = 0.



Now we are able to extend the supercloseness result (1) to arbitrary space dimensions by
giving a proof for (6).

Theorem 3.4 Let (Ay), be a regular family of uniform partitions of the polytope Q. Let
q € [H?*(2)]" be such that I1,q is well-defined. Then for all v, € Vop,

(@ — Mg, Vui)| < Ch?|qla| Voo (16)

Proof. By definition of V4, and writing e; for the j-th column of the n X n identity matrix,
we have

|(a — g, Vou)| = [(A7" (g = T14q), Vava)| = | D (e] A7 (q — TT4q), Dy, vn)]-

=1
Let j € {1,...,n} be given. Use decomposition (15) for d,,vs and consider for some internal
e € IJ; the single term
F(a) = (ef A" (a — Txaq), 6e). (17)
Using the Cauchy-Schwarz inequality and a priori bound (5), we find that
|F'(q)] < Chlq|1,p.|deo,p.- (18)

For any constant vector field r on P. we have that F'(r) = 0 because r = IIr. However, also
for linear vector fields r we get F'(r) = 0 because we may assume that r is odd at the center
of gravity of P,. In that case, its interpolant II,r is odd too, with zero mean as a result.
Following a Bramble-Hilbert like argument, we then find, using (18), that

[F(q)| = [F(q—r)| < Chlg = |1 p[deo,r., (19)
for all linear vector fields r. Then, standard approximation theory yields that
|F(a)| < Ch?|alz,p.[delop.. (20)

By mutual orthogonality of all ¢., this finally results in

" :
(A7 (q = TIhq), Vavs)| < CB* > D |ala,pleedelo,p. < Ch*|ql2 (Z Iae¢>e|3,pe)

j=le€kE; =¥
< Ch?|q|2|V avnlo < CR?|ql2| Vurlo, (21)
the latter inequality is due to (14). This proves the statement. QED

The proof of this theorem serves as a basis for the following result, which can be used to prove
superconvergence for elliptic problems with variable coefficients.

Theorem 3.5 Let B be an n X n matrix-valued function on ) with bounded total derivative
Dpg. Then, under the conditions of Theorem 3.4,

(B(a — Mxa), Vo)| < Ch? (lali + |al2) [Vorlo. (22)

Proof. Let P, be a patch. Then, by the Mean Value Theorem, for each z € P, there exists
a convex combination & of z and M, such that B(z) = B(M.) + Dg(&(z))(x — M.). Then,
(17) changes into

|(e] BA™! (a—T1q), ¢)| < [(ef B(Mc)A™ (q ~114q), &) |+ Ch*|| Dol p.|deo,p.. (23)

The first term in the right-hand side can be treated similarly as in the proof of Theorem 3.4
because B(M.,) is just a constant factor, and the result follows easily. QED
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4 Post-processing

Post-processing by an operator Kj, is based on the property that Kj applied to the gradient
of a quadratic function, locally recovers this gradient exactly. Together with an application of
a Bramble-Hilbert-like argument, this results in an increase of the approximation order. The
procedure, of which the computational costs are negligible compared to the computation of
up, is a fairly standard idea from the superconvergence community (see, for example [25, 26]),
but now extended to higher dimensional problems.

4.1 Main idea and implementation of the post-processing

Let S € Ay be given, and ¢ a quadratic polynomial on S. Then for each j we have
Oy, (Lrg)(Me) = Oy, q(Me) (24)

at the midpoint M. of the edge of S in the direction x;. Basically, this states that the top
of a parabola is situated at the average of its zeros. This means that if VLq is given on a
patch of elements that is large enough, it is possible to recover Vq. We will give an example
how this reconstruction may take place.

Illustration of the reconstruction process on a two-dimensional domain

In Figure 2, we see a two-dimensional partition with mesh size h. Suppose the piecewise
constant gradient of the interpolant Ljq of some unknown quadratic polynomial ¢ is given.
We will now recover the linear vector field Vq at the vertices O, and T.

Figure 5. Post-processing of the gradient of mN
the continuous piecewise linear interpolant of a
quadratic function. R , E AT
T LA
w O
Sm

Q

Linear interpolation between those three vectors will then result in Vq. We will start with
finding the exact value of V¢ at the point O. Around O, we see four midpoints of edges,
denoted by N, F, S, and W. Since ¢ is quadratic, by (24) we have

9 (Lugyw) = Lqw). (25)

(i) ()= g(B) and 2 -

Ox Oz

Since aa—mq is linear on the line going through F and W, its value at O is simply the average
of the values at £ and W, so

0 170 0
24(0) = 5 (5o (Eaa) (B) + 5-(Lig) () ) (26)
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Note that we can write this accordingly as

(%q(o) _ (Lrg)(T) Q—h(thJ)(R)7 (27)

which is in fact a reconstruction in the form of a so-called long difference quotient. Clearly,

the y-derivative at the point O can be computed similarly, using the values of the y-derivative
of Lpq at the points N and S in the form (26), or the closest-by nodal values of Ljq in the
y-direction in the form (27). Finally, by doing the same at the points @ and 7', we obtain
the six scalar values that are necessary to find V¢ on the element OQT. Note that in case
of non-orthogonal directional derivatives, the gradient can be easily recovered by the formula

Vv = A_TVA.

Remark 4.1 In case a node is at the boundary, we compute the exact value by extrapolation
from the nearest suitable points. For example, supposing that in Figure 5 the point 1" is at
the boundary, we compute ;—xq(T) by extrapolating the z-derivatives of Ljq at the points W
and F (cf.[21]).

Definition 4.2 Let vy € Vy,. Then K}, denotes the linear operator that maps Vuy onto the
continuous piecewise linear vector function K;Vu, obtained by means of the reconstruction
process which is the n-dimensional analogue of the one explained above for n = 2. For each
n-simplex S, we denote the convex hull of the patch of elements that is needed to obtain the
reconstructed function on S by P(S).

The reconstruction process above can be applied to gradients of arbitrary functions v, € Vj.
If v, = VLpw with w smooth enough, then K,V Lpw is an improved approximation of Vw.

4.2 Post-processing of the interpolant

First we study the reconstruction process applied to gradients of interpolants. The following
technical lemma will be needed. It is presented in an L setting, whereas the corresponding
result in % is formulated in Lemma 4.6.

Lemma 4.3 Let v, € Vyy, be given. Then for all S € Ay q,
1KV UL]|co,s < 2”V’l)h|‘oo7p(s). (28)

Proof. First, assume that S is an element whose nodes are not on J€2. Then the nodal
values of K3 Vv on S are convex combinations of values of partial derivatives of v, on P(S5),
therefore,

[ EKaV0R]loo,s < [[VOR]lco,p(s), (29)
since the maximum of a linear function over an element is attained at one of the nodes.
Second, if S is an element such that one of its nodes lies on 0€2, then the reconstructed value
is obtained by linear extrapolation, as mentioned in Remark 4.1. Since the extrapolation does
not go over a longer distance than half the edge length (i.e., the length between the points F
and 7" in Figure 2), we have

1KV op]loo,s < 2/ VR ||oo,pP(s)- (30)
This proves the statement. QED

A direct corollary is the following result for interpolants. If n <5, we will set s = 3, whereas
if n > 6, it will denote a number larger than n/2.
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Corollary 4.4 Let w € H*(?). Then for all S € Ay,

KAV Ll < 2Tl (o) (31)
Proof. Since w € H*(2), by the Mean Value Theorem we have that

IV Lrwlloo,pesy < [[V]lo,p(s), (32)
hence, the corollary follows directly from Lemma 4.3. QED

Theorem 4.5 Let (A,), be a regular family of uniform partitions of ). Then there exists a
constant C' > 0 such that for each S € Ay, and for all w € H*(Q),

IVw — KV Lyw|lo,s < Ch2|w|37p(5). (33)

Proof. Switching from the L2-norm to the supremum-norm gives, using a crude triangle
inequality, that for arbitrary w € H*(2),

IVw — KV Lyw||o,s < C’h”/2||V'w — KpVLyw||so,s
< Ch2(||V|so,s + | K1V L] oo,s) < Ch™2|[ V|| p(s), (34)

where in the latter bound we have used Corollary 4.4. Since the constant C' in (34) does not
depend on w, the following holds for all polynomials ¢ that are quadratic on P(S), since on
S we have that Vg = K,V Lpq by construction, and thus

IV — KiVLawlos = [V (w — ) = KaVLa(w - q)llo,s < CHV[V (w0 = )]l p(s) (35)

Interpolation theory in Sobolev spaces ([11], p.124) yields that by choosing for ¢ the best
approximation for w on P(S) in the W' sense,

IV (@ = @)oo, p(s) < CRT202 w]s ps). (36)
Combining (35) and (36), this Bramble-Hilbert approach proves the theorem. QED.

4.3 Post-processing of the finite element solution

We are now able to prove that our post-processing operator K, is also successfully applicable
to the gradient of the finite element approximation.

Lemma 4.6 Let (Ag), be a regular family of uniform partitions of Q. Then there exists a
constant C' > 0 such that for each S € Ay, and for all v, € Vo,

1K:Vvillo,s < Cl[Vunllo,p(s)- (37)
Proof. Working through the supremum-norm gives
1KV onllo,s < CRM2||KpVvnl|oo,s < CR™?|[Von|oo,ps), (38)

using LLemma 4.3. Consider the discrete inverse inequality ([11], p. 142) for continuous piece-
wise linear finite element functions, which states that

[V 0aloo,s < CRT2(V 0pfo,s- (39)

Applying it to (38) proves the statement. QED
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Theorem 4.7 Let (Ay)n be a regular family of uniform partitions of €0, and suppose that
the solution u is in H*(?). Then we have

|Vu — KpVuploa < Ch*|ulsq. (40)
Proof. We start with a simple triangle inequality,
||Vu — I(hvuhHO,Q < ||VU — I(hVLh‘UJ”(LQ + ||I(hV(LhU — Uh)”o’g. (41)

The first term in the right-hand side of (41) can be bounded by splitting it into contributions
over each element, and applying Theorem 4.5. The second term in the right-hand side of (41)
can be related to (1) by applying Lemma 4.6 and Theorem 3.4 which results in

KRV (L = un)llog < ClIV(Lyu = un)lo,o < Ch*|uls,. (42)

By adding the two contributions, we arrive at the bound (40). QED

4.4 Density argument

So far, in order to have a well-defined nodal interpolant, we have assumed that the solution
u € H*(Q) with s =3 if n < 5 and s > n/2if n > 6. The latter assumption is, however,
an artifact of the proof. Indeed, the formulation of Theorem 4.7 above does not involve the
nodal interpolant, but still suffers from the assumption u € H*(2). We will now use a density
argument to prove (40) for all u € H3(Q).

Let Fy, : HJ(Q) — Vou be the Galerkin projection, defined as usual by (VF,w,Vuy) =
(Vw, Vo) for all vy € Voi. Then the choice vy, = Fj,w shows that

IV Erwllo < [[Vewllo (43)

for all w € Hy(2). Now, let w € H*(Q2) and € > 0 be given. Then Lru = Vu — Kz VFyu is
well-defined, and by density of H*(Q) in H3(2) there exists a function w € H*(f2) such that
|lu — w||3 < . Moreover,

1L (u = w)llo < |V (u = w)llo + [ KnVERL(u = w)]o < (1+ C) |V (e —w)llo < Ce, (44

where we have used Lemma 4.6 globally to get rid of Kj, and (43) to get rid of F}. This
results in

|Laullo < [1Zau = w)llo+ || Zywlla < Ce + Ch? s, (45)

Corollary 4.8 Suppose that a regular family of uniform partitions is used in the discretiza-
tion and that the solution u is in H*(S2). Then,

HVU — KhVuhH(m S Ch2|u|3’g. (46)
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