
A TWO-DIMENSIONAL DATA DISTRIBUTION METHOD FOR

PARALLEL SPARSE MATRIX-VECTOR MULTIPLICATION

BRENDAN VASTENHOUW∗ AND ROB H. BISSELING†

Abstract. A new method is presented for distributing data in sparse matrix-vector multiplica-
tion. The method is two-dimensional, tries to minimise the true communication volume, and also tries
to spread the computation and communication work evenly over the processors. The method starts
with a recursive bipartitioning of the sparse matrix, each time splitting a rectangular matrix into
two parts with a nearly equal number of nonzeros. The communication volume caused by the split
is minimised. After the matrix partitioning, the input and output vectors are partitioned with the
objective of minimising the maximum communication volume per processor. Experimental results of
our implementation, Mondriaan, for a set of sparse test matrices show a reduction in communication
compared to one-dimensional methods, and in general a good balance in the communication work.

Key words. matrix partitioning, matrix-vector multiplication, parallel computing, recursive
bipartitioning, sparse matrix

AMS subject classifications. 05C65, 65F10, 65F50, 65Y05

1. Introduction. Sparse matrix-vector multiplication lies at the heart of many
iterative solvers for linear systems and eigensystems. In these solvers, a multiplication
u := Av has to be carried out repeatedly for the same m × n sparse matrix A, but
each time for a different input vector v. On a distributed-memory parallel computer,
efficient multiplication requires a suitable distribution of the data and the associated
work. In particular, this requires distributing the sparse matrix and the input and
output vectors over the p processors of the parallel computer such that each processor
has about the same number of nonzeros and such that the amount of communication
is minimal.

The natural parallel algorithm for sparse matrix-vector multiplication with an
arbitrary distribution of matrix and vectors consists of the following four phases:

1. Each processor sends its components vj to those processors that possess a
nonzero aij in column j.

2. Each processor computes the products aijvj for its nonzeros aij , and adds
the results for the same row index i. This yields a set of contributions uis,
where s is the processor identifier, 0 ≤ s < p.

3. Each processor sends its nonzero contributions uis to the processor that pos-
sesses ui.

4. Each processor adds the contributions received for its components ui, giving
ui =

∑p−1
t=0 uit.

Processors are assumed to synchronise globally between the phases.

In this paper, we propose a new general scheme for distributing the matrix and the
vectors over the processors that enables us to obtain a good load balance and minimise
the communication cost in the algorithm above. A good distribution scheme has the
following characteristics:

• It tries to spread the matrix nonzeros evenly over the processors, to minimise
the maximum amount of work of a processor in phase 2.

∗Image Sciences Institute, University Hospital Utrecht, PO Box 85500, 3508 GA Utrecht, The
Netherlands (brendan@isi.uu.nl)

†Mathematical Institute, Utrecht University, PO Box 80010, 3508 TA Utrecht, The Netherlands
(Rob.Bisseling@math.uu.nl)

1

2 B. VASTENHOUW AND R. H. BISSELING

• It tries to minimise the true total number of communications, the communi-

cation volume, and not a different metric. (If the same vector component vj

is needed twice by a processor, for instance because of nonzeros aij and ai′j ,
it is sent only once by the algorithm, and the cost function of the distribution
scheme should reflect this.)

• It tries to spread the communications evenly over the processors, both with
respect to sending and receiving, to minimise the maximum number of com-
munication operations of a processor in phases 1 and 3.

• It tries to partition the matrix in both dimensions, e.g. by splitting it into
rectangular blocks. As a result, the elements of a column need to be dis-
tributed over only

√
p processors (assuming p is square) instead of all the p

processors of the parallel computer. This limits the number of destination
processors and hence communications of a vector component vj in phase 1 to√

p−1, provided vj resides on one of the processors that needs it. In the same
way, this also limits the number of communications in phase 3. Although a
one-dimensional distribution has the advantage that it removes one or two
phases, e.g. phases 3 and 4 in the case of a row distribution, the price to be
paid is high: the rows (or columns) must be distributed over a larger number
of processors, and the number of communications for a vector component can
reach p− 1.

In recent years, much work has been done in this area. Commonly, the matrix
partitioning problem has been formulated as a graph partitioning problem, where (in
the row-oriented version) a vertex i represents matrix row i together with the vector
components ui and vi, and where an edge (i, j) represents a nonzero aij , and the
aim is to minimise the number of cut edges. An edge (i, j) is cut if vertices i and j
are assigned to different processors. This one-dimensional method is the basis of the
partitioning algorithms implemented in software such as Chaco [24] and Metis [28],
which has found widespread use. The success of these partitioning programs can be
attributed to their incorporated efficient multilevel bipartitioning algorithms. Mul-
tilevel methods, first proposed by Bui and Jones [9], coarsen a graph by merging
vertices at several successive levels until the remaining graph is sufficiently small,
then partition the result and finally uncoarsen it, projecting back the partitioning
and refining it at every level. The partitioning itself is done sequentially; a parallel
version of Metis, ParMetis [29], has recently been developed.

Hendrickson [21] criticises the graph partitioning approach because it can han-
dle only square symmetric matrices, imposes the same partitioning for the input and
output vectors, and because it does not necessarily try to minimise the communi-
cation volume, nor the number of messages, nor the maximum communication load
of a processor. Hendrickson and Kolda [22] show that these disadvantages hold for
all applications of graph partitioning in parallel computing, and not only for sparse
matrix-vector multiplication. They note that in many applications we have been for-
tunate, because the effect of these disadvantages has been limited. This is because
many applications originate in differential equations discretised on a grid, where the
number of neighbours of a grid point is limited, so that the number of cut edges may
not be too far from the true communication volume. In more complex applications,
we may not be so lucky. Bilderback [5] shows for five different graph partitioning
packages that the number of cut edges varies significantly between the processors,
pointing to potential for improvement of the communication load balance. Hendrick-
son and Kolda [23] present an alternative, the bipartite graph model, where the rows

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 3

of an m× n matrix correspond to a set of m row vertices, the columns to a set of n
column vertices, and a nonzero element aij corresponds to an edge (i, j) between row
vertex i and column vertex j. The row and column vertices are each partitioned into
p sets. This determines the distribution of the input and output vectors. The matrix
distribution is a one-dimensional row distribution that conforms to the partitioning
of the row vertices. The vertices are partitioned by a multilevel algorithm that tries
to minimise the number of cut edges while keeping the difference in work between
processors less than the work of a single row or column in the matrix. This model
can handle nonsymmetric square matrices and rectangular matrices and it does not
impose the same distribution for the input and output vectors.

Çatalyürek and Aykanat [10] present a multilevel partitioning algorithm that
models the communication volume exactly by using a hypergraph formulation. A
hypergraph H = (V ,N) consists of a set of vertices V = {0, . . . , n − 1} and a set of
hyperedges N = {n0, . . . , nm−1}, also called nets, which are subsets of V . In their
row-net model, each row of an m × n matrix corresponds to an hyperedge and each
column to a vertex. (They also present a similar column-net model.) Çatalyürek
and Aykanat assume that m = n, and that the vector distribution is determined by
the matrix distribution: for the row-net model, components uj , vj are assigned to the
same processor as matrix column j. The problem they solve is how to partition the
vertices into sets V0, . . . ,Vp−1 such that the computation load is balanced and the
total cost of the cut hyperedges is minimal. A cut hyperedge ni intersects at least two
sets Vs. The cost of a cut hyperedge is the number of sets it intersects, minus one.
This is exactly the number of processors that has to send a nonzero contribution to ui

in phase 3. (For the row-net model, phase 1 vanishes.) The advantage of this approach
is that it tries to minimise the true communication volume and not an approximation
of the volume. This indeed leads to less communication: experimental results for the
PaToH program (Partitioning Tool for Hypergraphs) show a 35 per cent reduction in
volume for a set of test matrices from the Rutherford-Boeing collection [13, 14] and
some linear programming matrices, compared to the Metis implementation of graph
partitioning. Çatalyürek and Aykanat [10] also tested hMetis, a hypergraph-based
version of Metis, and found that PaToH and hMetis produce partitionings of equal
quality but that PaToH partitions about three times faster than hMetis.

Hu, Maguire, and Blake [27] present a similar algorithm for the purpose of reorder-
ing a nonsymmetric matrix by row and column permutations into bordered block-
diagonal form, implemented in MONET (Matrix Ordering for minimal NET-cut).
This form facilitates subsequent parallel numerical factorisation. The algorithm tries
to assign matrix rows to processors in such a way that the number of cut columns is
minimal.

Both the standard graph partitioning approach and the hypergraph approach
produce one-dimensional matrix partitionings that can be used together with a two-
phase matrix-vector multiplication. Two-dimensional matrix partitionings have also
been proposed, but these are typically less optimised, and are often used with variants
of the four-phase matrix-vector multiplication that exploit sparsity only for compu-
tation but not for communication. Such methods rely mainly on the strength of
two-dimensional partitioning as a means of reducing communication. Fox et al. [17,
Chapt. 21] present a four-phase algorithm for dense matrix-vector multiplication
that uses a square block distribution of the matrix. In work on the NAS parallel
conjugate gradient benchmark, Lewis and van de Geijn [32] and Hendrickson, Le-
land, and Plimpton [25] describe algorithms that are suitable for dense matrices or

4 B. VASTENHOUW AND R. H. BISSELING

relatively dense irregular sparse matrices. These algorithms exploit the sparsity for
computation, but not for communication. Lewis and van de Geijn compare their two-
dimensional algorithms with a one-dimensional algorithm, and find gains of a factor
of 2.5 on an Intel iPSC/860 hypercube. Ogielski and Aiello [33] partition the rows
and columns of a matrix A by permuting them randomly into a matrix PAQ and
then splitting the rows into blocks of rows and the columns into blocks of columns.
This gives a two-dimensional partitioning with an expected good load balance. Pinar
and Aykanat [34] split the matrix first into blocks of rows, and then split each block
independently into blocks of subcolumns, taking only computation load balance into
account. The rows and columns are not permuted. This gives a two-dimensional
row-wise jagged partitioning.

Bisseling [6] presents a two-dimensional algorithm aimed at a square mesh of
transputers that exploits sparsity both for computation and communication. The ma-
trix is distributed by the square cyclic distribution. Vector components are distributed
over all the processors; communications are done within chains of processors of mini-
mal length. For instance, vj is broadcast to a set of processors P (s, t), smin ≤ s ≤ smax

in processor column t, where the range is chosen as small as possible. Bisseling and
McColl [7] improve this algorithm so that only truly needed communications are per-
formed; they achieve this by transferring the algorithm from the restricted model of
a square mesh with store-and-forward routing to the more general bulk synchronous
parallel model. They analyse the communication of various distributions using the
maximum number of sends or receives per processor as cost function. The matrix
distribution is Cartesian, i.e., defined by partitioning the matrix rows into M sets Is,
the columns into N sets Jt and assigning the p = MN Cartesian products Is × Jt to
the processors. The vector distribution is the same as that of the matrix diagonal.
Experiments for several classes of matrices show that tailoring the distribution to the
matrix at hand yields better distributions than matrix-independent schemes. This
work makes no attempt, however, to find the best data distribution for an arbitrary
sparse matrix, as is done by general-purpose multilevel partitioning algorithms.

In recent work, Çatalyürek and Aykanat [11] extend their previous one-dimensional
hypergraph-based partitioning method for square matrices to two dimensions. They
produce a Cartesian matrix distribution by first partitioning the rows into M sets
with an approximately equal number of nonzeros, and then partitioning the columns
trying to spread the nonzeros in all the row sets simultaneously by solving a multi-
constraint partitioning problem. The distribution of the vectors u and v is identical,
and equal to the distribution of the matrix diagonal. For the choice M = N =

√
p,

the maximum number of messages per processor decreases to 2(
√

p− 1), compared to
the p− 1 messages of a one-dimensional distribution. This is an advantage on a com-
puter with a high startup cost for messages, in particular for relatively small matrices.
In their experiments, the number of messages indeed decreases significantly and the
communication volume stays about the same, both compared to a one-dimensional
distribution.

Berger and Bokhari [3] present a recursive bisection-based strategy for partition-
ing nonuniform two-dimensional grids. The partitioning divides the grid alternatingly
in horizontal and vertical directions, with the aim of achieving a good balance in the
computational work. Recursive bisection is a well-known optimisation technique,
which has been used for instance in parallel circuit simulation, see Fox et al. [17,
Chapt. 22]. This technique can also be used to partition matrices, as has been done
by Romero and Zapata [35] to achieve good load balance in sparse-matrix vector

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 5

multiplication.
In the present work, we bring the techniques discussed above together, hoping to

obtain a more efficient sparse matrix-vector multiplication. Our primary focus is the
general case of a sparse rectangular matrix with input and output vectors that can
be distributed independently. The original motivation of our work is the design of a
parallel web-search engine based on latent semantic indexing; see [4] for a recent review
of such information retrieval methods. The indexing is done by computing a singular
value decomposition using Lanczos bidiagonalisation [20], which requires the repeated
multiplication of a rectangular sparse matrix and a vector. We view our distribution
problem exclusively as a partitioning problem and do not take the mapping of the parts
to the processors of a particular parallel machine with a particular communication
network into account. Tailoring the distribution to a machine would harm portability.
More generic approaches are possible (see e.g. Walshaw and Cross [39]), but adopting
such an approach would make our algorithm more complicated.

The remainder of this paper is organised as follows. Section 2 presents a two-
dimensional method for partitioning the sparse matrix that attempts to minimise
the communication volume. Section 3 presents a method for partitioning the input
and output vectors that attempts to balance the communication volume between the
processors. Section 4 discusses possible adaptation of our methods to special cases
such as square matrices or square symmetric matrices. Section 5 presents experimental
results of our program Mondriaan for a set of test matrices. Finally, Section 6 draws
conclusions and outlines possible future work.

2. Matrix partitioning. We make the following assumptions. The matrix A
has size m×n, with m, n ≥ 1. The matrix is sparse, i.e., many of its elements are zero.
Since for the purpose of partitioning we are only interested in the sparsity pattern
of the matrix (and not in the numerical values), we assume that elements aij , with
0 ≤ i < m and 0 ≤ j < n, are either 0 or 1. The input vector v is a dense vector of
length n and the output vector u is a dense vector of length m. We do not exploit
possible sparsity in the vectors. The parallel computer has p = 2q processors, where
q ≥ 0, each with its own local memory.

We sometimes view a matrix as just a set of index pairs, writing

A = {(i, j) : 0 ≤ i < m ∧ 0 ≤ j < n}.(2.1)

The number of nonzeros in A is

nz (A) = |{(i, j) ∈ A : aij = 1}|.(2.2)

A subset B ⊂ A is a subset of index pairs. A k-way partitioning of A is a set
{A0, . . . , Ak−1} of nonempty, mutually disjoint subsets of A that satisfy

⋃k−1
r=0 Ar = A.

The communication volume of the natural parallel algorithm for sparse matrix-
vector multiplication is the total number of data elements that are sent in phases 1
and 3. This volume depends on the data distribution chosen for the matrix and the
vectors. From now on, we assume that vector component vj is assigned to one of
the processors that owns a nonzero aij in matrix column j, if such a nonzero exists;
otherwise, column j is empty and does not cause communication. Such an assignment
is always better than assignment to one of the other processors, because this would
cause an extra communication. We also assume that ui is assigned to one of the
processors that owns a nonzero aij in matrix row i. Under these two assumptions,
the communication volume is independent of the vector distributions. This motivates
the following matrix-based definition.

6 B. VASTENHOUW AND R. H. BISSELING

Definition 2.1. Let A be an m × n sparse matrix and let A0, . . . , Ak−1 be

mutually disjoint subsets of A, where k ≥ 1. Define

pi = pi(A0, . . . , Ak−1)

= |{r : 0 ≤ r < k ∧ (∃j : 0 ≤ j < n ∧ aij = 1 ∧ (i, j) ∈ Ar)}|,(2.3)

i.e. the number of subsets that has a nonzero in row i of A, for 0 ≤ i < m, and

qj = qj(A0, . . . , Ak−1)

= |{r : 0 ≤ r < k ∧ (∃i : 0 ≤ i < m ∧ aij = 1 ∧ (i, j) ∈ Ar)}|,(2.4)

i.e. the number of subsets that has a nonzero in column j of A, for 0 ≤ j < n. Define

pi
′ = max(pi − 1, 0) and qj

′ = max(qj − 1, 0). Then the communication volume for

the subsets A0, . . . , Ak−1 is defined as

V (A0, . . . , Ak−1) =

m−1
∑

i=0

pi
′ +

n−1
∑

j=0

qj
′.

Note that the volume function V is also defined when the k mutually disjoint
subsets do not form a k-way partitioning. If k = p and the subsets form a p-way
partitioning, and if we assign each subset to a processor, then V (A0, . . . , Ap−1) is
exactly the communication volume in the parallel algorithm above. This is because
every vj is sent from its owner to all the other qj

′ processors that possess a nonempty
part of column j and every ui is the sum of a local contribution by its owner and
contributions received from the other pi

′ processors. An important property of the
volume function is the following.

Theorem 2.2. Let A be an m × n matrix and let A0, . . . , Ak−1 be mutually

disjoint subsets of A, where k ≥ 2. Then

V (A0, . . . , Ak−1) = V (A0, . . . , Ak−3, Ak−2 ∪ Ak−1) + V (Ak−2, Ak−1).(2.5)

Proof. It is sufficient to prove (2.5) with V replaced by pi
′, for 0 ≤ i < m, and by

qj
′, for 0 ≤ j < n, from which the result follows by summing. We will only treat the

case of the pi
′; the case of the qj

′ is similar. Let i be a row index. We have to prove
that

pi
′(A0, . . . , Ak−1) = pi

′(A0, . . . , Ak−3, Ak−2 ∪ Ak−1) + pi
′(Ak−2, Ak−1).(2.6)

If Ak−2 or Ak−1 has a nonzero in row i, we can substitute pi
′ = pi − 1 in the terms

of the equation. The resulting equality is easy to prove, starting at the rhs, because

pi(A0, . . . , Ak−3, Ak−2 ∪ Ak−1)− 1 + pi(Ak−2, Ak−1)− 1

= pi(A0, . . . , Ak−3) + 1− 1 + pi(Ak−2, Ak−1)− 1

= pi(A0, . . . , Ak−3, Ak−2, Ak−1)− 1,(2.7)

which is the lhs. If Ak−2 and Ak−1 do not have a nonzero in row i, the lhs and the
rhs of (2.6) both equal pi

′(A0, . . . , Ak−3).
This theorem is a generalisation to arbitrary subsets of a remark by Çatalyürek

and Aykanat [10] on the case where each subset Ar consists of a set of complete

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 7

matrix columns. The theorem implies that to see how much extra communication is
generated by splitting a subset of the matrix, we only have to look at that subset.

We also define a function that gives the maximum amount of computational work
of a processor in the local matrix-vector multiplication. For simplicity, we express the
amount of work in multiplications (associated with matrix nonzeros); we ignore the
associated additions.

Definition 2.3. Let A be an m × n matrix and let A0, . . . , Ak−1 be mutually

disjoint subsets of A, where k ≥ 1. Then the maximum amount of computational work

for the subsets A0, . . . , Ak−1 is

W (A0, . . . , Ak−1) = max
0≤r<k

nz (Ar).

The function V describes the cost of phases 1 and 3 of the parallel algorithm; the
function W that of phase 2. The cost of phase 4 is ignored in our description. Usually
this cost is much less than that of the other phases: the total number of additions
by all the processors in phase 4 is bounded by V , because every contribution added
has been received previously in phase 3, and addition is usually much cheaper than
communication. Minimising V thus minimises an upper bound on the cost of phase
4. Balancing the communication load in phase 3 thus balances the computation load
in phase 4.

Our aim in this section is to design an algorithm for finding a p-way partitioning
of the matrix A that satisfies the load-balance criterion

W (A0, . . . , Ap−1) ≤ (1 + ε)
W (A)

p
,(2.8)

and that has low communication volume V (A0, . . . , Ap−1). Here, ε > 0 is the load

imbalance parameter, a constant that expresses the relative amount of load imbalance
that is permitted. A small value of ε means that the load balance must be close to
perfect.

First, we examine the simplest possible partitioning problem, the case p = 2.
One way to split the matrix is to assign complete columns to A0 or A1. This has
the advantage that qj

′ = 0 for all j, thus causing no communication of vector com-
ponents vj . (Splitting a column j by assigning nonzeros to different processors would
automatically cause a communication.) If two columns j and j ′ have a nonzero in
the same row i, i.e., aij = aij′ = 1, then these columns should preferably be as-
signed to the same processor; otherwise pi

′ = 1. The problem of assigning columns
to two processors is exactly the 2-way hypergraph partitioning problem defined by
the hypergraph H = (V ,N) with V = {0, . . . , n − 1} the set of vertices (repre-
senting the matrix columns) and N = {n0, . . . , nm−1} the set of hyperedges where
ni = {j : 0 ≤ j < n ∧ aij = 1}. The problem is to partition the vertices into two sets
V0 and V1 such that the number of cut hyperedges is minimal and such that the load
balance criterion (2.8) is satisfied. Here, a cut hyperedge ni intersects both V0 and
V1 and its cost is one. To calculate the work load, every vertex j is weighted by the
number of nonzeros cj of column j, giving

∑

j∈Vr

cj ≤ (1 + ε) · 1
2
·
∑

j∈V

cj , for r = 1, 2.(2.9)

Methods developed for this problem [10] are directly applicable to our situation. Such
methods are necessarily heuristic, since the general hypergraph partitioning problem

8 B. VASTENHOUW AND R. H. BISSELING

is NP-complete [31]. To capture these methods, we define a hypergraph splitting
function h on a matrix subset A by

(A0, A1)← h(A, sign , ε).

The output is a pair of mutually disjoint subsets (A0, A1) with A0 ∪ A1 = A that
satisfies W (A0, A1) ≤ (1 + ε)W (A)/2. If sign = 1, the columns of the subset are
partitioned (i.e., elements of A from the same matrix column are assigned to the
same processor); if sign = −1, the rows are partitioned. We do not specify the
function h further, but just assume that such a function is available and that it works
well, partitioning optimally or close to the optimum.

Splitting a matrix into two parts by assigning complete columns (or rows) has
the advantages of simplicity and absence of communication in phase 1. Still, it may
sometimes be beneficial to allow a column j to be split, for instance because its first
half resembles a column j′ and the other half resembles a column j ′′. Assigning the
first half to the same processor as j ′ and the second half to the same as j ′′ can save
more than one communication in phase 3. In this approach, individual elements are
assigned to processors instead of complete columns (or rows). To keep our overall
algorithm simple, we do not follow this approach.

Next, we consider the case p = 4. Aiming at a two-dimensional partitioning we
could first partition the columns into sets J1 and J2 , and then the rows into sets I0

and I1. This will split the matrix into four submatrices, identified with the Cartesian
products I0 × J0, I0 × J1, I1 × J0, and I1 × J1. This distribution, like most matrix
distributions currently in use, is Cartesian. The four-processor case reveals a serious
disadvantage of Cartesian distributions: the same partitioning of the rows must be
applied to both sets of columns. A good row partitioning for the columns of J0 may
be bad for the columns of J1, and vice versa. This will often lead to a compromise
partioning of the rows. Dropping the Cartesian constraint enlarges the set of possible
partitionings and hence gives better solutions. Therefore, we can partition both parts
separately. Theorem 2.2 implies that this can even be done independently, because

V (A0, A1, A2, A3) = V (A0 ∪ A1, A2 ∪ A3) + V (A0, A1) + V (A2, A3),(2.10)

where the parts are denoted by A0, A1, A2, A3 with A0 ∪ A1 the first set of columns
and A2 ∪A3 the second set. To partition A0 ∪A1 in the best way, we do not have to
consider the partitioning of A2 ∪ A3.

The advantage of independent partitioning is illustrated by Fig. 2.1. For ease of
understanding, the matrix shown in the figure has been split by a simple scheme that is
solely based on minimising the computational load imbalance and that partitions the
matrix greedily into contiguous blocks. (In general, however, we also try to minimise
communication and we allow partitioning into noncontiguous matrix parts.) Note that
independent partitioning leads to a much better load balance, giving a maximum of
80 nonzeros per processor, or ε ≈ 2.5%, compared to the 128 nonzeros, or ε ≈ 64%,
for the Cartesian case. The total communication volume is about the same, 66 vs.
63. It is clear that independent partitioning gives much better possibilities to improve
the load balance or minimise the communication cost.

The method used to obtain a four-way partitioning from a two-way partitioning
can be applied repeatedly, resulting in a recursive algorithm for sparse matrix par-
titioning, Algorithm 1. This algorithm is greedy because it tries to bipartition the
current matrix in the best possible way, without taking subsequent bipartitionings
into account. When q = log2 p bipartitioning levels remain, we allow in principle a

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 9

Fig. 2.1. Block distribution of the 59 × 59 matrix impcol b with 312 nonzeros from the
Rutherford-Boeing collection [13, 14] over four processors, depicted by the colours red, yellow, blue,
and black. The matrix is first partitioned into two blocks of columns, and then each block is parti-
tioned independently into two blocks of rows, as shown by the bold lines. The resulting number of
nonzeros of the processors is 76, 76, 80, and 80, respectively. Also shown is a Cartesian distribu-
tion, where both column blocks are split in the same way, as indicated by the dashed line. Now, the
number of nonzeros is 126, 28, 128, and 30, respectively.

load imbalance of ε/q for each bipartitioning. The value ε/q is used once, but then the
value for the remaining levels is adapted to the outcome of the current bipartitioning.
For instance, the part with the smallest amount of work will have a larger allowed
imbalance than the other part. The corresponding value of ε is based on the maxi-
mum number of nonzeros maxnz allowed per processor. The partitioning direction is
chosen alternatingly.

Many variations on this basic algorithm are possible, for instance regarding the
load balance criterion and the partitioning direction. We could allow a value δpε
with δp ≤ 1 as load imbalance parameter for the current bipartitioning, instead of
ε/ log2 p. The partitioning direction need not be chosen alternatingly: it could be
determined greedily, i.e., by trying both row and column partitionings and taking the
best result. This doubles the cost of the partitioning. A cheaper variant would be to

10 B. VASTENHOUW AND R. H. BISSELING

MatrixPartition(A, sign, p, ε)
input: A is an m× n matrix.

sign is the sign of the first bipartitioning to be done.
p is the number of processors, p = 2q with q ≥ 0.
ε: allowed load imbalance, ε > 0.

output: p-way partitioning of A satisfying criterion (2.8).

if p > 1 then

q := log2 p;
(A0, A1) := h(A, sign , ε/q);

maxnz := nz (A)
p

(1 + ε);

ε0 := maxnz

nz (A0)
· p

2 − 1;

ε1 := maxnz

nz (A1)
· p

2 − 1;

MatrixPartition(A0,−sign, ε0, p/2);
MatrixPartition(A1,−sign, ε1, p/2);

else output A;

Algorithm 1: Recursive bipartitioning algorithm

split the largest dimension, i.e., take sign = 1 if m ≤ n and sign = −1 otherwise. We
expect this strategy to choose the best direction in most cases, but without trying
both. The latter strategy tries to partition into square submatrices. In fact, this
should be the objective of a true two-dimensional partitioning, rather than trying
to maintain the original aspect ratio m/n by partitioning each dimension the same
number of times, which is done by the alternating-direction strategy. The choice of
splitting direction is particularly important for matrices with a large aspect ratio.
(The strategy of splitting the largest dimension is motivated by the ideal case of
dense matrices that are partitioned into M × N equal blocks of size m/M × n/N ,
where MN = p, with a corresponding vector partitioning into m/p components ui

and n/p components vj per processor. In this case, the communication volume equals
m(N − 1) + n(M − 1) ≈ mN + nM , which is minimal if m/M = n/N . For random
sparse matrices with a high density the same reasoning holds, and for other sparse
matrices we expect similar behaviour of the communication volume as a function of
the aspect ratio.)

For the alternating-direction strategy, we can guarantee an upper bound on the
number of processors qj that holds a matrix column j. The bound is qj ≤ √p, for
0 ≤ j < n, if p is an even power of two. This is because each level of partitioning
with sign = −1 causes at most a doubling of the maximum number of processors
that holds a matrix column, whereas each level with sign = 1 does not affect this
maximum. Similarly, qj ≤

√
2p if p is an odd power of two and the first bipartitioning

has sign = −1; otherwise the bound is qj ≤
√

p/2.

The result of the recursive bipartitioning algorithm is a p-way partitioning of
the matrix A. Processor P (s) obtains a subset Is × Js of the original matrix, where
Is ⊂ {0, . . .m− 1} and Js ⊂ {0, . . . n − 1}. This subset is itself a submatrix, but its
rows and columns are not necessarily consecutive. Figures 2.2 and 2.3 show the result
of such a partitioning from two different view points.

Figure 2.2 gives the global view of the partitioning, showing the original matrix

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 11

Au

v

Fig. 2.2. Global view of the distribution of the matrix impcol b over four processors by the
recursive bipartitioning algorithm with the greedy best-direction strategy. The processors are depicted
by the colours red, yellow, blue, and black; they possess 79, 78, 79, and 76 nonzeros, respectively.
Also given is a distribution of the input and output vectors that assigns a component vj to one of the
processors that owns a nonzero in matrix column j, and assigns ui to one of the owners of a nonzero
in row i. This distribution is obtained by the vector distribution algorithm given in Section 3.

and vectors with the processor assignment for each element. This view reveals for
instance that the four blocks of nonzeros from the original matrix impcol b are each
distributed over all four processors. The total communication volume is 76, which is
slightly more than the volume of 66 of the simple block-based distribution method
used in Figure 2.1. (Here, the block-based method is lucky because of the presence of
the four large blocks. In general, the recursive bipartitioning method is much better.)
In the global view, it is easy to see where communication takes place: every matrix
column that has nonzeros in a different colour than the vector component above it
causes communication, and similar for rows.

12 B. VASTENHOUW AND R. H. BISSELING

Figure 2.3 gives the local view, showing the submatrices stored in the processors;
these submatrices fit exactly in the space of the original matrix. This view displays the
structure of the local submatrices. Here, it is also easy to see where communication
takes place: every hole in the vector distribution represents a vector component that is
stored on a remote processor, thus causing communication. We have removed empty
local rows and columns, thus reducing the size of I(s) × J(s), to emphasise the true
local structure. A good splitting function h leads to many empty rows and columns.
For instance, the first split leads to 16 empty columns above the splitting line, which
means that all the nonzeros in the corresponding matrix columns are located below
the line, thus causing no communication. (In an implementation, empty rows and
columns can be deleted from the data structure. In a figure, we have some freedom
where to place them.)

3. Vector partitioning. After the matrix distribution has been chosen with
the aim of minimising communication volume under the computational load balance
constraint, we can now choose the vector distribution freely to achieve other aims as
well, such as a good balance in the communication or an even spread of the vector
components, as long as we assign input vector components to one of the processors that
have nonzeros in the corresponding matrix column, and output vector components to
one of the processors that have nonzeros in the corresponding matrix row.

We assume that the input vector and output vector can be assigned independently,
which will usually be the case for rectangular, nonsquare matrices. Because the
communication pattern in phase 3 of the computation of Av is the same as that in
phase 1 of the computation of AT u, except for a reversal of the roles of sends and
receives, we can partition the output vector for multiplication by A using the method
for partitioning input vectors, but then applied to AT . Therefore, we will discuss only
the partitioning of the input vector.

Define Vs as the set of indices j corresponding to vector components vj assigned
to processor P (s). The number of sends of P (s) in phase 1 equals

Ns(s) =
∑

j∈Vs

qj
′(A0, . . . , Ap−1)(3.1)

and the number of receives equals

Nr(s) = |{j : 0 ≤ j < n ∧ j 6∈ Vs ∧ (∃i : 0 ≤ i < m ∧ aij = 1 ∧ (i, j) ∈ As)}|.(3.2)

A vector partitioning method could attempt to minimise:
1. max0≤s<p Ns(s), the maximum number of sends of a processor.
2. max0≤s<p Nr(s), the maximum number of receives of a processor.
3. max0≤s<p |Vs|, the maximum number of components of a processor.

The first two aims are equally important, for the following reasons. First, from a
computer hardware point of view, congestion at a communication link to a processor
can occur both because of outgoing and incoming communication. This justifies trying
to minimise both. Second, as said above, we partition the output vector of Av by
partitioning it as the input vector of AT u. If our partitioning method would only
minimise the number of sends of the input vector but not the number of receives, this
could lead to many receives in phase 1 of the multiplication by AT and hence to many
sends in phase 3 of the multiplication by A. Third, sometimes the output vector Av

is subsequently multiplied by AT , either immediately or after some vector operations.
(This happens for instance in Lanczos bidiagonalisation and in the conjugate gradient

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 13

Fig. 2.3. Local view of the distribution from Figure 2.2. The greedy best-direction strategy
chooses for this matrix to partition first in the horizontal direction (i.e., with sign = −1) and then
to partition the resulting parts both in the vertical direction (i.e., with sign = 1). As a result, the
red, yellow, blue, and black processors possess submatrices of size 27 × 21, 26 × 23, 27 × 24, and
24×22, respectively. Empty local rows and columns have been removed; they are collected in separate
blocks. The local components of the input and output vectors are shown along the border of the local
submatrix, above or below the submatrix for the input vector and to the left or right for the output
vector.

method applied to the normal equations [20].) This multiplication can be carried out
using the stored matrix A in its present distribution, and the result AT Av can be
delivered in the distribution of v. The algorithm for the multiplication by AT using
the stored matrix A is similar to the multiplication by A, except that the direction is
reversed. The communication pattern of phase 1 for AT is the same as that of phase
3 for A, except that the sends and receives are interchanged. A data partitioning for
multiplication by A that minimises both the number of sends and receives is therefore
also optimal for multiplication by AT .

The third aim, balancing the number of vector components, is less important,

14 B. VASTENHOUW AND R. H. BISSELING

because it does not influence the time of the matrix-vector multiplication itself. It
only affects the time of vector operations such as norm or inner product computations,
or DAXPYs, in the remaining part of iterative solvers. Often the vector operations
are much less time consuming than the matrix-vector multiplication. We will use
load balance in vector operations only to break ties when our primary objectives are
equally met. (If desired, the maximum number of components can be included in a
cost function, with a weight factor reflecting its relative importance in the iterative
solver concerned.)

Consider the assignment of a vector component vj to a processor. If qj = 0, vj

can be assigned to an arbitrary processor. If qj = 1, vj has to be assigned to the
processor that has all the nonzeros of column j. In both cases, no communication
occurs. Now assume that qj ≥ 2. Assigning vj to a processor increases the number of
sends of that processor by qj

′ = qj − 1 and the number of receives of the qj − 1 other
processors that have part of matrix column j by one. If we take as the cost incurred by
a processor the sum of the number of sends and receives, i.e. Ns(s) + Nr(s) for P (s),
we see that the sum for the sender increases by qj − 1 ≥ 1 and for the receivers by
one. This suggests a greedy assignment of vj to the processor with the smallest sum
so far, among those that have part of column j. This heuristic assigns the inevitable
cost one to all the processors concerned, but tries to avoid, as much as possible, to
increase the maximum sum.

An alternative would be to take the maximum of the number of sends and re-
ceives as the cost incurred by a processor, i.e. max(Ns(s), Nr(s)) for P (s). This treats
sends and receives equally and it even has the advantage that it reflects the actual
architecture of a processor and its communication links more closely: links are usu-
ally bidirectional meaning that incoming and outgoing communication can take place
simultaneously. Unfortunately, this cost function does not lead to a simple heuristic
and furthermore it is not very sensitive to gradual improvements because sometimes
the effect of a component assignment is hidden by the cost function to be minimised:
for instance if Ns(s) > Nr(s) for the receivers P (s) and Ns(s

′) + qj − 1 ≤ Nr(s
′) for

the sender P (s′), then the current cost remains unchanged in every processor, even
though more communication takes place. Because of this, we expect the sum to be a
better optimiser than the maximum. Furthermore, the sum provides an upper bound
on the maximum which is at most twice the maximum, so that a good spread of the
communications (i.e., sends and receives) over the processors implies that the com-
munication time is within a factor of two from the optimal time. We expect sends
and receives to average out, so that most likely the results will be even better. For
these reasons, we base our vector distribution algorithm on the sum cost-function.

Our vector partitioning algorithm is presented as Algorithm 2. In step 1 of the
algorithm, the sums are initialised to the number of inevitable communications, one
send or receive per nonempty column part. Initialising the sums before assigning
components has the advantage that all inevitable communications are taken into ac-
count from the first moment that choices must be made. Processors with many such
communications will be assigned fewer components during the algorithm. In step 3,
the increment of qj − 2 represents the extra communications of the sender. In step
4, where qj = 2, the sums are not increased anymore. Now, an attempt is made to
balance the number of sends with the number of receives. Each time a choice between
sending from P (s) to P (s′) or vice versa has to be made, this is done on the basis
of the current values of Ns(s), Nr(s), Ns(s

′), Nr(s
′). The component vj is assigned to

P (s) if Ns(s) + Nr(s
′) ≤ Ns(s

′) + Nr(s), and to P (s′) otherwise. This gives rise to

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 15

VectorPartition(A0, . . . , Ap−1,v, p)
input: A0, . . . , Ap−1 is a p-way partitioning of a sparse m× n matrix A.

v is a vector of length n.
p is the number of processors, p ≥ 1.

output: p-way partitioning of v.

1. for s := 0 to p− 1 do

sum(s) := |{j : 0 ≤ j < n ∧ qj ≥ 2∧
(∃i : 0 ≤ i < m ∧ aij = 1 ∧ (i, j) ∈ As)}|;

2. for j := 0 to n− 1 do

if qj = 1 then

Assign vj to unique owner of nonzeros in column j
3. for all j : 0 ≤ j < n ∧ qj ≥ 3 do

Assign vj to P (s) with current lowest sum(s);
sum(s) := sum(s) + qj − 2;

4. for all j : 0 ≤ j < n ∧ qj = 2 do

Assign vj to one of the two owners, trying to balance
the number of sends with the number of receives;

5. for j := 0 to n− 1 do

if qj = 0 then

Assign vj to P (s) with current lowest number of components.

Algorithm 2: Vector partitioning algorithm

a communication in the least busy send-receive direction. In step 5, the components
with qj = 0 represent empty columns and can be assigned to every desired proces-
sor. Such columns are unlikely to occur in practice. The final result of the algorithm
is an assignment of vector components to processors with max0≤s<p(Ns(s) + Nr(s))
minimised.

The order of the assignments in steps 3 and 4 may influence the quality of the
resulting vector distribution. Therefore, we have left the order open by using a for

all statement. In our implementation of step 3, we handle the columns with qj ≥ 3 in
random order. An alternative would be to handle them in order of increasing qj , be-
cause this would let us choose from more processors at the end of the algorithm. This
freedom can better be utilised at the end, when more is known about the accumulated
sums. Another possibility is to handle the columns in order of decreasing qj . This
is motivated by the desire in a greedy algorithm to assign large values first, which is
particularly important for widely varying values. In our greedy vector distribution
algorithm, however, the range of values of qj is limited because of the upper bound
qj ≤ √p (for p an even power of two, in the alternating-direction strategy), and thus
we expect the advantage to be small. Note that the difference with the standard
greedy binning algorithm by decreasing value is that here we cannot choose from all
bins (i.e., processors), but only from a subset of qj bins. In practice, we found little
difference in outcome between the random, increasing, and decreasing strategies.

4. Square matrices. In this section, we discuss the special case where the ma-
trix is square and the input and output vector distribution must be chosen the same.
This extra constraint makes it more difficult to balance the communication, and some-

16 B. VASTENHOUW AND R. H. BISSELING

times it may even lead to an increase in communication volume.

First, we consider a square nonsymmetric matrix. Iterative algorithms such as
GMRES [36], QMR [18], BiCG [16], and Bi-CGSTAB [37] target this type of matrix.
These algorithms are most conveniently carried out in parallel if all vectors involved
are distributed in the same way, to facilitate vector operations such as norm and inner
product computations and DAXPYs. The matrix partitioning can be done as before,
but the vector partitioning must be modified to treat the input and output vector in
the same way. This implies that the partitioning of v determines the communication
in both phases 1 and 3. We cannot balance these phases separately any more. The
vector partitioning algorithm is a straightforward modification of Algorithm 2, where
a sum now represents the total sum for phase 1 and phase 3, and a component vj is now
assigned to a processor in the intersection of the owner set of column j and the owner
set of row j. If the preceding matrix partitioning has been done by Algorithm 1, then
a processor P (s) in the intersection owns a submatrix Is × Js with (j, j) ∈ Is × Js.
Because the submatrices are disjoint, there can only be one submatrix containing
(j, j), and hence the intersection contains at most one processor. If furthermore
ajj = 1, then the intersection contains exactly one processor, namely the owner of
ajj ; otherwise, the intersection may be empty.

If the intersection is empty, each of the pj + qj processors involved can be cho-
sen as the owner of vj , but the communication volume increases by one. This is a
consequence of the fact that we cannot simultaneously satisfy the assumption from
Section 2 that vj is assigned to a processor that holds nonzeros in matrix column
j, and uj is assigned to a processor that holds nonzeros in matrix row j. At the
time of the vector distribution it is too late to prevent this extra communication. We
may, however, increase the chances of obtaining a nonempty intersection by slightly
modifying the matrix partitioning. Following Çatalyürek and Aykanat [10], we add
dummy nonzeros ajj to the matrix diagonal before the matrix is partitioned, to make
it completely nonzero. We exclude dummy nonzeros from nonzero counts for the
purpose of computational load balancing. Most likely, a dummy nonzero ajj attracts
other (genuine) nonzeros both from row j and from column j to its processor dur-
ing the matrix partitioning; in that case the resulting intersection is nonempty. If
this does not happen, the intersection is empty and we still must perform the extra
communication. Since the dummies are irrelevant for the vector partitioning, we can
delete them at the end of the matrix partitioning.

In the nonsymmetric square case, the transposed matrix AT can be applied using
the stored matrix A, at the same communication cost as for A, as discussed in Section 3
for the rectangular case. This is useful in iterative algorithms such as QMR and BiCG
that require multiplication of a vector or related vectors by both A and AT .

Next, we consider a square symmetric matrix, which is the target of algorithms
such as conjugate gradients [26]. Here, input and output vectors should also be
distributed in the same way. Provided sufficient memory is available to store the
complete matrix A, and not only the part below or on the main diagonal, we may
choose to ignore the symmetry when determining the matrix distribution, treating a
symmetric matrix in the same way as a square nonsymmetric matrix. Our matrix
bipartitioning is biased towards assigning nonzeros aij and aji to the same processor:
it prefers to assign nonzero aij to the same processor as the (genuine or dummy)
nonzero ajj and it also prefers to assign aji to that processor. To save some memory,
nonzeros aij and aji that are assigned to the same processor can be represented by
one entry in the output of the matrix partitioning; this entry should be marked as

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 17

representing two elements. The same can be done in the local data structure of
a processor executing the matrix-vector multiplication. An additional advantage is
that the data structure needs to be accessed only once per pair of nonzeros, thus
saving some operations.

To impose the constraint that aij and aji must be assigned to the same processor
would limit the number of solutions to the optimisation problem. In principle, there
is no need to do this, except perhaps when available memory space is tight. The
two-dimensional nature of our partitioning scheme does not lead to benefits from
symmetry, and instead we may benefit more from the flexibility of decoupling the
assignment of aij from that of aji.

As an interesting alternative, we could execute algorithm 1 on a matrix A′ ob-
tained from A by deleting one nonzero of each pair (aij , aji) on input, adding it
back on output, and assigning it to the same processor as its partner. This symmet-

ric partitioning method has the advantage that phase 1 and phase 3 have the same
communication pattern, although with sends and receives reversed, so that they are
balanced simultaneously by the vector partitioning. Thus, we only have to balance
phase 1. Furthermore, the set of owners of row j equals that of column j, so that the
intersection is much larger, giving better possibilities for balancing the communica-
tion. The resulting communication volume for the symmetrically partitioned matrix
A is at most twice that of the matrix A′ partitioned by recursive bipartitioning. The
multiplication factor may indeed be less than two, because some communications may
be saved: a component v′

i sent to a nonzero aj′i′ from A′ may be the same as a compo-
nent vj sent to a nonzero aij from A−A′. The disadvantage of symmetric partitioning
is that it does not take the complete set of communication obligations into account
when trying to minimise the communication volume in the matrix partitioning.

The standard recursive bipartitioning method pays a price for imposing the con-
straint of an identical input and output distribution. Minimising the maximum com-
munication volume of a processor does not guarantee minimising it in the separate
phases 1 and 3. Still, the inequality

max
s

(V 1
s + V 3

s) ≤ max
s

V 1
s + max

s
V 3

s ≤ 2 ·max
s

(V 1
s + V 3

s)(4.1)

gives a lower and upper bound on the total communication cost maxs V 1
s + maxs V 3

s

of the matrix-vector multiplication algorithm. In practice, we expect the cost to
be close to the lower bound. It is possible to improve the balance of the separate
phases, and also the balance between the number of sends and receives, for instance
by postprocessing the vector distribution, moving components from busy processors
to less busy ones. We have not explored this further, but it may be worth while to
develop heuristics for this purpose.

5. Experimental results.

5.1. Implementation. We have implemented Algorithm 1, the recursive bipar-
titioning of the matrix, and Algorithm 2, the vector partitioning, in a program called
Mondriaan1. The hypergraph bipartitioning function h which bipartitions a matrix
has been implemented as a multilevel algorithm, similar to the bipartitioning in Pa-
ToH [10]. For column bipartitioning, our implementation is as follows. Empty rows
and columns are removed from the matrix before the bipartitioning starts.

1The program Mondriaan is named after the Dutch painter Piet Mondriaan (1872-1944) who is
renowned for his colourful rectangle-based compositions.

18 B. VASTENHOUW AND R. H. BISSELING

First, in the coarsening phase, the matrix is reduced in size by merging columns in
pairs. An unmarked column j is picked and its neighbouring columns are determined,
i.e., those columns j′ with a nonzero aij′ such that aij is also nonzero. The unmarked
column j′ with the largest number of such nonzeros is chosen as the match for j. The
resulting merged column has a nonzero in row i if aij or aij′ is nonzero. The amount
of work represented by the new column is the sum of the amounts of its constituent
columns (initially, before the coarsening, the amount of work of a column equals its
number of nonzeros). Both j and j ′ are then marked and a successful matching is
registered. To prevent dominance of a single column, a match is forbidden if it would
yield a column with more than 20% of the total amount of work. If no unmarked
neighbouring column exists, then j is marked and registered as unmatched at this level.
This process is repeated until all columns are marked. (This matching scheme is the
same as Heavy Connectivity Matching [10].) We found it advantageous to choose the
columns j in order of decreasing number of nonzeros. The matrix could be further
reduced in size by deleting singleton rows (i.e., rows with one nonzero), since the
content of such a row will not influence the matchmaking any more; this optimisation
is not included in our implementation. As a result, the matrix size will be nearly
halved. The coarsening is repeated until the matrix is sufficiently small; we choose as
our stopping criterion a size of at most 200 columns or a coarsening phase that only
reduces the number of columns by less than 5%. The coarsening phase requires both
row-wise and column-wise access to the matrix. Therefore, it is convenient to use as
data structure both compressed row storage (CRS) and compressed column storage
(CCS), but without numerical values.

Second, the small matrix produced by the coarsening phase is bipartitioned using
eight runs with different initial balanced partitions of the Kernighan-Lin algorithm [30]
in the faster Fiduccia-Mattheyses version [15], which we denote by KL-FM. In this
algorithm, columns are moved from one matrix part to the other based on their gain
value, i.e., the difference between the number of cut rows after and before a move.
Here, a cut row is a row with nonzeros in both parts. For the sake of brevity, we will
omit the details.

Third, in the uncoarsening phase, the matrix is increased in size at successive
levels, each time separating the columns that were matched at the current level, in
first instance assigning them to the same processor as before the separation. After
the separation at a level is finished, KL-FM is run once to refine the partitioning.

5.2. Test matrices. We have tested version 1.0 of Mondriaan to check the qual-
ity of the partitioning produced, using a test set of publicly available sparse matrices,
supplemented with a few of our own matrices (which will also be made available).
Table 5.1 presents the rectangular (nonsquare) matrices; Table 5.2 the square matri-
ces without structural symmetry; and Table 5.3 the structurally symmetric matrices
(with aij 6= 0 if and only if aji 6= 0). In the following, we will call these matrices
rectangular, square, and symmetric. Note that structural symmetry is relevant here
and not numerical symmetry (aij = aji), because the sparsity pattern determines
the communication requirements and the amount of local computation. The matrices
in the tables are sorted by increasing number of nonzeros. The number of nonzeros
given is the total number of explicitly stored entries, irrespective of their numerical
value. Thus we include entries that happen to be numerically zero. We make one
exception: to facilitate comparison with results in other work [23], we removed 27003
explicitly stored zeros from the matrix memplus, leaving 99147 entries that are nu-
merically nonzero. The number of nonzeros is for the complete matrix (below, on,

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 19

name rows columns nonzeros application area

well1850 1850 712 8758 surveying
dfl001 6071 12230 35632 linear programming
gemat1 4929 10595 47369 power flow optimisation
cre b 9648 77137 260785 linear programming
tbdmatlab 19859 5979 430171 information retrieval
nug30 52260 379350 1567800 linear programming
tbdlinux 112757 20167 2157675 information retrieval

Table 5.1

Properties of the rectangular test matrices.

name rows/ diagonal nonzeros application area
columns nonzeros

impcol b 59 17 312 chemical engineering
west0381 381 1 2157 chemical engineering
gemat11 4929 13 33185 power flow optimisation
memplus 17758 17758 99147 circuit simulation
onetone2 36057 9090 227628 circuit simulation
lhr34 35152 102 764014 chemical engineering

Table 5.2

Properties of the square test matrices.

and above the main diagonal), and this holds also in the symmetric case.

The matrices well1850, gemat1, impcol b, west0381, gemat11, bcsstk32, and
bcsstk30 were obtained from the Rutherford-Boeing collection [13, 14]; the matrix
memplus from the Matrix Market [8]; dfl001 and cre b (part of the Netlib LP collec-
tion [19]), nug30, onetone2, lhr34, and finan512 were obtained from the University
of Florida collection [12]; hyp 200 2 1 is a matrix generated by the MLIB package [7]
representing a five-point Laplacian operator on a 200× 200 grid with periodic bound-
aries. The matrix tbdmatlab is a term-by-document matrix used for testing our web
search application; it represents the 5979 English-language documents in HTML for-
mat of the Matlab 5.3 CD-ROM, containing 48959 distinct terms, of which 19859 are
used as keywords (the other terms are stopwords). The nonzeros represent scaled term
frequencies in the documents. The matrix tbdlinux is a term-by-document matrix
describing the documentation of the SuSE Linux 7.1 operating system. The matrix
cage10 [38] is a stochastic matrix describing transition probabilities in the cage model
of a DNA polymer of length 10 moving in a gel under the influence of an electric field.

5.3. Communication volume and balance. Table 5.4 presents the total com-
munication volume for the partitioning of the rectangular test matrices by using the
Mondriaan program with six different direction-choosing strategies: a one-dimensional
strategy that always chooses to partition in the row direction; a strategy that always
chooses the column direction; a strategy that alternates between the two directions,
but starts with the row direction; an alternating strategy that starts with the column
direction; a ratio-based strategy that chooses to partition in the row direction if the
number of nonempty rows is larger than the number of nonempty columns, and vice
versa; the best-direction strategy that tries both directions and greedily chooses the
best. The number of processors ranges between 2 and 64; the computational load

20 B. VASTENHOUW AND R. H. BISSELING

name rows/ nonzeros application area
columns

cage10 11397 150645 DNA electrophoresis
hyp 200 2 1 40000 200000 Laplacian operation
finan512 74752 596992 portfolio optimisation
bcsstk32 44609 2014701 structural engineering
bcsstk30 28924 2043492 structural engineering

Table 5.3

Properties of the structurally symmetric test matrices. All diagonal elements are nonzero.

imbalance specified is ε = 0.03, which is the value used in the experiments reported
in [10, 11]. In a few cases, our program was not able to achieve the specified load
balance; the corresponding results are omitted.

The main conclusion that can be drawn from Table 5.4 is that the best-direction
strategy is the best in the majority of cases (29 out of 42 problem instances, i.e.
matrix/p combinations). In general, this strategy is about as good as the best of the
purely one-dimensional strategies, except for the term-by-document matrices where
it is much better than both. The ratio-based strategy is almost as good as the best-
direction strategy and is best in 12 out of 42 problem instances. The alternating-
direction strategies perform less well; they suffer from the disadvantage that they
force partitioning in unfavourable directions. Based on this comparison (and others),
we have made the best-direction strategy the default of our program.

Note that a table entry gives the result of one run of our program, with a random
number seed set at a fixed default value. (Using different seeds would give slightly
different results, but our overall conclusions still hold.) This explains for instance
why we have more than two different results for p = 2 (e.g. for dfl001, we have
681, 862, and 1481 as possible outcomes, where both 681 and 862 correspond to
a column partitioning). Slight fluctuations also explain the exceptional decrease in
communication volume when going from p = 8 to p = 16 for the matrix well1850.
Note that these two program runs are completely different, for instance because the
partitioning with p = 8 is allowed to reach a computational imbalance of 3% after the
third split level, whereas the partitioning with p = 16 is allowed less (since it has one
more split level to go).

The total communication volume is perhaps the most important metric, and
sometimes it completely determines the communication time of the matrix-vector
multiplication on a particular computer (e.g. on a simple cluster of PCs connected by a
bus-like network). Reducing the communication volume is always desirable. On many
architectures, however, it is also important to balance the communication, and indeed
our algorithm tries to spread the communication duties evenly over the processors as
part of the vector partitioning. Table 5.5 shows the communication balance for the
rectangular test matrices partitioned using the best-direction strategy. For each phase,
the table gives the average communication volume per processor (rounded upwards),
dV/pe, the maximum number of data sent per processor, max0≤s<p Ns(s), and the
maximum number received, max0≤s<p Nr(s). In the ideal case these three numbers
are equal and the communication is perfectly balanced. The average is the best value
that can be achieved for the maximum number of sends and receives. For p = 2,
perfect balance is actually achieved for all rectangular matrices, due to the preference
we give to sending data in the least busy direction when pi = 2 or qj = 2.

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 21

name p 1D 1D 2D 2D 2D 2D
row col alt alt ratio best

row col dir

well1850 2 36 405 36 405 36 36

4 102 849 523 522 102 98

8 169 1806 631 1510 169 173
16 326 2890 1357 1507 326 307

32 642 1936 2897 642 683
64 5544 3729 3487 2155 2141

dfl001 2 1481 681 1481 681 681 862
4 2954 1599 2128 2205 1599 1413

8 4731 2561 4190 3729 2561 2406

16 5967 3654 4875 5110 3654 3636

32 7506 4945 6509 5892 4945 4930

64 9307 6344 7227 7987 6382 6249

gemat1 2 2826 167 2826 167 167 169
4 4345 194 3123 2895 194 260
8 5126 520 4365 3045 520 498

16 783 4771 4729 783 684

32 5698 1330 5779 5231 1330 1310

64 2301 6457 6714 2301 2194

cre b 2 19328 672 19328 672 672 764
4 37988 1978 22975 15748 1978 2031
8 48105 3166 36093 19034 3166 3391

16 59084 4896 38801 31372 4896 4616

32 72456 6208 52358 40158 6208 6755
64 83887 9251 53479 54006 9251 9413

tbdmatlab 2 5056 6438 5056 6438 5056 5056

4 14650 14949 11305 11298 14650 11005

8 30982 26804 20757 19863 20791 17792

16 56923 42291 29361 29143 29656 27735

32 98791 62410 45536 40601 42324 40497

64 152309 92598 56606 57113 56146 51594

nug30 2 190734 26453 190734 26453 26453 26519
4 287073 59242 210060 187871 59242 57445

8 333084 86344 305428 210919 86344 92241
16 357115 127661 330123 319686 127661 122657

32 368312 176200 375189 346195 176200 169880

64 377939 211720 400189 415270 211720 219334
tbdlinux 2 15764 24463 15764 24463 15764 15764

4 42652 54262 39715 40636 30604 30444

8 90919 96038 68159 69815 58511 49120

16 177347 155604 98171 100786 87998 75884

32 297658 227368 143953 140455 118736 106563

64 486874 325000 188646 187876 164759 148263
Table 5.4

Communication volume of p-way partitioning for rectangular test matrices. The lowest volume
is marked in boldface.

22 B. VASTENHOUW AND R. H. BISSELING

It can be seen that the best-direction strategy automatically recognises when to
use a one-dimensional partitioning, and also which one to use, and when to stop using
it (e.g. at p = 64 for well1850 and dfl001). This table also explains the similar
results in the previous table of the best-direction strategy with the one-dimensional
row strategy for well1850, and with the one-dimensional column strategy for dfl001,
gemat1, cre b, and nug30. For these matrices, the communication is well-balanced,
and the maximum number sent and received are both within a factor of two of the
optimal value for all problem instances, except well1850/64 and gemat1/32. For the
term-by-document matrices, the balance deteriorates slightly because two smaller vol-
umes are balanced instead of one larger volume. Still, the balance is within a factor
of three from optimal. For these two matrices, the gain in communication volume
by the two-dimensional strategy is somewhat reduced by the deteriorating commu-
nication balance, but the overall gain is still significant. (For example, tbdlinux/64
with the one-dimensional column strategy has an average of 5079 and maxima of
8314 and 9529 sends and receives, respectively. Its highest value, 9529, is still larger
than the sum of the highest values in phases 1 and 3, i.e. 3746+2940=6686, for the
two-dimensional strategy.)

Table 5.6 presents the total communication volume for the partitioning of the
square test matrices by using the Mondriaan program with eight different strate-
gies, namely the six direction-choosing strategies shown in Table 5.4, each followed
by unconstrained vector partitioning, and the best-direction strategy (both with
and without dummy addition), followed by vector partitioning with the constraint
distr(u) = distr(v). Again, the best-direction strategy is the best of the six direction-
choosing strategies, winning in 21 out of 36 instances, but without dramatic gains.
The constraint on the vector distribution gives rise to much more communication, ex-
cept for the matrix memplus, which has only nonzeros on the diagonal, see Table 5.2,
so that no extra communication occurs. Adding dummies during the matrix parti-
tioning is beneficial, and is better than taking the constraint into account only during
the following vector partitioning. The exception is for small matrices (impcol b,
west0381, and gemat11) with large p, where it is better to add a limited number of
communications (at most n) at the vector partitioning stage after having partitioned
the original matrix, unperturbed by adding dummies.

Table 5.7 shows the communication balance for the square test matrices parti-
tioned using the best-direction strategy with addition of dummies, followed by vector
partitioning with the constraint distr(u) = distr(v). In most cases (21 out of 36
instances) the communication balance is within a factor of two from optimal. For
the matrix memplus, however, the balance is far from optimal, and the same holds
for phase 3 for lhr34. Note that for all square matrices, communication is usually
performed in both phases, and for three matrices this even happens for p = 2. (After
a one-dimensional matrix partitioning, such as happens for p = 2, the vector parti-
tioning can still decide to add communications in the other direction, if it finds this
advantageous for reasons of communication balance. This must be disallowed if a
final one-dimensional partitioning is desired.)

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 23

phase 1 phase 3
name p avg max max avg max max

send rec send rec

well1850 2 18 18 18 0 0 0
4 25 27 26 0 0 0
8 22 26 27 0 0 0

16 20 27 29 0 0 0
32 22 33 75 0 0 0
64 30 57 68 5 19 19

dfl001 2 0 0 0 431 431 431
4 0 0 0 354 378 379
8 0 0 0 301 329 324

16 0 0 0 228 243 258
32 0 0 0 155 172 236
64 3 29 29 95 111 122

gemat1 2 0 0 0 85 85 85
4 0 0 0 65 82 81
8 0 0 0 63 71 71

16 0 0 0 43 69 68
32 0 0 0 41 88 71
64 0 0 0 35 62 65

cre b 2 0 0 0 382 382 382
4 0 0 0 508 533 533
8 0 0 0 424 448 445

16 0 0 0 289 392 463
32 0 0 0 212 383 293
64 0 0 0 148 287 259

tbdmatlab 2 2528 2528 2528 0 0 0
4 2291 3968 4106 461 922 922
8 1129 2126 2240 1096 1376 1376

16 730 1401 1788 1005 1187 1602
32 572 977 1226 695 1253 1355
64 352 627 1028 455 830 796

nug30 2 0 0 0 13260 13260 13260
4 0 0 0 14362 14578 14577
8 0 0 0 11531 14455 13242

16 0 0 0 7667 9761 11748
32 0 0 0 5309 9841 7028
64 0 0 0 3428 6725 4541

tbdlinux 2 7882 7882 7882 0 0 0
4 6741 9574 11115 871 1742 1742
8 4356 7601 11139 1784 2907 2907

16 2463 4531 8292 2281 4102 4350
32 1978 3842 6577 1353 3467 3198
64 1166 2230 3746 1152 2940 2168

Table 5.5

Communication balance of p-way partitioning for rectangular test matrices for the two-
dimensional best-direction strategy

24 B. VASTENHOUW AND R. H. BISSELING

name p 1D 1D 2D 2D 2D 2D 2D eq 2D eq
row col alt alt ratio best best best

row col dir dir dir
dum

impcol b 2 28 41 28 41 43 28 28 42
4 76 107 78 77 75 76 84 82
8 132 155 127 125 124 121 137 145

16 199 190 171 179 196
32 200 249 236 214 237 205 249 242
64 251 298 281 292 297

west0381 2 50 55 50 55 55 50 183 218
4 182 265 194 200 203 185 389 438
8 467 535 486 517 468 464 590 727

16 840 816 762 773 747 732 900 1026
32 1136 1326 1178 1193 1219 1090 1411 1418
64 1687 1610 1615 1443 1818 1786

gemat11 2 92 58 92 58 58 58 1235 2550
4 211 132 297 157 133 138 2290 3551
8 341 348 433 302 302 301 3528 4518

16 529 626 669 576 595 502 4687 5069
32 832 1058 1040 906 930 855 5600 5538
64 1677 2584 2089 1751 1906 1746 6836 6531

memplus 2 2778 2543 2778 2543 2543 2543 2543 2543
4 4816 4641 5220 5132 5045 4614 4614 4614
8 6673 6639 7108 7314 6798 6222 6222 6222

16 8319 8134 8922 8882 8755 7998 7998 7998
32 10121 9692 10464 10360 10129 9486 9486 9486
64 11695 11524 12236 12339 12098 11227 11227 11227

onetone2 2 478 1044 478 1044 1125 478 836 2926
4 1827 2024 1620 1854 1792 1632 2660 9071
8 2537 3196 2521 2942 2757 2528 4501 15055

16 3344 4307 3717 3767 3674 3233 5726 14957
32 4538 5638 4904 5463 4683 4639 7679 21849
64 6761 9091 7253 6889 7396 6769 10856 25372

lhr34 2 284 1370 284 1370 1190 284 64 9722
4 1263 2251 1606 1881 2072 1483 6391 27615
8 2581 3680 2566 4043 3443 2299 14256 31466

16 3949 6268 5921 5998 6376 4730 22031 34669
32 6413 12548 12595 10512 9702 7081 29871 39965
64 9989 15656 15282 15152 14484 9577 36999 42542

Table 5.6

Communication volume of p-way partitioning for square test matrices. The lowest volume for
the first six strategies is marked in boldface.

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 25

phase 1 phase 3
name p avg max max avg max max

send rec send rec

impcol b 2 14 14 14 0 0 0
4 15 20 21 7 13 14
8 9 14 13 8 9 10

16 8 11 11 5 9 10
32 5 9 8 4 7 9
64 3 11 5 2 5 5

west0381 2 19 29 29 73 97 97
4 51 57 62 47 57 58
8 45 59 66 30 43 46

16 31 43 45 26 40 38
32 26 40 44 19 34 29
64 17 28 27 12 26 25

gemat11 2 392 435 435 226 257 257
4 291 424 440 283 455 434
8 270 433 481 171 311 301

16 120 210 235 174 288 263
32 103 178 180 73 118 128
64 55 94 102 53 102 84

memplus 2 0 0 0 1272 1843 1843
4 399 802 802 755 1288 1609
8 445 817 683 334 930 828

16 266 714 805 235 600 425
32 95 408 460 202 458 390
64 96 293 386 80 241 179

onetone2 2 2 4 4 416 416 416
4 382 492 597 284 458 424
8 266 388 450 297 430 375

16 220 300 400 139 289 263
32 135 202 291 106 261 204
64 99 189 230 72 205 138

lhr34 2 0 0 0 32 32 32
4 975 1742 1742 624 1248 1277
8 864 1310 1808 919 2135 1755

16 859 1208 1385 519 1085 922
32 579 911 1036 355 797 639
64 382 603 682 197 559 381

Table 5.7

Communication balance of p-way partitioning for square test matrices for the two-dimensional
best-direction strategy with distr(u) = distr(v) and with use of dummies.

26 B. VASTENHOUW AND R. H. BISSELING

Table 5.8 presents the total communication volume for the partitioning of the
symmetric test matrices by using the Mondriaan program with eight different strate-
gies, namely the six direction-choosing strategies shown in Table 5.4, each followed
by unconstrained vector partitioning, and the best-direction strategy with a single
nonzero representing both aij and aji in the input matrix, either chosen as the en-
try with i ≥ j, or by flipping a coin. No dummies are added, because all diagonal
elements are already nonzero. This implies that the communication volume does not
increase during the vector partitioning if we apply the constraint distr(u) = distr(v).
The results of the table show that similar to the rectangular and square case the
best-direction strategy performs best. We observe that exploitation of symmetry is
advantageous for two matrices, cage10 and finan512, which are both stochastic ma-
trices. This advantage occurs if we represent entries aij with i ≥ j in our input
matrix. The gain can be up to a factor of two, for finan512/8. Making a random
choice i ≥ j or i ≤ j turns out to be bad; we attribute this to the fact that possible
similarity between rows or columns is destroyed, severely hampering matching. On
the other hand, representing only the lower triangular matrix part leaves much of the
similarity intact, both in the rows and columns. For the other three matrices, which
represent computational grids, symmetry cannot explicitly be used to our advantage.

Table 5.9 shows the communication balance for the symmetric test matrices par-
titioned using the best-direction strategy, followed by vector partitioning with the
constraint distr(u) = distr(v). In only 14 out of 30 instances the communication
balance is within a factor of two from optimal. We explain this worsening balance
as follows: for square matrices with a completely nonzero diagonal, such as memplus
and all the symmetric matrices, the constraint distr(u) = distr(v) forces assigning vj

and uj to the same processor as the diagonal element ajj , see Section 4. This has
the advantage of avoiding an increase in communication volume by the constraint,
but it leaves no choice during the vector partitioning. Thus the vector partitioning is
determined by the matrix partitioning, through the matrix-diagonal assumption, as in
previous methods [6, 7, 10, 11, 24, 28]. For square matrices with zeros on the diagonal,
this is not the case. Here, dummies are added before the matrix partitioning, but they
are removed before the vector partitioning. (Keeping them would impose unnecessary
constraints on the vector distribution.) If the intersection between the owners of row
and column j is empty, which happens sometimes, we can choose between all the
owners in the union of the two sets, trying to optimise the communication balance.

Finally, to check the quality of our implementation, and in particular that of the
splitting function h, we compare some results to previously published results. The
matrix dfl001 was used in [23], for p = 8. The best result, for a one-dimensional
column partitioning with the ML-FM method is a volume of 5875; for the same strat-
egy, our result is 2561. The maximum volume per processor (sends or receives) is
1022; our result is 725. Note however, that for a fair comparison, time should also be
taken into account: our computation took about 4 seconds on a 500 Mhz Sun Blade
workstation, whereas the partitioning in [23] took 2 seconds on a PC with a 300
Mhz Pentium II processor. (Spending more time can help improve solution quality.)
The results for memplus are: total volume 6333 for ML-FM in [23], and 6673 for our
one-dimensional row method; the maximum volume is 1339 and 2667, respectively.
The matrix hyp 200 2 1 was used in [7], where the communication cost b = 0.016
translates into a total communication volume of about 5800 for p = 100. This cost
is for a partitioning of the square computational grid into ‘digital circles’, which is
better than square blocks. Our present results are a volume of 4877 for p = 64 and

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 27

name p 1D 1D 2D 2D 2D 2D 2D 2D
row col alt alt ratio best best best

row col dir dir dir
lower random

cage10 2 2348 2278 2348 2278 2337 2348 2022 3150
4 5551 5512 5401 4987 5482 5284 4228 7174
8 8963 8801 8117 8197 8132 8256 6932 10666

16 12769 12766 11555 11401 11317 11272 9458 15366
32 17720 17369 15039 15138 15209 14757 13310 19888
64 23181 23405 19855 19971 19238 19232 17650 25422

hyp 200 2 1 2 800 800 800 800 800 800 799 846
4 1445 1550 1444 1547 1547 1445 1596 2114
8 2282 2184 2146 2142 2244 1933 2418 3962

16 2745 2940 2692 2851 2845 2763 3226 5024
32 3869 3752 3767 3851 3939 3854 4704 6294
64 4877 5346 4672 5602 4787 5187 6525 7500

finan512 2 146 292 146 292 292 146 100 720
4 876 949 1168 1168 1022 657 392 1906
8 1314 1533 1387 1387 1460 1095 550 2250

16 2190 1972 1898 3017 2190 1825 1234 2256
32 2337 2336 3411 2706 2967 2336 1738 7522
64 9286 9667 9889 10957 10210 9282 10198 14350

bcsstk32 2 1622 1622 1622 1622 1259 1259 1770 1992
4 2951 2951 2506 2506 2710 2490 2958 4998
8 5593 5593 6058 5753 6499 5057 7534 10188

16 9303 9156 8931 8931 8940 8320 9702 15520
32 13742 13742 14827 14897 13594 12736 16702 24884
64 19765 20196 21165 21353 21563 19121 21826 37794

bcsstk30 2 948 1158 948 1158 1158 948 620 1334
4 2099 1757 3602 2307 2367 2083 2924 3572
8 5019 4492 4642 4613 4428 4869 4102 8382

16 9344 9949 9945 8808 9261 8707 10572 15648
32 15593 15418 15127 16607 16363 14169 17232 27868
64 27269 26599 25492 26510 26227 23545 26388 41756

Table 5.8

Communication volume of p-way partitioning for symmetric test matrices. The lowest volume
is marked in boldface.

7519 for p = 128, which by interpolation indicates that our hypergraph-based par-
titioning recognises the step-like boundaries between domains that are characteristic
for digital circles. (For square blocks, the theoretical volume would be 6400 for p = 64
and 8000 for p = 100.) The square matrices gemat11, onetone2, lhr34, finan512,
bcsstk32, and bcsstk30 were used in [10]. We can compare for instance gemat11

with [10, Table 3]. For our one-dimensional row partitioning with dummies and with
distr(u) = distr(v), we obtain for p = 8, 16, 32, 64 scaled volumes of 0.72, 0.96, 1.14,
and 1.42, respectively, which is close to the values 0.75, 0.96, 1.15, and 1.32, of PaToH-
HCM, and 0.79, 1.00, 1.18, and 1.33 of hMetis. (We obtain the scaled communication
volume by dividing the total volume by n.) We may conclude that our bipartitioning

28 B. VASTENHOUW AND R. H. BISSELING

phase 1 phase 3
name p avg max max avg max max

send rec send rec

cage10 2 1174 1222 1222 0 0 0
4 710 885 885 612 783 835
8 413 684 739 620 967 905

16 381 533 682 324 650 564
32 257 469 493 205 370 346
64 167 293 311 135 318 262

hyp 200 2 1 2 400 400 400 0 0 0
4 362 370 371 0 0 0
8 86 173 174 157 208 208

16 104 155 154 70 120 123
32 39 96 98 82 139 138
64 37 74 73 45 94 92

finan512 2 73 73 73 0 0 0
4 165 219 219 0 0 0
8 28 111 108 110 213 225

16 115 152 155 0 0 0
32 60 82 81 14 77 69
64 82 168 170 64 162 155

bcsstk32 2 0 0 0 630 669 669
4 445 733 795 178 229 229
8 441 911 888 192 372 335

16 408 812 925 113 322 328
32 173 359 457 226 501 466
64 177 331 347 122 297 292

bcsstk30 2 474 494 494 0 0 0
4 181 340 340 341 459 458
8 342 652 675 268 634 659

16 190 526 495 355 721 797
32 211 574 516 232 667 593
64 194 495 566 174 357 394

Table 5.9

Communication balance of p-way partitioning for symmetric test matrices for the two-
dimensional best-direction strategy with distr(u) = distr(v).

implementation is similar in quality to that of the other hypergraph-based partition-
ers, and that this is a good basis for our two-dimensional approach.

6. Conclusions and future work. In this work, we have presented a new two-
dimensional method for distributing the data for sparse matrix-vector multiplication.
The method has the desirable characteristics stated in Section 1: it tries to spread
the matrix nonzeros evenly over the processors; it tries to minimise the true com-
munication volume; it tries to spread the communication operations evenly; and it is
two-dimensional. The experimental results of our implementation, Mondriaan, show
that for many matrices this indeed leads to lower communication cost than for a
comparable one-dimensional implementation such as Mondriaan in one-dimensional
mode. For term-by-document matrices, we observe a large gain. The gain is visible in

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 29

two metrics: total communication volume and maximum volume per processor. We
make no attempt to reduce the total number of messages: our upper bound is 2(p−1)
messages per processor. We consider this number less important because it does not
grow with the problem size. The best variant of our algorithm uses the strategy of
trying both splitting directions, each time choosing the best. This has the advantage
that the strategy adapts itself automatically to the matrix, without requiring any
prior knowledge thereof.

Our data distribution method is a two-stage process: first, the matrix is dis-
tributed, which determines the communication volume and the computational load
balance; after that the input and output vectors are distributed, which determines
the communication load balance. The separation between the stages makes it easier
to optimise our data distribution.

To achieve our goals, we had to generalise the Cartesian matrix distribution
scheme to a matrix partitioning into rectangular, possibly scattered submatrices,
which we call, in a lighter vein, the Mondriaan distribution. This scheme is not
as simple as the Cartesian scheme, which includes most commonly used partitioning
methods. In the Cartesian scheme, we can view a matrix distribution as the result of
permuting the original matrix A into a matrix PAQ, splitting its rows into consecu-
tive blocks, splitting its columns into consecutive blocks, and assigning each resulting
submatrix to a processor. This view does not apply anymore. Still, the matrix part
of a processor is defined by a set of rows I and columns J , and its set of index pairs is
a Cartesian product I × J . We can fit all the submatrices in a nice figure that bears
some resemblance to a Mondriaan painting.

Much future work remains to be done. First, we have made several design de-
cisions concerning the heuristics in our algorithm. Further investigation of all the
possibilities may yield even better heuristics. Second, we have presented the gen-
eral distribution method, but have not investigated special situations such as square
symmetric matrices in depth. Further theoretical and experimental work in this area
is important for many iterative solvers. Third, parallel implementations of iterative
solvers such as those in the Templates projects [1, 2] should be developed that can
handle every possible matrix and vector distribution. We have started to develop an
object-oriented iterative linear system solver package for this purpose. Fourth, the
partitioning itself should be done in parallel to enable solving very large problems that
do not fit in the memory space of one processor. Preferably, the result of the paral-
lel partitioning method should be of the same quality as that of the corresponding
sequential method. Since quality may be more important than speed, a distributed
algorithm that more or less simulates the sequential partitioning algorithm could be
the best approach. The recursive nature of the partitioning process may be helpful
as this already has some natural parallelism.

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, PA,
2000.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994.

[3] M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform problems on mul-
tiprocessors, IEEE Transactions on Computers, C-36 (1987), pp. 570–580.

30 B. VASTENHOUW AND R. H. BISSELING

[4] M. Berry, Z. Drmac̆, and E. R. Jessup, Matrices, vector spaces, and information retrieval,
SIAM Review, 41 (1999), pp. 335–362.

[5] M. L. Bilderback, Edge-cut imbalances produced by graph partitioning algorithms, in Pro-
ceedings High Performance Computing Symposium HPC99, San Diego, Apr. 1999.

[6] R. H. Bisseling, Parallel iterative solution of sparse linear systems on a transputer network,
in Parallel Computation, A. E. Fincham and B. Ford, eds., vol. 46 of The Institute of
Mathematics and its Applications Conference Series, Oxford University Press, Oxford,
UK, 1993, pp. 253–271.

[7] R. H. Bisseling and W. F. McColl, Scientific computing on bulk synchronous parallel archi-
tectures, in Technology and Foundations: Information Processing ’94, Vol. I, B. Pehrson
and I. Simon, eds., vol. 51 of IFIP Transactions A, Elsevier Science Publishers, Amsterdam,
1994, pp. 509–514.

[8] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra, Matrix
Market : a web resource for test matrix collections, in The Quality of Numerical Software:
Assessment and Enhancement, R. F. Boisvert, ed., Chapman and Hall, London, 1997,
pp. 125–137.

[9] T. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factorization, in Pro-
ceedings Sixth SIAM Conference on Parallel Processing for Scientific Computing, SIAM,
Philadelphia, PA, 1993, pp. 445–452.

[10] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for par-
allel sparse-matrix vector multiplication, IEEE Transactions on Parallel and Distributed
Systems, 10 (1999), pp. 673–693.

[11] , A hypergraph-partitioning approach for coarse-grain decomposition, in Proceedings Su-
percomputing 2001, ACM, 2001.

[12] T. A. Davis, University of Florida sparse matrix collection, online collection,
http://www.cise.ufl.edu/research/sparse/matrices, Computer and Information Sciences
Department, University of Florida, Gainesville, FL, 1994-2001.

[13] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Transactions
on Mathematical Software, 15 (1989), pp. 1–14.

[14] , The Rutherford-Boeing sparse matrix collection, Technical Report TR/PA/97/36, CER-
FACS, Toulouse, France, Sept. 1997.

[15] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network par-
titions, in Proceedings of the 19th IEEE Design Automation Conference, IEEE, 1982,
pp. 175–181.

[16] R. Fletcher, Conjugate gradient methods for indefinite systems, in Proceedings of the Dundee
Biennial Conference on Numerical Analysis, G. A. Watson, ed., vol. 506 of Lecture Notes
in Mathematics, Springer-Verlag, Berlin, 1976, pp. 73–89.

[17] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker,
Solving Problems on Concurrent Processors: Vol. I, General Techniques and Regular Prob-
lems, Prentice Hall, Englewood Cliffs, NJ, 1988.

[18] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-
Hermitian linear systems, Numerical Mathematics, 60 (1991), pp. 315–339.

[19] D. M. Gay, Electronic mail distribution of linear programming test problems, Mathematical
Programming Society COAL Newsletter, 13 (1985), pp. 10–12.

[20] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in the
Mathematical Sciences, The Johns Hopkins University Press, Baltimore, MD, third ed.,
1996.

[21] B. Hendrickson, Graph partitioning and parallel solvers: Has the emperor no clothes?, in
Proceedings Irregular’98, A. Ferreira, J. Rolim, H. Simon, and S.-H. Teng, eds., vol. 1457
of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998, pp. 218–225.

[22] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel
Computing, 26 (2000), pp. 1519–1534.

[23] , Partitioning rectangular and structurally unsymmetric sparse matrices for parallel pro-
cessing, SIAM Journal on Scientific Computing, 21 (2000), pp. 2048–2072.

[24] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proceedings
Supercomputing ’95, ACM Press/IEEE Press, 1995.

[25] B. A. Hendrickson, R. Leland, and S. Plimpton, An efficient parallel algorithm for matrix-
vector multiplication, International Journal of High Speed Computing, 7 (1995), pp. 73–88.

[26] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
Journal of Research of the National Bureau of Standards, 49 (1952), pp. 409–436.

[27] Y. F. Hu, K. C. F. Maguire, and R. J. Blake, A multilevel unsymmetric matrix ordering
algorithm for parallel process simulation, Computers and Chemical Engineering, 23 (2000),

PARTITIONING FOR PARALLEL MATRIX-VECTOR MULTIPLICATION 31

pp. 1631–1647.
[28] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular

graphs, SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392.
[29] , Parallel multilevel k-way partitioning scheme for irregular graphs, SIAM Review, 41

(1999), pp. 278–300.
[30] B. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System

Technical Journal, 29 (1970), pp. 291–307.
[31] T. Lengauer, Combinatorial algorithms for integrated circuit layout, John Wiley and Sons,

Chichester, UK, 1990.
[32] J. G. Lewis and R. A. van de Geijn, Distributed memory matrix-vector multiplication and

conjugate gradient algorithms, in Proceedings Supercomputing 1993, ACM Press, 1993,
pp. 484–492.

[33] A. T. Ogielski and W. Aiello, Sparse matrix computations on parallel processor arrays,
SIAM Journal on Scientific Computing, 14 (1993), pp. 519–530.

[34] A. Pinar and C. Aykanat, Sparse matrix decomposition with optimal load balancing, in
Proceedings International Conference on High Performance Computing (HiPC’97), 1997,
pp. 224–229.

[35] L. F. Romero and E. L. Zapata, Data distributions for sparse matrix vector multiplication,
Parallel Computing, 21 (1995), pp. 583–605.

[36] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7
(1986), pp. 856–869.

[37] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of non-symmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, 13 (1992), pp. 631–644.

[38] A. van Heukelum, G. T. Barkema, and R. H. Bisseling, DNA electrophoresis studied with
the cage model, Journal of Computational Physics, (2002, to appear).

[39] C. Walshaw and M. Cross, Multilevel mesh partitioning for heterogeneous communication
networks, Future Generation Computer Systems, 17 (2001), pp. 601–623.

