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In “Adaptive Wavelet Methods II - Beyond the Elliptic case” of Cohen,
Dahmen and DeVore ([CDD00]), an adaptive method has been developed for solving
general operator equations. Using a Riesz basis of wavelet type for the energy space, the
operator equation is transformed into an equivalent matrix-vector system. This system is
solved iteratively, where the application of the infinite stiffness matrix is replaced by an
adaptive approximation. Assuming that the stiffness matrix is sufficiently compressible,
i.e., that it can be sufficiently well appproximated by sparse matrices, it was proved that
the adaptive method has optimal computational complexity in the sense that it converges
with the same rate as the best N -term approximation for the solution assuming it would
be explicitly available. The condition concerning compressibility requires that, dependent
on their order, the wavelets have sufficiently many vanishing moments, and that they are
sufficiently smooth. Yet, except on tensor product domains, wavelets that satisfy this
smoothness requirement are difficult to construct.

In this paper we write the domain or manifold on which the operator equation is
posed as an overlapping union of subdomains, each of them being the image under a
smooth parametrization of the hypercube. By lifting wavelets on the hypercube to the
the subdomains we obtain a frame for the energy space. With this frame the operator
equation is transformed into a matrix-vector system, after which this system is solved
iteratively by an adaptive method similar to the one from [CDD00]. With this approach,
frame elements that have sufficiently many vanishing moments and are sufficiently smooth,
which is needed for the compressibility, are easily constructed. By handling additional
difficulties due to the fact that a frame gives rise to an underdetermined matrix-vector
system, we prove that this adaptive method has optimal computational complexity.

1. Introduction

For some boundedly invertible L : H → H ′, where H is some Hilbert space with dual
H ′, and some g ∈ H ′, we consider the problem of finding u ∈ H such that

Lu = g.

As typical examples we think of linear differential- or integral equations in variational form.
Although also systems of such equations fit into the framework, for ease of exposition in
this introduction let us consider scalar equations so that H is typically a Sobolev space H t

of some order t ∈ IR.
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Assuming that we have a Riesz basis Ψ for H t available, which we formally view as a
column vector, by writing u = uTΨ above problem is equivalent to finding u ∈ `2 satisfying
the infinite matrix-vector system

Mu = g,

where M := 〈Ψ, LΨ〉 : `2 → `2 is boundedly invertible, and g := 〈Ψ, g〉 ∈ `2. Here 〈 , 〉
denotes the duality product on (H t, H−t).

Let us denote by uN a best N-term approximation for u, i.e., a vector with at most N
non-zero coefficients that has distance to u less or equal to that of any vector with a support
of that size. Note that ‖u − uTNΨ‖Ht

=
∼ ‖u − uN‖`2 . Considering bases Ψ of sufficiently

smooth wavelet type, the theory of nonlinear approximation learns us ([DeV98, Coh00])
that if both

0 < s < d−t
n
,

where d is the order of the wavelets and n is the space dimension, and u is in the Besov
space Bsn+t

τ (Lτ ) with τ = (1
2

+ s)−1, then

sup
N∈IN

N s‖u − uN‖`2 <∞.

The condition here involving Besov regularity is much milder that the corresponding con-
dition u ∈ Hsn+t involving Sobolev regularity that would be needed to guarantee the same
rate of convergence with linear approximation in the span of N wavelets corresponding to
the ‘coarsest levels’. Indeed, assuming a sufficiently smooth right-hand side, for several
boundary value problems it has been proved that the solution has a much higher Besov-
than Sobolev regularity ([DD97, Dah99a]). Note that a rate higher than d−t

n
can never be

expected with wavelets of order d, except when the solution u happens to be a finite linear
combination of wavelets.

So far we discussed the approximation of u, which however is only implicitly given as the
solution of Mu = g. In [CDD01, CDD00], an iterative adaptive method for solving this
system has been developed that given a tolerance ε > 0 yields an approximate solution uε
with ‖u − uε‖ ≤ ε, where the number of operations and storage locations it requires is of
the same order as the lenght of the smallest best N -term approximation for u on distance
ε, meaning that the method has optimal computational complexity.

When L and thus M are symmetric and positive definite, the method consists of the
application of the simple damped Richardson iteration onto the infinite system, where the
multiplication of M with the current, finitely supported approximation vector for u is
replaced by an adaptive approximation. In each iteration, each column of M is replaced
by a finitely supported approximation with a tolerance that decreases as function of the
modulus of the corresponding entry in the vector. Note that even for a differential operator
the matrix M is not sparse due to the interaction between wavelets from different levels. A
second ingredient of the method is the application after each K steps, with K being some
fixed number, of a clean-up or coarsening procedure that removes the smallest entries from
the current approximation in order to ensure an optimal work-accuracy balance.
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For nonsymmetric or indefinite M, one can simply apply the adaptive method to the
normal equations, or alternatively one can apply more advanced iterations which may lead
to quantitatively better results ([CDD00, DDU01, DUV02]).

The proof of the optimality of the method requires that M is sufficient compressible,
meaning that given some tolerance δ > 0, there exists another infinite matrix on distance
less than δ, which in each row and column has only a finite, and sufficiently small number
of non-zero entries. For large classes of differential- and integral operators this property
can indeed be verified when, dependent on the order d, the wavelets have sufficiently many
vanishing moments and are sufficiently smooth (see also [Ste02]).

The bottleneck for the application of this adaptive wavelet method is the availability of
suitable wavelet bases on general, non-rectangular domains or manifolds. An approach to
construct wavelet bases is to write the domain as a non-overlapping union of subdomains,
that are the images of the hypercube under smooth parametrizations. Wavelets, or ‘initial
stable completions’, living on the hypercube are lifted to the subdomains. Since in general
more than one subdomain is needed, there is the problem of ‘stitching’ functions over the
interfaces.

The approach from [DS99b] yields wavelet bases that in principal satisfy all requirements.
Yet, since suitable extension operators from one subdomain into neighbouring subdomains
enter the construction, it seems not easy to implement. The approaches from [DS99a,
CTU99, CM00] yield wavelets which over the interfaces between subdomains are only
continuous. For example thinking of a differential equation of order 2 on a two-dimensional
domain, with this restricted smoothness only for orders d ≤ 2 sufficient compressibility of
the matrix M can be shown. Yet, with these low orders an adaptive method can at most
give a small improvement in the order of convergence compared to non-adaptive methods,
which in practice might not compensate for the overhead it requires.

Again because of their lack of smoothness beyond continuity, also finite element wavelets
as constructed in [DS99c, CES00, Ste00] seem not very suited for the adaptive method.

The approach followed in this paper is to apply an overlapping decomposition of the
domain or manifold into subdomains. By lifting wavelets on the hypercube to those sub-
domains, and by multiplying them by smooth weight functions that vanish at the internal
boundaries of these subdomains, a countable set of functions is obtained, that we again
denote by Ψ, which is dense in H t and which for each u ∈ H t yields some representation
u = uTΨ with ‖u‖Ht

=
∼ ‖u‖`2. Such a set Ψ is called a frame for H t. By writing u = uTΨ,

solving Lu = g is again equivalent to solving Mu = g, where M = 〈Ψ, LΨ〉 and g = 〈Ψ, g〉.
Yet, due to the overlapping decomposition the representation u = uTΨ will not be unique,
and so the system Mu = g will have more solutions, that however all correspond to the
unique solution of Lu = g.

When L is symmetric and positive definite, M is symmetric and semi-positive definite,
and Mu = g can be solved by the damped Richardson iteration. In each iteration the
norm of the defect is reduced by a constant factor less than one. For nonsymmetric or
indefinite L, the iteration can be applied to the normal equations.
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Following [CDD00] for the Riesz basis case, in the practical algorithm the application of
M will be replaced by the adaptive approximation. To be able to prove that the method has
optimal computational complexity, again it is needed that M is sufficiently compressible,
i.e., that dependent on the order d, the wavelets have sufficiently many vanishing moments
and are sufficiently smooth. Since its construction does not involve stitching of functions
over interfaces, the advantage of this frame approach is that these conditions concerning
vanishing moments and smoothness are easily satisfied.

Furthermore, because of the multiplication with the weight functions, boundary condi-
tions at the internal boundaries of the subdomains can be chosen at ones convenience. In
particular, in case of a closed manifold, this gives the additional advantage that all wavelet
bases on the hypercube can be chosen to satisfy periodic boundary conditions. Such bases
are the most easy to implement, and they have much better quantitative properties than
available wavelet bases satisfying other boundary conditions.

A final advantage is that generally an overlapping domain decomposition is much easier
to construct with simpler parametrizations than a non-overlapping one, which might also
give a favourable quantitative effect.

The use of a frame instead of a Riesz basis gives also rise to a problem: Since in the
adaptive method the matrix-vector product is replaced by an adaptive approximation,
each time it is invoked it gives an error that might have a component in the, non-trivial,
kernel of M. Also the clean-up or coarsening step may introduce such components. Just
because these components are in the kernel of M, they will not be affected by subsequent
Richardson steps, meaning that in the cause of the iteration the component of the current
approximation in the kernel of M may increase. Although this component has no influence
on the obtained approximation for the solution of Lu = g, that is, after forming the series
with the frame elements, it might be responsible for the major part of the computational
costs of each iteration. Indeed, recall that in the adaptive approximation of the matrix-
vector product the accuracy with which the columns of M are approximated is determined
by the moduli of the corresponding entries in the vector.

Under some technical assumption on the frame, specifically on the projector, called Q,
onto the complement of the kernel of M in `2, we will prove that above effect will not
occur or only to such an extent that also in the frame case the adaptive method has
optimal computational complexity. Unfortunately, although we expect it to hold more
generally, for our frame construction based on overlapping decompositions, so far we could
give a complete proof that this technical assumption holds in only one situation that t = 0
and that the wavelet bases on the hypercube are L2-orthogonal.

Above problem lead us to introduce a modified adaptive algorithm to which a projection
step is added that is applied before each coarsening step. This projector only affects the
redundant representation in the overlap regions in a way that the component of the current
approximation in the kernel of M is controlled. The projector itself, called P, is given by
an infinite matrix, and in the algorithm, as M, it is only applied approximately using the
adaptive matrix-vector product. We show that P is sufficiently compressible, and prove
that this modified algorithm has optimal computational complexity in the general case.
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This paper is organized as follows: In §2, we recall the concept of a frame, and show
how it can be used to transform an operator equation into an infinite, underdetermined
matrix-vector equation. We discuss iterative schemes to solve such equations. Next, we
replace those ingredients of such schemes that involve infinite vectors or matrices by prac-
tical realizable approximations, and show that they, together with a coarsening routine,
give rise to a convergent algorithm SOLVE. In addition, we introduce a convergent mod-
ified algorithm modSOLVE that contains the inexact application of a projector P that
explicitly controls size of the component of the current approximation in the kernel of M.

In §3 we study the rate of convergence and the computational costs of both algorithms.
First we recall some theory dealing with best N -term approximation. We formulate a
condition on the compressibility of the stiffness matrix M, and for modSOLVE also of
P, that for M is known to be satisfied for wavelets that, dependent on their order, have
sufficiently many vanishing moments and are sufficiently smooth. Under these conditions,
it is proved that both SOLVE and modSOLVE have optimal computational complexity,
where for SOLVE we need the aforementioned assumption on the projector Q.

In §4 we outline the construction of suitable frames using overlapping domain decompo-
sitions. Having specified the construction of a frame, we now discuss the condition on Q.
Furthermore, we define a suitable P and show that it is sufficiently compressible.

In order to avoid the repeated use of generic but unspecified constants, in this paper by
C <

∼ D we mean that C can be bounded by a multiple of D, independently of parameters

which C and D may depend on. Obviously, C >
∼ D is defined as D <

∼ C, and C =
∼ D as

C <
∼ D and C >

∼ D.

2. The basic concept

2.1. Frames. Let H be a separable real Hilbert space. A countable collection Ψ ⊂ H is
called a frame for H when there exist two positive constants AΨ, BΨ such that

(2.1) AΨ‖f‖
2
H′ ≤ ‖f(Ψ)‖2 ≤ BΨ‖f‖

2
H′, (f ∈ H ′).

Here with f(Ψ) we mean the sequence (f(ψ))ψ∈Ψ, with ‖f(Ψ)‖ denoting its `2-norm. We
adapted the definition of a frame given in [Dau92, §3] by identifying H with its dual H ′

via the Riesz mapping. As a consequence of (2.1), the frame operators

F : H ′ → `2 : f 7→ f(Ψ),

and its dual

F ′ : `2 → H : c 7→ cTΨ

are bounded with norm less or equal to B
1
2
Ψ. Here we used cTΨ as shorthand notation for

∑

ψ∈Ψ cψψ. The composition F ′F : H ′ → H is boundedly invertible with ‖(F ′F )−1‖H′←H ≤

A−1
Ψ . The collection Ψ̃ := (F ′F )−1Ψ is a frame for H ′ (the “canonical” dual frame) with

frame operators
F̃ := F (F ′F )−1, F̃ ′ = (F ′F )−1F ′

and frame constants B−1
Ψ , A−1

Ψ .
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The property of Ψ being a frame for H with constants AΨ, BΨ can be shown to be
equivalent to clos span Ψ = H and

(2.2) B−1
Ψ ‖u‖2

H ≤ inf
c∈`2, F ′c=u

‖c‖2 ≤ A−1
Ψ ‖u‖2

H, (u ∈ H).

We have
`2 = RanF ⊕⊥ KerF ′,

and

(2.3) Q := F (F ′F )−1F ′ : `2 → `2

is the orthogonal projector onto RanF . The frame Ψ is a Riesz basis for H iff KerF ′ = 0.

2.2. Transformation of an operator equation to an `2-problem. Let L : H → H ′

be a boundedly invertible linear operator, and let Ψ be a frame for H. Given a g ∈ H ′, we
consider the problem of finding u ∈ H such that

(2.4) Lu = g.

As examples, one may think of L as being a linear differential- or integral operator in
variational form that defines a homeomorphism between a relevant Sobolev space, or a
closed subspace of that, and its dual. A possible construction of a frame will be discussed
in §4.1.

Apart from scalar equations also systems of differential- and/or integral equations fit
into this framework. Examples can be found e.g. in [CDD00, §3]. In this case, H is a
product of relevant Sobolev spaces, and it can be equipped with a frame defined as the
product of frames for the coordinate spaces.

Writing u = F ′u for some u ∈ `2, u satisfies

Mu = g,

where
M := FLF ′ and g := Fg.

From
F̃L−1F̃ ′FLF ′ = F̃F ′

FLF ′F̃L−1F̃ ′ = FF̃ ′

}

= Q = id on RanF,

we conclude that M|RanF
: RanF → RanF is boundedly invertible, with ‖M‖ ≤ BΨ‖L‖H′←H

and ‖M|−1
RanF

‖ ≤ A−1
Ψ ‖L−1‖H←H′, whereas KerM = KerF ′.

2.3. Iterative schemes to solve the infinite dimensional system Mu = g. In case
L is symmetric and positive definite, i.e., L′ = L and inf06=v∈H(Lv)(v)/‖v‖2 > 0, then
M = M∗ ≥ 0. With λmax := λmax(M) = ‖M‖ and λ+

min := λmin(M|RanF
) = ‖M|−1

RanF
‖−1,

for 0 < α < 2/λmax, we consider the damped Richardson iteration

(2.5) u(i+1) = u(i) − α(Mu(i) − g).

From u − u(i+1) = (id − αM)(u − u(i)) and QM = MQ, we infer that

(2.6) ‖Q(u − u(i+1))‖ ≤ ρ‖Q(u − u(i))‖,
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where ρ := ‖(id−αM)|RanF
‖ = max{αλmax − 1, 1−αλ+

min} < 1, with minimum κ−1
κ+1

when

α = 2/(λmax + λ+
min), where κ = λmax/λ

+
min. Note that u− F ′u(i) = F ′Q(u − u(i)).

We will study an inexact version of (2.5) in which the application of the infinite matrix
M is approximated. A difficulty will be that errors made in kerF ′ are not reduced in subse-
quent iterations. Although obviously these errors do not affect F ′u(i), they might hamper
a cheap, but sufficiently accurate matrix-vector multiplication. Under some condition on
Q, i.e., on the frame, we will prove that this is not the case, in the sense that these errors
do not pile up too much.

For handling cases where Q might not satisfy this condition, we consider a modified
algorithm that contains the explicit application of a projector to reduce error components
in KerF ′ : Let P : `2 → `2 be some bounded projector with

KerP = KerF ′,

so that `2 = RanP⊕KerF ′ is a ‘stable’ splitting. Let u(i+1) denote the result of applying
P to the result of K damped Richardson iterations starting with u(i). Using MPu = g
and P(id − Q) = 0, we arrive at

(2.7) Pu − u(i+1) = P(id − αM)K(Pu − u(i)) = P(id − αM)KQ(Pu − u(i)),

and so

‖Pu − u(i+1)‖ ≤ ‖P‖ρK‖Pu − u(i)‖,

showing convergence when K is chosen such that ‖P‖ρK < 1. Note that u − F ′u(i) =
F ′(Pu − u(i)).

Except when the condition number κ is close to one, the Richardson iteration is known
to converge relatively slow, and quantitatively better results can be expected by more ad-
vanced iterations. Yet, for simplicity we confine the analysis to the easiest algorithm.

The case of L being non-symmetric or indefinite can be treated by considering the normal
equations

(2.8) M∗Mu = M∗g.

Both M|RanF
and M∗|RanF

are boundedly invertible on RanF and so is M∗M|RanF
,

whereas M∗M(KerF ′) = 0. By redefining λmax = λmax(M
∗M) = ‖M‖2 and λ+

min =
λmin(M

∗M|RanF
) = ‖M|−1

RanF
‖−2, the damped Richardson iteration, possibly alternated

with the projection step, can now be applied to solve (2.8).
In this paper, we confine the analysis to the symmetric positive definite case. Yet,

following the lines of [CDD00, §7], everything that will be said about the SPD case can be
easily generalized to the iteration applied to (2.8).

As an alternative for saddle-point problems, in [CDD00, DDU01, DUV02] the Uzawa
algorithm or a reformulation as a positive definite system are studied, with the aim to
obtain quantitatively better algorithms by avoiding the squaring of the condition number
κ. It can be expected that also these methods can be based on frames.
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2.4. Approximate iterations. Obviously, since in actual computations neither we can
handle the generally infinite vector g, nor we can apply the infinite matrix M, the damped
Richardson iteration, possibly alternated with the projection, is not a practical algorithm.
In this section, we study convergence of the iterations in which these ingredients are ap-
proximated. Following [CDD00], we assume that we have the following routines at our
disposal:

RHS[ε, g] → gε
determines a finitely supported gε ∈ `2 satisfying

‖g − gε‖ ≤ ε.

APPLY[ε,N,v] → wε

determines for a finitely supported v ∈ `2, and for N = M (or P or M∗), a finitely
supported wε satisfying

‖Nv − wε‖ ≤ ε.

COARSE[ε,v] → vε
creates, for a finitely supported v ∈ `2, a vector vε by replacing all but N coefficients of v
by zeros, such that

(2.9) ‖v − vε‖ ≤ ε,

whereas N is at most a constant multiple of the minimal value of N for which (2.9) is
valid.

In §3.1 and §3.2, we will discuss suitable realizations of COARSE and APPLY respec-
tively. The routine COARSE will be necessary to obtain an optimal work/accuracy
balance. The realization of RHS depends on the problem at hand.

Based on above routines, we consider the following inexact version of the damped
Richardson iteration:

SOLVE[ε,M, g] → uε:
Let θ < 1/3 and K ∈ IN be fixed such that 3ρK < θ

i := 0, u(0) := 0, ε0 := ‖M|−1
RanF

‖ ‖g‖
While εi > ε do

i := i + 1
εi := 3ρKεi−1/θ
g(i) := RHS[ θεi

6αK
, g]

v(i,0) := u(i−1)

For j = 1, . . . , K do
v(i,j) := v(i,j−1) − α

(

APPLY[ θεi

6αK
,M,v(i,j−1)] − g(i)

)

od
u(i) := COARSE[(1 − θ)εi,v

(i,K)]
od
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uε := u(i)

Proposition 2.1. Let u ∈ `2 be some solution of Mu = g. Then the vectors u(i), v(i,K)

produced in SOLVE[ε,M, g] satisfy

(2.10) ‖Q(u − u(i))‖ ≤ εi, (i ≥ 0),

and so in particular ‖Q(u − uε)‖ ≤ ε. Furthermore,

(2.11) ‖Qu + (id − Q)u(i−1) − v(i,K)‖ ≤ 2
3
θεi, (i ≥ 1),

which will be used in §3.3.

Proof. For i = 0, (2.10) follows from Qu = M|−1
RanF

g.

Now for an i ≥ 1, let ‖Q(u − u(i−1))‖ ≤ εi−1. Since MQu = g and ‖id − αM‖ ≤ 1, we
have

‖Qu − v(i,K) − (id − αM)K(Qu − u(i−1))‖ ≤ K(α θεi

6αK
+ α θεi

6αK
) = θεi

3
.

From

(id − αM)K(Qu − u(i−1)) = (id − αM)KQ(u − u(i−1)) − (id − Q)u(i−1)

and ‖(id−αM)KQ(u−u(i−1))‖ ≤ ρK‖Q(u−u(i−1))‖ ≤ ρKεi−1 = θεi

3
, we conclude (2.11).

The definition of u(i) now shows that ‖Qu + (id − Q)u(i−1) − u(i)‖ ≤ (2θ
3

+ (1 − θ))εi =

(1 − θ
3
)εi, and so ‖Q(u − u(i))‖ ≤ (1 − θ

3
)εi ≤ εi. �

Remark 2.2. Compared to the Riesz basis setting discussed in [CDD00], we see that in
SOLVE we have to pay for working with a frame. When going from u(i) to u(i+1), each
of the “evaluation” errors made in the K intermediate steps, and in fact even the sum,
should be less than the error that is allowed in u(i+1). Indeed, since only ‖id − αM‖ ≤ 1,
these errors might not be reduced by the iteration.

The inexact version of the damped Richardson iteration alternated with the inexact
application of the projector P is given by

modSOLVE[ε,M, g] → uε:
Let θ < 1/3 and K ∈ IN be fixed such that 3ρK‖P‖ < θ

i := 0, u(0) := 0, ε0 := ‖P‖ ‖M|−1
RanF

‖ ‖g‖
While εi > ε do

i := i + 1
εi := 3ρK‖P‖εi−1/θ
g(i) := RHS[ θεi

6αK‖P‖
, g]

v(i,0) := u(i−1)

For j = 1, . . . , K do
v(i,j) := v(i,j−1) − α(APPLY[ θεi

6αK‖P‖
,M,v(i,j−1)] − g(i))

od
z(i) := APPLY[ θεi

3
,P,v(i,K)]

u(i) := COARSE[(1 − θ)εi, z
(i)]

od
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uε := u(i)

Proposition 2.3. Let u ∈ `2 be some solution of Mu = g. Then the vectors u(i), z(i)

produced in modSOLVE[ε,M, g] satisfy

(2.12) ‖Pu − u(i)‖ ≤ εi, (i ≥ 0),

and so in particular ‖Pu − uε‖ ≤ ε. Furthermore,

(2.13) ‖Pu − z(i)‖ ≤ θεi, (i ≥ 1),

which will be used in §3.3.

Proof. For i = 0, (2.12) follows from Pu = PM|−1
RanF

g.

Now for an i ≥ 1, let ‖Pu − u(i−1)‖ ≤ εi−1. Since MPu = g and ‖id − αM‖ ≤ 1, we
have

‖Pu − v(i,K) − (id − αM)K(Pu − u(i−1))‖ ≤ K(α θεi

6αK‖P‖
+ α θεi

6αK‖P‖
) = θεi

3‖P‖
.

From (id − αM)K = (id − αM)KQ + id − Q and P(id − Q) = 0, we have

‖Pu − Pv(i,K) − P(id − αM)KQ(Pu − u(i−1))‖ ≤ θεi

3
,

and so
‖Pu − z(i) − P(id − αM)KQ(Pu − u(i−1))‖ ≤ 2θεi

3
.

Using ‖P(id − αM)KQ‖ ≤ ‖P‖ρK, we conclude that

‖Pu − z(i)‖ ≤ 2θεi

3
+ ‖P‖ρKεi−1 = θεi,

and so ‖Pu − u(i)‖ ≤ θεi + (1 − θ)εi = εi. �

3. Convergence rates and computational costs

3.1. Best N-term approximation and COARSE. To assess the efficiency of SOLVE
or modSOLVE, following [CDD00] we will consider the following benchmark: Suppose
that for some solution u ∈ `2 of Mu = g we would have all coefficients available. Then
the most economical approximation for u on distance less than ε would be uN , defined by
replacing all but the N largest coefficients in modulus of u by zeros, with N = N(ε,u)
being the smallest integer such that

(3.1) ‖u − uN‖ ≤ ε.

For N ∈ IN , the vector uN is called the best N-term approximation for u. If for some
s > 0,

(3.2) ‖u − uN‖ <∼ N−s, (N ∈ IN),

then N = N(ε,u) from (3.1) would satisfy N(ε,u) <∼ ε−1/s.
Assuming (3.2), in §3.3 we will prove that for the vector uε produced by (mod)SOLVE,

it holds that #supp u <
∼ ε−1/s, whereas the number of floating point operations to compute

it is of the same order. In view of (3.2), we may conclude that (mod)SOLVE is of optimal
computational complexity.
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The question whether, and if so, for which s (3.2) is valid, is related to properties of the
frame and the (Besov-) regularity of the solution u ∈ H of the operator equation (2.4). It
will be discussed in §4.2.

Vectors u ∈ `2 that satisfy (3.2) can be characterized as follows ([DeV98]): Let γn(u)
denote the nth largest coefficient in modulus of u. For 0 < τ < 2, the space `wτ is defined
by

`wτ = {u ∈ `2 : |u|`wτ := sup
n
n1/τ |γn(u)| <∞}.

It is easily verified that `τ ↪→ `wτ ↪→ `τ+δ for any δ ∈ (0, 2 − τ ], justifying why `wτ is called
weak `τ . The expression |u|`wτ only defines a quasi-norm since it does not necessarily satisfy
the triangle inequality. Yet, for each 0 < τ < 2, there exists a C1(τ) > 0 with

(3.3) |v + w|`wτ ≤ C1(τ) (|v|`wτ + |w|`wτ ), (v,w ∈ `wτ ),

or equivalently ([BL76, Lemma 3.10.1]), for µ = µ(τ) > 0 sufficiently small it holds that

|v + w|µ`wτ ≤ |v|µ`wτ + |w|µ`wτ , (v,w ∈ `wτ ).

With these `wτ -spaces at hand, it can be shown that the property (3.2) is equivalent to
u ∈ `wτ , with τ related to s according to τ = ( 1

2
+ s)−1. In particular for each τ ∈ (0, 2),

(3.4) sup
N
N s‖u − uN‖ =

∼ |u|`wτ .

The routine vε = COARSE[ε,v] might be defined by taking vε = vN with N being
the smallest integer such that ‖v − vN‖ ≤ ε. Yet, since the determination of the best
N -term approximation requires sorting all elements of v by their modulus, this algorithm
cannot be implemented in linear time. It requires the order of (#supp v) · log(#supp v)
operations, with #supp v denoting the number of non-zero coefficients of v.

Following ideas from [Bar02, Met02] we use a routine COARSE with which this log-
factor is avoided:

COARSE[ε,v] → vε:

• q := dlog((#supp v)1/2‖v‖/ε)e.

• Devide the elements of v into sets V0, . . . , Vq, where for 0 ≤ i ≤ q − 1, Vi contains the
elements with modulus in (2−i−1‖v‖, 2−i‖v‖], and possible remaining elements are put
into Vq.

• Create vε by extracting elements first from V0 and when it is empty from V1 and so forth,
until ‖v − vε‖ ≤ ε.

The value of q is chosen such that the sum of squares of the elements in Vq is less or equal
to ε2, meaning that the last element added to vε (assuming that this vector is non-zero)
originates from Vi for some i < q. Since then also vN with ‖v − vN‖ ≤ ε must contain
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elements from this Vi, and since within each Vi the squared values of the elements differ at
most a factor 4, we obtain the following result:

Proposition 3.1. For vε yielded by above routine, it holds that ‖v − vε‖ ≤ ε and

(3.5) #supp vε ≤ 4 min{N : ‖v − vN‖ ≤ ε}

meaning that it defines a valid procedure COARSE. The number of operations needed for
this routine is of the order

(3.6) #supp v + q <∼ #supp v + log(ε−1‖v‖).

Later, it will appear that the latter log-term is harmless.
Below in Proposition 3.2, we recall a crucial result proven in [CDD01]. It shows that for

any fixed θ < 1/3, a finitely supported approximation of a target vector in `wτ can always
be coarsened such that the resulting approximation has an error that is at most 1/θ times
the original error, whereas the size of its support is at most some fixed multiple of that of
the best N -term approximation with that error. Although this result was proven for best
N -term approximations, from (3.5) it is obvious that it is also valid for the current routine
COARSE.

Proposition 3.2 ([CDD01, Corollary 5.2]). Let θ < 1/3, τ ∈ (0, 2) and τ = ( 1
2

+ s)−1.
Then for any ε > 0, v ∈ `wτ , and finitely supported w ∈ `2 with

‖v − w‖ ≤ θε,

for w = COARSE[(1 − θ)ε,w] it holds that

#supp w <
∼ ε−1/s|v|

1/s
`wτ
,

and obviously ‖v − w‖ ≤ ε.

Remark 3.3. In [CDD01, Corollary 5.2] this result was formulated for θ = 1/5. However
an inspection of the proof, and an easy generalization of [CDD01, (5.4)] concerning thresh-
olding, shows the result for any θ < 1/3. Applying COARSE with a θ larger than 1/5
might give a quantitative improvement of (mod)SOLVE, since then it increases the error
with a smaller factor. It is easily seen that in any case Proposition 3.2 can not be valid for
θ > 1/2.

Controlling the sizes of the supports of approximations of an `wτ -function relative to their
errors, implies controlling their `wτ -(quasi-)norms. Indeed, an easy application of the next
proposition shows that in the situation of Proposition 3.2, in addition we have that

(3.7) |w|`wτ ≤ C2(τ)|v|`wτ ,

for some constant C2(τ) independent of ε.

Proposition 3.4 ([CDD01, Lemma 4.11]). Let τ ∈ (0, 2) and τ = ( 1
2
+s)−1. Then for any

v ∈ `wτ , and finitely supported z ∈ `2, we have

|z|`wτ
<
∼ |v|`wτ + (#supp z)s‖v − z‖
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Proof. For convenience we recall the short proof. Let N = #supp z, then

|z|`wτ
<
∼ |z − vN |`wτ + |vN |`wτ

<
∼ (2N)s‖z − vN‖ + |v|`wτ ,

where we used #supp(z− vN) ≤ 2N and (3.4). The proof is completed by

‖z− vN‖ ≤ ‖z − v‖ + ‖v − vN‖ ≤ 2‖z− v‖.

�

3.2. Requirements on the infinite dimensional system. In order to be able to show
that (mod)SOLVE has optimal computational complexity, we will have to impose some
conditions on the matrix M, and for modSOLVE also on P, as well as on the right-hand
side g. Our treatment closely follows [CDD01, CDD00], except that, following ideas from
[Bar02, Met02], we avoid some log-factors in the operations count due to sorting.

Definition 3.5. Let s∗ > 0. A bounded N : `2 → `2 is called s∗-admissable, when for a
suitable routine APPLY, for each s ∈ (0, s∗), for all ε > 0 and finitely supported vectors
v, with wε = APPLY[ε,N,v] the following is valid:

(I) #supp wε
<
∼ ε−1/s|v|1/s`wτ

,

(II) the number of arithmetic operations used to compute it is at most a fixed multiple

of ε−1/s|v|
1/s
`wτ

+ #supp v,

Remark 3.6. Let N be s∗-admissable. Then for any s ∈ (0, s∗), with τ = (1
2

+ s)−1,
N : `wτ → `wτ is bounded. Indeed, let v ∈ `wτ . Part (I) from Definition 3.5 can be written

as #supp wε ≤ Cε−1/s|v|
1/s
`wτ

for some constant C. For any N ∈ IN , take ε = Cs|v|`wτ N
−s,

or equivalently, N = Cε−1/s|v|
1/s
`wτ

. Let (Nv)N denote the best N -term approximation for
Nv. Then

N s‖Nv − (Nv)N‖ ≤ N s‖Nv − wε‖ ≤ N sε = Cs|v|`wτ ,

showing |Nv|`wτ
<
∼ |v|`wτ by (3.4).

Secondly, for any s ∈ (0, s∗), and τ = (1
2
+s)−1, the mapping v 7→ wε := APPLY[ε,N,v]

is bounded on `wτ uniformly in ε > 0. Indeed Proposition 3.4, Part (I) of Definition 3.5 and
the boundedness of N demonstrated above show that

|wε|`wτ
<
∼ |Nv|`wτ + (#supp wε)

s‖NV − wε‖ <∼ |Nv|`wτ + |v|`wτ
<
∼ |v|`wτ .

It will turn out that a matrix is s∗-admissable when it is s∗-compressible, a property
that can be verified for the matrices at hand.

Definition 3.7. Let s∗ > 0. A bounded N : `2 → `2 is called s∗-compressible, when for
each j ∈ IN there exist constants αj and Cj, and an infinite matrix Nj having at most
αj2

j non-zero entries in each column, such that

(3.8) ‖N− Nj‖ ≤ Cj,

(αj)j∈IN is summable, and for any s < s∗, (Cj2
sj)j∈IN is summable.
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For s∗-compressible N, we will make use of the following routine APPLY:

APPLY[ε,N,v] → wε:

• q := dlog((#supp v)1/2‖v‖‖N‖2/ε)e.

• Devide the elements of v into sets V0, . . . , Vq, where for 0 ≤ i ≤ q − 1, Vi contains the
elements with modulus in (2−i−1‖v‖, 2−i‖v‖], and possible remaining elements are put
into Vq.

• For k = 0, 1, . . ., generate vectors v[k] by subsequently extracting 2k − b2k−1c elements
from ∪iVi, starting from V0 and when it is empty continuing with V1 and so forth, until
for some k = ` either ∪iVi becomes empty or

(3.9) ‖N‖‖v −
∑̀

k=0

v[k]‖ ≤ ε/2.

In both cases v[`] may contain less than 2` − b2`−1c elements.

• Compute the smallest j ≥ ` such that

(3.10)
∑̀

k=0

Cj−k‖v[k]‖ ≤ ε/2.

• For 0 ≤ k ≤ `, compute the non-zero entries in the matrices Nj−k which have a column
index in common with one of the entries of v[k], and compute

(3.11) wε := Njv[0] + Nj−1v[1] + . . .+ Nj−`v[`].

The sizes of the entries of v determine the accuracy with which the corresponding
columns of N are approximated, which justifies why we speak about an adaptive solu-
tion method.

Proposition 3.8. For wε yielded by above routine, indeed we have

‖Nv − wε‖ ≤ ε.

Moreover, when N is s∗-compressible, this APPLY realizes (I), (II) of Definition 3.5, and
so N is s∗-admissable.

Proof. From (3.9), (3.8) and (3.10), we have

‖Nv − wε‖ ≤ ε/2 +
∑̀

k=0

Cj−k‖v[k]‖ ≤ ε.

Let s ∈ (0, s∗) be given. The number of operations needed for generating the vectors
v[k] is of the order

#supp v + q <∼ #supp v + log(ε−1‖v‖) <∼ #supp v + ε−1/s|v|
1/s
`wτ
.
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The value of q was chosen such that the sum of squares of elements in Vq is less or equal
to (ε/(2‖N‖))2, meaning that for all k < `, v[k] only contains elements from Vi for i < q.
Since within each of these Vi the squared values of the elements differ at most a factor 4,
for k ≤ ` we obtain that

‖v[k]‖ ≤ ‖v −
k−1
∑

j=0

v[j]‖ ≤ ‖v − vd2k−1/4e‖,

with vN denoting the best N -term approximation of v. Using (3.4), with τ = ( 1
2

+ s)−1

we infer that
∑̀

k=0

Cj−k‖v[k]‖ <∼
∑̀

k=0

Cj−k2
−ks|v|`wτ

<
∼ 2−js|v|`wτ ,

and so 2j <∼ ε−1/s|v|
1/s
`wτ

by definition of j. Now #supp wε and the number of operations

needed for the evaluation of (3.11) can be bounded by
∑`

k=0 αj−k2
j−k2k <∼ 2j <∼ ε−1/s|v|

1/s
`wτ

.
�

We will consider right-hand sides g that satisfy the following definition.

Definition 3.9. A vector g ∈ `2 is called s∗-optimal, when for a suitable routine RHS,
for each s ∈ (0, s∗) and all ε > 0, with gε = RHS[ε, g] the following is valid:

(I) #supp gε <∼ ε−1/s|g|
1/s
`wτ

,

(II) the number of arithmetic operations used to compute it is at most a multiple of

ε−1/s|g|
1/s
`wτ

,

Remark 3.10. A direct consequence of Proposition 3.4 and Part (I) of Definition 3.9 is that

(3.12) |gε|`wτ
<
∼ |g|`wτ .

Implicitly, in the proof of Proposition 3.8 we assumed that each element of Nj can be
computed at unit costs. For a discussion under which circumstances this as well as g being
s∗-optimal can be expected we refer to [CDD00, §6.2].

3.3. The complexity of (mod)SOLVE. We show that SOLVE and modSOLVE are
of optimal computational complexity. We start with modSOLVE, since for this routine
the proof follows closely the one given in [CDD00] for the Riesz basis case.

Theorem 3.11. For some s∗ > 0, assume that M and P are s∗-admissible, g is s∗-optimal,
and that for some s ∈ (0, s∗), with τ = (1

2
+ s)−1, Mu = g has a solution u ∈ `wτ .

Then for all ε > 0, uε = modSOLVE[ε,M, g] satisfies

(I) #supp uε <∼ ε−1/s|u|
1/s
`wτ

,

(II) the number of arithmetic operations used to compute it is at most a multiple of

ε−1/s|u|1/s`wτ
,

Furthermore, as was shown in Proposition 2.3, ‖Pu−uε‖ ≤ ε, and so ‖u−F ′uε‖H ≤ B
1
2
Ψε.
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Proof. It suffices to prove the statements for any ε = εi with εi = (3ρK‖P‖/θ)iε0 as in the
algorithm modSOLVE.

As noted in Remark 3.6, the fact that P is s∗-admissible implies that it bounded on `wτ .
For any i ≥ 1, from ‖Pu − z(i)‖ ≤ θεi proven in Proposition 2.3, Proposition 3.2 and the
assumption u ∈ `wτ show that u(i) := COARSE[(1 − θ)εi, z

(i)] satisfies

#supp u(i) <
∼ ε

−1/s
i |Pu|

1/s
`wτ

<
∼ ε

−1/s
i |u|

1/s
`wτ
,(3.13)

i.e. (I), and by (3.7), also

|u(i)|`wτ
<
∼ |Pu|`wτ

<
∼ |u|`wτ .(3.14)

Here we emphasize that both these results are valid uniformly in i.
To compute u(i) from u(i−1), modSOLVE uses one application of RHS, K applications

of APPLY involving M, 2K vector updates, one application of APPLY involving P,
and finally an application of COARSE. From the key estimates (3.13), (3.14), and the
fact that K is some fixed constant, in the following three paragraphs we show that these

computations take not more than a multiple of ε
−1/s
i |u|

1/s
`wτ

operations. Since (εi)i is a

geometrically decreasing sequence, we may therefore conclude (II).

Since M is s∗-admissible, it is bounded on `wτ . As a consequence, |g|`wτ
<
∼ |u|`wτ , and so

the assumption of g being s∗-optimal gives #supp g(i) <
∼ ε

−1/s
i |u|

1/s
`wτ

and |g(i)|`wτ
<
∼ |u|`wτ

by (3.12), whereas the number of operations used to compute it is at most a multiple of

ε
−1/s
i |u|

1/s
`wτ

.

Because of |g(i)|`wτ
<
∼ |u|`wτ and |u(i−1)|`wτ

<
∼ |u|`wτ , from the assumption that M is

s∗-admissable it follows that |v(i,j)|`wτ
<
∼ |u|`wτ by Remark 3.6. Again since M is s∗-

admissable, the latter result shows that #supp v(i,j) <
∼ ε

−1/s
i |u|1/s`wτ

for 1 ≤ j ≤ K, whereas

by #supp v(i,0) <
∼ ε

−1/s
i−1 |u|

1/s
`wτ

((3.13)) and #supp g(i) <
∼ ε

−1/s
i |u|

1/s
`wτ

, its computation takes

not more than a multiple of ε
−1/s
i |u|

1/s
`wτ

operations.

Since |v(i,K)|`wτ
<
∼ |u|`wτ , #supp v(i,K) <

∼ ε
−1/s
i |u|

1/s
`wτ

and P is s∗-admissible, the compu-

tation of z(i) := APPLY[θεi/3,P,v
(i,K)] takes a number of operations that is at most

a multiple of ε
−1/s
i |u|

1/s
`wτ

, #supp z(i) <
∼ ε

−1/s
i |u|

1/s
`wτ

, and |z(i)|`wτ
<
∼ |u|`wτ . Finally, by (3.6),

the latter result implies that also COARSE[(1 − θ)εi, z
(i)] needs at most a multiple of

#supp z(i) + log(ε−1
i ‖z(i)‖) <∼ ε

−1/s
i |u|

1/s
`wτ

operations. �

The key to the proof of Theorem 3.11 is the fact that the iterands produced by mod-
SOLVE are uniformly bounded in `wτ . Unfortunately, generally this will not be the case
with SOLVE. Since SOLVE does not contain a projection onto a complement space of
kerF ′, it is not capable to reduce errors once made in kerF ′. Recall that such errors are
not reduced by the Richardson steps since they are in the kernel of M. Although, because
of the geometric decrease of the tolerances, these errors are summable in `2, we cannot
show this in `wτ , and so boundedness of the iterands in `wτ is not guaranteed. For example,
thinking of RHS and APPLY as being performed exactly, i.e., with zero tolerances, each
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time COARSE[(1 − θ)εi,v
(i,K)] is invoked it gives an error, which might be completely

contained in kerF ′, for which we can say not more than that its `wτ -norm is less or equal
to |v(i,K)|`wτ , i.e., that it is bounded.

For u(i), εi as in SOLVE, for some š ∈ (s, s∗), and with τ̌ = ( 1
2

+ š)−1, in the proof of
Theorem 3.12 given below we will show that

ε
(š/s)−1
i |u(i)|`wτ̌

<
∼ |u|

š/s
`wτ
, #supp u(i) <

∼ ε
−1/s
i |u|

1/s
`wτ
,

and, and as a consequence of these results, that the method is of optimal complexity. Note
that for any v with finite support,

(3.15) |v|`wτ̌ ≤ (#supp v)š−s|v|`wτ .

So |u(i)|`wτ
<
∼ 1 and #supp u(i) <

∼ ε
−1/s
i would give ε

(š/s)−1
i |u(i)|`wτ̌

<
∼ |u(i)|

š/s
`wτ

<
∼ 1. Yet,

conversely, under no condition on #supp u(i), uniform boundedness of ε
(š/s)−1
i |u(i)|`wτ̌ implies

that of |u(i)|`wτ . In other words, it will turn out that uniform boundedness in `wτ of the
iterands is not a necessary condition for obtaining an optimal complexity result.

Theorem 3.12. For some s∗ > 0, assume that M is s∗-admissible, g is s∗-optimal, and
that for some s ∈ (0, s∗), with τ = (1

2
+ s)−1, Mu = g has a solution u ∈ `wτ . In addition,

assume that there exists an š ∈ (s, s∗) such that with τ̌ = ( 1
2

+ š)−1,

(3.16) Q is bounded on `wτ̌ .

Then, if the parameter K in SOLVE is sufficiently large; sufficient is

(3.17) 3ρK < θmin
{

1,
[

C1(τ̌)C2(τ̌ )|(id − Q)|`wτ̌←`wτ̌
]s/(š−s)

}

,

where C1(τ̌ ), C2(τ̌) are the constants from (3.3), (3.7) respectively; then for all ε > 0,
uε = SOLVE[ε,M, g] satisfies

(I) #supp uε <∼ ε−1/s|u|
1/s
`wτ

,

(II) the number of arithmetic operations used to compute it is at most a multiple of

ε−1/s|u|
1/s
`wτ

,

Furthermore, as shown in Proposition 2.1, ‖Q(u − uε)‖ ≤ ε, and so ‖u− F ′uε‖H ≤ B
1
2
Ψε.

Proof. It suffices to prove the statements for any ε = εi with εi = (3ρK/θ)iε0 as in the
algorithm SOLVE.

Since Q is bounded on `2, and by assumption it is bounded on `wτ̌ , an interpolation
argument (cf. [DeV98, (4.24)]) shows that it is bounded on `wτ as well. Let Ni be the
smallest integer such that ‖Qu − (Qu)Ni

‖ ≤ θεi/3, where (Qu)N is the best N -term
approximation for Qu. Then using the assumption u ∈ `wτ , (3.4) shows that

Ni
<
∼ ε

−1/s
i |Qu|

1/s
`wτ

<
∼ ε

−1/s
i |u|

1/s
`wτ
,

and so by (3.15),

(3.18) ε
(š/s)−1
i |(Qu)Ni

|`wτ̌
<
∼ |u|

(š/s)−1
`wτ

|(Qu)Ni
|`wτ

<
∼ |u|

(š/s)−1
`wτ

|Qu|`wτ
<
∼ |u|

š/s
`wτ
.
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From ‖Qu + (id − Q)u(i−1) − v(i,K)‖ ≤ 2θεi/3 proven in Proposition 2.1, we get

‖(Qu)Ni
+ (id − Q)u(i−1) − v(i,K)‖ ≤ θεi.

From (3.7) and then (3.3), it follows that u(i) := COARSE[(1 − θ)εi,v
(i,K)] satisfies

|u(i)|`wτ̌ ≤ C2(τ̌ )|(Qu)Ni
+ (id − Q)u(i−1)|`wτ̌

≤ C1(τ̌ )C2(τ̌)|(Qu)Ni
|`wτ̌ + C1(τ̌)C2(τ̌ )|(id − Q)|`wτ̌←`wτ̌ |u

(i−1)|`wτ̌ ,

and so by (3.18) and εi = 3ρKεi−1/θ,
(

ε
(š/s)−1
i |u(i)|`wτ̌

)

≤ C|u|
š/s
`wτ

+ C1(τ̌ )C2(τ̌)|(id − Q)|`wτ̌←`wτ̌ (3ρK/θ)(š/s)−1
(

ε
(š/s)−1
i−1 |u(i−1)|`wτ̌

)

for some constant C > 0. We may conclude that if K satisfies (3.17), then solutions of the
homogeneous part of this recursion convergence to zero, and so

(3.19) ε
(š/s)−1
i |u(i)|`wτ̌

<
∼ |u|

š/s
`wτ
,

which, as we emphasize here, holds uniformly in i.
Knowing (3.19), Proposition 3.2 and (3.18) show that

#supp u(i) <
∼ ε

−1/š
i |(Qu)Ni

+ (id − Q)u(i−1)|
1/š
`wτ̌

<
∼ ε

−1/s
i

(

ε
(š/s)−1
i

[

|(Qu)Ni
|`wτ̌ + |id − Q|`wτ̌←`wτ̌ |u

(i−1)|`wτ̌
]

)1/š

<
∼ ε

−1/s
i |u|

1/s
`wτ
,

i.e., (I) is valid.
The remainder of the proof resembles the one of Theorem 3.11. We have to show that

the K intermediate steps that transfer u(i−1) to u(i) take a number of operations that is

bounded by some multiple of ε
−1/s
i |u|

1/s
`wτ

.
As in the proof of Theorem 3.11, since M is s∗-admissible and g is s∗-optimal, we have

#supp g(i) <
∼ ε

−1/s
i |u|1/s`wτ

and |g(i)|`wτ
<
∼ |u|`wτ , and so in addition, ε

(š/s)−1
i |g(i)|`wτ̌

<
∼ |u|š/s`wτ .

Since M is s∗-admissible, this last result together with ε
(š/s)−1
i−1 |u(i−1)|`wτ̌

<
∼ |u|

š/s
`wτ

show
that

(3.20) ε
(š/s)−1
i |v(i,j)|`wτ̌

<
∼ |u|

š/s
`wτ
, (0 ≤ j ≤ K),

by Remark 3.6 (use š < s∗).
A new element in this proof is the observation that, instead of uniform boundedness in

`wτ , (3.20) is already sufficient to guarantee that the supports have the appropriate sizes.
Indeed, again since M is s∗-admissible (use š < s∗), it follows that

(3.21) #supp v(i,j) <
∼ ε

−1/š
i |v(i,j−1)|1/š`wτ̌

<
∼ ε

−1/s
i |u|1/s`wτ

, (1 ≤ j ≤ K),

whereas by #supp v(i,0) <
∼ ε

−1/s
i−1 |u|

1/s
`wτ

by (I), #supp g(i) <
∼ ε

−1/s
i |u|

1/s
`wτ

, and the second

inequality in (3.21), its computation takes not more a multiple of ε
−1/s
i |u|

1/s
`wτ

operations.
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Finally, by (3.6), the application of COARSE[(1− θ)εi,v
(i,K)] needs at most a multiple

of #supp v(i,K) + log(ε−1
i ‖v(i,K)‖) <∼ ε

−1/s
i |u|

1/s
`wτ

operations. �

Remark 3.13. The conditions imposed in Theorem 3.12 do not exclude the possibility
that uε ∈ RanF , and so Quε = uε. Then analogously to Remark 3.6, the estimates

‖Q(u − uε)‖ ≤ ε and #supp uε <∼ ε−1/s|u|
1/s
`wτ

imply that Q : `wτ → `wτ is bounded. In
this sense, the condition imposed in Theorem 3.12 that for some τ̌ < τ , Q : `wτ̌ → `wτ̌ is
bounded, is an almost necessary one.

4. Construction of frames

Recall that L : H → H ′ was assumed to be a boundedly invertible operator, where we
have in mind a linear differential- or integral operator. When L is an operator of order
2t, typically H is a Sobolev space of order t. We also briefly discussed the case of having
systems of such equations, which however poses no principal additional difficulties. So here
we restrict ourselves to scalar equations, where in addition we assume that the equation
is imposed on a domain Ω ⊂ IRn. In particular in connection with integral equations, it
is also relevant to study the case of the equation being formulated on a manifold. Yet, in
that case the construction of a frame may follow same principles as in the domain case
that we outline here.

4.1. Overlapping domain decompositions.

Theorem 4.1. For some ΓD ⊂ ∂Ω, possibly ΓD = ∅, and t ∈ IR, let

Ht =

{

H t
0,ΓD(Ω) when t ≥ 0,

(H−t
0,ΓD(Ω))′ when t < 0,

where for t ≥ 0,

H t
0,ΓD(Ω) = closHt(Ω){u ∈ H t(Ω) ∩ C∞(Ω) : supp u ∩ ΓD = ∅}.

Let Ω = ∪mi=1Ωi be an open covering, with which we mean that the sets Ωi are open, and
that there exists a partition of unity {χi} relative to {Ωi}, i.e., χi ∈ C∞(Ω), 0 ≤ χi ≤ 1,
χi vanishes outside Ωi and

∑

i χi = 1.

With ΓDi =

{

∂Ωi ∩ (Ω ∪ ΓD) when t ≥ 0
∂Ωi ∩ ΓD when t < 0

, let Ht
i =

{

H t
0,ΓD

i

(Ωi) when t ≥ 0,

(H−t
0,ΓD

i

(Ωi))
′ when t < 0,

and let Ψ(i) be a Riesz basis, or more generally, a frame for Ht
i.

Let {ωi}1≤i≤m be a collection of non-negative functions on Ω, with ωi smooth on Ωi and

zero outside Ωi, such that there exists an open covering Ω = ∪mi=1Ω̂i with Ω̂i ⊂ Ωi and

ωi =
∼ 1 on Ω̂i.
Then

∪iωiΨ
(i) is a frame for Ht.

Proof. First we demonstrate that for u ∈ Ht,

(4.1) ‖u‖2
Ht

=
∼ inf

ω−1
i ui∈Ht

i ,
∑

i ui=u

∑

i

‖ω−1
i ui‖

2
Ht

i
.
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Here by writing ω−1
i ui ∈ Ht

i, in particular we implicitly state that ui vanishes outside
suppωi.

Let ω−1
i ui ∈ Ht

i. Then since ωi is smooth on Ωi, ui ∈ Ht
i. Furthermore, the spaces Ht

i

are selected in such a way that the trivial extension with zero of a function on Ωi extends
to a bounded mapping from Ht

i → Ht. To see this for t < 0, note that the restriction of
a function on Ω to Ωi, which is the adjoint of the zero extension, is a bounded mapping
from H−t0,ΓD

(Ω) to H−t
0,∂Ωi∩ΓD(Ωi). We conclude that for any ω−1

i ui ∈ Ht
i, the function

u =
∑

i ui ∈ Ht, with ‖u‖2
Ht
<
∼

∑

i ‖ui‖
2
Ht

i

<
∼

∑

i ‖ω
−1
i ui‖

2
Ht

i
.

Conversely, let {χ̂i} be a partition of unity relative to {Ω̂i}. Then any u ∈ Ht can be

written as u =
∑

i χ̂iu, where, because of ωi =
∼ 1 on Ω̂i, ω

−1
i χ̂iu ∈ Ht

i and ‖ω−1
i χ̂iu‖Ht

i

<
∼

‖χ̂iu‖Ht
i

<
∼ ‖u‖Ht completing the proof of (4.1).

Since Ψ(i) is a frame for Ht
i, for vi ∈ Ht

i we have ‖vi‖
2
Ht

i

=
∼ infci∈`2, cT

i Ψ(i)=vi
‖ci‖

2
`2

. With vi

of the form ω−1
i ui, cTi Ψ(i) = vi is equivalent to cTi ωiΨ

(i) = ui. Now from (4.1), we conclude
that for u ∈ Ht,

‖u‖2
Ht

=
∼ inf

ω−1
i ui∈Ht

i ,
∑

i ui=u

∑

i

inf
ci∈`2, cT

i
ωiΨ(i)=ui

‖ci‖
2

= inf
(cT

1 ,...,c
T
m)T∈`2,

∑

i c
T
i ωiΨ(i)=u

∑

i

‖ci‖
2

meaning that ∪iωiΨ
(i) is a frame for Ht. �

Remarks 4.2. If Theorem 4.1 is applied with ωi being the characteristic function of Ωi = Ω̂i,
then it shows that ∪iΨ

(i) is a frame for Ht.
If each ωi is selected such that it vanishes at the internal boundary ∂Ωi ∩Ω, then above

proof shows that boundary conditions on that part of ∂Ωi can actually be chosen at ones
convenience, i.e., any ∂Ωi ∩ ΓD ⊂ ΓDi ⊂ ∂Ωi ∩ (Ω ∪ ΓD) will do.

To construct collections Ψ(i) that serve as ingredients in Theorem 4.1, we may pro-
ceed as follows: Suppose that for each 1 ≤ i ≤ m, we have a sufficiently smooth reg-
ular parametrization κi between (0, 1)n, or another reference domain, and Ωi (see Fig-

ure 1). With ΓDi,� = κ−1
i (ΓDi ), let Ψ

(i)
�

be a Riesz basis for H t
0,ΓD

i,�

(0, 1)n when t ≥ 0, or for

(H−t
0,ΓD

i,�

(0, 1)n)′ otherwise. Then we may conclude that Ψ(i) = Ψ
(i)
�

◦ κ−1
i is a Riesz basis

for Ht
i.

At least if the parametrizations are constructed such that the image of a face of [0, 1]n

has either empty intersection with ΓD or that it is fully contained in ΓD, then Ψ
(i)
�

of
wavelet type can easily be constructed by taking tensor products of wavelet bases on the
interval with appropriate boundary conditions.

With the construction of spline wavelets on the interval from [DKU99], only wavelets
with supports near the endpoints depend on the boundary condition. This means that if
the weights ωi in Theorem 4.1 vanish in a sufficiently large neighbourhood of the internal
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2

κ

κ

1

Figure 1. Overlapping domain decomposition (the dashed and dotted lines
will get their meaning in §4.4).

boundaries ∂Ωi ∩ Ω, then boundary conditions at these internal boundaries are irrelevant
since they have no influence on the constructed frame.

Compared to the construction of wavelet bases for Ht based on a non-overlapping decom-
position of the domain, the frame approach seems to have the following advantages:

• It is easier to construct parametrizations corresponding to an overlapping domain de-
composition; only local parametrizations of ∂Ω are needed. Having less complicated κi
may also have a favourable quantitative effect on the frame constants AΨ and BΨ.

• Constructions of wavelet bases based on non-overlapping domain decompositions all in-
volve a kind of ‘stitching’ of wavelets from different subdomains at the interfaces. The
construction from [DS99b] yields wavelets with all desired theoretical properties, but it
seems difficult to implement. The constructions proposed in [DS99a, CTU99, CM00] yield
near the interfaces wavelets which are only continuous, which has the following disadvan-
tages: As we will see in the next section (cf. (4.3)), this limited smoothness might restrict
the range of s for which convergence of order N−s can be expected. Secondly, it restricts
the value of s∗ for which M (and P) are s∗-compressible (see [CDD01, Proposition 6.2.2],
[Ste02] and §4.5).

• When a frame construction similar as in Theorem 4.1 is applied on a closed manifold with
weights ωi that vanish at the internal boundaries, then the wavelet bases on (0, 1)n that
serve as ingredients may satisfy periodic boundary conditions. Not only the implementation
of such bases is much easier, they are also much better conditioned than available wavelet
bases that satisfy Dirichlet or Neumann boundary conditions.
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4.2. Regularity. As we have seen, under some conditions the routine SOLVE or mod-
SOLVE exhibits an error decay of order N−s, with N being the number of operations
spent and coefficients stored, in case u ∈ `wτ with τ = (1

2
+ s)−1. Recall that u is some

solution of Mu = g, that is, u = uTΨ is the solution of Lu = g.
In case Ψ is a Riesz basis for Ht of biorthogonal wavelet type of order d, meaning that

d− 1 is the order of local polynomial reproduction, then it is known that for

0 < s < (d− t)/n,

it holds that

(4.2) u ∈ `τ iff u ∈ Bsn+t
τ (Lτ (Ω)),

at least when the wavelets are contained in Bsn+t
τ (Lτ (Ω)) and s ≤ 1/2 if t < −n/2 (see

Figure 2). Recall that u ∈ `τ implies u ∈ `wτ . Here for ν ≥ 0, Bν
p (Lp(Ω)) is the usual

n

.

−n/2

1/2 1

r+1+1/2

d

t

1/t

n

1

1
1

Figure 2. Bν
τ (Lτ (Ω)) with the line ν = sn + t, where τ = ( 1

2
+ s)−1, and

the line ν = r + 1 + 1/τ .

Besov space, in which possible boundary conditions are incorporated, measuring “ν orders
of smoothness in Lp”, and for ν < 0, Bν

p (Lp(Ω)) := (B−νp′ (Lp′(Ω))′ with 1/p+1/p′ = 1, and
so necessarily p ≥ 1. This latter restriction induces the afore-mentioned condition s ≤ 1/2
if t < −n/2. For details about Besov spaces and proofs of (4.2) in various circumstances
we refer to [Coh00].

Remark 4.3. If the wavelets are piecewise smooth, globally Cr-functions for some r ∈
IN ∪ {−1}, with r = −1 meaning that they satisfy no global smoothness requirements,
then it is known that they are contained in Bν

τ (Lτ (Ω)) when ν < r+1+1/τ , whereas they
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are not contained in this space when ν > r + 1 + 1/τ . using result So if for s = (d− t)/n
with τ = (1

2
+ s)−1, it holds that r + 1 + 1/τ ≥ sn+ t, i.e.,

(4.3) r ≥ − 3
2

+ d+ (t− d)/n.

then smoothness of the wavelets does not limit the range for which (4.2) is valid.
With spline wavelets we have r = d−2, meaning that (4.3) reads as the mild requirement

(d− t)/n ≥ 1/2.

Remark 4.4. Note that to obtain a rate N−s with a linear, non-adaptive, method it is
needed that the solution u is in Hsn+t(Ω) which is a much smaller space than Bsn+t

τ (Lτ (Ω))
Recently, a number of regularity proofs appeared showing that various operators have
indeed a much larger regularity in above Besov scale than in the Sobolev scale (e.g. see
[DD97, Dah99b]). A particular example is the operator corresponding to Poisson’s equation
on a two-dimensional polygonal domain which has been shown to have infinity regularity
in the Besov scale (see [Dah99a]). This means that the Besov regularity of the solution is
only limited by smoothness of the right-hand side, and so that it can be arbitrarily large.

Let now Ψ = ∪iωiΨ
(i) be a frame for Ht as constructed in Theorem 4.1, where the Ψ(i) are

sufficiently smooth, biorthogonal wavelet bases of order d for Ht
i. Let {χ̂i} be a partition

of unity relative to {Ω̂i}. Then u ∈ Bsn+t
τ (Lτ (Ω)) implies χ̂iu ∈ Bsn+t

τ (Lτ (Ωi)) and also
ω−1
i χ̂iu ∈ Bsn+t

τ (Lτ (Ωi)). So if 0 < s < (d−t)/n, and s ≤ 1/2 if t < −n/2, then (4.2) learns
that each ω−1

i χ̂iu has a unique expansion uTi Ψ(i), and so χ̂iu = uTi ωiΨ
(i), where ui ∈ `τ .

We conclude that u has a representation
∑

i u
T
i ωiΨ

(i) with (uT1 , . . . ,u
T
m)T ∈ `τ ⊂ `wτ under

the same condition on u as is needed in the Riesz basis case.

4.3. Boundedness of Q, i.e. condition (3.16). Assuming Mu = g has a solution
u ∈ `wτ , in Theorem 3.12 optimal computational complexity of SOLVE was proved under
the condition that for some τ̌ < τ , Q is bounded on `wτ̌ . Recall that Q = F (F ′F )−1F ′,
where with the frame construction from Theorem 4.1 and biorthogonal wavelet bases Ψ(i)

on the subdomains, F ′ : `2 → Ht : c = (cT1 , . . . , c
T
m)T 7→

∑

i ωic
T
i Ψ(i), and so F : (Ht)′ →

`2 : u 7→ ((〈u, ωiΨ
(i)〉L2(Ω))i)

T = ((〈ωiu,Ψ
(i)〉L2(Ωi))i)

T .
For wavelets that are sufficiently smooth, from (4.2) we know that ci 7→ cTi Ψi is bounded

from `τ̌ → B šn+t
τ̌ (Lτ̌ (Ωi)) when 0 < š < (d− t)/n and š ≤ 1/2 if t < −n/2.

The mapping vi 7→ 〈vi,Ψ
(i)〉TL2(Ωi)

is the inverse of di 7→ dTi Ψ̃(i), where Ψ̃(i) is the dual
wavelet basis. When the dual wavelets are sufficiently smooth, the latter mapping is
boundedly invertible from `τ̌ to B šn−t

τ̌ (Lτ̌ (Ωi)) when 0 < š < (d̃ + t)/n, where d̃ is the
order of the dual multi-resolution analysis, and š ≤ 1/2 if −t < −n/2.

If we now in addition assume that the ωi vanish at the internal boundaries ∂Ωi ∩ Ω,
and so that these weights are globally smooth on Ω, then we may conclude that F ′ : `τ̌ →
B šn+t
τ̌ (Lτ̌ (Ω)) and F : B šn−t

τ̌ (Lτ̌ (Ω)) → `τ̌ are bounded when 0 < š < min{(d− t)/n, (d̃+
t)/n} and š ≤ 1/2 if |t| > n/2.

Unfortunately, so far we are able to verify boundedness of (F ′F )−1 : B šn+t
τ̌ (Lτ̌ (Ω)) →

B šn−t
τ̌ (Lτ̌ (Ω)), that in combination with above boundedness of F ′ and F would show the
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desired property of Q, in only one particular situation that t = 0 and the Ψ(i) are L2(Ωi)-
orthonormal bases. In that case, FF ′u =

∑

i ωi〈ωiu,Ψ
(i)〉L2(Ωi)Ψ

(i) = (
∑

i ω
2
i )u, and so

(FF ′)−1u = (
∑

i ω
2
i )
−1u meaning that by the global smoothness of the weights, (FF ′)−1

clearly has above property for any s. Note that on the other hand if we do not damp the
wavelets near the internal boundaries, i.e., if ωi is just the characteristic function of Ωi,
then (F ′F )−1 will be bounded on B šn

τ̌ (Lτ̌ (Ω)) for š in a limited range only.

So at least for t = 0 and with sufficiently smooth orthonormal Ψ(i) (which implies d̃ = d)
and weights that vanish at internal boundaries ∂Ωi∩Ω, for any τ with 0 < s = 1/τ−1/2 <
d/n (which is the full range for which one may expect that u ∈ `wτ ), there exists a τ̌ < τ
such that Q is bounded on `τ̌ .

4.4. Construction of P. The fact that we have no general answer whether Q satisfies
(3.16) was the motivation to introduce the routine modSOLVE that contains the inexact
application of a suitable projector P.

In the situation of Theorem 4.1, so with {χ̂i} a partition of unity relative to {Ω̂i} and

ωi the weights, and where Ψ(i) are biorthogonal wavelet bases for Ht
i with duals Ψ̃(i), let

us define Z : u 7→ ((〈χ̂iω
−1
i u, Ψ̃(i)〉L2(Ωi))i)

T which is a bounded mapping from Ht → `2. It

holds that F ′Zu =
∑

i ωi〈χ̂iω
−1
i u, Ψ̃(i)〉L2(Ωi)Ψ

(i) = u. So defining

P = ZF ′ : (cT1 , . . . , c
T
m)T 7→ ((〈χ̂iω

−1
i

∑

ı̆ωı̆c
T
ı̆ Ψ(ı̆), Ψ̃(i)〉L2(Ωi))

T
i )T ,

we infer that P : `2 → `2 is a bounded projector with KerP = KerF ′, which are the basic
requirements on P imposed in §2.3, and which guarantee that modSOLVE is convergent,
i.e., Proposition 2.3 is valid. Note that the application of P may only change coefficients
corresponding to wavelets with supports or that of the corresponding dual wavelets intersect
more than one Ωi.

To apply above P we need a practical construction of the partition of unity {χ̂i}. Apart
from this, we discuss here the construction of weights in Theorem 4.1 that vanish at, or even
in a neighbourhood of the internal boundaries ∂Ωi ∩ Ω. As we have seen, the application
of weights that vanish at the internal boundaries seems necessary for Q satisfying (3.16),
whereas even when the application of P is necessary such weights may have a favourable
quantitative effect. Furthermore, weights that vanish even in a neighbourhood of the
internal boundaries allow us to ignore boundary conditions at these boundaries with the
construction of wavelets on the subdomains.

Let Ω = ∪iΩi be an open covering, and κi : (0, 1)n → Ωi smooth regular parametriza-
tions, where we assume that the image of a face of [0, 1]n under κi has either empty intersec-

tion with ∂Ω or that it is contained in ∂Ω. Then there exist 0 ≤ â
(i)
j ≤ ǎ

(i)
j < b̌

(i)
j ≤ b̂

(i)
j ≤ 1

such that ∪mi=1κi

(

∏n
j=1(ǎ

(i)
j , b̌

(i)
j )

)

= Ω, whereas strict inequalities 0 < â
(i)
j < ǎ

(i)
j or

b̌
(i)
j < b̂

(i)
j < 1 hold if (and only if) the face corresponds to an internal boundary (cf.

dashed and dotted boundaries in Figure 1).

Now let ηi, φi ∈ C∞((0, 1)n) with 0 ≤ ηi, φi ≤ 1, such that ηi =
∼ 1 on

∏

j(â
(i)
j , b̂

(i)
j ), whereas

it vanishes at, or even in a neighbourhood of faces of [0, 1]n that correspond to internal
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boundaries, and φi = 1 on
∏

j(ǎ
(i)
j , b̌

(i)
j ), whereas it vanishes at faces of

∏n
j=1(â

(i)
j , b̂

(i)
j ) that

correspond to internal boundaries.

Defining Ω̂i = κi(
∏

j(â
(i)
j , b̂

(i)
j )) and ωi =

{

ηi ◦ κ
−1
i on Ωi

0 on Ω\Ωi
, as desired we have that

ωi ∈ C∞(Ω), 0 ≤ ωi ≤ 1, ωi =
∼ 1 on Ω̂i, and ωi vanishes at or even in a neighbourhood of

∂Ωi ∩ Ω.

Defining Ω̌i = κi(
∏

j(ǎ
(i)
j , b̌

(i)
j ))) and χ̂

(i)
i =

{

φi ◦ κ
−1
i on Ωi

0 on Ω\Ωi
, we have 0 ≤ χ̂

(i)
i ≤ 1,

χ̂
(i)
i = 1 on Ω̌i, and χ̂

(i)
i vanishes outside Ω̂i. A partition of unity relative to {Ω̂i} is now

given by {χ̂(m)
i : 1 ≤ i ≤ m}, where for 2 ≤ k ≤ m, {χ̂(k)

i : 1 ≤ i ≤ k − 1} is defined

by χ̂
(k)
i := χ̂

(k−1)
i (1 − χ̂

(k)
k ). Indeed, an induction argument shows that

∑k
i=1 χ̂

(k)
i = 1 on

∪ki=1Ω̌i, and so in particular
∑m

i=1 χ̂
(m)
i = 1 on ∪mi=1Ω̌i = Ω. Furthermore, χ̂

(m)
i ∈ C∞(Ω),

0 ≤ χ̂
(m)
i ≤ 1, and, since supp χ̂

(m)
i ⊂ supp χ̂

(i)
i , χ̂

(m)
i vanishes outside Ω̂i.

4.5. Compressibility, i.e., the value of s∗. Let Ψ = ∪mi=1ωiΨ
(i) be a frame for Ht as

constructed in Theorem 4.1, where the Ψ(i) are biorthogonal wavelet bases for Ht
i of order

d, with dual bases Ψ̃(i) of order d̃.

We write Ψ(i) = {ψ
(i)
λ : λ ∈ J (i)} and Ψ̃(i) = {ψ̃

(i)
λ : λ ∈ J (i)}, where we think as λ

consisting of two coordinates referring to scale and location respectively. Denoting the
scale associated to λ as |λ| ∈ IN , we assume that the primal wavelets are local in the sense

that suppψ
(i)
λ intersects a uniformly bounded number of boxes 2−|λ|(α+ [0, 1]n) (α ∈ ZZn),

and conversely, that any box 2−|λ|(α+[0, 1]n) intersects the support of at most a uniformly

bounded number of ψ
(i)
λ with this level |λ|.

We put

γ = sup{s ∈ IR : ‖ψ
(i)
λ ‖Hs(Ωi)

<
∼ 2|λ|s‖ψ

(i)
λ ‖L2(Ωi), λ ∈ J (i), 1 ≤ i ≤ m},

with an analogous definition of γ̃ involving dual wavelets. Necessarily, it holds that t ∈
(−γ̃, γ). It is known that if the primal wavelets are piecewise smooth globally C r-functions
for some r ∈ IN ∪ {−1}, then γ = r + 3

2
. It holds that r ≤ d − 2 with equality sign for

spline wavelets.
Now let L : Ht → (Ht)′ be boundedly invertible. Then M = FLF ′ is represented by an

m ×m blockmatrix with (i, ı̆)-th block equal to the infinite matrix 〈ωiΨ
(i), Lωı̆Ψ

(ı̆)〉L2(Ω).
Assuming that the weights ωi vanish at the internal boundaries so that they are globally
smooth, the analysis of the compressibility of each of these blocks can follow exactly the
same lines as that of the compressibility of L with respect to a biorthogonal wavelet basis
characterized by the same tuple (d, γ, d̃, γ̃).

If for some σ > 0, L, L′ : Ht+σ → H−t+σ are bounded, then by substituting the estimates
[Dah97, (9.4.5), (9.4.8)] into [CDD01, Proposition 6.6.2] we infer that M is s∗-compressible
with

(4.4) s∗ =
min{σ, γ − t, t + d̃}

n
−

1

2
,
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at least when this value is positive. (We have used the fact that the condition σ < t + γ̃

imposed for [Dah97, (9.4.8)] can actually be relaxed to σ ≤ t + d̃.) Above result holds
true for local operators L, i.e., 〈v, Lw〉L2(Ω) = 0 when supp v ∩ suppw = ∅, as well as for
non-local L of the form

(Lv)(x) =

∫

Ω

K(x, y)v(y)dy,

with a Schwartz kernel that has the Calderon-Zygmund property

|∂αx∂
β
yK(x, y)| <∼ |x− y|−(n+2t+|α|+|β|), (n+ 2t+ |α| + |β| > 0).

The spaces Hr we used to formulate above continuity assumptions on L and L′ are defined

for r ≥ 0 by Hr =

{

[L2(Ω), H
|t|

0,ΓD(Ω)]r/t r ≤ |t|,

H
|t|

0,ΓD(Ω) ∩Hr(Ω) r ≥ |t|,
and H−r = (Hr)′.

The result given in (4.4) is not completely satisfactory. Indeed, in any case when the
primal wavelets are sufficiently smooth, in §4.2 we learned that if the solution u is in
Bsn+t
τ (Lτ (Ω)) for some s ∈ (0, d−t

n
), then it has a representation u = uTΨ such that the

best N -term approximation for u converges with a rate N−s. On the other hand, the
convergence rate of the solutions yielded by (mod)SOLVE is not only bounded by above
value of s but also by s∗. Since s∗ given in (4.4) is less or equal to γ−t

n
− 1

2
, and moreover

γ < d, on basis of this result we may only conclude that (mod)SOLVE has optimal
computational complexity for solutions with limited regularity.

Yet, in a forthcoming paper ([Ste02]) it will be shown that (4.4) is actually too pes-
simistic, and that, for σ ≥ d − t, with suitable wavelets for local as well as for non-local
operators s∗-compressibility with s∗ ≥ d−t

n
can be shown.

Since the use of the projector P applied in modSOLVE seems restricted to the frame
construction from this paper, we discuss its compressibility here. Recall that P is given
by an m ×m block matrix with (i, ı̆)-th block being equal to the infinite matrix P(i,̆ı) =
〈χ̂iωiΨ̃

(i), ωı̆Ψ
(ı̆)〉L2(Ω). So it is sufficient to investigate the compressibility of any of these

blocks.
For biorthogonal wavelet bases it can be shown that for r ∈ [−d̃, γ), s < γ,

(4.5) ‖ · ‖Hr
ı̆

<
∼ 2

˘̀(r−s)‖ · ‖Hs
ı̆

on W
(ı̆)
˘̀ := span{ψ

(ı̆)

λ̆
: |λ̆| = ˘̀},

and analogously for r ∈ [−d, γ̃), s < γ̃,

(4.6) ‖ · ‖Hr
i

<
∼ 2`(r−s)‖ · ‖Hs

i
on W̃

(i)
` = span{ψ̃

(i)
λ : |λ| = `}.

Here Hr
ı̆ is defined as Hr with (Ω,ΓD) replaced by (Ωı̆,Γ

D
ı̆ ).

So assuming that the weights vanish at the internal boundaries, for w̃
(i)
` ∈ W̃

(i)
` , w

(ı̆)
˘̀ ∈

W
(ı̆)
˘̀ , and −d ≤ s− t < γ̃, −d̃ ≤ t− s < γ, i.e., s ∈ (t− γ, t+ γ̃), we have

|〈χ̂iω
−1
i w̃

(i)
` , ωı̆w

(ı̆)
˘̀ 〉L2(Ω)| <∼ ‖χ̂iω

−1
i w̃

(i)
` ‖Hs−t‖ωı̆w

(ı̆)
˘̀ ‖Ht−s

<
∼ ‖w̃

(i)
` ‖Hs−t

i
‖w

(ı̆)
˘̀ ‖Ht−s

ı̆

<
∼ 2s(`−

˘̀)‖w̃
(i)
` ‖H−t

i
‖w

(ı̆)
˘̀ ‖Ht

ı̆
.
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Let us now define P̂
(i,̆ı)
j by removing all blocks

[

〈χ̂iωiψ̃
(i)
λ , ωı̆ψ

(ı̆)

λ̆
〉L2(Ω)

]

|λ|=`, |λ̆|=˘̀
from P(i,̆ı)

for which ` > ˘̀+ k(j)
n−1

or ˘̀> `+ γ−t
γ̃+t

k(j)
n−1

(here and in the next sentence k(j)
n−1

should read as

2k(j) when n = 1). Then using the fact that the Ψ̃(i) or Ψ(ı̆) are Riesz bases for H−ti or Ht
ı̆

respectively, we infer that for any 0 < s < γ − t,

‖P(i,̆ı) − P̂
(i,̆ı)
j ‖ <∼ 2−s

k(j)
n−1 .

For the next step, we will assume that also the dual wavelets are local and have connected
supports. Furthermore, we assume that the primal wavelets are piecewise smooth. With

this we mean that sing suppψ
(ı̆)

λ̆
is (n−1)-dimensional, i.e., for ` ≥ |λ̆| the number of boxes

2−`(α + [0, 1]n) that intersect sing suppψ
(ı̆)

λ̆
is of the order 2(`−|λ̆|)(n−1), and furthermore

that suppψ
(ı̆)

λ̆
\sing suppψ

(ı̆)

λ̆
is the union of k sets Ξ

(ı̆,1)

λ̆
, . . . ,Ξ

(ı̆,k)

λ̆
, mutually separated by

sing suppψ
(ı̆)

λ̆
, and that for each 1 ≤ q ≤ k, there exists a smooth function ξ

(ı̆,q)

λ̆
on Ωı̆ with

ψ
(ı̆)

λ̆
= ξ

(ı̆,q)

λ̆
on Ξ

(ı̆,q)

λ̆
, diam supp ξ

(ı̆,q)

λ̆
<
∼ 2−|λ̆|, supx∈Ωı̆

|∂βξ
(ı̆,q)

λ̆
| <∼ 2(|β|+ n

2
−t)|λ̆| (β ∈ INn), and

so in particular

(4.7) ‖ωı̆ξ
(ı̆,q)

λ̆
‖Hd

<
∼ 2|λ̆|(d−t).

Given λ̆, 1 ≤ q ≤ k and ` > |λ̆|, let A
(i,̆ı)

λ̆,q,`
= {|λ| = ` : supp ψ̃

(i)
λ ⊂ Ξ

(ı̆,q)

λ̆
}. We

define P
(i,̆ı)
j by removing all entries 〈χ̂iωiψ̃

(i)
λ , ωı̆ψ

ı̆
λ̆
〉L2(Ω) from P̂

(i,̆ı)
j when |λ| − |λ̆| > k(j)

n
,

supp ψ̃
(i)
λ ∩ suppψ

(ı̆)

λ̆
6= ∅ and supp ψ̃

(i)
λ ∩ sing suppψ

(ı̆)

λ̆
= ∅, and so λ ∈ A

(i,̆ı)

λ̆,q,|λ|
for some

1 ≤ q ≤ k. Then by using (4.7), and (4.6) with (r, s) = (−d,−t), for any c,d ∈ `2 we have

〈c, (P̂
(i,̆ı)
j − P

(i,̆ı)
j )d〉`2 = |

∑

`−˘̀> k(j)
n

∑

|λ̆|=˘̀

dλ̆〈
k

∑

q=1

∑

λ∈A
(i,̆ı)

λ̆,q,`

cλχ̂iω
−1
i ψ̃

(i)
λ , ωı̆ξ

(ı̆,q)

λ̆
〉|

<
∼

∑

`−˘̀>
k(j)

n

2−(d−t)(`−˘̀)
∑

|λ̆|=˘̀

|dλ̆|
k

∑

q=1

‖
∑

λ∈A
(i,̆ı)

λ̆,q,`

cλψ̃
(i)
λ ‖H−t

i

<
∼

∑

`−˘̀> k(j)
n

2−(d−t)(`−˘̀)

√

∑

|λ̆|=˘̀

|dλ|2

√

√

√

√

√

√

√

∑

|λ̆|=˘̀









k
∑

q=1

√

√

√

√

∑

λ∈A
(i,̆ı)

λ̆,q,`

|cλ|2









2

<
∼

∑

`−˘̀> k(j)
n

2−(d−t)(`−˘̀)

√

∑

|λ̆|=˘̀

|dλ|2
√

∑

|λ|=`

|cλ|2 <∼ 2−(d−t)
k(j)

n ‖d‖‖c‖,
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where for the last line we have used that, by the locality of the primal wavelets, each

λ is contained in at most a uniformly bounded number of sets A
(i,̆ı)

λ̆,q,|λ|
We conclude that

‖P̂
(i,̆ı)
j − P

(i,̆ı)
j ‖ <∼ 2(d−t) k(j)

n .
By the locality of both primal and dual wavelets and the piecewise smoothness of the

primal wavelets, the number of non-zeros in each column of P
(i,̆ı)
j is of the order 2n

k(j)
n +

2(n−1) k(j)
n−1 = 2k(j) (2k(j) + 2k(j) = 2k(j) when n = 1). By substituting k(j) = j + log(αj),

with for example αj = j−(1+ε) for some ε > 0, we infer that P is s∗-compressible with

s∗ = min{ γ−t
n−1

, d−t
n
}.

(s∗ = d− t for n = 1). So, if, when n > 1, r ≥ − 3
2
+ d+ (t− d)/n, which was also assumed

in (4.3), then s∗ = d−t
n

.
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[CM00] A. Cohen and R. Masson. Wavelet adaptive method for second order elliptic problems: Boundary
conditions and domain decomposition. Numer. Math., 86:193–238, 2000.

[Coh00] A. Cohen. Wavelet methods in numerical analysis. In P.G. Ciarlet and J. L. Lions, editors,
Handbook of numerical analysis. Vol. VII., pages 417–711. North-Holland, Amsterdam, 2000.

[CTU99] C. Canuto, A. Tabacco, and K. Urban. The wavelet element method part I: Construction and
analysis. Appl. Comput. Harmonic Anal, 6:1–52, 1999.

[Dah97] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numerica, 55:55–228,
1997.

[Dah99a] S. Dahlke. Besov regularity for elliptic boundary value problems on polygonal domains. Appl.

Math. Lett., 12(6):31–36, 1999.
[Dah99b] S. Dahlke. Besov regularity for the Stokes problem. In W. Haussmann, K. Jetter, and M. Reimer,

editors, Advances in Multivariate Approximation, Mathematical Research 107, pages 129–138,
Berlin, 1999. Wiley VCH.

[Dau92] I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.
[DD97] S. Dahlke and R. DeVore. Besov regularity for elliptic boundary value problems. Comm. Partial

Differential Equations, 22(1 & 2):1–16, 1997.



ADAPTIVE SOLUTION OF OPERATOR EQUATIONS USING WAVELET FRAMES 29

[DDU01] S. Dahlke, W. Dahmen, and K. Urban. Adaptive wavelet methods for saddle point problems -
Optimal convergence rates. IGPM report, RWTH Aachen, 2001. To appear in SIAM J. Numer.
Anal.

[DeV98] R. DeVore. Nonlinear approximation. Acta Numerica, pages 51–150, 1998.
[DKU99] W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval - Stability

and moment conditions. Appl. Comp. Harm. Anal., 6:132–196, 1999.
[DS99a] W. Dahmen and R. Schneider. Composite wavelet bases for operator equations. Math. Comp.,

68:1533–1567, 1999.
[DS99b] W. Dahmen and R. Schneider. Wavelets on manifolds I: Construction and domain decomposition.

SIAM J. Math. Anal., 31:184–230, 1999.
[DS99c] W. Dahmen and R.P. Stevenson. Element-by-element construction of wavelets satisfying stability

and moment conditions. SIAM J. Numer. Anal., 37(1):319–352, 1999.
[DUV02] W. Dahmen, K. Urban, and J. Vorloeper. Adaptive wavelet methods - Basic concepts and ap-

plications to the Stokes problem. IGPM report, RWTH Aachen, May 2002.
[Met02] A. Metselaar. Handling Wavelet Expansions in Numerical Methods. PhD thesis, University of

Twente, 2002. To appear.
[Ste00] R.P. Stevenson. Locally supported, piecewise polynomial biorthogonal wavelets on non-uniform

meshes. Technical Report 1157, University of Utrecht, September 2000. To appear in Constr.
Approx.

[Ste02] R.P. Stevenson. On the compressibility of operators in wavelet coordinates. In preparation, 2002.

Department of Mathematics, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht,

The Netherlands

E-mail address : stevenso@math.uu.nl


